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Dankwoord

Na vier jaar onderzoek sta ik nu op het punt om mijn doctoraat over de analyse van
flowcytometriedata af te ronden. Ik heb tijdens deze vier jaar niet alleen de kans
gekregen om bijzonder veel bij te leren van mijn collega’s, maar ook om samen
vele gezellige momenten te beleven. Ik ben er zeker van dat ik hieronder nog
namen vergeet expliciet te noemen, maar ik wil jullie allemaal oprecht bedanken
voor jullie interesse in mijn onderzoek en jullie vriendschap!

In de eerste plaats wil ik mijn promotoren, Yvan en Tom, bedanken. Na mijn
masterthesis overtuigden jullie mij om een doctoraat te starten, iets wat ik daarvoor
nog helemaal niet in mijn mogelijke toekomstplannen had voorzien. Ik had een
beetje schrik dat een doctoraat erg theoretisch zou zijn, en de algoritmes die ik ont-
wikkelde misschien helemaal niet in de praktijk toegepast zouden worden. Maar
jullie zorgden voor goede contacten met zowel mensen in de machine learning
community als met de mensen in het labo en gaven me de kans om heel praktijk-
gericht te werken. Bart, Martin, Hamida and Sophie, you all played an important
role by allowing me to apply my algorithms on your data. Your never-ending en-
thusiasm about our new techniques really convinced me of the usefulness of our
work and kept me motivated during my PhD.

Joeri, je begeleidde mijn masterthesis al vol overgave, maakte mij wegwijs
in de IBCN-groep en stond steeds klaar om mij te helpen met allerlei praktische
zaken. Leen, jammer genoeg werkte je maar korte tijd op flowcytometriedata,
maar ik vond het superfijn om met jou te kunnen samenwerken. Joachim, ook jij
kon steeds tijd maken voor een babbel als ik toevallig eens in de Zuiderpoort of
het iGent-gebouw passeerde.

Met verloop van tijd werd niet de IBCN-groep, maar de DaMBi-groep mijn
vaste werkomgeving, waar ik steeds bij iedereen terecht kon voor wetenschap-
pelijk advies, een ontspannende babbel, of het halen van een soepje in de resto.
Robrecht, we hadden al samen onze bachelor informatica en onze masterthesissen
tot een goed einde gebracht en ook de voorbije vier jaar stond je altijd voor me
klaar. We gingen samen naar IJsland en Seattle en besproken allerlei algoritmi-
sche problemen. Hopelijk kunnen we nog een tijdje collega’s blijven en nog veel
langer goede vrienden! Wouter, jij bent altijd bereid om tijd voor me maken, of
ik nu een vraag heb over het ontwerpen van een wetenschappelijke figuur of over
de etymologie van een random woord. Je bent voor mij het absolute voorbeeld
van hoe gedreven een doctoraatsstudent kan zijn met interesse in allerlei soorten
wetenschap, waar ik me zo goed mogelijk aan probeer te spiegelen. Liesbet, we
zijn ongeveer samen gestart in de DaMBi groep en jij zorgde ervoor dat ik me van
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in het begin welkom voelde in de groep. In Barts lab konden we steeds samen op-
lossingen zoeken voor allerlei vreemde R-problemen en jij vormde ook de schakel
om langzamerhand de andere Bio-IT’ers beter te leren kennen. Arne, bij jou kon
ik steeds terecht met al mijn IT-gerelateerde vragen. Bovendien vind ik het fantas-
tisch dat jij een webtool hebt ontwikkeld voor mijn algoritme, en het zo een stuk
toegankelijker gaat worden voor de mensen in het lab. Dani, you are increasing the
usefulness of FlowSOM by incorporating it into a bigger pipeline, and I’m very
happy with the opportunity to follow along with your work. I also always enjoy
the company on the train rides to Leuven! Celine, ook al was je maar korte tijd
in onze groep, ik vond het toch superfijn om met jou samengewerkt te hebben en
dankzij jou een hele nieuwe soort algoritmes te ontdekken. Pieter, Paco, Sarah en
Joris, jullie zorgen ook mee voor de gezellige DaMBi-sfeer, of het nu is tijdens
een lunch in de cafetaria of in het UZ, tijdens de TeamStorm of gewoon in onze
wekelijkse DaMBi-meetings.

Naast de DaMBi-groep, was het vooral de U Bla-groep die mij wegwijs maakte
in de wondere wereld van de flowcytometrie. Ik kwam in jullie groep zonder enige
biologische achtergrondkennis, en jullie stonden steeds klaar om op al mijn vra-
gen te antwoorden. Gert, van jou heb ik niet alleen superveel geleerd over de
technische werking van de machine, je stond ook steeds klaar om allerlei vreemde
data-artefacten te proberen verklaren en maakte de CYTO-conferenties een fantas-
tische ervaring. Mary, jij genereerde niet alleen data voor mij, maar nam ook de
tijd om mij experimenten mee te laten volgen en mij zelfs even zelf de tubes onder
de flowcytometer te laten steken, een ervaring die mij absoluut extra inzicht heeft
gegeven in waar al die data nu eigenlijk vandaan komt. Charlie, your enthusiasm
in using the FlowSOM algorithm on your data was really motivating during my
PhD! Simon, Dorine, Martijn, Nincy, Marieke, Melissa, Delfien, en vele anderen,
jullie bezorgden me ook data om op te werken, zo ervoor zorgend dat ik nuttige
algoritmes kon ontwikkelen en alle kleine eigenaardigheden van de data leerde
kennen!

I also want to thank everyone from my temporary lab in Stanford. Nima, thank
you so much for giving me the opportunity to visit your lab, to provide an interes-
ting project and to make me feel very welcome! Brice and Dyani, I really enjoyed
sharing the office with you. Ed and Hope, thanks for taking me along when you
were doing a CYTOF experiment! Julie and Dave, you welcomed me in your
home during my stay in Stanford and I really enjoyed all the artistic inspiration I
got from you!

Britt, Pieter, Elissa en Annelies, ik ben heel blij dat ik jullie masterthesissen
heb mogen begeleiden, ik denk dat ik daar minstens evenveel van heb bijgeleerd
als jullie!

Barbara, Bernd, Clément, George, Heleen, Kinga, Myrthe, Pauline, Rachel and
Sébastien, you all travelled to Ghent to learn about computational flow cytometry,
bringing your own data and being brave enough to start writing scripts yourselves.
I hope I convinced you all to keep exploring your data in new ways, even though
these R scripts might seem a bit cryptic when first looking at them.
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Minerva en Manon, bij jullie kan ik steeds terecht als alle wetenschappelijke
dingen me even teveel worden. Ik kan jullie niet genoeg bedanken voor alle steun
en vriendschap. Daarnaast wil ik uiteraard ook mijn familie bedanken, en in het
bijzonder mijn mama, voor alle goede zorgen en fijne momenten. Toen ik besloot
informatica te gaan studeren had ik nooit verwacht om uiteindelijk toch in een
omgeving terecht te komen die heel dicht aansluit bij jouw en papa’s werk, maar
het is dankzij jullie dat ik altijd al geboeid ben geweest door wetenschap en dat
hopelijk nog lang ga blijven! Natuurlijk mag ook Nicolas’ familie niet ontbreken:
Marijke, Dirk en Pauline, ook bij jullie kan ik steeds terecht als ik eens nood heb
aan ontspanning.

En dan uiteraard, als allerlaatste en allerbelangrijkste, Nicolas. Zonder jou
had ik dit nooit gekund, en elke avond bij jou thuiskomen is het fijnste gevoel ter
wereld. Je staat altijd voor me klaar, ook op de moeilijke momenten vol stress voor
deadlines en zelfs toen ik besloot plots twee maand naar Amerika te vertrekken heb
je me altijd volop gesteund. Samen kunnen we de wereld aan. ♥!

Gent, mei 2017
Sofie Van Gassen
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Samenvatting
– Summary in Dutch –

Het immuunsysteem, een complex systeem dat uit veel verschillende celtypes be-
staat, verdedigt ons lichaam tegen allerlei indringers en speelt een grote rol in
de meeste ziekten. Bij infectieziekten, zoals bijvoorbeeld griep, bestrijdt het de
ziektekiem, maar soms kan het ook ziekten veroorzaken als er iets misloopt bij
de werking, zoals bijvoorbeeld bij allergieën. Het immuunprofiel van een patiënt
opstellen kan helpen om een diagnose te stellen of om een behandeling op te vol-
gen, terwijl het bestuderen van in vitro immuuncellen of het immuunsysteem van
proefdieren cruciaal is bij de ontwikkeling van geneesmiddelen. Om een immuun-
profiel te bepalen wordt vaak flowcytometrie gebruikt, een high-throughput tech-
niek waarbij biologische stalen worden gekleurd met antilichamen die aan flu-
orochromen gebonden zijn en waarbij de cellen passeren door een vloeistofsys-
teem. Met behulp van een optische installatie met lasers en bandfilters wordt de
fluorescentie-emissie van elke individuele cel gemeten, waardoor de aanwezigheid
van specifieke eiwitten of ‘merkers’ op het celoppervlak gedetecteerd wordt. Zo
kunnen verschillende celtypes geı̈dentificeerd worden en krijgt men inzicht in het
immuunprofiel van de patiënt. Deze techniek kan informatie opmeten van duizen-
den individuele cellen per seconde.

De analyse van flowcytometriedata bestaat typisch uit meerdere onderdelen.
Eerst moeten een aantal stappen voor kwaliteitscontrole doorlopen worden, zo-
als het verwijderen van verkeerde metingen veroorzaakt door obstructies in de
machine, dode cellen of doubletten. Sommige artefacten van het optisch systeem
moeten ook gecorrigeerd worden door de data te compenseren en te transformeren.
Vervolgens worden de verschillende celtypes geı̈dentificeerd. Traditioneel wordt
dit gedaan door de data te ‘gaten’, een procedure waarbij kleinere groepen van
cellen herhaaldelijk geselecteerd worden door veelhoeken over tweedimensionale
spreidingsdiagrammen te tekenen. Het detecteren van de verschillende celtypes
is zelden het uiteindelijke doel van het onderzoek. Vaak wordt een bijkomende
analyse uitgevoerd op de aantallen of percentages van de celtypes, om verschillen
tussen patiëntengroepen of proefdieren te bepalen.

In de voorbije jaren is het aantal merkers dat gelijktijdig kan opgemeten wor-
den sterk toegenomen. Waar de originele machines in de jaren ‘70 slechts twee
kleuren konden meten en dit geleidelijk aangroeide tot 12 in de jaren ‘90, steeg het
in de laatste tien jaar tot 30 en meer door de ontdekking van fluorochromen met
kleinere emmissiespectra en de ontwikkeling van massacytometrie. Hierdoor is de
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traditionele manier om deze data te analyseren niet langer toereikend. Bij klei-
nere datasets was het observeren van twee parameters per keer voldoende om de
celpopulaties te identificeren, maar dit beeld is te gelimiteerd voor hoogdimensio-
nale datasets. Het is niet alleen tijdrovend, maar ook zeer bevooroordeeld naar de
verwachte populaties toe. Veel cellen worden weggelaten en nooit geanalyseerd
en het gebeurt zelden dat alle merkers bestudeerd worden voor één cel. Daarbij
komt ook nog dat naarmate meer celpopulaties gedetecteerd worden, het moeilij-
ker wordt om te identificeren welke (combinaties van) celpopulaties voorspellend
kunnen zijn voor een klinisch resultaat.

Machinaal leren, een onderzoeksveld in de computerwetenschappen waar mo-
dellen worden geleerd uit data, zou kunnen helpen om deze problemen aan te
pakken. Het heeft algoritmes die kunnen omgaan met hoogdimensionale data (zo-
als dimensionaliteitsreductie en kenmerkselectie), algoritmes om subpopulaties te
selecteren in de data (‘clustering’) en algoritmes om waarden te voorspellen, zo-
als een groepslabel of een overlevingstijd, vanuit een beschrijving van een patiënt
(classificatie en regressie). De meeste van deze technieken kunnen nuttige toepas-
singen vinden in flowcytometrieonderzoek.

In deze thesis evalueren we welke algoritmes het best geschikt zijn voor dit
type data en ontwikkelen we een aantal specifieke oplossingen voor verschillende
situaties. Het eerste hoofdstuk bevat een algemene inleiding van de flowcytome-
trietechniek, illustreert het gebruik ervan in immunologisch onderzoek en toont
een kort overzicht van algoritmes voor machinaal leren.

In het tweede hoofdstuk ontwikkelen we een beter visualisatiealgoritme voor
flowcytometriedata, omdat de traditionele 2D-spreidingsdiagrammen incompleet
waren en alternatieve technieken zoals SPADE en viSNE de miljoenen cellen die
in flowcytometriestalen gemeten worden niet konden verwerken. FlowSOM ge-
bruikt een self-organizing map, die het computationeel goed schaalbaar maakt,
en bevat een extra metaclusteringsstap, die clusters met verschillende maten en
vormen toelaat. De clusters van de self-organizing map worden in een minimaal
opspannende boom gevisualiseerd. Dit beeld heeft een zeer intuı̈tieve interpreta-
tie waarin de verschillende takken diverse celtypes voorstellen en de verschillende
nodes in een tak kleine variaties binnen een specifieke celpopulatie weergeven.

Terwijl de eerste versie van het FlowSOM-algoritme een volledig overzicht van
een dataset kon geven, merkten we al snel dat het zonder extra moeite nog geen
antwoord kon geven op verscheidene vragen van de immunologen, zoals ‘Wat is
het immunofenotypisch verschil tussen deze twee groepen patiënten?’ en ‘Welke
tak stelt de dendritische cellen voor?’. In het derde hoofdstuk beschrijven we
extra mogelijkheden die geı̈mplementeerd werden in het FlowSOM R-pakket dat
beschikbaar is op Bioconductor en gebruikers toestaat een meer volledige analyse
van hun data te doen zonder veel extra werk.

Het vierde hoofdstuk beschrijft onze deelname aan de FlowCAP IV-wedstrijd.
Het FlowCAP-consortium leverde een flowcytometriedataset van hiv-patiënten met
een gekende progressietijd tot aids en was op zoek naar celpopulaties die deze pro-
gressiesnelheid konden voorspellen. We bouwden een pijplijn genaamd FloReMi,
die eerst extensieve voorbewerking toepast om foute metingen in de bestanden te
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verwijderen en dan een combinatie van de bestaande flowDensity- en flowType-
algoritmes gebruikt om automatisch zeer veel mogelijke populaties te detecteren.
We pasten een kenmerkselectieprocedure toe om interessante populaties te vinden
met minimale redundantie en de progressietijd werd voorspeld met behulp van een
random survival forest. Onze uiteindelijke resultaten waren beter dan de inzendin-
gen van de andere acht teams die aan deze wedstrijd deelnamen.

In het vijfde hoofdstuk wordt een overzicht van computationele flowcytome-
trietechnieken gegeven, inclusief de twee technieken uit de vorige hoofdstukken
en verschillende technieken die in andere onderzoeksgroepen werden ontwikkeld.
Hoewel er veel algoritmes bestaan, gebruiken de meeste mensen in het labo nog
steeds de traditionele gating-methode om hun data te analyseren. Het is noodza-
kelijk om deze nieuwe technieken aan immunologen te introduceren en hen een
overzicht te geven van alle verschillende methodes en hun voordelen. Zo kunnen
ze een geı̈nformeerde beslissing nemen over wat voor hen het leren waard is om
hun onderzoek vooruit te helpen.

Waar de focus van alle vorige hoofdstukken op flowcytometriedata lag, kun-
nen de algoritmes ook gebruikt worden in een context van massacytometrie. Dit
is een variatie op flowcytometrie waar de cellen gelabeld worden met zeldzame
aardmetalen in plaats van fluorochromen. Dit omzeilt de beperkingen van het op-
tisch systeem en laat toe dat het aantal merkers stijgt tot 50 en meer. Aangezien
massacytometrie steeds vaker in klinische studies wordt gebruikt, is het zeer be-
langrijk dat de waarden vergelijkbaar zijn tussen de verschillende stalen. Om dit
te verzekeren worden stalen vaak per plaat verwerkt, maar zelfs dan kunnen batch-
effecten optreden tussen verschillende platen. In het zesde hoofdstuk stellen we
een nieuw algoritme voor, gebaseerd op normalisatie aan de hand van kwantielen,
dat rekening houdt met de celtype-specifieke effecten die kunnen voorkomen door
het incorporeren van het FlowSOM-algoritme.

Kort samengevat ontwikkelden we nieuwe algoritmes voor alle stappen van
een flowcytometrieanalyse, gaande van voorbewerking over celtype-identificatie
tot prognosevoorspelling. Het gebruik van machinaal leren liet ons toe om betere
resultaten te behalen in vergelijking met bestaande technieken en verscheidene van
onze methodes zijn in gebruik genomen door andere onderzoeksgroepen. Toch is
het programmeren van scripts voor de meeste mensen in het labo nog net een stap
te ver. Het zal wat tijd kosten tot deze nieuwe methodes geı̈mplementeerd wor-
den in de commerciële oplossingen die geen programmeervaardigheden vragen
en die door de meeste immunologen gebruikt worden. Ondertussen zullen sterke
samenwerkingen tussen wet lab-teams en bio-informatici de computationele flow-
cytometrie naar een hoger niveau blijven tillen.





Summary

The immune system, a complex system consisting of many different cell types, is
our body’s main defense mechanism against all kinds of intruders. It plays a huge
role in most diseases, either by battling the culprit in infectious diseases such as flu,
or because something goes wrong with its functioning in immune diseases such as
asthma. Determining the immune profile of patients can help to diagnose them or
to follow their treatment, whereas studying in vitro immune cells or the immune
system of laboratory animals is crucial in medicine development. To determine
an immune profile, a high-throughput technology called flow cytometry is often
used. Biological samples are stained with antibodies bound to fluorochromes and
the cells in solution are passed through a fluidics system. Using an optics system
including lasers and bandpass filters, the fluorescence emission of every individual
cell is measured, which reports the presence of specific proteins or ‘markers’ on
the cell surface, allowing to identify different cell types and giving insight in the
immune profile of a patient. This technology can capture information of thousands
of individual cells per second.

The analysis of flow cytometry data will typically consist of multiple steps.
First, some quality control steps should be executed, such as removing erroneous
measurements caused by obstructions in the machine, dead cells or doublets. Some
artifacts from the optics system need to be corrected as well, by compensating
and transforming the data. Next, the different cell types can be distinguished.
Traditionally, this is done by ‘gating’ the data, a procedure where subsets of cells
are repetitively selected by drawing polygon shapes on two-dimensional scatter
plots. Detecting the different cell types is rarely the final goal of the research.
Often an additional analysis is executed on the cell type counts or percentages, to
determine differences between patient groups or lab animals.

In recent years, the number of markers that can be measured simultaneously
has strongly increased. Whereas the original machine design in the seventies was
only able to measure two colors and this increased gradually to twelve in the
nineties, with the discovery of fluorochromes with smaller emission spectra and
the advent of mass cytometry, this number increased to thirty and more in the last
ten years. This causes the traditional way of analyzing this data to fall short. While
for smaller datasets observing two parameters at a time was enough to identify the
cell populations, this view is just too limited for high-dimensional datasets. It is
not only time-consuming, but also very biased towards the expected populations.
Many cells are ‘gated out’ and never analyzed, and rarely all markers are studied
for a single cell. Additionally, as more and more cell populations can be detected,
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it becomes harder to identify which (combinations of) cell populations can be pre-
dictive for a clinical outcome.

Machine learning, a branch of computer science in which models are learned
from data, might help to tackle these problems. It has algorithms to handle high-
dimensional data (such as dimensionality reduction and feature selection), algo-
rithms to select subpopulations in the data (called clustering) and algorithms to
predict values, such as a group label or a survival time, from a description of a
patient (classification and regression). Most of these machine learning techniques
can find useful applications in flow cytometry research.

In this work, we evaluate which algorithms are best suited for this type of data
and develop several specific solutions for different use cases. The first chapter is
a general introduction of the flow cytometry technique, showing its uses in im-
munology research and a short overview of machine learning approaches.

In the second chapter, we develop a comprehensive visualization tool for flow
cytometry data, as the traditional 2D scatter plots were incomplete, and alterna-
tive techniques such as SPADE and viSNE were not able to handle the millions
of cells processed from flow cytometry samples. FlowSOM uses a self-organizing
map, making it computationally very scalable, and includes an additional meta-
clustering step, allowing clusters in strongly varying sizes and shapes. The clus-
ters from the self-organizing map are visualized in a minimal spanning tree, a
view which has a very intuitive interpretation with the separate branches repre-
senting different cell types and the separate nodes in the branches representing
small variations in a specific cell population.

While the first version of the FlowSOM algorithm managed to give a compre-
hensive overview of a dataset, we soon noticed that it was not yet able to answer
many questions of the immunologists without effort, such as ‘What is the im-
munophenotypic difference between these two groups of patients?’ and ‘Which
branch represents the dendritic cells?’. In the third chapter, we describe some ad-
ditional functionality that was implemented into the FlowSOM R package that is
available on Bioconductor and that allows users to do a more complete analysis of
their data without much extra work.

The fourth chapter describes our participation in the FlowCAP IV challenge.
The FlowCAP consortium provided a flow cytometry dataset of HIV patients with
known progression time to AIDS, and were looking for cell populations which
could predict this progression rate. We built a pipeline called FloReMi, which
first applied extensive preprocessing to clean the files and then used a combina-
tion of the existing flowDensity and flowType algorithms to automatically detect
many possible populations. We applied a supervised feature selection procedure
to find populations of interest with minimal redundancy and the progression time
was predicted using a random survival forest. Our final results outperformed the
submissions of the other eight teams participating in this challenge.

In the fifth chapter, a review of computational flow cytometry techniques is
given, including the two techniques from the previous chapters and many other
techniques developed in different research groups. Even though several algorithms
exist, most people in the lab still use the traditional gating approach to analyze
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their data. It is necessary to introduce these new techniques to immunologists and
to give them an overview of all the different approaches and their advantages, so
they can make an informed decision about what could be worth learning to advance
their research.

Where all previous chapters focused on flow cytometry data, the algorithms
could also be used in mass cytometry settings. Mass cytometry is a variation on
flow cytometry where the cells are labeled with rare earth metals instead of fluo-
rochromes. This circumvents the limitations of the optics system and allows the
number of markers to go up to fifty and more. As mass cytometry is used more and
more often in clinical studies, it is of utmost importance that the values are com-
parable between the different samples. To ensure this, samples are often processed
per plate, but even then, batch effects might pop up between different plates. In
the sixth chapter, we propose a new normalization procedure based on quantile
normalization, which takes into account the cell type specific effects that might be
occurring by incorporating the FlowSOM algorithm.

In conclusion, we developed new tools for all steps of a flow cytometry anal-
ysis, going from preprocessing, over cell type identification up until prognosis
prediction. Making use of machine learning techniques allowed us to improve
compared to existing analysis tools and several of our methods have been adopted
by other research groups. However, most people in the lab will not yet take the
leap to start programming scripts. It will take some time until these new analysis
tools are implemented in the commercial point-and-click solutions used by most
immunologists. In the meantime, strong collaborations between wet lab teams and
bioinformatics teams will keep pushing computational flow cytometry to a new
level.





1
Introduction

In this chapter, we present some basic concepts to situate the conducted research.
The main focus of this work lies on flow cytometry data, so we introduce flow
cytometry and its specific terminology. We also describe its use in immunology
research and present a selection of cell types to familiarize the reader with the in-
terpretation of the data. Technical improvements to flow cytometry necessitated a
different approach to the analysis, and we outline some different types of machine
learning techniques which have proven useful. However, a number of challenges
still remain, which are subsequently discussed. Finally, we summarize the main
contributions of the presented work and outline the structure of this dissertation.
At the end of this chapter, we provide an overview of the publications that were
authored during this research period.

1.1 Flow Cytometry

Flow cytometry literally means ‘Measuring cells in a stream’. It is a technol-
ogy which can measure specific cell properties for thousands of individual cells
per second, allowing to detect different cell types. It can be used instead of mi-
croscopy when many cells need to be studied. Flow cytometry datasets can easily
contain millions of cells. The properties measured consist of two light scatter val-
ues, which correlate to cell size and complexity, and a selection of fluorescently
labeled markers: extra- or intracellular properties of the cells, such as DNA, RNA
or proteins which allow to identify cell types of interest.
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The first flow cytometers were developed in the seventies [1] and the current
machines are still built by the same principles. A flow cytometer typically consists
of four main parts:

1. A fluidic system, to enable the cells to pass by the measuring point one by
one

2. Laser(s), to provide light scatter and excite the fluorochromes attached to
the cells

3. Light detectors (PMTs) with analog-to-digital conversion, to detect the light
emitted

4. A computer, for further analysis of the signals

A schematic overview is shown in Figure 1.1. The cells are suspended in a
stream with hydrodynamic focussing and pass by a detection apparatus one by
one. One or multiple lasers illuminate the cell, and the light that gets scattered by
the cell is measured. We distinguish two kinds of scatter: forward scatter (FSC),
which correlates with the cell size, and side scatter (SSC), which correlates with
the cell complexity. Additionally, the colors emitted can be detected by passing the
light through multiple bandpass filters, so that each photomultiplying tube (PMT)
can measure the signal in a certain wavelength range or channel. Although some
cells are autofluorescent and emit a color signal by themselves (e.g. macrophages),
most do not emit much useful information in different colors. Rather, the cells are
stained using monoclonal antibodies bound to fluorochromes. The fluorochromes
are available in multiple colors and by attaching them to antibodies which are
uniquely binding to known proteins, the color signal becomes a reporter for that
specific marker. Panel design, the process of selecting which antibodies to include
in the experiment and which fluorochromes to combine them with is one of the
main tasks of a flow cytometrist. In recent years, initiatives have been taken to
work towards standardized panels which can be reused throughout the community
[2], but especially in research environments, experimentation in panel design is
still key.

When processing the data, some artifacts caused by the optics system need to
be taken into account. For example, a fluorochrome typically emits signal in a
wavelength range, having a peak at a certain wavelength but also emitting some
signal in the adjacent wavelengths. Bandpass filters then filter out the peak of this
range to measure the emission. However, the edges of the range of one color might
overlap with the peak region of another one, meaning that some signal might be de-
tected in a neighboring channel. This phenomenon is called spillover, and should
be corrected for by applying compensation. To estimate how much false signal is
detected in the other channels, single-stained samples or beads can be used. The
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Figure 1.1: Schematic overview of the main principles of a flow cytometry experiment. (A)
The four main parts of a flow cytometer: a fluidic system, a laser, light detectors and a
computer. (B) How a cell gets measured by the light detectors. For every marker, height
(-H), width (-W) and area (-A) of the signal can be recorded. (C) In a traditional analysis,
2 markers are plotted against each other and populations of interest are defined by drawing
polygons.
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smaller the emission range of the fluorochrome, the better, as less overlap will lead
to purer results and allow to include more colors in the panel. The development
of fluorochromes with a very narrow emission range is one of the technological
advances made in the last decade which allows to measure more markers simulta-
neously.

Another artifact is caused by the analog-to-digital conversion. The signal is
typically measured on an exponential scale, but in most cases the actual numeric
value is not really of interest. It is enough to know whether the value is high, mean-
ing the marker is present, or the value is low, meaning the marker is not present. It
is rarely necesary to distinguish cell types by having a dimmer positive signal than
others. To make it easier to distinguish the positive and negative cells, researchers
used to apply a logarithmic transformation to the data. However, this leads to
artifacts such as many events being piled up on the axis at zero, giving a skewed
view on the data. Nowadays, mostly a biexponential or logicle transformation is
used [3], as illustrated in Figure 1.2. This transformation is linear around zero and
becomes logarithmic for bigger values, resulting typically in positive and negative
populations with a close to Gaussian distribution. In many cases, the split between
the positive and negative population can be determined quite easily. However, it is
not always that simple when the positive population is either very small or having
a high variance, resulting in a continuous smear. In those cases, a negative control
or an FMO (fluorescence-minus-one) sample can help. By staining the sample
with the whole panel except the marker of interest, the researcher can determine
the highest numeric values that still belong to the negative population.

Once the data is compensated and transformed, the researcher will typically
gate the data. This is an interative process of inspecting 2D scatter plots represent-
ing 2 markers for all individual cells, and drawing polygons (or ‘gates’) to identify
subsets of interest. New scatter plots of these subsets can then be analyzed, build-
ing a hierarchical decision process to identify the cell populations of interest. An
example of such a gating strategy is given in Figure 1.3.

Some artifacts might be caused by the sample itself and are typically removed
in the first gating steps. Cells might stick together, resulting in markers on two dif-
ferent cells seemingly reported on one cell. However, as these clumps go through
the stream, they will appear to have an elongated shape compared to the typically
round cells. This information can be derived from comparing the total signal mea-
sured (FSC-A, area) to the maximum signal caused by the cell (FSC-H, height).
For a doublet, the height will stay the same, but the area will double, because it
takes twice as long to pass by the measuring point. By gating out cells with an
unexpected ratio, doublets can be removed.

Dead cells are another reason for false signal. Because of the changed cell
structure, non-specific binding of antibodies might happen. Typically, a live/dead
marker is included in the panel to allow gating on live cells.
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Figure 1.2: A logarithmic data transform results in many cells piled up on the axis. The
logicle transforms stays linear for small values and becomes logarithmic for larger values,
giving a clearer view of the data.
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Figure 1.3: An example of a manual gating strategy. A scatterplot is shown of two mark-
ers, on which the researcher draws a polygon to select cell subsets of interest. For those
subsets, they can again pick two different markers and select smaller subsets. This process
is repeated until all cell populations of interest are identified.

1.1.1 Uses of Flow Cytometry in Immunology

Although flow cytometry can be used in many fields, this work focuses on im-
munological data. Our immune system plays a crucial part in many diseases, either
as a defense mechanism once a pathogen is detected or as the cause of the disease
when something goes wrong with the immune system. Also in battling cancer,
the immune system can play an important role. Therefore, studying the immune
system is of utmost importance for medical research and immunophenotyping is
very valuable in diagnosing patients.

The immune system is a complex system in which many different cell types can
react to pathogens, such as viruses and bacteria, in different ways. The immune
cells can also interact with each other, leading to a cascade of reactions once a
pathogen is detected. To gain insight into diseases, distinguishing these different
cell types is the first step. They can be identified by detecting proteins such as
immunoglobulins or cluster of differentiation (CD) markers on their cell surface.
Additionally, intracellular cytokine staining can give insight into the activation
state of the cells.

Although the immune cells can reside in most tissues of the body, they travel
through the blood to reach the places where they are needed. Immune cells are
therefore also known as white blood cells. The most common option to collect
immune cells are peripheral blood mononuclear cells (PBMCs). These can be
collected by lysing red blood cells and serum from a blood sample, so that only
the white blood cells remain. As the blood travels throughout the whole body, this
can give an insight into the general immune state of the patient.

By analyzing a heterogeneous cell sample to identify the presence and propor-
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tions of various cell types of interest, the imunophenotype of a patient is deter-
mined. This gives insight into the disease state. For example, asthma, a disease
caused by an allergic reaction in the airways, typically results in a strong increase
in eosinophils. On the other hand, in patients with HIV (Human Immunodefi-
ciency Virus), the CD4+ T cell count drops strongly. These parameters can be
used to follow up treatment or to prognose the further course of the disease.

In medical research, immunophenotyping is also often applied on mice mod-
els. By comparing wild-type mice with mice in which one specific gene is knocked
out (KO mice), insights into the function of this gene can be gained. Advanced
mouse models allow to knock out a gene only in specific cell types, allowing a
more detailed inspection of the gene’s function. By comparing mice with different
treatments, effects of compounds can be studied for drug development.

Some flow cytometers also have the option to sort different cell populations
into different vials, a technology called fluorescence-activated cell sorting (FACS).
This enables researchers to harvest specific cells for further research, such as for
example RNA sequencing.

1.1.2 A Selection of Cell Types

In this section, we shortly introduce a selection of immune cells and give an ex-
ample of their function, just to familiarize the reader with the interpretation of the
data. As the immune system is a very complex system, a full overview of all cell
types and functionalities is beyond the scope of this work.

The development of red and white blood cells is called hematopoiesis. These
cells have varying life spans, ranging from about 24 hours (e.g. neutrophils) to
multiple years (e.g. memory B and T cells). Therefore, hematopoiesis is a contin-
ually ongoing process, depending on the demand for the different cell types. This
is influenced by infections, allergic reactions, low oxygen levels etc. The devel-
opment starts with stem cells in the red bone marrow which can differentiate into
multiple more specific precursor cell types, to finally mature into functional red
blood cells and immune cells ready to travel throughout the body to where they
are needed.

We distinguish two big branches in this developmental tree: the lymphoid and
the myeloid cells. The lymphoid cells all have one common progenitor and are
the main cell types found in the lymphatic system: B cells, T cells and NK cells.
Red blood cells, neutrophils, eosinophils, macrophages and dendritic cells all de-
velop from the myeloid precursor cells. In Table 1.1 an overview of some of their
functions and markers to identify them is given. As the size of a flow cytometry
panel is limited, typically including ten to twenty markers, often multiple panels
are used on aliquots of the samples, to separately study the lymphoid and myeloid
populations in more detail.
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A cartoon sketch of how these cells can interact is shown in Figure 1.4, a
drawing made to reach out to a broader audience and explain the immune system
to kids in primary schools.

Table 1.1: Overview of a selection of cell types, some of their functions and some of the
markers that can be used to identify them.

CELL TYPE EXAMPLE OF FUNCTION MARKERS

B cells Secrete antibodies and
cytokines

CD19+ CD20+ CD21+
MHCII+

T cells Many subsets with a variety
of functions

CD3+

T helper cells Help the maturation of other
immune cells

CD3+ TCRb+ CD4+ CD8-

Cytotoxic T cells Destroy virus-infected cells
and tumor cells

CD3+ TCRb+ CD8+ CD4-

γδ T cells Present antigens to other T
cells

CD3+ TCRγδ+

Natural Killer cells (NKs) Destroy virus-infected cells NK1.1+ CD3-

Natural killer T cells Share properties from T cells
and NK cells

NK1.1+ CD3+ TCRb+

Neutrophils Destroy microbes and activate
other immune cells

Ly6G+ CD11b+

Eosinophils Attack parasites SiglecF+ CD11b+ CD24+

Macrophages (MF) Eat old cells and pathogens
covered in antibodies

F4/80+ Autofluorescent

Conventional dendritic cells
(cDCs)

Present antigens to other
immune cells

CD11c+ MHCII+
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Figure 1.4: Cartoon sketch made for visiting elementary schools in the VIB project ‘Weten-
schap op stap’. It illustrates different immune cells and their interactions, including a den-
dritic cell (green), T cells (dark blue), B cells and a plasma cell (light blue), an eosinophil
(yellow) and a macrophage (orange). The dendritic cell captures the pathogen and presents
it to a T cell. The T cell, who was specifically looking for this intruder, can either go and
attack the pathogen, make peace or alert other cells, such as the B cell, of its presence. The
B cell can become a memory cell, also specifically looking for this pathogen, or can become
a plasma cell, shooting the pathogen with antibodies. The macrophage will eat old cells or
pathogens covered in antibody, and the eosinophil is a hunter for other types of pathogens,
such as parasites.
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1.2 Machine Learning Techniques

To automate the analysis of cytometry data, we will make use of machine learning
techniques. Machine learning is a branch of computer science where mathematical
models are learned from data. The ultimate goal is to learn models that generalize
beyond the example data that is used to train the model and can also predict results
for new data points.

A dataset is typically described as a n × m numeric matrix X , where the n
rows represent the data points or ‘instances’ and the m columns describe multiple
properties of these instances, also called ‘features’. One element of the matrix is
denoted as xij with i indicating the row and j indicating the column. The notation
xi is used to refer to a full row, i.e. the description of one instance.

Machine learning techniques can be split in two main categories: supervised
and unsupervised techniques, based on whether the algorithm is trained using a
known outcome for the instances. For supervised techniques, an additional vector
y of length n is given, describing the outcome yi for every instance xi.

1.2.1 Supervised Machine Learning

For supervised techniques, a certain outcome yi is known for every training in-
stance xi and the goal of the model is to predict this outcome for new instances.
When this outcome is chosen from a discrete, finite set of values, we call this pro-
cess classification. If the outcome is a continuous variable, it is called regression.
While some algorithms can only be used for classification or for regression, many
techniques can be used for both with small adaptations. Survival time prediction
is a special case of regression analysis in which the continuous variable to predict
is the time until a certain event (for example death, hence the name). In this set-
ting, information might be missing for instances where the event did not happen
in the time they were studied. However, some knowledge can be gained from the
fact that the event did not happen up until a certain point, even if it is not known
what happens from that point on. This type of data is called right-censored data
and yi indicates either the time of the event or the time of the censoring. Another
binary vector describes whether events happened or not. Modeling this data can
benefit from an adapted approach instead of just removing the instances for which
the event did not happen.

A well-known supervised machine learning technique is the decision tree [4],
a hierarchical model presenting a sequence of simple decision steps. This model
can be represented as a binary tree in which each internal node contains a test
based on a specific feature and each leaf node contains a predictive value ŷ. This
model has the advantage that it is easy to interpret and that it makes no strong
assumptions about the distribution of y. To learn the model, the whole dataset is
presented as input to the root node. An optimal split of the instances is decided
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CD19 < 2.32?

CD3 < 2.13?

CD3 < 2.03? CD < 3.2?
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Figure 1.5: Toy example of a decision tree on a dataset with only two markers. The data
is shown on the left and colored by manual labeling. The straight lines in the left image
illustrate the decision boundaries as described by the decision tree on the right.

based on one of the features. What is optimal depends on the setting and multiple
evaluation criteria exist. For a classification problem, the two resulting subsets
should each be as pure as possible, while for regression the two groups should for
example have minimal variance. Once a certain split value θ is chosen for a feature
j, all instances xi with xij ≤ θ go as input to the left child of the root node, while
all the others with xij > θ follow the right branch. This process is repeated until
only a specified number of data points remain in the node, which is then labeled
as a leaf node and given a predictive value. The outcome for new instances can be
predicted by following a specific path through the tree depending on the evaluation
of the tests in each internal node and returning the value assigned to the leaf node.
A small toy example is shown in Figure 1.5.

An extension of the decision tree algorithm is the random forest [5]. As the
name suggests, this is an ensemble of decision trees, in which each tree is trained
on a random subset of the data by drawing n instances with replacement from the
original dataset. This excludes on average 37% of the data. Additional random-
ization is added by only evaluating a random selection of m′ features to find the
optimal split in each node, withm′ < m, oftenm′ =

√
m. The trees are built until

only one instance remains in every leaf, and their value yi is set as the predictive
value. By using many different trees which were all trained on slightly different
features and instance sets, a consensus result is returned for new instances (major-
ity voting in the case of classification or the average value in case of regression).
This results in a more robust model which is less prone to overfitting: the problem
of modelling the training data so specifically that the model does not generalize
anymore to new instances. The random survival forest [6], used in Chapter 4, is
a variation on the traditional random forest, in which the split evaluation can take
censored data into account. Instead of evaluating the variance of the child nodes,
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the survival difference between the child nodes is maximized.
Another algorithm for survival time prediction is the Cox Proportional Haz-

ard model [7]. In contrast to the random survival forest, this is a linear model.
As the name suggests, it is assumed that the effects of a unit increase in a feature
is multiplicative with respect to the hazard rate, the event rate at time t for all in-
stances with survival time yi > t. It returns a p-value on how strongly a feature
relates to the outcome, but also builds a linear model with one or multiple features
to estimate the hazard rate over time, which can be used to predict the survival
time of a new instance.

1.2.2 Unsupervised Machine Learning

Unsupervised techniques do not make use of any known outcome, but look for
structure in the data. Clustering techniques split the dataset in multiple groups of
similar instances. A very well known clustering technique is hierarchical cluster-
ing [8], where initially every instance is defined as its own cluster. The two most
similar instances or clusters are iteratively merged together until a certain num-
ber of clusters is reached. Several variations exist which use different similarity
measures. As all data points need to be compared against each other to determine
which pair is the most similar, hierarchical clustering has a running time which
scales quadratically with the number of instances (O(n2)).

A self-organizing map (SOM) [9] is another clustering algorithm, which com-
pares the data points to a limited set of k cluster centers, connected in a grid. It
starts with a random initialization of the grid, and then iteratively picks an in-
stance from the dataset, identifies the node representing the most similar cluster
center and updates this node and the neighboring ones in the grid to become more
similar to the datapoint. The learning rate and the neigborhood size are decreasing
while looping over the dataset R times. This algorithm results in a clustering for
which the running time scales linearly with the number of instances (O(Rkn)),
making it more suitable for large datasets. This algorithm is further explored in
Chapter 2, a toy example is shown in Figure 1.6.

Dimensionality reduction techniques are another class of unsupervised algo-
rithms, which try to describe the instances as well as possible while using a smaller
number of features. The best known dimensionality reduction algorithm is prin-
cipal component analysis (PCA) [10]. By computing the principal components,
it becomes possible to select only those which explain the most variance in the
dataset.

Another dimensionality reduction algorithm which is gaining popularity is t-
distributed Stochastic Neighbor Embedding (t-SNE) [11]. In contrast to PCA,
it is a non-linear method and focuses on preserving local structures instead of the
whole global structure of the dataset. It does this by translating Euclidean distances
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Figure 1.6: Self-organizing map clustering on the same toy dataset. The datapoints are
colored by the final clustering result. The black lines and dots illustrate the grid which is
stretched to fit the data.

into conditional probabilities that represent similarities. It first embeds the dataset
in a lower-dimensional space (randomly or by PCA) and then iteratively updates
the placement of the data points to minimize the mismatch between the proba-
bilities in the high- and low-dimensional space. By using an asymmetric scoring
function, different types of errors in the pairwise distances in the low-dimensional
space are not weighted equally, with a large cost for similar data points being far
away in the new space, but only a small cost for asimilar data points being close in
the new space. This ensures the focus on preserving local structure. An example
can be seen in Figure 1.7.

Another way to gain insight into the structure of a dataset are graph-based
approaches. A dataset can be transformed in a graph by regarding each instance
as a node in the graph, and computing the distances between instances to assign as
edge weights. Depending on the situation, the distance measure can be adapted, for
example from euclidean distance to pearson correlation. Where a fully connected
graph will result in a hair-ball structure and will provide limited information, less
connected graphs can capture the main structure of the dataset. To plot the struc-
ture found by these graphs in a 2D space, force based algorithms can be used.
These force the nodes apart and attempt to visualize the graph with as few overlap
as possible between the edges.

One option to build such a graph is the Minimal Spanning Tree (MST), which
will build a graph structure without any loops (a tree) which connects all nodes
(spanning). It is minimal in the sense that those edges are chosen which have
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Figure 1.7: PCA and t-SNE executed on the same toy dataset. In this toy dataset, we go
from 2 dimensions to 2 dimensions, so no real dimensionality reduction is executed. This
allows to visually compare the behavior of the two methods. Whereas PCA (on the left),
basically rotates the axes to make them correspond with maximal variance, t-SNE (on the
right) captures the clusters present in the data and spreads them further apart, without
taking the global structure into account.

minimal weight, resulting in the most similar datapoints being connected.
Another variant is the k-Nearest Neighbor graph (KNN graph). For this ap-

proach, the k most similar datapoints are determined for each instance, and the
corresponding nodes are connected in the graph. This does not necessarily result
in a spanning structure, but does allow for loops, which are not suppported by a
MST.

1.2.3 Feature Selection

Feature selection is a different machine learning technique, which can be used
in both supervised and unsupervised settings. Several issues can occur when the
number of features is too large, such as unique features being ignored in favor of
redundant features, or overfitting, modeling the data in such a detailed way that
the model does not generalize anymore. Therefore, it might be necessary to select
a subset of features to process in the subsequent algorithms.

In bioinformatics feature selection plays an important role, as the goal is often
not just to build a diagnostic model, but also to gain further insight into the biolog-
ical system. By selecting the features which are most informative about the patient
state, new potential biomarkers can be identified.

In a supervised setting, the feature selection can be either done as a filter ap-
proach, where some score for each feature is computed upfront (for example based
on correlation or mutual information with the outcome) or as a wrapper approach.
In the wrapper approach, a subset is used to build a prediction model and then the
subset is iteratively altered to improve the prediction model. This approach is
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not often used for bigger datasets, as the repeated training of prediction models
becomes very time consuming. Instead, an embedded approach is used more of-
ten, where the supervised algorithm itself will try to determine the most important
features and only one prediction model is needed.

For example, LASSO [12] is an adaptation of the least squares regression algo-
rithm, which adds an extra regularization parameter to the objective function. In-
stead of just finding a linear function with minimal square errors, a balance needs
to be found to also minimize the value of the coeficients in the model. This forces
the model to discard as many features as possible, by putting their coefficient to
zero.

A random forest can be used as an embedded feature selection method as
well. Even though all features are used in the training of the model, an importance
score is derived from how often a feature is chosen as a split criterium and how
well it reduces the impurity or variance of the child nodes in those splits. This
results in a feature ranking, from which the top features of interest can be selected.

In an unsupervised setting, the selection cannot be made based on which fea-
tures have the most predictive value, but the goal is rather to select those features
which contain as much information about the data as possible. This can be defined
in multiple ways. Approaches to filter the most interesting features might select
features with the largest variance or with a non-gaussian distribution. Other algo-
rithms, such as Dense Feature Groups [13], try to remove redundant features, by
clustering the features and keeping only one exemplar for each group. This can
allow further insights in which features are highly correlated and describing simi-
lar information. This might be useful if some features are easier to collect for new
data instances than others.

1.3 Computational Flow Cytometry

Due to technical improvements in the flow cytometry field, the need for automa-
tion and computational flow cytometry increased. As both the number of cells
measured and the number of markers in the panel increase, a manual analysis be-
comes too laborious and biased to apply.

The problem of cell type identification corresponds to a clustering problem.
The data is described as a matrix in which the cells are represented by rows and the
markers measured by the flow cytometer as the columns. The goal is to find pop-
ulations of cells which have similar marker expressions in the high-dimensional
space.

The first clustering algorithms that have been applied to flow cytometry data
were based on gaussian mixture models, such as FlowClust [14]. They make use of
probabilistic distributions to build a model. The disadvantage of these techniques
is that they make strong assumptions about the distribution of the data. FLAME
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[15] also allows assymetric distributions, but still will not be able to model any
convex clusters. Algorithms as FlowMerge [16] and SWIFT [17] try to solve this
problem by aggregating clusters again at the end.

K-means is a well known clustering algorithm, but has the disadvantage that
the number of clusters has to be known up front and the result strongly depends on
the initialization of the algorithm. Density-based algorithms such as flowMeans
[18] and FLOCK [19] try to estimate this parameter in an automated way.

A third option is based on graph clustering algorithms. However, due to the
high-troughput nature of flow cytometry, it is impractical to represent the whole
dataset as a graph. The SamSPECTRAL [20] algorithm applies an instance se-
lection procedure first to make computations feasible, but this might lead to some
information loss.

Next to cell type identification, patient classification is another task for which
machine learning techniques might prove useful. This corresponds with traditional
classification algorithms, but an extra step is necessary because flow cytometry
data does not correspond to the typical matrix shape of machine learning datasets.
Instead of one vector describing a patient, a whole matrix is available, which de-
scribes thousands to millions of individual cells from the patient.

In practice, most often a clustering algorithm is executed first, either on an ag-
gregate of all the files or on the seperate files. The patient can then be described by
the distribution of their cells over the different clusters, resulting in a traditional in-
put vector for classification or regression algorithms. If the samples were clustered
separately, the clusters first need to be matched across the files, a task which is not
straightforward because clusters might shift or disappear between patients. On the
other hand, these differences might cause too much noise to get a good clustering
from the aggregated file.

1.3.1 The FlowCAP Challenges

To evaluate whether these machine learning approaches are useful in practice, the
Flow Cytometry: Critical Assessment of Population Identification Methods (Flow-
CAP) project was initiated. The goal of FlowCAP is to advance the development
of computational methods for the identification of cell populations of interest in
flow cytometry data. Multiple algorithms were evaluated in the first two FlowCAP
challenges [21], which provided benchmark datasets for cell type identification
and patient classification.

The results of the first challenge indicated that most clustering algorithms show
good correspondance with manual gating results. The differences between the
automated results and the manual gating were of the same order as the differences
between multiple researchers manually analysing the data.

In the second FlowCAP challenge several combinations of different clustering
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and classification algorithms were compared. However, the datasets used were
either quite straightforward (almost all algorithms got a great score) or too difficult
(no algorithms got a good result). Therefore, further comparisons should be made
for practical use cases.

The third FlowCAP challenge included a dataset which was collected across
multiple centers, to investigate a standardized approach to data collection and anal-
ysis [22]. Again it was concluded that the variability of automated gating proce-
dures is as low or even lower than a manual gating approach, demonstrating that
clustering approaches are suited to be incorporated in a flow cytometry analysis
pipeline.

The fourth FlowCAP challenge [23] posed the problem of progression time
prediction for HIV patients. Our participation in this challenge is described in
Chapter 4. Although the results were not strong enough to build a prognostic
model for use in clinical settings, interesting potential biomarkers were identified
to aid further HIV research.

1.4 Challenges

When analyzing flow cytometry data, we can identify three subtasks: data prepro-
cessing, detecting cell populations and diagnosing patients. All three tasks pose
challenges for which machine learning approaches might prove useful.

The data preprocessing includes compensation and transformation, two steps
for which algorithms are available and have been proven succesful. However, steps
as important as quality control are mostly executed by hand or not at all. Ensuring
stability of the flow stream over time is very important, as obstructions or some
system failure might skew the data, shown in Figure 1.8. As datasets can differ
a lot, learning a ‘normal’ pattern from the data itself might help to remove these
issues.

The identification of cell populations can still cause problems too. While many
clustering algorithms exist, most of them make assumptions about the data struc-
ture. This is not favorable for flow cytometry data, as different shapes and sizes
might occur. Additionaly, it is often hard to identify which clustering level is of
interest. In a manual analysis, the researcher will typically identify some big popu-
lations and then a few very detailed ones, describing small populations of interest.
This makes it hard to use the manual gating result as a golden standard and evalute
the clustering algorithms. Especially when rare populations of interest exist, most
algorithms fail to separate them correctly. Additional knowledge in the form of
biological control samples might need to be incorporated to fix these issues.

One option to test if the biologically relevant populations are found, is to com-
bine it with the next step: modelling a clinical outcome. The challenge here lies in
doing a good feature selection. When m markers are measured and only one split
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Figure 1.8: Examples of measurement values over time from three samples. In the first
sample, everything stays stable over time, as would be expected. In the second panel, mea-
surement artifacts are influencing the signal, with the measuring speed slowing down in the
middle. In the third panel, the tube ran dry and air was measured at the end, an artifact
that needs complete removal.
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is made in each marker to distinguish positive and negative cells, 2m cell popula-
tions can be defined. This number easily becomes much larger than the number of
patients in the study, increasing the risks of overfitting.

In general, two important challenges apply to all these subtasks. The first is the
need for a clear visualization of any results. This is necessary for interpretation by
the immunologists and crucial to gain new biological insights. The other challenge
lies in the scalability of the methods. As big datasets can be generated by this
high-throughput technique, a linear scalability in respect to the number of cells is
strongly preferable.

1.5 Outline

This dissertation is composed of a number of publications that were realized within
the scope of this PhD. The selected publications provide an integral and consistent
overview of the work performed. The different research contributions are detailed
in Section 1.6 and the complete list of publications that resulted from this work is
presented in Section 1.7. Within this section we give an overview of the remainder
of this dissertation and explain how the different chapters are linked together.

We start with a new visualization tool, called FlowSOM, in Chapter 2. Seeing
the data is extremely important to interpret any results, especially when immunol-
ogists have been used to analyse this data in a very visual manner. A black box
which just returns some numbers will be very hard for them to interpret and be-
lieve. Our algorithm is both computationally efficient and able to visualize large
datasets, but in its first version, it was still limited to giving one simple overview.
In Chapter 3, we describe some extensions to our FlowSOM algorithm, such as vi-
sualizing statistical differences between groups of patients or mice and automatic
labelling of the clusters. In the fourth chapter, we describe our participation to
the FlowCAP IV challenge. In this challenge, flow data of more than 200 HIV
patients was available, for which their progression time to AIDS should be pre-
dicted. We built an entire pipeline, called FloReMi, starting from preprocessing
and quality control, over feature extraction and selection, up until the final pro-
gression time prediction. In the fifth chapter, we give an overview of all current
tools for flow cytometry. This includes our own tools, but also many others, to
introduce immunolgists to the field of computational flow cytmetry. Finally, in the
sixth chapter, we report about my stay at Stanford University, where I worked on
a normalization algorithm for mass cytometry data in collaboration with dr. Nima
Aghaeepour from the Nolan group.

Table 1.2 shows the main tasks that were highlighted in Section 1.4 and indi-
cates which were targeted per chapter.
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Table 1.2: An overview of the tasks discussed per chapter in this dissertation.

Ch.2 Ch.3 Ch.4 Ch.5 Ch.6
Preprocessing • • •
Population identification • • • •
Patient diagnosis • • •

1.6 Research Contributions

In Section 1.4, the problems and challenges for analyzing flow cytometry data are
formulated. They are tackled in the remainder of this PhD dissertation for which
the outline is given in Section 1.5. To conclude, we present an elaborated list of
the research contributions within this dissertation:

• Design of a new visualization tool.

– Implementation of the FlowSOM algorithm, making use of two-level
clustering.

– Implementation of extensions on the FlowSOM algorithm for easier
use in the lab.

• Development of a survival prediction pipeline based on flow cytometry data.

– Design of several preprocessing steps, such as automated singlet se-
lection and time quality control.

– Implementation of a feature extraction and feature selection pipeline.

– Top ranked algorithm in the FlowCAP IV challenge.

• A review to introduce the state-of-the-art tools to immunologists.

• Design of a normalization algorithm for mass cytometry data

– Demonstration of the need for a cell type based approach.

– Implementation of a normalization algorithm, with clear improvements
over the current practice.

1.7 Publications

The research results presented in this thesis have been published in or are submitted
to scientific journals and have been presented on both national and international
conferences. The following list provides an overview of the output during my PhD
research.
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1.7.1 Publications in international journals
(listed in the Science Citation Index)

Published:

1. Van Gassen, S., Callebaut, B., van Helden, M., Lambrecht, B.N., De-
meester, P., Dhaene, T., and Saeys, Y. (2015) FlowSOM: using self-organizing
maps for visualization and interpretation of cytometry data. Cytometry Part
A, 87A(7), pages 636–645.

2. Van Gassen, S., Vens, C., Dhaene, T., Lambrecht, B.N., and Saeys, Y.
(2016) FloReMi: flow density survival regression using minimal feature re-
dundancy. Cytometry Part A, 89A(1), 22–29.

3. Aghaeepour, N., Chattopadhyay, P., Chikina, M., Dhaene, T., Van Gassen,
S., Kursa, M., Lambrecht, B.N., et al. (2016) A benchmark for evaluation
of algorithms for identification of cellular correlates of clinical outcomes.
Cytometry Part A, 89A(1), 1621.

4. Saeys, Y., Van Gassen, S., and Lambrecht, B.N. (2016) Computational flow
cytometry: helping to make sense of high-dimensional immunology data.
Nature Reviews Immunology, 16(7), 449462.

5. Guilliams, M., Dutertre, C.-A., Scott, C., McGovern, N., Sichien, D., Chakarov,
S., Van Gassen, S., et al. (2016) Unsupervised high-dimensional analysis
aligns dendritic cells across tissues and species. Immunity, 45(3), 669684.

6. Sichien, D., Scott, C., Martens, L., Vanderkerken, M., Van Gassen, S.,
Plantinga, M., Joeris, T., et al. (2016) IRF8 transcription factor controls
survival and function of terminally differentiated conventional and plasma-
cytoid dendritic cells, respectively. Immunity, 45(3), 626640.

Submitted:

7. Van Gassen, S., Gaudilliere, B., Dhaene, T., Angst, M., Nolan, G.P., Saeys,
Y. and Aghaeepour, N. (2017) A Cross-Sample Cell-Type Specific Normal-
ization Algorithm for Clinical Mass Cytometry Datasets. Submitted to Cy-
tometry Part A

8. Govindarajan, S., Van Der Cruyssen, R., Verheugen, E., Van Gassen, S.,
Saeys, Y., Iwawaki, T., Elewaut, D., Drennan, M.B. (2017) Post-transcriptional
stabilization of cytokine mRNAs within invariant NKT cells requires the
serine-threonine kinase IRE1a. Submitted to Nature Immunology
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1.7.2 Conference Proceedings

1. Vens, C., Van Gassen, S., Dhaene, T., and Saeys, Y. (2015). Complex ag-
gregates over clusters of elements. In J. Davis and J. Ramon (Eds.), Lec-
ture Notes in Artificial Intelligence (Vol. 9046, pp. 181193). Presented at
the 24th International conference on Inductive Logic Programming (ILP),
Berlin, Germany: Springer.

2. De Baets, L., Van Gassen, S., Dhaene, T., and Saeys, Y. (2015). Unsuper-
vised trajectory inference using graph mining. Computational Intelligence
Methods for Bioinformatics and Biostatistics, Lecture Notes in Bioinformat-
ics (Vol. 9874, pp. 8497). Presented at the Computational Intelligence
Methods for Bioinformatics and Biostatistics, Lecture Notes in Bioinfor-
matics.

3. Van Gassen, S., Dhaene, T., and Saeys, Y. (2016). Machine learning chal-
lenges for single cell data. Machine Learning and Knowledge Discovery
in Databases, ECML PKDD 2016, PT III (Vol. 9853, pp. 275279). Pre-
sented at the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECMLPKDD) , Berlin:
Springer-verlag Berlin.

1.7.3 Contributions to International Symposia (posters and oral
presentations)

1. Van Gassen, S., Dhaene, T., and Saeys, Y. (2014) Machine learning tech-
niques for flow cytometry. Machine Learning Summer School Iceland 2014,
colocated with the 17th International Conference on Artificial Intelligence
and Statistics (Poster)

2. Van Gassen, S., Callebaut, B., Vens, C., Dhaene, T., Lambrecht, B.N.,
Saeys, Y. (2014) Enhancing flow cytometry data visualization using Flow-
SOM. 29th Congress of the International Society for Advancement of Cy-
tometry (Poster)

3. Vens, C., Van Gassen, S., Dhaene, T., and Saeys, Y. (2014) Complex aggre-
gates over subsets of elements. 24th International Conference on Inductive
Logic Programming (Presentation)

4. Van Gassen, S., Vens, C., Dhaene, T., Lambrecht, B.N., and Saeys, Y.
(2015) FloReMi: Survival time prediction based on flow cytometry data.
2015 annual workshop on Statistical Methods for Post Genomic Data (Pre-
sentation)
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5. Van Gassen, S., Dhaene, T., Lambrecht, B.N., Saeys, Y. (2015) Differential
Population Identification Using FlowSOM 30th Congress of the Interna-
tional Society for Advancement of Cytometry (Poster)

6. Van Gassen, S., Van Helden, M., Guilliams, M., Dhaene, T., Saeys, Y.
(2016) Automated Cell Type Annotation 31th Congress of the International
Society for Advancement of Cytometry (Poster)

7. Van Gassen, S., Dhaene, T., and Saeys, Y. (2016) Machine learning chal-
lenges for single cell data The European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (Nectar
track, Poster and presentation)

8. Van Gassen, S., Gaudilliere, B., Dhaene, T., Angst, M., Nolan, G., Saeys,
Y. and Aghaeepour, N. (2017) A Cross-Sample Cell-Type Specific Normal-
ization Algorithm for Clinical Mass Cytometry Datasets. 32th Congress of
the International Society for Advancement of Cytometry (Accepted for pre-
sentation)

1.7.4 Other Publications

1. Van Gassen, S., Ruyssinck, J., Saeys, Y., and Dhaene, T. (2013) Stable Fea-
ture Selection Techniques for Microarray Data 8th BeNeLux Bioinformatics
Conference (Poster)

2. Van Gassen, S., Saeys, Y., and Dhaene, T. (2014) Mining Flow Cytometry
Data 24th Belgian-Dutch Conference on Machine Learning (Poster)

3. Van Gassen, S., Callebaut, B., Van Helden, M.J., Lambrecht, B.N., De-
meester, P., Dhaene, T., and Saeys, Y. (2014) FlowSOM: Using self-organizing
maps for visualization and interpretation of cytometry data 9th BeNeLux
Bioinformatics Conference (Poster)

4. Van Gassen, S., Vens, C., Dhaene, T., Lambrecht, B.N., and Saeys, Y.
(2015) FloReMi: Survival Time Prediction based on Flow Cytometry Data
10th BeNeLux Bioinformatics Conference (Poster)

5. Van Gassen, S., Vens, C., Dhaene, T., Lambrecht, B.N., and Saeys, Y.
(2016) FloReMi: Survival Time Prediction based on Flow Cytometry Data
25th Belgian-Dutch Conference on Machine Learning (Poster and short talk)
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2
FlowSOM: Using Self-Organizing

Maps for Visualization and
Interpretation of Cytometry Data

“Seeing is believing.”

To start exploring flow cytometry data, we will first develop a better visual-
ization of the data. We reasoned that just extracting numbers would not convince
the immunologists to switch from their traditional analysis tools, as it is often hard
to interprete results from a black box. However, an improved visualization tool to
explore the data can demonstrate that useful alternatives to gating exist, while still
being quite straightforward to interprete. A few new visualizations tools have been
proposed, but they are rather slow and can only show one marker at a time (even
though they do use the high-dimensional information in training). There was a
clear need for an algorithm that could visualize multiple markers in a quick way.
In this chapter, we present FlowSOM, the algorithm we developed. On top of the
visualization result, a meta-clustering is applied. This allows identifying groups of
cells which correspond with the traditional cell types, without a huge time invest-
ment like most other algorithms need. This is confirmed in an independent review
by Weber and Robinson, published in Cytometry Part A, December 2016.
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Abstract The number of markers measured in both flow and mass cytometry keeps
increasing steadily. Although this provides a wealth of information, it becomes
infeasible to analyze these datasets manually. When using 2D scatter plots, the
number of possible plots increases exponentially with the number of markers and
therefore, relevant information that is present in the data might be missed. In
this article, we introduce a new visualization technique, called FlowSOM, which
analyzes flow or mass cytometry data using a Self-Organizing Map. Using a two-
level clustering and star charts, our algorithm helps to obtain a clear overview
of how all markers are behaving on all cells, and to detect subsets that might be
missed otherwise. R code is available at https://github.com/SofieVG/FlowSOM
and will be made available at Bioconductor.

2.1 Introduction

At the moment, many flow cytometry experiments are performed with seven colors
or more. For mass cytometry experiments, this number is even higher. Analyzing
these high-dimensional datasets is not always easy, as traditional gating relies on
selection of defined cell populations. It is difficult and time-consuming to keep an
overview of how markers are behaving for all these defined cell types. In practice,
not all combinations of markers are examined and therefore, valuable information
can remain unexamined and unnoticed.

A solution to this problem is the use of advanced visualization techniques in
which more information is provided than in the traditionally used scatter plots.

Examples of new visualization techniques developed specifically for this pur-
pose are viSNE [1] and SPADE [2]. Whereas viSNE will plot all cells in a trans-
formed twodimensional space, SPADE will cluster cells in many groups and vi-
sualize the results in a minimal spanning tree. SPADE is, however, quite slow,
especially for larger datasets. For both viSNE and SPADE, many plots need to be
investigated to get a correct annotation of cluster boundaries and cell types.

Completely automatic clustering algorithms like flowMeans, SWIFT and oth-
ers [3–10] are another solution that might be considered. Yet, even when using
these algorithms, it is necessary to visualize the results clearly to interpret them
correctly. The problems we described before are intrinsic to using scatter plots, so
the same problems remain as with traditional gating if these automatic techniques
are not combined with new visualization algorithms.

A self-organizing map (SOM) is an unsupervised technique for clustering and
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dimensionality reduction, in which a discretized representation of the input space
is trained. This technique has already been used on flow cytometry data by the
FlowKOH algorithm [11]. FlowKOH tries to obtain a one-to-one mapping be-
tween the nodes of the SOM-grid and the identified cell types.

In this article, we propose a new method to analyze flow or mass cytometry
data using a self-organizing map: FlowSOM. FlowSOM does not only focus on
clustering, but is also a visualization aid. Therefore, we use a much larger amount
of clusters than the expected number of cell types. FlowSOM can either be used
as a starting point for an analysis or it can be used after a manual gating has been
performed, just as a way to easily visualize the results. This way, it also gives infor-
mation about subpopulations that might have been missed in the original manual
gating. We obtain results very similar to SPADE, which are calculated one to two
orders faster. We also propose a new way of plotting the data using star charts
and calculate a meta-clustering of the data, which gives a great starting point for
manual annotation of the results. Using pie charts, our algorithm can help in the
visualization of both manual gatings and automated clusterings.

In the following sections, we will present our algorithm, explain each step in
detail and demonstrate both a flow cytometry and a mass cytometry use case.

2.2 Problem Formulation

In this section, we shortly introduce a formal notation for the data we are working
with. This will enable us to explain our algorithm clearly in the next section.

Most experiments consist of multiple samples s1, ..., ss, for example blood
samples of several patients. Each sample is processed by the cytometer and hun-
dreds of thousands up to millions of cells can be measured.

In total, we get measurements from n cells c1, ..., cn, with d measurements per
cell ci : {ci1 , ..., cid}. This results in an n×d input matrix for our algorithm. When
processing the data, we will consider each cell ci as a point in a d-dimensional
space.

We assume that each cell belongs to an a priori unknown class or cell type
C1, ..., Cm. Our goal is to assign the cells to k clusters K1, ...,Kk, in such a way
that the clusters correspond to the underlying true cell types.

Typically, we choose k much larger than m for visualization opportunities. In
this case, the goal is to obtain a good purity for each of the clusters: i.e., all cells in
a cluster Ki should have the same true cell type. To measure how good a certain
result is, we use the purity measure. For each cluster, the percentages of cell types
that are present are computed and the maximum is determined. The weighted
average of these maxima over all clusters is the final purity value.

As our algorithm also provides a meta-clustering step, we can also strive for a
good agreement between the metaclustering result and the true cell types. For this
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purpose, we use the F-measure: the geometric mean of precision and recall. We
compute this in the same way as is explained in the FlowCAP I article [11]. For a
clustering K and true cell types C, the exact definitions of purity and F-measure
can be found in Formulas 2.1 and 2.2.

Purity(C,K) =

k∑
j=1

Kj

n
max
i=1..m

(
Kj ∩ Ci

Kj

)
(2.1)

F (C,K) =

m∑
i=1

Ci

n
max
j=1..k

(
2Pr(Ci,Kj)Re(Ci,Kj)

Pr(Ci,Kj) + Re(Ci,Kj)

)

with Pr(Ci,Kj) =
|Kj ∩ Ci|
|Kj |

and Re(Ci,Kj) =
|Kj ∩ Ci|
|Ci|

(2.2)

2.3 FlowSOM Algorithm

The complete workflow of FlowSOM consists of four steps: reading the data,
building a self-organizing map, building a minimal spanning tree and computing a
meta-clustering result. An overview can be seen in Figure 2.1. In this section, we
will explain each step in detail.

2.3.1 Reading the Data

The first step of our algorithm is actually a preprocessing step, illustrated in the
red part of Figure 2.1. Although it is possible to process each file by itself, it is
often advantageous to combine several files from an experiment. This way, one
model is trained for the whole experiment and each cell type can be represented in
it. This enables easy comparisons between several samples in the experiment.

To start, the fcs-files produced by the cytometer are read and, if necessary, steps
like compensation and logicle transformation can be performed. Next, if samples
s1, ..., ss have respectively n1, ..., ns cells measured, they are all brought together
in one big n × d matrix, with n =

∑s
i=1 ni. Once all files are read and bundled

together, we also pre-process the data by scaling it: cij =
cij− mean(c1j ,...,cnj

)

stdev(c1j ,...,cnj
) .

This means each column gets a mean value of 0 and a standard deviation of 1, and
ensures that each marker gets the same importance in the further processing of the
data. If expert knowledge indicates that one marker should get a higher importance
than another one, specific scaling parameters can be set to reflect this in the further
course of the algorithm.
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Figure 2.1: Overview of the four steps of the FlowSOM algorithm. (i) The fcs-files are read,
compensated, transformed, concatenated and scaled, resulting in a matrix with a row for
every cell, describing the measured marker values. (ii) A self-organizing map is trained on
the matrix. The result is a grid of nodes, corresponding to cell clusters. Visualizations can
be made showing the mean marker values of each node in star charts (a) or the concordance
with a manual gating in pie charts (b). (iii) A minimal spanning tree is built, on which
the same information can be visualized (c,d). We can also show mean marker values for
specifically chosen markers, resulting in figures very similar to SPADE trees (e). (iv) A
meta-clustering of the nodes is calculated, corresponding to an automatic gating procedure.
This is indicated by the background color of the nodes, and can be both visualized in the
grid (f) or the minimal spanning tree (g).



32 CHAPTER 2

2.3.2 Building a Self-Organizing Map

In this section, we will present the self-organizing map algorithm (SOM), as intro-
duced by Kohonen [12]. Our own implementation is strongly based on [13] and is
represented by the green section in Figure 2.1.

A SOM is a specific type of artificial neural network, used for clustering. It
consists of a grid of nodes, in which each node represents a point in the multidi-
mensional input space. When clustering, a new point is classified with the node
that is its nearest neighbor. The grid is trained in such a way that the nodes closely
connected to each other resemble each other more than nodes that are only con-
nected through a long path. As such, the grid contains topological information and
a single training point can influence multiple nodes.

More formally explained, we have k nodes, each defined as a d-dimensional
point. We start by initializing the nodes with random points of the dataset. We
define a neighborhood function as the Chebyshev distance in the two-dimensional
grid of nodes. The self-organizing map is trained by repeatedly picking a point
from the dataset, finding the node nearest to it and updating all the nodes in the
neighborhood of that node. During the algorithm, the size of the neighborhood ε
and the learning factor α are decreased. In the end, after iterating over rlen ∗ n
points, all n points of the dataset are assigned to the node that resembles it the best,
resulting in the final clustering.

algorithm 1: Training a self-organizing map

procedure SOM
1: nodes← k randomly chosen points of the dataset
2: for run = 1 to rlen ∗ n do
3: ci ← randomly chosen cell
4: nn← nearestNode(nodes,ci)
5: for j = 1 to length(nodes) do
6: if distance(nodes[j],nn) < ε then
7: nodes[j]← nodes[j] + α(ci − nodes[j])
8: ε← ε− ε change
9: α← α− α change

10: return nodes

2.3.3 Building a Minimal Spanning Tree

The resulting clustering of the SOM can be visualized in a minimal spanning tree
(MST) [14, 15], as shown in the purple part of Figure 2.1. This technique is also
used for SPADE visualizations. An MST connects the nodes of a graph in such a
way that the sum of the weights of the branches is minimal. By doing this, nodes
will get connected to the ones they are the most similar to, taking the multidimen-
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sional topology of the data in account. The result is a connected acyclic graph,
which can be visualized using the algorithm proposed by Kamada and Kawai [16].

2.3.4 Meta-Clustering

SOMs can be used to get an immediate clustering, where the number of nodes is
set to the expected number of cell types. However, for visualization purposes, it
is advantageous to include more nodes than the expected number of clusters. By
doing this, cells that are in between cell types can also get a place in the grid and
smaller changes in the cell types can be noticed.

To help the user get a final clustering of the data, we cluster the node centers
in a next step. The meta-clustering is indicated by the background color of the
nodes in the blue part of Figure 2.1. To choose the number of meta-clusters, one
can either use prior knowledge about the number of expected cell types, or one can
use the so called elbow-criterion.

To use this criterion, several values for k are tried out and for each clustering
the variance in the clusters is calculated. If the number of clusters is very low, the
variance will be high. The variance will decrease strongly if the number of clusters
is increased. If the number of clusters is correct, the variance will be relatively low.
If the number of clusters is increased further, the variance will still decrease, but
much more slowly, the extra clusters only making a minimal difference. The goal
of the elbow criterion is to detect the point where the variance stops decreasing
sharply, and only decreases slowly from that point on. This point can be found by
fitting two linear regression lines on the measured variances. The break point will
be the point with the minimal residual error.

The clustering method we use is consensus hierarchical clustering, as imple-
mented in the ConsensusClusterPlus R package [17]. This method works by sub-
sampling the points several times, and making a hierarchical clustering for each
subsampling. Based on how often the same points are clustered together or not, a
final clustering is made. By testing the stability of the clustering, this method gets
better results than applying the basic hierarchical clustering algorithm.

2.4 Results and Discussion

In this section, we present several results which were obtained with our algorithm.
To evaluate our algorithm, we compared the results of FlowSOM with the tradi-
tional gating results of researchers. Evaluating our algorithm by comparing with
traditional gating is not optimal, because the manual analysis of cytometry data
can be quite subjective: different researchers will get different results and they
often gate only the cell types that are of interest to them. However, we aim for
a visualization method that will give researchers a clear overview of their data,
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Table 2.1: Overview of datasets used in the result section. The number of events indicates
the number of events measured by the cytometer. The number of cells indicates the number
of cells used for further analysis after a lymphocyte gate for the BAL staining, and a single
cell gate for the bone marrow dataset.

DATASET MARKERS FILES
NUMBER OF

EVENTS
NUMBER OF

CELLS

FlowCAP I
Diffuse large B cell lymphoma 3 30 - 308,676
Graft versus host disease 4 12 - 207,171
Hematopoietic stem cell transplant 4 30 - 278,005
Normal donor 10 30 - 1,778,883
Symptomatic West Nile virus 6 13 - 1,214,373

BAL staining 8 12 3,635,910 411,143
Bone marrow 31 3 1,264,755 660,084

and the least they will expect is an acceptable correspondence with their manual
results.

2.4.1 Overview of the Datasets

We tested our algorithm on several real cytometry datasets. An overview of their
properties can be found in Table 2.1. First, we optimized the parameter choices we
made for our algorithm. For this purpose, we used the benchmark datasets from
the FlowCAP I challenge. These consist of five flow cytometry datasets, on which
several state-of-the-art algorithms have been tested. More information about these
datasets can be found in [11].

Second, we applied our algorithm on an in-house dataset in which the bron-
choalveolar lavage (BAL) of 12 mice were stained for 8 different markers. These
12 samples come from 6 wild type mice and 6 CXCR6-eGFP mice. The goal of
the experiment was to study the influence of CXCR6 on house dust mite induced
asthma.

Finally, we also wanted to show the results of our algorithm on a mass cy-
tometry dataset. Therefore, we used a previously described human bone marrow
dataset [18]. Mass cytometers can measure even more markers simultaneously
than the current state-of-the-art flow cytometers, and this number will only in-
crease.

2.4.2 Choosing the Optimal Parameters

The application of FlowSOM requires the selection of several parameter settings.
We used a rectangular nontoroidal grid. In a toroidal setting, the clusters can wrap
around the borders, which makes it harder to distinguish them visually. We used
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a learning rate α starting from 0.05 decreasing to 0.01 and a neighborhood size ε
starting from the 67% quantile of all neighborhood distances decreasing to 0.

In addition, we optimized several other settings using the FlowCAP I bench-
mark data files.

First, we varied the distance measure to find the nearest neighbor of a new
point. We tried Manhattan distance, Euclidean distance and Chebyshev distance.
For all five datasets, Euclidean distance gave the best results. This corresponded
to the manual way of gating, in which Euclidean distance is also intrinsically used
on 2D scatter plots.

We also evaluated various grid sizes. Obviously, when comparing a 5 × 5,
10 × 10, and 15 × 15 grid, a higher number of nodes corresponds to a higher
purity. To determine the optimal grid size, it might be necessary to visually inspect
the results. Too many nodes will give a better purity, but also a more cluttered view.
In our experience the shape of the grid square (10×10) or a long rectangle (4×25)
did not seem to have much influence on the quality of the results. By default, we
use a 10× 10 grid.

We varied the number of times the training set is presented from 1 to 200
times. Remarkably, it was not advantageous to use many repetitions. This can be
explained by the fact that these datasets already contain a relatively high number
of cells, in which redundancy is already present. Using 10 repetitions gave us good
results, and this did not improve much with more repetitions.

We also compared several clustering algorithms for the meta-clustering. We
tested another SOM, k-means, hierarchical clustering and consensus hierarchical
clustering. Consensus hierarchical clustering clearly gave the best results, while
hierarchical clustering was the runner-up. Both k-means or a SOM with a small
number of nodes did not perform very well.

2.4.3 Use Case 1: A BAL Staining

To evaluate the performance of FlowSOM, we used a flow cytometry dataset with
seven surface markers (CD19, CD3, TCRγδ, TCRβ, CD4, CD8, and NK1.1) and
GFP (transgenic mice; knockout) or not (WT mice).

Before presenting this dataset to FlowSOM, a quite strict lymphocyte gate was
manually set on the FSC-SSC scatter plot. We took only the cells that were inside
the lymphocyte gate along for further analysis by FlowSOM. The data was com-
pensated, transformed with a logicle transformation and scaled. We used the seven
surface markers in our analysis.

We applied FlowSOM to this dataset with all the default parameter settings.
Figure 2.2 shows the result of this analysis in a SOM grid, where each node is
represented by a star chart. These star charts indicate the mean intensities of the
markers for all cells in the dataset assigned to that node.
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CD19 (PE−Cy5)
CD3 (PE−Cy7)
TCRyd (APC)
TCRb (APC−Cy7)
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Figure 2.2: SOM result for the BAL staining. The mean marker values are visualized for
each node, using star charts. The height of each part indicates the intensity: if the part
reaches the border of the circle, the cells have a high expression for that marker. By looking
at the specific colors (starting from the right, going counter-clock-wise) information about
the cells represented by each node can be extracted. Differences between the stars can be
quite easily distinguished, and give an indication about which 2D plots might be interesting
to examine in more detail.
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To analyze the performance of FlowSOM, we subsequently compared these re-
sults with a classical manual gating strategy. From the dataset, we manually gated
6 different populations of cells: B cells, CD4+ T cells, CD8+ T cells, γδT cells,
NK cells, and NKT cells. These results are depicted by pie charts, indicating the
presence of the defined cell types in each node (Fig. 2.3A). We obtain a weighted
mean purity of 0.95.

All B cells are assigned to the right side of the grid and all T cells to the left
side of the grid. Using the star charts, it is easy to distinguish that all nodes on the
right side of the grid are quite similar and high in CD19. On the right side of the
grid, we see that all nodes are high in CD3 and TCRβ, but it is clear that the four
nodes at the bottom are different from the others: they are high in CD8, whereas
the others are high in CD4.

In Figure 2.3B, we demonstrate some other visualization opportunities of the
SOM grid. We split the dataset in two groups: the wild type mice and the knockout
mice. The size of the nodes indicates the percentage of cells represented. The color
of the nodes indicates the GFP intensity. By comparing the two groups, the results
show that the KO mice lacked most γδ T cells and had a higher percentage of
B cells. In addition, our results clearly indicate that the αβ T cells of KO mice
express high levels of GFP.

In some cases, a tree view can give a clearer overview of the data than the grid
structure and we therefore also applied such a visualization to the manual gated
data (Fig. 2.3A) and to a meta-clustering of the SOM nodes with 8 clusters (Fig.
2.3C).

The meta-clusters correspond very well to the manual gated cell types and we
obtain an F-measure of 0.93. This shows that FlowSOM would have given a great
starting point to analyze this data even if the manual analysis was not available.
With the manual analysis next to it, we noted that the B cell group is split in two
clusters. The small cluster that is separated from the B cells, are B cells with a high
CD4 intensity. This way, the FlowSOM visualization can help to detect interesting
subsets in the dataset that might be overlooked otherwise.

2.4.4 Use Case 2: Human Bone Marrow

When analyzing mass cytometry datasets, the amount of markers to take into ac-
count is often overwhelming. We applied the FlowSOM algorithm to a human
bone marrow mass cytometry dataset to illustrate the usefulness of our approach.

This dataset was stained with 31 markers, of which 13 were surface markers
(CD3, CD4, CD8, CD11b, CD19, CD20, CD33, CD34, CD38, CD45, CD45RA,
CD90, and CD123) and 18 intracellular markers (pPLCγ2, pSTAT5, pERK1/2,
Ki67, pMAPKAPK2, pSHP2, pZAP70/Syk, pSTAT3, pSLP-76, pNFkB, total lkBα,
pH3, p-p38, pBT/ltk, pS6, pSrcFK, pCrkL, pCREB). For demonstration purposes,
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Figure 2.3: Further visualization options of the FlowSOM algorithm for the BAL staining.
(a) Pie charts indicate the percentage of cells represented by the node falling in the original
manual gates. This can be both visualized in the grid and the minimal spanning tree. A
strong correspondence between the branches of the tree and the manually defined cell types
can be seen. (B) The mean marker intensity of the GFP value is shown for two groups of
mice. The size of the nodes corresponds with the number of cells represented by the node.
Differences in color and size between the two grids can be easily distinguished. (C) An
automatic meta-clustering of the FlowSOM nodes is indicated by the background color of
the nodes. This corresponds well with the manual gating result from part A.
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Figure 2.4: Result for the human bone marrow dataset. Only a selected number of markers
are shown in the star charts for clarity. By comparing these markers, we can e.g., identify
CD8 and CD4 T cells and B cells.

we only used three sample files: an unstimulated sample, a sample simulated with
IL-3 and a sample stimulated with LPS.

First a singlet gate was manually applied on a scatter plot with DNA content
and Cell length. Only the single cells were used in our analysis. The data was
transformed with an arcsinh transformation and scaled. We used the 13 surface
markers to build the SOM.

To identify naive and memory T and B cells, we can either use the star charts
(Fig. 2.4) or compare with the manual gating (Fig. 2.5A). In comparison to
SPADE, more information is visible on one star chart figure. We did not have
to compare eight separate figures to find the cells that have the right combination
of marker intensities.

In Figure 2.5B, we investigate the intracellular signaling status of some mark-
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Figure 2.5: Further visualization options for the human bone marrow dataset. (A) Com-
parison with manual gating. The size of the nodes indicates the number of cells assigned to
each node. (B) Comparison of two stimulated samples with an unstimulated sample. The
star charts indicate several intracellular marker values for the different cell types. If the
part reaches the circle exactly, the two samples have the same expression. If the part does
not reach the circle, there is a lower expression in the simulated sample. If the part goes
beyond the circle, the expression is higher in the simulated sample.
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ers. Instead of showing the values themselves, we show the difference of the IL-3
and LPS stimulated samples with the unstimulated sample. If the pieces of the star
chart reach the enveloping circle exactly, the stimulated sample has the same level
as the unstimulated sample. If the pieces go outside the circle, there is a stronger
induction. If the pieces are smaller than the circle, the induction has diminished.

When observing the results after stimulation with LPS, the monocytes have
an induced phosphorylation of P38 MAPK (cyan in the figure) and the megakary-
ocytes an induced phosphorylation of Btk/ltk (orange in the figure).

The node containing 98% of the plasmacytoid DCs had a strong induction of
several intracellular markers after stimulation with IL3. This is the cell type indi-
cated in the original article to strongly increase expression of pSTAT5 and pSTAT3
on IL3 stimulation. In comparison, B cells only have an induced phosphorylation
of STAT5 and not of STAT3.

2.4.5 Comparison with SPADE

The FlowSOM minimal spanning tree result is very similar to a SPADE result.
The key difference between FlowSOM and SPADE is the clustering algorithm.
A self-organizing map, the clustering algorithm used by FlowSOM, works very
differently from hierarchical clustering, as proposed in the SPADE article. More
specifically, it does not tend to make each cluster approximately the same size.
This way, rare cell types can still be detected without the need for any density-
based subsampling. Furthermore, by removing the subsampling stage, a significant
time improvement can be achieved.

We ran some tests on the human bone marrow mass cytometry dataset, in which
several cell types are present as <1% of the data. These tests indicated that with
the same number of nodes, results will be very similar between FlowSOM (without
subsampling) and SPADE (with subsampling). Unfortunately, both algorithms use
stochastic processes, so the results may vary slightly per run. By using many more
clusters than the expected number of cell types, both algorithms are able to assign
nodes to the rare cell types. However, the number of nodes has an important role:
it might be necessary to increase the number of nodes to 200 or 300 to find these
rare cell types. It can also be advantageous to do some manual gating steps to
focus on the cell types of interest and remove debris and doublets.

In the BAL dataset, which is pre-gated on lymphocytes, both NK and NKT
cells are present only in 1% of the data. Both cell types are assigned to multiple
nodes in the SOM grid (Fig. 2.3A). For the bone marrow dataset, when using 100
nodes, NK cells (2.8%) are assigned to multiple nodes, while Pre-B II cells (0.9%)
are represented by one node (Fig. 2.5A). However, when increasing the number
of nodes to 200, we also get pure nodes for plasma cells (0.2%) and mature CD38
mid B cells (0.4%), even though we do not manage to catch the CD11bmid mono-
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Table 2.2: Results on the benchmark datafiles from the FlowCAP I challenge

DATASET
SPADE
PURITY

FLOWSOM
PURITY

FLOWSOM
F-MEASURE

Diffuse large B cell lymphoma 0.9367 0.9494 0.8370
Graft versus host disease 0.9335 0.9439 0.8546
Hematopoietic stem cell transplant 0.9787 0.9759 0.7449
Normal donor 0.8173 0.8228 0.6775
Symptomatic West Nile virus 0.9102 0.9234 0.8292

cytes (0.8%) separately. This indicates that not only the percentage of the rare
cell type is important, but also how strongly it differs from other cell types. The
SPADE algorithm with 200 nodes also did not assign a pure node to the CD11bmid
monocytes.

2.4.5.1 Quality

To evaluate the quality of our algorithm with the default parameter settings, we
used the FlowCAP I benchmark files.

First, we evaluated the purity of the nodes, as defined in Formula 2.1 and com-
pared this with the purity of SPADE nodes. We calculated the mean purity of all
samples for five runs of the algorithms. As shown in Table 2.2, we obtain a slightly
better purity than SPADE. Second, we evaluated the results of the meta-clustering
with the F-measure defined in Formula 2.2. The number of meta-clusters was de-
termined automatically by the elbow method. These results are in line with the
results obtained in the FlowCAP I challenge, which indicates that the metacluster-
ing is a good starting point for further analysis.

2.4.5.2 Running Time and Memory Usage

All measurements for running time and memory usage are made on a cluster with
eight computing nodes, each having 24 cores and 256 GB RAM. We first evaluate
the running time of our algorithm in respect to the number of cells in the dataset.
An overview is shown in Figure 2.6. Reading the data and training the SOM will
take longer if more data is available. However, if many cells are available, it might
be possible to decrease the number of times the training set is presented to the
algorithm. On the other hand, if time constraints are not a problem, the number
of times the dataset is presented in training can be increased for better results. For
building the MST and meta-clustering the data, only the grid nodes are used, so
the running time of these steps is not influenced by the amount of data we start
with. We observe that if we double the amount of data, the computation will need
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Figure 2.6: (A) Running time of each step of the flowSOM algorithm, for a varying number
of cells. (B,C) Comparison of running time and memory usage with SPADE, for a varying
number of cells.

a bit less than double the amount of time. Because our algorithm does not need to
subsample the data, we can obtain a huge time gain in comparison to SPADE. This
can be seen in Figure 2.6B. Our algorithm is not parallelized at the moment and
runs on a single core. We compared with the SPADE algorithm which is optimized
to run in parallel and used eight cores. Still, we are ten to fifty times faster. We use
about the same amount of memory as SPADE (Fig. 2.6C). For both FlowSOM and
SPADE, running time and memory usage are not strongly influenced by varying
the number of markers in the analysis.

2.5 Conclusion

FlowSOM offers new ways to visualize and analyze cytometry data. The algorithm
consists of four steps: reading the data, building a self-organizing map, building
a minimal spanning tree and computing a meta-clustering. We proposed several
visualization options: star charts to inspect several markers, pie charts to compare
with manual gating results, variable node sizes dependent on the amount of cells
assigned to the node and a grid or a tree structure which both give topological
information.

The purity of the FlowSOM nodes and the F-measures of the meta-clustering
indicate a strong correspondence with manual gating results.

The FlowSOM algorithm has a purity comparable to the SPADE algorithm,
but results can be obtained up to 50 times faster.

Traditional gating uses a hierarchy of gates. As a consequence, many cells
are gated out: they are not examined any further. Using a visualization method
in which all cells are represented minimizes the risk of missing interesting cell
populations. By using star charts, several markers can be examined at once and
annotation becomes easier.
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In the future, we will investigate more optimizations to the FlowSOM algo-
rithm. Many variants of the traditional SOM algorithm exist. One possibility is
to define the neighborhood function by using a minimal spanning tree instead of
a grid. This might enable the algorithm to better separate differentiated cell types
and is in accordance with the minimal spanning tree visualization we use after-
wards.

At the moment, the algorithm is not optimized to run in parallel. This is also a
possible improvement that can be added to FlowSOM.
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3
Applications of the FlowSOM

algorithm

The FlowSOM algorithm is provided as an R package, which is easy to use by
bioinformaticians but not straightforward for people in the lab. Once the Flow-
SOM algorithm was developed, we therefore started collaborations with multiple
researchers to apply the algorithm to their data. Such collaborations were also
very fruitful to us, to gain further insight in the problems posed and to improve our
algorithm for easier use. Based on this feedback, we added three additional func-
tionalities to the R package. First we explored multiple alternative layout functions
in addition to the minimal spanning tree (MST). Although several seemed to have
potential, none clearly stood out as the perfect replacement for the MST. Next, we
added a statistical test to compare groups of samples. By visualizing which nodes
increase or decrease between samples, we could ensure that no important changes
are overlooked when interpreting the tree. Finally, we also added an automated
annotation of the FlowSOM nodes with cell type labels. This allows the researcher
to go without a manual gating and immediately start exploring the FlowSOM tree.
The approaches described in this chapter have not been published as papers, but
were presented as poster presentations at the CYTO conferences 2015 and 2016.
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3.1 Implementation in R

The original FlowSOM algorithm and the extensions described in this chapter are
bundled into an R package, which is available on the github website of our group
(https://github.com/saeyslab/FlowSOM). Additionaly, it is also avail-
able on Bioconductor, a platform collecting open source R packages for bioin-
formatics (https://www.bioconductor.org/packages). This allows
easy discovery and installation by bioinformaticians. All functions are well doc-
umented and a vignette is available, which guides a new user through the typical
workflow when using this package (see Appendix A).

3.2 Exploring Different Layouts

A self-organizing map is a clustering algorithm which is often used for visualiza-
tion, because it results in clusters positioned in a grid. Clusters which are closer
together in the grid typically contain more similar datapoints. However, when an-
alyzing flow cytometry data, most cell types are spread over multiple nodes and
it takes some time to identify which neighboring clusters are really similar and
which ones are actually borders between the different cell types. This might be
hard to distinguish in a grid.

Therefore, in the previous chapter, we also introduced the Minimal Spanning
Tree (MST) visualization. Inspired by the SPADE algorithm, this visualization has
an easier interpretation, as most branches correspond to the separate cell types.
However, a minimal spanning tree also has some limitations. For example, when
a loop exists in the data, it will be cut at some random point, which might result in
similar clusters being on different sides of the tree. The tree should be interpreted
as ‘connected clusters are certainly similar, but disconnected clusters are not nec-
essarily dissimilar’. This does not correspond with the intuition of the researchers
analyzing the trees.

To solve this problem, we experimented with some alternative layout options,
visualized in Figures 3.1 and 3.2. The six layout functions described below are
all applied on the same FlowSOM grid and colored by the manual gating results.
About half of the nodes represent B cells, while some other cell types, such as
the NK cells and macrophages are only represented by one node. A good layout
should enable us to identify seperate cell populations when the coloring of the
nodes would not be available. However, it is important to keep in mind that the
manual gating of the nodes is not perfect either, e.g. there exists a node with
CD3+,CD19+ cells, which should be classified as ‘Unknown’ because CD3 is a
T cell marker while CD19 is a B cell marker and these are not expected to occur
together. However, it is annotated as a B cell node in this dataset.

The first alternative we tried is the t-SNE algorithm. This is a dimensionality
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reduction algorithm which is also sometimes applied on flow cytometry data (e.g.
the viSNE algorithm), but which is rather slow for large datasets. However, we
only need to apply it on the cluster centers, commonly 49 (for a 7x7 grid) or 100
(for a 10x10 grid), which computes reasonably fast. Because the t-SNE algorithm
uses a non-symmetric distance mapping, it focuses on local similarities, typically
resulting in clearly separated clusters. However, it is not always straightforward to
define what is ‘local’, given as the perplexity parameter of the algorithm, and some
manual fine tuning is often necessary to get a clear representation of the FlowSOM
nodes.

The other alternatives we explored are graph-based, because these structures
can contain loops, avoiding the over-simplification that might happen in the MST.
One option is using a fully connected graph, where the edges are weighted by
the euclidean distance between the node centers. Plotting all edges would result
in a hairball graph, but using a force-based layout algorithm like Kamada-Kawai
can result in a 2D mapping similar to the t-SNE result, while taking the global
structure into account. An alternative option is plotting a nearest-neighbor graph,
although it is difficult to pick an optimal number of neighbours. Some clusters
might represent a cell type on their own, while others are strongly connected with
other clusters, resulting in strange artifacts when using a fixed number of nearest
neighbors. An alternative option is to use a cut-off, showing only edges for which
the distance between the nodes is lower than a fixed threshold. However, defining
this threshold is again not trivial.

As all these alternative options have parameter tuning issues, we stick to the
MST visualization as the default option for now, although they are interesting to
explore in specific cases where the limitations of the MST are an issue.

3.3 Comparing Groups

In the previous chapter, we focussed on giving a comprehensive overview of a
dataset. While it is indeed important to be aware of all the different cell types
present in the data, in most experiment settings the researcher is especially inter-
ested in a comparison between different samples.

To enable this, we adapted our code in such a way that the background color of
the nodes, previously used to show the metaclustering result, could represent any
kind of variable with a value for each node. This way, we can define one group
of samples as the baseline setting and color nodes which are over- or underrepre-
sented in the other group. Typically, the overrepresented ones are shown in red,
while the underrepresented ones are blue. To determine which nodes are signifi-
cantly different between groups of samples, we made use of a wilcoxon rank-sum
test. This statistical test indicates whether two sets of samples are likely to be
taken from the same distribution or not, without assuming a normal distribution.
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(a) SOM grid (b) MST

(c) t-SNE (d) Full weighted graph

(e) KNN graph (f) Thresholded graph

Figure 3.1: Different layout options for the FlowSOM nodes. The nodes are colored by
manual mapping, red: B cells, green: T cells, blue: NK cells, orange: macrophages, yellow:
dendritic cells, purple: neutrophils. For the t-SNE algorithm, the perplexity was set to 10.
The kNN graph uses 3 neighbors and the cutoff on the weights was set to 2.3. All graphs
are mapped to 2D using the Kamada-Kawai layout algorithm.



FLOWSOM APPLICATIONS 51

(a) SOM grid (b) MST

(c) t-SNE (d) Full weighted graph

(e) KNN graph (f) Thresholded graph

Figure 3.2: Another run of the FlowSOM algorithm and all visualization options, using
the same parameters. Although the actual layout differs due to the stochasticity of the
algorithms, the same populations can be distinguished.
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We color the nodes if they have a p-value lower than 0.05.

We present two case studies in which we used this approach. The first exper-
iment explored an asthma protocol for mice. Allergic asthma is characterized by
eosinophilic airway inflammation, goblet cell metaplasia and bronchial hyperreac-
tivity. By sensitizing and challenging mice with allergens such as house dust mites
(HDMs), the mice develop all of these canonical asthma features. When using
phosphate-buffered saline (PBS) as a negative control in the sensitization phase,
the mice do not develop these features. We compared bronchoalveolar lavage sam-
ples (BAL) from 12 wild type C57BL/6 mice of which 6 were sensitized with
HDM, while the other half were sensitized with PBS. The samples were stained
with a general panel which allows the identification of the main immune cell types
of interest.

The FlowSOM tree is trained on an aggregated fcs file from all mice together
and shown in Figure 3.3. A mapping of the manual gating is shown on the right.
The comparison between the groups is shown in Figure 3.4. A tree is drawn for
each group, in which the node size corresponds with the average percentage of
cells assigned to that node. Instead of comparing the sizes of all these nodes vi-
sually, the background color in the second tree indicates all significant increases
and decreases in the HDM sensitized mice. This ensures that the changes are rep-
resentative for all the individual samples, instead of on the averages per group.
The eosinophilic inflammation is clearly noticable. Additionally, these mice also
show a light increase in B-cells, while all other cell types decrease relatively. This
overview enables the researcher to confirm that no unsuspected changes are hap-
pening in the other cell types due to the treatment. For a BAL sample, an absolute
cell count might also offer an interesting perspective next to percentages. These
values can be computed by multiplying the percentages per sample by the number
of live cells counted for each of these samples and might tell a slightly different
story. For example, in this case, all cell counts increase in the samples treated with
HDM, even though the ratios differ strongly. An additional colouring, with the
opacity of the colour corresponding to the magnitude of the change can be useful
in some cases.

The second experiment we present focused on the importance of interferon
regulatory factor-8 (IRF8) in conventional dendritic cells (cDCs) type 1 and 2 [1].
To address the role of this gene, wildtype mice, heterozygous knock-out mice and
homozygous knock-out mice were studied. Splenocytes of 15 mice were stained
with a panel focused on myeloid cell identification.

Similar to the previous experiment, a FlowSOM tree was trained on an aggre-
gate of all these samples, presented in Figure 3.5. While the manually gated cell
types map nicely to separate branches, the FlowSOM tree also indicates that many
cells are not manually labeled (white pie-pieces in the tree on the right). In Fig-
ure 3.6 the differences between the three groups of mice are visualized. Although
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Table 3.1: Cell type definitions for a lymphocyte staining on splenocytes.

NK1.1 CD3 TCRγδ TCRb CD4 CD8 CD19
NK cells + -

NKT cells + +
γδ T cells - + + -

CD4 T cells - + - + + -
CD8 T cells - + - + - +

B cells +

there is a strong neutrophilic increase in the homozygous knock-out, the heterozy-
gous knock-out is much more similar to the wildtype phenotype, with only a small
increase in neutrophils and a decrease in cDC1s, the cell type of interest in this
experiment. This overview allowed the researcher to estimate if any other changes
where happening, even the cells that were not manually gated. This is the case
in the homozygous knock-out: while the manual gating only notices a strong in-
crease in neuthrophils, the FlowSOM tree shows that there is a whole group of
cells which are never labeled in the manual gating but which also increase. This
can be a starting point for further data exploration. In this case, these cells might
be neutrophil precursors, giving more insight in the effects of the knock-out gene.
In the heterozygous mice, indeed only the cDC1s were strongly decreasing, with
limited changes to the rest of the immune system. Whereas in the homozygous
model so many things are changing that it is hard to make any conclusions from
phenotypic observations, the heterozygous model is well suited to investigate the
importance of IRF8 for cDC1s.

3.4 Labeling Populations

More and more clustering and visualization algorithms are proposed to detect the
cell types that are present in flow cytometry samples. However, the interpretation
of the resulting clusters can be challenging. For example, in the SPADE algorithm,
you need to look at each node and compare plots for all the different markers to
determine the marker presence on the cells represented by the node and convert this
to a cell type. In FlowSOM, we combine information about the different markers
in a star-glyph for an easier overview, but you still need to interpret the marker
combinations for each node when you do not have a manual gating available.

However, when conducting an experiment, the researcher often has already
some cell types in mind, defined by marker properties such as “CD4 T cells are
CD3 positive, CD4 positive and CD8 negative”. Some more examples are given
in Table 3.1. Instead of letting the researchers look at each node and match it to
these patterns, we propose to let the researcher define these cell type definitions in
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Figure 3.3: FlowSOM tree trained on fcs files from BAL samples. (A) Overview of the
median marker expressions in the clusters. (B) Mapping of the manual gating.
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Figure 3.4: Comparison between two groups of mice with different treatment. The group
sensitized with HDM have an asthma phenotype, with a huge increase in eosinophils and a
little increase in B cells.
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Figure 3.5: FlowSOM analysis of splenocytes of 15 mice, stained with a myeloid panel.
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Figure 3.6: Comparison of the 3 groups of mice. A strong neutrophilic increase is shown
in the homozygous knock-out, which is much more tempered in the heterozygous knock-out.
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advance. By automatically matching nodes to these definitions, it becomes much
quicker to interpret the FlowSOM tree, while you can still easily detect unexpected
marker combinations and cell types.

We developed a scoring function which can automatically test for each node
how well it corresponds with a given cell type definition, by comparing the node’s
MFIs with the values in the other nodes. The researcher first needs to define for
which markers a certain cell type is positive or negative. Intermediate expression is
not yet supported and it is important to pick only those markers with a clear pattern,
as others will add too much noise. Then we compute for every node and every
marker of interest, the difference with the maximal or minimal MFI present in any
of the nodes (depending on whether the marker should be positive or negative).
This value indicates how strong this node deviates from the expected pattern. As
a small difference is not as bad as a big difference (a node where one marker does
not correspond to the definition at all means the node should not be picked, while
some small variations between the nodes are expected), we use the square of the
difference to enlarge these differences. Finally, all these scores are scaled between
0 and 1 (1 meaning it corresponds perfectly with the wanted pattern, 0 meaning
it is the furthest away from it) and then averaged over all markers in the cell type
definition. This way, every node has a score for every cell type. To make a final
selection of nodes which correspond with a cell type, a threshold is put a 0.95
* the highest score. Pseudocode is provided in Algorithm 2. By applying this
algorithm to all cell types of interest and selecting only the nodes which get the
highest scores, an annotated tree can be returned.

We tested this method on a flow cytometry dataset stained with a lymphocyte
panel. B cells, CD4 T cells, CD8 T cells, NK cells and gamma delta T cells were
successfully automatically identified, using the definitions in Table 3.1. The results
are shown in Figure 3.7. This allows for an easier interpretation of the FlowSOM
tree and a more straightforward workflow when analyzing new datasets.

Additionally, we also used this method on a separate experiment to detect con-
ventional dendritic cells type 1 and 2 in multiple tissues, as published in [2]. The
panel design proposed by the researchers was strong enough to automatically de-
tect the cDC1 and cDC2 cell types across multiple tissues. Figure 3.8 shows the
results for multiple runs of the FlowSOM algorithm in comparison to the manual
gating results. While the stochasticity of the algorithm results in slightly varying
results, they always show a very similar pattern when comparing the mice, which
also corresponds nicely to the pattern manually identified.
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algorithm 2: Automated labeling of clusters

procedure Annotation
1: nodes← k ×m matrix, with m markers describing k cluster centers
2: cellTypeDefinitions← a list in which every cell type defines a list of markers

which should be positive or negative
3: selection← new list
4: for cellType in cellTypeDefinitions do
5: scores← repeat(0,k)
6: for marker in cellTypeDefinitions[cellType] do
7: if cellTypeDefinitions[cellType][marker] == positive then
8: scoresMarker← (nodes[,marker] - max(nodes[,marker]))2

9: else if cellTypeDefinitions[cellType][marker] == negative then
10: scoresMarker← (nodes[,marker] - min(nodes[,marker]))2

11: scores← scores + 1 - (scoresMarker - min(scoresMarker))
(max(scoresMarker) - min(scoresMarker))

12: selection[cellType]← which(scores ≥ 0.95*max(scores))
13: return selection
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Unknown
B9cells
NK9cells
NK9T9cells
yd9T9cells
CD4m9T9cells
CD8m9T9cells

TCRyd95APCb
CD16195PEb
CD895PEiCy7b
CD1995FITCb
CD395PerCpieFluor710bCD495eFluor450b

TCRb95APCAF780b

Automated9annotation

Manual9gating9results

Figure 3.7: Automated annotation of the FlowSOM tree. A very strong correspondence
between the automated results and the manual gating results can be seen, allowing an
easier interpretation of the tree if the manual gating is not available.
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Figure 3.8: Comparison between automated and manual labeling. Although the percentage
of cells automatically annotated is always slightly larger, the general pattern of the manual
gating can still be clearly determined. The slight differences can be explained because the
manual gates are often put quite strict, while in FlowSOM all cells need to be assigned to a
node.
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4
FloReMi: Flow Density Survival

Regression Using Minimal Feature
Redundancy

In this chapter, we describe our participation to the FlowCAP IV challenge. The
goal of the challenge was to identify cell populations that can prognose the pro-
gression time of HIV patients to AIDS. To tackle this challenge, we developed
FloReMi, a full pipeline consisting of multiple building blocks fitting after each
other: several preprocessing steps, feature extraction, feature selection and sur-
vival time prediction. The feature extraction resulted in almost two and a half
million features per patient, necessitating the feature selection step. We used a
supervised selection process, picking features which correlated well with the pro-
gression time, while having minimal correlation with the other features picked. We
tried multiple models for the final prognosis prediction, but the random survival
forest was the one which ended top-ranked in the FlowCAP IV evaluation. While
this analysis is not as visual as the FlowSOM approach described in the previous
chapters, it allows the evaluation of millions of features. In this setting the goal
was very clear (correlation with clinical outcome), thus it was not necessary to
visualize the whole distribution of the cells. Where FlowSOM is more useful for
exploratory data analysis, the FloReMi pipeline can be used to generate a list of
potential biomarkers, which can then be validated in further experiments.
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Abstract Advances in flow cytometry bioinformatics have resulted in a wide vari-
ety of clustering, classification and visualization techniques. To objectively evalu-
ate the performance of such methods, common benchmarks such as the FlowCAP
initiative have proven to be of great value. In this work, we report on a novel
method, FloReMi, which was developed to tackle the most recent FlowCAP IV
challenge. This challenge was formulated as a survival modeling problem, where
participants were expected to design a model to predict the time until progression
to AIDS for HIV patients. It is known that variability in progression rate cannot be
fully predicted by simple CD4+ T cell counts. However, it is hypothesized that the
immunopathogenesis established early in HIV already indicates the course of fu-
ture disease. Adequately estimating the progression rate of HIV patients is crucial
in their treatment. Using an automated pipeline to preprocess the data, and subse-
quently identify and select informative cell subsets, a survival regression method
based on random survival forests was built, which obtained the best results of all
submitted approaches to the FlowCAP IV challenge.

4.1 Introduction

Current cytometry techniques enable researchers to examine many markers at the
same time. This gives an unprecedented view on single cells, but also introduces
several challenges. When many markers are measured simultaneously, manual
analysis becomes very time-consuming and subjective. As it is infeasible to man-
ually analyze every possible cell population, only a subset of them is examined
based on previous experience. Several research groups have developed automatic
clustering techniques to assist the manual analysis, based on K-means, mixture
models, density estimation and more (e.g. [1–8]). However, the goal of an experi-
ment is often not to identify all the cell types that are present, but to identify those
cell types that are indicative of some phenotype. In this case, machine learning
techniques can be used to identify subpopulations of cells in the dataset which
can be used to predict the phenotype of a patient. A number of techniques have
already been developed with this goal in mind. The FlowCAP II challenge [9]
was created to compare those techniques and provide some benchmark data. Sev-
eral algorithms were proposed, most of which combine an automatic clustering
algorithm with a traditional classification algorithm. Once the clusters are formed,
features can be constructed and selected, which can be used by traditional classi-
fication algorithms. One of the proposed algorithms, flowType [10, 11], computes
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a threshold for every marker to express every possible subpopulation as a certain
combination of high/low marker values. Once all these subtypes are defined, sta-
tistical tests are performed to identify those subtypes which contain information
with regard to the class of the patients. The Citrus algorithm [12] uses a hier-
archical clustering algorithm to split the dataset into many possible subdivisions.
Afterwards, statistical tests are used to find significant differences between the data
of two classes. Classification algorithms trained with those features can be used
to diagnose patients. The majority of algorithms that were proposed in this field
focus on classification tasks, where a class, e.g., a disease status, is assigned to
each patient. Less attention has been given to predict continuous output variables
based on flow cytometry data. To address this issue, the FlowCAP IV challenge
was proposed. The goal of the FlowCAP IV challenge was to predict the time until
progression to AIDS for HIV patients, a task which was manually studied in [13].
In this article, we present our approach for the FlowCAP IV challenge, combining
the flowType algorithm with a feature selection algorithm to identify informative,
non-redundant features. We evaluated three survival time prediction algorithms
using the selected features, of which the random survival forest approach was the
most successful, and obtained the best predictive performance of all methods sub-
mitted to the challenge.

4.2 Problem Definition

The goal of the FlowCAP IV challenge was to predict the time until progression
to AIDS for a test set of 192 HIV patients, based on a training set of 191 patients.
Patients were described by flow cytometry data, from which features needed to be
extracted to reach this goal. Identifying features that correlate with the time until
progression to AIDS, e.g. the size of a specific cell population in the dataset, was
also a goal of this challenge.

For each patient, a PBMC sample stimulated with HIVGag peptides and an
unstimulated control were provided. The unstimulated sample gives an indication
of the baseline state of the patient, whereas in the stimulated sample immune re-
sponse effects to the antigens might be observed. For each sample, FSC-A, FSC-H,
SSC-A and 13 fluorescence channels were measured (indicating values for IFNγ,
TNFα, CD4, CD27, CD107-A, CD154, CD3, CCR7, IL2, CD8, CD57, CD45RO
and V-Amine/CD14). Each patient of the training set was also assigned a label
indicating the observed clinical status (1 = progression to AIDS or death, 0 = no
progression to AIDS or death) and, if there was progression to AIDS or death, the
survival time until the onset of AIDS. If there was no progression to AIDS, the
time to the last evaluation was given. It is important to notice that a label of zero
does not mean that the patient did not develop AIDS, but only that the patient at
least did not develop AIDS until this last observation. This kind of data is called
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censored information, because what happens after the last evaluation is unknown.
From the 191 patients in the training set, only 34 had actual events and 157 were
censored. In the test set, 45 patients had actual events and 147 were censored. This
strongly complicated the computational framework we had to use to build a model
for this data.

The evaluation criterion for the challenge was based on the Cox proportional-
hazards model [14]. This model uses both event data and censored data to study
the dependency of the survival times on predictor variables and results in a P value
indicating how well the variables fit the survival times. During evaluation, the
predicted survival times are used as predictor variable.

4.3 The FloReMi Algorithm

The FloReMi approach consists of four steps. First the data is preprocessed, in
order to remove noise. Subsequently many features (i.e., properties pertaining to
certain cell types) are extracted, after which a selection of these features is made.
Finally, we use the selected features in a regression model to predict the time until
the detection of AIDS for the patients. A schematic overview of our approach is
given in Figure 4.1. Our method was developed specifically for the FlowCAP IV
challenge, but our scripts are available at www.github.com/ SofieVG/FloReMi and
can be adapted for other datasets.

4.3.1 Preprocessing

The preprocessing step was applied to each sample separately and consisted of six
parts.

We started with a quality control step to detect problems during the acquisition
of the sample by the cytometer. This can be done by inspecting uniformity of the
data with respect to the time parameter [15]. Therefore, we split the dataset in 100
equally sized intervals for the Time parameter. We calculated the median FSC-A
value and the number of cells for each interval. Intervals were removed completely
if either their median FSC-A value differed >10,000 from the interval right before
or after it, or if the number of cells in the interval was less than the median number
of cells per interval minus two standard deviations. These thresholds were defined
after inspecting several problematic sample files. By removing these intervals, we
removed measurements with inconsistent values, caused by e.g. disturbances of
the flow stream, air bubbles or clogging of the flow cell. A similar technique has
been proposed by FletezBrant, which is released in the flowClean R bioconductor
library [16]. On average, 5.30% (±3.60%) of the original cells were removed by
this step.

In the next preprocessing part, we removed all margin events. We defined a
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Figure 4.1: Overview of the four steps of the FloReMi algorithm: preprocessing, feature
extraction, feature selection and survival time prediction. (i) During the preprocessing, six
steps are executed: problems during measurement are detected, margin events and doublets
are removed, the data is compensated and logicle-transformed and alive T cells are selected.
(ii) During feature extraction, 310 subsets are identified. Each subset can be described by
the percentage of cells present in the subset and 13 MFI values. All these features are com-
puted for the stimulated and the unstimulated data, and then also the differences between
the features for the two data sets are added. This results in 2,480,058 features per patient.
(iii) During feature selection, a Cox proportional-hazards model is built for each feature
separately, and the features are sorted by P value (lowest first). For the actual selection, we
start with the two first features and only add those which have pairwise correlation lower
than 0.2 to all other selected features. (iv) In the final step, we evaluated three different
survival time prediction models: the Cox proportional-hazards model, the random survival
forest and the additive hazards model.
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margin event as a measurement which had either the minimum or maximum value
in any dimension, or a measurement which exceeded the ranges given in the de-
scription of the fcs-files. Measurements which exceeded the possible ranges were
erroneous, and measurements which had the minimum or maximum value might
be saturated and out of the detection range of the cytometer, thus not representing
the actual value that should be measured. A similar technique is available in the
flow cytometry module of Gene- Pattern: RemoveSaturatedFCSEvents [17]. On
average, 2.72%(±3.83%) of the cells remaining after the first preprocessing step
were removed by this step.

Our third preprocessing step consisted of removing doublets. We computed the
ratio r between FSC-A and FSC-H, since for doublets, the area measured is larger
in proportion to the height, because the signal has the same strength but a longer
duration in comparison with a single cell [18]. We removed all cells for which the
ratio was larger than the median ratio of all cells plus two standard deviations, on
average 4.45% (±1.25%) of the remaining cells after the first two preprocessing
steps.

rcell to keep ≤ median(rall cells) + 2 stdev(rall cells)

The fourth and fifth steps in our preprocessing procedure were the traditional
flow cytometry preprocessing steps: compensation and transformation. We com-
pensated the data using the spillover matrix provided in the fcs-files. We trans-
formed the SSC channel and all color channels with the logicleTransform()
function from the R flowCore package [19], using all default settings.

Our final preprocessing step helped us to zoom in on the area of interest. We
used an automatic gating step to select only the alive T-cells for further analysis. To
do this, we used the R flowDensity package [20]. This package can automatically
determine an optimal split in a single dimension of the dataset. We used this to
determine thresholds for both the V450-A (Vivid/CD14) and R780-A (CD3) chan-
nels. We selected those cells that were low for V450-A (alive, no macrophages or
monocytes) and high for R780-A (T cells).

4.3.2 Feature Extraction

Once the dataset was clean, we extracted features from it. By using automatic,
unsupervised techniques, we were able to examine a much larger scope of features
than would be possible in any manual analysis. The feature extraction part of the
pipeline was executed on each sample separately.

First, we used the flowDensity algorithm [20] again to determine splits on ten
dimensions: FSC-A, SSC-A, G710-A (CD4), G660-A (CD27), G610-A (CD107-
A), G560-A, (CD154), R710-A (CCR7), V800-A (CD8), V585-A (CD57), V545-
A (CD45RO). This algorithm uses the density distribution of the cells to determine
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the best possible split. If two peaks are detected, the minimum intersection point
between the two peaks is used. If there are more peaks, it takes into account the
distance between the peaks and the height of the valleys to determine which split
gives the clearest cut. If no peaks are detected, it will use the 95th percentile to split
on. We excluded the FSC-H, V450-A, and R780-A channels because they were
dealt with in the preprocessing step. We also excluded the intracellular markers
IFNγ, IL2, and TNFα, in order to reduce computation time, even though this
might lead to a loss of information. These intracellular markers do not have two
clear peaks typically, which makes it harder to get a good split automatically.

The second step in the feature extraction process was to define subsets, groups
of cells which have the same annotation of high/low marker intensities, based on
the thresholds determined by the flowDensity algorithm. We did this by using
the flowType algorithm [10], examining every possible marker combination for
which the values are either high, low, or neutral. By exploring all cell subsets
with combinations of high and low expression of the markers, we included many
possible cell types that might not be identified in a manual analysis. The flowType
bioconductor package provides an efficient implementation to assign cells to the
subpopulations they belong to, using dynamic programming as an optimization for
the combinatorial problem [11]. This led to 310 possibilities or 59,049 different
subsets.

Once each subset was defined, we extracted features for each sample. For
each subset, we computed the percentage of cells and the mean fluorescence inten-
sity for 13 markers (FSC-A, SSC-A, B515-A (IFNγ), G780-A (TNFα), G710-A
(CD4), G660-A (CD27), G610-A (CD107-A), G560-A (CD154), R710-A (CCR7),
R660-A (IL2), V800-A (CD8), V585-A (CD57), V545-A (CD45RO)). Because
we included the intracellular markers IFNγ, TNFα and IL2, their information
might still be used even though they were not included in the subset definitions.
This leads to 14 features per subset. Because there was both stimulated and un-
stimulated data present for each patient, we computed those 14 features for all
subsets for both samples, and also the difference between the corresponding fea-
tures from each sample. This resulted in (310 × 14)× 3 or 2,480,058 features per
patient.

4.3.3 Feature Selection

Regression techniques are not able to efficiently handle such a huge amount of fea-
tures. To solve this problem, the third step of our pipeline was a feature selection
step. In this step, we wanted to select those features which have a high correlation
with the survival time. However, because of the high percentage of censored val-
ues, we could not simply use the Pearson correlation to measure the importance of
a feature. Therefore, we made use of the Cox proportional-hazards model.
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We used the whole training dataset to compute a Cox proportional-hazards
model for each feature separately. This model returned a P value and a concor-
dance index, which indicated how strongly the feature itself corresponded with the
actual survival times of the patients. We ranked the features by the P values from
their corresponding models.

Strongly correlated features will have a negative impact on a Cox proportional-
hazards model. To minimize the redundancy between the selected features, we
therefore did not simply pick the first k features from the resulting list. Instead, we
started with the two features with the lowest P values, and then iteratively added
new features when the pairwise Pearson correlation between the previously se-
lected features and the new candidate feature was low enough. We chose a thresh-
old of 0.2, to make sure that no strong correlations exist between the selected
features. When using different thresholds, such as 0.15 or 0.25, different features
were selected (Supporting Information Tables 4.4 and 4.5). However, final predic-
tion results were very similar (Supporting Information Table 4.6).

4.3.4 Survival Time Prediction

The selected features were used to predict the actual survival time of the patients:
we converted the original training and test datasets consisting of all fcs files to two
matrices in which the rows represented the patients and the columns the selected
features. We evaluated three different regression techniques to reach this goal: Cox
proportional-hazards regression [14], random survival forests [21] and additive
hazards regression [22]. For each technique, we performed leave-one-out cross
validation on the training dataset to evaluate our results, and built a final model
using the whole training dataset to make predictions for the test set.

Next to the P value of the Cox proportional-hazards model, we also used the
concordance index [23] to evaluate our results. To compute the concordance index,
all pairs of comparable patients are checked. A pair is comparable when either
both patients have progressed to AIDS, or one patient has progressed to AIDS in
a shorter time than the time to the last evaluation of the censored patient. The
concordance index is the percentage of pairs for which the predicted survival time
order corresponds to the actual order. This means a random assignment will lead
to a score of about 0.5, whereas a perfect assignment will give a score of 1 and a
reverse assignment will give a score of 0.

The first technique we executed was the Cox proportional-hazards regression.
We built this model with an increasing number of uncorrelated features until the
corresponding concordance index did no longer improve, as illustrated in Figure
4.2. This resulted in a feature set of 13 features, as presented in Table 4.3. It
might be surprising that no TNFα related features are included in this set. How-
ever, notice that we start with the best scored features and only add those with
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Figure 4.2: Concordance indices used to choose our feature selection cut-off. Using 13
features, the concordance index was optimal for the training set.

almost no correlation (<0.2) with the features already selected. Some other fea-
tures with better p-values and a correlation greater than 0.2 with the TNFα related
features are added first to the selection, which results in no TNFα related features
in our end selection. E.g. our third selected feature, the difference of the CD107a
MFI values of the SSC- CD27+ CD107a+ CD154- CD8+ CD45RO- cell subset,
has a correlation of 0.25 with the best ranking TNFα related feature (the TNFα
MFI of the stimulated sample of the SSC+ CD4- CD27+ CD107a- CCR7- CD57-
CD45RO- cell subset).

The second technique we evaluated was the random survival forest, as imple-
mented by the randomForestSRC package [24]. The random survival forest uses
survival trees, in which each split is made in such a way that it maximizes the sur-
vival difference between the daughter nodes. It explicitly takes censored data into
account. We used the same 13 features as we had used with the Cox proportional-
hazards regression and trained a forest with 500 regression trees. This model re-
turns the mortality, rather than the survival time, of patients. To report our results,
we scaled the values between 0 and 1 and reversed them, because a higher mortal-
ity corresponds with a shorter time until progression to AIDS or death.

Finally, we also used regularization for semiparametric additive hazards re-
gression, as implemented by the ahaz package [25]. This method is a regularized
version of the standard hazards model, and thus should inherently perform feature
selection (similar to standard Lasso or Elastic net for the traditional regression
setting). With the best 100 features from the feature selection step, a model was
trained by performing a fivefold internal cross validation on the training set to find
the optimal parameter settings. These parameter settings were then used to train
a final model. We also tested the model with the best 80 or 200 features, but the
results were very similar (Supporting Information Table 4.7).
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Table 4.1: Results of the three regression models on leave-one-out cross validation. All
methods performed well during cross validation.

CROSS-VALIDATION

RESULT

COX PROPORTIONAL

HAZARDS

RANDOM

SURVIVAL FOREST

ADDITIVE

HAZARDS

P value 0.000 0.000 0.000
Concordance index 0.891 0.852 0.815

Table 4.2: Final results of the three regression models on the FlowCAP IV challenge. Only
the random survival forest obtains good results for the test set, which might indicate over-
fitting for the other models.

FINAL RESULTS ALL DATA TRAIN TEST

COX PROPORTIONAL HAZARDS
P value 0.000 0.000 0.733

Concordance index 0.662 0.932 0.459
RANDOM SURVIVAL FOREST

P value 0.000 0.000 0.002
Concordance index 0.813 0.976 0.672

ADDITIVE HAZARDS
P value 0.000 0.000 0.782

Concordance index 0.635 0.875 0.527

4.4 Results and Discussion

During the challenge, the correct results for the test dataset were obviously hidden
for the participants. Therefore, we performed leave-one-out cross validation to
evaluate our techniques. We present the results of our cross-validation in Table 4.1.
Because all three algorithms performed well for crossvalidation, we submitted all
three versions to the FlowCAP IV challenge.

Once the challenge was finished, the correct results for the test dataset were
communicated. We present our results in Table 4.2. Surprisingly, the results of the
three algorithms differed greatly on the test dataset. Both the Cox proportional-
hazards regression and the additive hazards regression algorithm performed very
badly. They have concordance scores around 0.5, which corresponds with a ran-
dom assignment. However, the random survival forest algorithm did perform quite
well on the test set, and actually obtained the best result of all participants of the
FlowCAP IV challenge. Seven other groups participated, using a whole range of
methods: one based on Boruta and FlowFP [26], one based on SPADE [27], one
using a regression tree on a target vector combining clinical diagnosis and sur-
vival time, gEM/GANN [28], another also based on flowDensity and flowType,
but combined with RchyOptimyx [11] and two other methods of which the strat-
egy is not known to us at the moment.
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Our results are illustrated in Figure 4.3, where the real survival times are com-
pared to the predicted scores. For the training dataset, a clear correlation between
the predictions and the real survival times is present for all algorithms: the line has
an upward slope and if it takes more time for an event to occur, the patient will get
a higher score. Notice that the steepness of the curve is not informative because
we rescaled all our results between 0 and 1 at the end of the prediction process.
However, on the test set, we see the same results as described above: there is no
correlation at all for the results of the Cox proportional-hazards model and the ad-
ditive hazards model. For the random survival forest, there is some correlation, but
the data spread is much wider: many patients get a score corresponding to their
survival time, but several patients get a score that is too high. We want to stress
the importance of our feature selection step here. If we pick the 1000 features with
the best scores, without our redundancy-based selection process, the concordance
index of the Random Survival Forest model drops to 0.512 for the test set.

Because the Cox proportional-hazards regression and the additive hazards re-
gression performed well on the training data, but badly on the test data, we suspect
overfitting might be the problem. The models do not generalize to new data, which
indicates they are capturing too much specific details of the training set. When a
model is used for diagnosis, the main goal is to make predictions for new samples,
which are not available at the time of building the model. However, when overfit-
ting on the training dataset, the model uses very specific details of the training set
which are not applicable to the whole population of interest. As such, it will fail
to make good predictions for new samples, which is the case here in the validation
on the test set. In the prediction step we performed leave-one-out cross-validation,
but in the feature selection step, the whole training dataset was used to score the
features. The random forest approach uses the same features, but might be more
robust against overfitting because of the ensemble approach. Intuitively, random
forests may also perform better because they are a non-linear model and, as such,
they are better able to model interactions between features.

All our results were generated on a single computing node. The feature extrac-
tion step took about 3 days, while all other parts took only a couple of minutes,
so this part is clearly the bottleneck for a faster workflow. However, it could be
easily parallelized, because the preprocessing and feature extraction happens in-
dependently for each sample. When a computing cluster is available, this could
strongly reduce running time.

The goal of the challenge was not only to predict the survival times, but also to
identify features that might be useful for the diagnosis of HIV patients. In Table
4.3, we present the 13 features that were used for the Cox proportional-hazards
regression model and the random survival forest. We notice that features from
the unstimulated sample, from the stimulated sample and from the differences be-
tween the two are selected, indicating that it was essential to use both samples in
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Figure 4.3: Results of the different models on training and test set. The prediction scores of
the models have all been rescaled between 0 and 1 to provide a ranking. On the training set,
all models have a correlation with the real survival times, as indicated by the regression line
through the patients with events. However, on the test set, only the random survival forest
has a correlation. This indicates that the other models overfit on the training set.
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Table 4.3: Overview of the top 13 features of the feature selection step, which were used
by the Cox proportional-hazards model and the random survival forest. Both features from
the stimulated and the unstimulated samples are used, as well as comparisons between the
two. Both percentages of cells and mean fluorescence intensities (MFI) of specific markers
are used. It is remarkable that mainly a negative selection of markers is used in the selected
subsets

FEATURE SAMPLE SUBSET

Percentage of cells Unstimulated CD4- CD27- CD107a- CD154- CD45RO-
Percentage of cells Unstimulated CD4- CD27- CD154- CD8+
CD107a MFI Difference SSC- CD27+ CD107a+ CD154- CD8+ CD45RO-
Percentage of cells Difference FSC- CD4+ CD107a- CD154- CCR7+

CD8+ CD57- CD45RO-
CD4 MFI Unstimulated FSC- CCR7- CD57- CD54RO-
IL2 MFI Difference FSC+ SSC+ CD107a- CCR7- CD8-
IL2 MFI Unstimulated FSC- SSC- CD4+ CD27- CD107a+ CD8- CD57-
IFNγ MFI Difference CD27- CD107a- CD154+ CCR7-

CD57+ CD45RO+
CD57 MFI Unstimulated SSC- CD4+ CD27- CD107a- CCR7- CD8+
Percentage of cells Stimulated FSC- CD4- CD27- CD154+ CCR7-

CD57+ CD45RO+
Percentage of cells Stimulated FSC+ SSC+ CD4- CD154- CCR7+ CD8- CD57-
CD8 MFI Difference CD4+ CD27- CD107a+ CCR7- CD8- CD57-
CD8 MFI Difference SSC- CD154+ CD57+ CD45RO-

the analysis. The chosen features contain not only the percentage of cells for spe-
cific subpopulations, but also the mean fluorescence intensities for several markers.
These features imply that a shift in abundance of markers might happen for certain
cell types.

It is important to keep in mind that all population boundaries are automatically
determined and might not exactly correspond with a manual gating of the data.
Even if this would be the case, it is still quite hard to interpret the features in a
biological way. For example, the best feature (see top row in Table 4.3) is negative
for all five specified markers and neutral for the others, while traditionally cell
types are defined in a positive way, by having a certain marker present. In general,
every marker except CD4 is used as least as much as a negative marker than as a
positive marker. This might indicate that a certain cell type which does not express
the stained markers could correspond well with the progression rate. It is likely
that our best feature corresponds with effector CD8+ cells [29], but future research
will be necessary to interpret all the features correctly and gain more insight in the
process from HIV to AIDS.
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4.5 Conclusion
In this article we presented the FloReMi approach for the FlowCAP IV challenge,
in which we analyzed flow cytometry data to predict survival times of HIV pa-
tients. We first thoroughly cleaned the data and extracted more than 2.4 million
features for each patient. A feature selection step selected relevant features with
minimal redundancy.

We evaluated three different survival time prediction methods, of which only
the random survival forest method performed well. This method obtained the best
results in the FlowCAP IV challenge by using a selection of 13 features.

It is interesting to notice that the four steps of the FloReMi pipeline work
independently of each other. A new preprocessing step, feature extraction method
or feature selection method could be plugged in without any problems, and several
prediction algorithms can be used, as we did in this article. This leaves much room
for improvement for each of the steps separately and poses finding an optimal
combination as a new goal.

In future work, we will investigate the optimization of each step of the pipeline.
Other score metrics could be used to rank the features, although they do have to
take censored data into account. The Random Survival Forest computes a mortality
score instead of a survival time, which are closely related but not exactly the same.
Other regression techniques which can handle censored data might work better.

Once the algorithm is optimized, more research could be done to interpret the
resulting features. Biological validation might be necessary and the results we
present can be seen as a starting point for other research projects to unravel the
details of HIV.
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4.6 Supplementary tables

Table 4.4: Overview of the top features selected with a correlation threshold of 0.15

FEATURE SAMPLE SUBSET

Percentage of cells Unstimulated CD4- CD27- CD107a-
CD154- CD45RO-

Percentage of cells Unstimulated CD4- CD27- CD154- CD8+
Percentage of cells Difference FSC- CD4+ CD107a- CD154-

CCR7+ CD8+ CD57- CD45RO-
IFN MFI Stimulated FSC- CD4+ CD107a+ CD45RO-
IL2 MFI Stimulated SSC- CD107+ CCR7- CD8- CD45RO-
IL2 MFI Difference FSC+ SSC+ CD107a- CCR7- CD8-
Percentage of cells Stimulated SSC+ CD4- CD27- CD107a+

CD154- CCR7+ CD57-
CD8 MFI Difference CD4+ CD27- CD107a+ CCR7-

CD8- CD57-
CD8 MFI Difference SSC- CD154+ CD57+ CD45RO-

Table 4.5: Overview of the top features selected with a correlation threshold of 0.25

FEATURE SAMPLE SUBSET

Percentage of cells Unstimulated CD4- CD27- CD107a-
CD154- CD45RO-

Percentage of cells Unstimulated CD4- CD27- CD154- CD8+
CD4 MFI Difference CD4+ CD27+ CCR7- CD8- CD45RO+
CD107a MFI Difference SSC- CD27+ CD107a+ CD154-

CD8+ CD45RO-
CCR7 MFI Unstimulated FSC- CD4- CD57- CD45RO-
CD4 MFI Difference FSC+ CD4- CD27- CD57+
IL2 MFI Difference SSC- CD27+ CCR7- CD57+

CD45RO+
IL2 MFI Difference FSC+ SSC+ CD107a- CCR7- CD8-
Percentage of cells Stimulated FSC- SSC- CD4- CD107a- CCR7-

CD57-
Percentage of cells Difference FSC- SSC+ CD4- CD27- CD154-

CD57-
IFN MFI Difference CD27- CD107a- CD154+ CCR7-

CD57+ CD45RO+
CD8 MFI Difference SSC- CD4+ CD107a+ CD8- CD57-
Percentage of cells Stimulated FSC- CD4- CD27- CD107a+

CD154- CCR7+ CD8- CD57-
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Table 4.6: The final prediction results are very similar for slight variations in the correlation
feature selection threshold, where different features are used instead of the 13 reported ones.

THRESHOLD 0.15
ALL DATA TRAIN TEST

COX PROPORTIONAL HAZARDS
P value 0.000 0.000 0.737

Concordance index 0.632 0.906 0.429
RANDOM SURVIVAL FOREST

P value 0.000 0.000 0.042
Concordance index 0.763 0.973 0.572

THRESHOLD 0.25
ALL DATA TRAIN TEST

COX PROPORTIONAL HAZARDS
P value 0.000 0.000 0.634

Concordance index 0.676 0.899 0.517
RANDOM SURVIVAL FOREST

P value 0.000 0.000 0.015
Concordance index 0.828 0.973 0.707

Table 4.7: The additive hazards method is quite robust to changes in the number of input
features, because it includes regularization in the model building.

ALL DATA TRAIN TEST

ADDITIVE HAZARDS
80 FEATURES

P value 0.000 0.000 0.832
Concordance index 0.629 0.871 0.540

ADDITIVE HAZARDS
100 FEATURES

P value 0.000 0.000 0.782
Concordance index 0.635 0.875 0.527

ADDITIVE HAZARDS
200 FEATURES

P value 0.000 0.000 0.578
Concordance index 0.645 0.878 0.478
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5
Computational Flow Cytometry:

Helping to Make Sense of
High-Dimensional Immunology Data

In the previous chapters, FlowSOM and FloReMi, two algorithms for analyzing
flow cytometry data, were developed. Other research groups have also been de-
veloping several alternatives to the traditional gating approach. However, for im-
munologists, it is not straightforward to learn about new algorithmic development
and to see how all these algorithms relate to each other. Therefore, this chapter
gives an overview of the current state of the art in computational flow cytometry.
This can help the immunologist to determine which approach might be most suited
for their specific data and the computer scientist to see where there might be still
missing parts that could use further development.

? ? ?

Yvan Saeys, Sofie Van Gassen and Bart N. Lambrecht.

Published in Nature Reviews Immunology, 2016; 16(7), 449-462.

Abstract Recent advances in flow cytometry allow scientists to measure an in-
creasing number of parameters per cell, generating huge and high-dimensional
datasets. To analyse, visualize and interpret these data, newly available computa-
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tional techniques should be adopted, evaluated and improved upon by the immuno-
logical community. Computational flow cytometry is emerging as an important
new field at the intersection of immunology and computational biology; it allows
new biological knowledge to be extracted from high-throughput single-cell data.
This Review provides non-experts with a broad and practical overview of the many
recent developments in computational flow cytometry.

5.1 Introduction

Flow cytometry measures multiple parameters of cells that rapidly flow in a stream
through a system of photonic detectors. During the past 50 years, flow cytometry
has established itself as the workhorse for high-throughput quantitative analysis
of cells and other particles, making it one of the earliest ‘omics’ technologies in
retrospect. Since its inception in 1965 [1] and its first use in the 1970s [2], the basic
design of flow cytometers has remained almost unchanged, highlighting the robust
design of the technology [3]. Several other factors have contributed to the success
and widespread use of flow cytometry. These include the speed at which cells are
analysed (allowing large numbers of cells to be measured), the high accuracy and
resolution of the technology, and the low operating costs per sample. In addition,
flow cytometry is regarded as a non-destructive technology, being able to viably
sort cell populations for further subsequent analyses.

The ability to analyse and sort single cells has resulted in a wide range of bio-
logical and medical applications. In immunology, flow cytometry is used to iden-
tify and quantify populations of immune cells, which allows the immune status of
patients to be monitored over time, and biomarkers can be detected by comparing
various patient groups.

The past decades have marked a number of key technological advances in cy-
tometry, all of which increase the number of parameters that can be measured
simultaneously from single particles. For conventional flow cytometry, the most
notable advance has been the extension of the classical design with additional and
more powerful lasers. Together with advances in fluorophore design, 18-parameter
flow cytometry is now routinely used [4], 30-parameter flow cytometers have re-
cently become commercially available and 50-parameter flow cytometry is pro-
jected to be available soon [5]. This will allow the user to perform analyses com-
parable to those using another recent innovation in the field, mass cytometry [6],
which is more widely known as cytometry by time-of-flight (CyTOF). In this sys-
tem, antibodies are labelled with metal-conjugated probes instead of fluorophores,
and a time-of-flight detector is used to quantify the signal, avoiding the problem of
spectral overlap associated with classical fluorophore-based flow cytometry. The-
oretically, mass cytometry allows the detection of up to 100 parameters per cell,
but the throughput is lower than classical flow cytometry, and cells are destroyed
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during the process, precluding cell-sorting applications.

Another advance in the field is the recent introduction of spectral flow cytome-
try [7], in which the classical optics and detectors are replaced by dispersive optics
and a linear array of detectors that measures the full emission spectrum. Spec-
tral unmixing algorithms are subsequently used to deconvolve the signal, similar
to the classical compensation process in conventional flow cytometry. As more
spectral information is used to reconstruct the intensity signal, spectral flow cy-
tometry seems a promising technique to alleviate the problems with compensation
and autofluorescence, as typically encountered in classical multiparameter flow
cytometry.

Technologies that combine cytometry and imaging have also recently emerged
in the field. Imaging flow cytometry [8] combines flow cytometry with a high-
resolution multispectral imaging system, acquiring several images per cell, at cur-
rent rates of 5,000 cells per second. Hundreds of image-based features can subse-
quently be extracted, giving additional information regarding, for example, mor-
phology, colocalization and cell signalling. Imaging mass cytometry uses a differ-
ent approach, using mass cytometry to reconstruct tissue images [9]. By scanning
a tissue section, vaporizing the tissue spot by spot and subsequently feeding it into
a mass cytometer, information for 32 markers is obtained for every spot. Imaging
software is subsequently used to combine all spot information and extract infor-
mation at the single cell level.

The high-throughput nature of flow cytometry, combined with the increas-
ing capacity to measure more cell parameters at once, is generating massive and
high-dimensional datasets on a routine daily basis. These data can no longer be
adequately analysed using the classical, mostly manual, analysis techniques and
therefore require the development of novel computational techniques, as well as
their adoption by the broad community. Computational flow cytometry is a new
discipline that straddles the fields of immunology and computational biology and
provides a set of tools to analyse, visualize and interpret large amounts of cell data
in a more automated and unbiased way.

This Review summarizes the potential of computational flow cytometry meth-
ods by providing a broad overview of the types of analyses that can be performed
using these new tools and by highlighting their advantages over the traditional,
manual analysis of the data. We start by explaining the need for computational
flow cytometry, highlighting the benefits of standardization and reproducibility
and the application towards pre-processing and quality control. We cover two of
the most widespread types of computational flow cytometry analysis: visualiza-
tion of high-dimensional cytometry data and the automated identification of cell
populations. These techniques provide the basics for some more advanced types
of analyses, including the use of data mining techniques for predictive modelling
and biomarker identification, and a recent novel class of techniques for modelling
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cellular differentiation processes. We focus on conventional flow and mass cytom-
etry data and do not cover in detail other single-cell screening technologies, such
as single-cell RNA-sequencing and high-content imaging, although some of the
techniques described in this Review could be easily applied to such contexts. By
formulating a very practical set of guidelines and making all code available to re-
produce the analyses presented in this Review, we make it easier for immunologists
to adopt computational flow cytometry in practice. All raw data files are available
at http://flowrepository.org/id/FR-FCM-ZZQY, and the source code to reproduce
all figures is available at https://github.com/saeyslab/FlowCytometryScripts.

5.2 Computational Flow Cytometry on the Rise

The most widespread use of flow cytometry by immunologists is the identifi-
cation and quantification of cell populations. For conventional flow cytometry,
this process is mainly still carried out manually, iteratively plotting cells as two-
dimensional scatterplots on a chosen subset of markers, and at each step selecting a
subset of cells on which to further focus in the next iteration. This process is called
gating and aims to identify cell populations by gradually zooming in on them until
a predefined number of marker characteristics is fulfilled. Although many immu-
nologists still rely on manual gating, it is important to realize that such an analysis
has several serious drawbacks.

5.2.1 Manual analysis is hard to reproduce

Manual analysis of flow cytometry data has been shown to constitute one of the
major sources of variability in flow cytometry analyses [10–13]. Manual gating is
often hard to reproduce mainly owing to two reasons. The first concerns the order
in which pairs of markers are explored. This order often allows for some degree of
freedom in the gating process, but might lead to different cells being selected when
following an alternative gating strategy. The second reason concerns the shape and
boundaries of the gates being used. There is great diversity between researchers
regarding the gating strategy, with some experts being stricter with their gates and
others being more liberal. Computational flow cytometry techniques can be used
to greatly enhance the reproducibility of an analysis, as they are based on sound
mathematical principles to define cluster boundaries, and the similarities between
cells are directly assessed on all markers simultaneously, compared to the approxi-
mated way similarity is assessed in manual gating using subsequent scatterplots on
pairs of markers. By sharing raw data, as well as analysis workflows with detailed
parameter specifications, reproducibility in the broad immunology community can
thus be substantially improved, allowing others to repeat and validate analyses.
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5.2.2 Manual analysis is subjective and biased

When analysing flow cytometry data by hand, experts are typically only looking
at their favourite cell types, and in doing so many other cells are discarded from
the analysis [14]. In addition, strong assumptions are made regarding cells be-
ing negative or positive for a certain marker at an intermediate gating step, and
these markers are often not reconsidered at later stages. As mentioned earlier, sub-
jectivity also occurs both at the level of choosing the order in which to consider
parameter combinations, as well as in the shape and boundary of each gate speci-
fied in the analysis. Computational flow cytometry techniques are more objective
and unbiased towards known cell types. By taking a data-driven approach, they
assess similarity on all the cells in the sample, considering all markers simultane-
ously. This enables the finding of novel populations or biomarkers that would be
simply discarded in a manual analysis.

5.2.3 Manual analysis is inefficient when exploring large marker
panels

Humans are not efficient in exploring data spaces described by more than four di-
mensions, and the current way of iteratively analysing subspaces defined by two
markers only provides a very limited view of the data, obfuscating many other pat-
terns being present in the data. This is especially difficult when dealing with mass
cytometry data, for which data is described by more than 30 markers, and manual
analysis is no longer feasible. Again, computational techniques can help. By using
computational approaches that combine all marker information at the same time,
automated gating and visualization techniques can highlight the main patterns in
the data. These patterns need subsequent interpretation and validation, allowing
for an iterative and interactive process that allows immunologists to interpret high-
dimensional flow cytometry data in a more efficient way.

5.2.4 Manual analysis is time-consuming for large experiments

When analysing large datasets (containing, for example, different stainings for
hundreds or thousands of patients), manual analysis often becomes very time-
consuming and sometimes infeasible. Even if a fixed gating strategy is used for
a large-scale study, it would still require looping over all populations of interest,
making small adjustments to the gates, a process that would have to be repeated
for every tube of every donor. In addition, such large-scale experiments are often
confronted with many sources of variation, including laboratory and instrument
effects, different batches of reagents used at different times and batch effects re-
sulting from data being collected at different time points. Computational flow
cytometry techniques can be used to render such an analysis more efficient. First,
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they can be used to automatically perform data pre-processing and quality con-
trol, one of the most important steps in large-scale analyses, allowing the detection
of potential problems or biases in the study. Second, automated analyses can be
performed to identify, for example, novel biomarkers. Tables 5.1 and 5.2 give
an overview of the main steps that can be identified when applying computational
flow cytometry tools, highlighting important practical guidelines and tools that can
be used to assist in the different steps in the process. We discuss each of these steps
in more detail below.

5.3 Standardization and Reproducibility

Unlike other fields such as genomics and transcriptomics, for which there are stan-
dard procedures to analyse data and deposit it in public repositories, standardized
data deposition and analysis in the field of cytometry is still in its infancy. Nev-
ertheless, there is a great need for both sharing of raw data, as well as analysis
workflows to enable reproducible research in immunology. Computational ap-
proaches towards flow cytometry depend on highly standardized data formats and
workflows, and since 1984 the Flow Cytometry Standard (FCS) file format has
emerged as a standard for the exchange of raw data [15]. Since 2010, the Interna-
tional Society for Advancement of Cytometry (ISAC) has developed the Archival
Cytometry Standard (ACS) file format as a container that stores all files relevant
to an experiment, including support for audit trails, versioning and digital signa-
tures [16]. This enables researchers to share their experimental data and analysis
in a self-contained way, making it easier to check the reproducibility of their re-
sults. To exchange analysis reports, the GatingML [17] and Classification Results
(CLR) [18] formats were recently developed. Similar standardization efforts have
emerged for novel advances, such as ICEFormat, a standardized format for imag-
ing cytometry experiments [19].

5.3.1 Towards Reproducible Flow Cytometry

Reproducible flow cytometry starts at the sample preparation stage, with clearly
defined standard operating procedures (SOPs) for sample handling and staining,
followed by an appropriate setup of the flow cytometer [20]. The use of setup
beads, a proper panel design and standardized nomenclature for markers and chan-
nels [21] all contribute to increasing the quality and reproducibility of flow cytom-
etry experiments. Appropriate controls (for example, biological controls, compen-
sation controls and fluorescence minus one (FMO) controls [22]) are also crucial
for obtaining high quality data. Subsequently, samples can be acquired and sub-
ject to data pre-processing and quality control, and this is the first stage at which
computational methods enter the workflow. Finally, automated approaches such
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Table 5.1: Steps for analysing flow cytometry data using computational flow cytometry
tools. Continued in Table 5.2

GENERATE THE DATA

• Consult a statistician or bioinformatician to help in experimental design,
sample size estimation and guidelines regarding the type of data
analysis required for your research question

• Make sure your sample size is big enough; account for the loss of a
small percentage of samples owing to quality control and make sure it
does not affect your statistical power

• Perform your experiment and sample staining using standardized
procedures and, if possible, using standardized panels

• Use appropriate machine calibration

• Include controls for compensation (for example, fluorescence minus one
controls) and normalization (for example, beads)

• Deposit your data in flowRepository, to enable easy sharing

CLEAN THE DATA
(using flowCore, flowQ, flowClean, flowStats, openCyto or flowDensity)

• Compensate and transform the data; check for any strange
compensation artefacts

• Plot the scatter and marker values over time; filter out any regions with
abnormal behaviour

• Compare samples to detect batch effects and normalize the data if
necessary

• Correct for internal (for example, smoking status) or external
confounding (for example, laboratory) effects

• Remove debris, dead cells and doublets

• Check boundary effects

• Consider pre-gating on a cell population of interest
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Table 5.2: Steps for analysing flow cytometry data using computational flow cytometry
tools. Continued from Table 5.1

VISUALIZE THE DATA
(using SPADE, viSNE, FlowSOM, PhenoGraph or Scaffold maps)

• Get an overview of the cells present in the samples

• If you also do a manual gating, map it to the alternative visualizations to
see whether there are any problems with either the manual gating or the
parameters of the visualization

• It might be useful to try different techniques to establish which one most
clearly represents your data

• Look for any unexpected populations that might contain information
you would not examine otherwise

ANALYSE THE DATA
(see Table 5.3)

• Choose the type of analysis to be performed: automated population
identification, biomarker discovery, a predictive model or cell
development modelling

• Run the technique; if the algorithm is stochastic, it might be useful to
repeat the algorithm several times to check the stability of the results

• Visualize the results and perform quality control on all steps (for
example, check whether automated splits between high and low
populations make sense)

• Adapt parameters of the algorithm where necessary
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as population identification or biomarker selection can be applied to perform data
analysis. When the analysis is finished, both raw data and the analysis workflow
can be shared.

As researchers in immunology are well accustomed to depositing their expres-
sion data online in databases such as Gene Expression Omnibus (GEO) or Array-
Express, we highly recommend extending this good habit to cytometry data sets
in the future. Two initiatives currently support the deposition of flow cytometry
data. FlowRepository is a public repository that supports deposition, querying
and downloading of data that is annotated according to the MIFlowCyt (Minimal
Information about a Flow Cytometry experiment) [23] compliance format. MI-
FlowCyt facilitates metadata storage in a similar way as the well-known MIAME
(Minimum Information About a Microarray Experiment) standard for microarray
data. Cytobank is a commercial solution for storage, visualization and analysis of
cytometry data, and the basic solution allows sharing data at no cost. FlowRepos-
itory has been recommended by the ISAC and by many leading journals as the
preferred repository for MIFlowCyt-compliant data.

5.3.2 The Importance of Standardized Panels

To fully harness the power of computational flow cytometry, immunologists should
focus efforts towards the creation of more standardized marker panels. This will
facilitate a better integration of data within and between laboratories and also lead
to more reproducible flow cytometry experiments. A good example of the recent
interest in designing standardized marker panels has been put forward by the Eu-
roFlow consortium, in which a set of panels to screen for leukaemic disorders was
agreed in a community-wide effort [24]. A reference dataset is constructed and
new samples, analysed with the same panels, can be mapped onto this reference
to classify a patient. Also in larger community-wide efforts, such as the Human
Immunology Project Consortium (HIPC) [25] or the Milieu Interieur project [26],
the design of standardized panels is of key importance. To facilitate sharing and
dissemination of optimized panels, the cytometry community has recently intro-
duced a new series of protocols to improve reproducibility, referred to as optimized
multicolour immunofluorescence panels (OMIPs) [27].

5.3.3 Algorithmic benchmarking and software availability

Despite its recent emergence as a sub-discipline of computational biology, re-
searchers in flow cytometry bioinformatics have quickly realized the need for ob-
jective benchmarks and challenges to move the field forward, resulting in the Flow-
CAP (Flow Cytometry: Critical Assessment of Population identification methods)
initiative [28, 29]. This initiative serves as a forum to bring together researchers
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working in flow cytometry bioinformatics and to stimulate novel research direc-
tions. FlowCAP not only provides a direct comparison of existing methods, but
also a series of public benchmark data sets. For the types of methods already
surveyed by FlowCAP, such as automated population identification, this enables
easy, direct comparison to the state of the art. To stimulate application, evaluation
and extension of recent advances in computational flow cytometry, software devel-
opers should make their source code and data available to the broad community.
Many flow cytometry tools are available as open source packages for R, which is
an open-source environment for statistical analysis, computation and visualization.
Within the R environment, Bioconductor [30] represents a group of packages for
bioinformatics analysis, including many tools for computational flow cytometry.
These packages allow those with a basic level of programming expertise to com-
bine flow cytometry data analysis with more general support for data mining and
visualization. Alternatively, code can be made available on GitHub, a platform
for code sharing, but without the documentation and testing that are obligatory for
Bioconductor packages. Several platforms also offer graphical user interfaces that
do not require any programming expertise to start exploring computational flow
cytometry tools. These include the freely available platforms GenePattern [31]
and Cyt (Matlab), as well as the commercial solutions offered by Cytobank and
Gemstone (Verity Software House).

5.4 Data Pre-processing and Quality Control

Starting with the raw data files, the first step is to compensate the data for spec-
tral overlap, checking for potential artefacts that arise from improper compen-
sation [32]. Subsequently, data is transformed using an appropriate scaling (for
example, biexponential or arcsine) and quality control is performed. When using a
Bioconductor pipeline, the flowCore package [33] can be used for these first steps.
A first quality control step is to visualize scatter and marker values over time, and
filter out regions that show abnormal behaviour (for example, due to clogging,
speed change or air measurements when the tube is empty). Both the flowQ [34]
and flowClean [35] packages provide this functionality. A second control step is
to check for batch effects, which gives an idea of the between-sample variation. If
batch effects are present, a normalization step is required (for example using the
per-channel basis normalization provided in the flowStats package [36]). Finally,
samples that do not pass quality control should be removed.

For small numbers of samples, a careful inspection of all artefacts is possible,
but larger studies (for example, a cohort of a few hundred patients) require a fully
automated quality control pipeline. In such a case, it is nevertheless advisable to
randomly select some samples and manually check for artefacts to get an idea of
the specific dataset characteristics, noise and artefacts, as quality control is even
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more important for subsequent automatic analysis than for manual analysis. Fol-
lowing quality control, samples will be further pre-processed by removing debris,
dead cells, doublets, either manually or automatically (using for example the open-
Cyto [37] or flowDensity [38] packages to approximate a manual gating). Also
boundary effects (data points at the margin of the data range) should be removed,
and possibly a pre-gating step on a specific population of interest for further anal-
ysis can be performed (for example, using the flowQ [34] and flowStats [36] pack-
ages). Several of these Bioconductor tools are also available through the graphical
interface of the GenePattern flow cytometry suite, and a more extensive list of
pre-processing software can be found in Kvistborg et al. [39].

5.5 Visualization of Cytometry Data

Following pre-processing and quality control, it is a good idea to inspect the data
by eye, and for this purpose many visualization techniques have been developed
as alternatives to the traditional, two-dimensional scatterplots [40, 41] (Table 5.3).
Many of these visualization tools apply dimensionality reduction techniques to
represent the original, high-dimensional data into a two-dimensional space that
gives a better overview of the data. This allows the discovery of hidden population
structures in the data, but also inherently presents a simplification of the data set,
as not all details that are present in the original, high-dimensional space, can be
preserved in the lower-dimensional projection. Other techniques use clustering
to first group all data points into clusters (cell types), and subsequently visualize
these clusters in a two-dimensional representation. Clustering methods belong to
a class of data-mining techniques that are called unsupervised learning techniques
(Figure 5.1). These methods aim to find, in an automated way, groups of similar
objects, assigning cells with similar marker profiles to similar clusters, which can
subsequently be interpreted as cell types.

Both approaches to visualization can also be combined, for example by first
running a dimensionality reduction and using this as input for a clustering algo-
rithm [42]. As cytometry datasets contain thousands to millions of cells, many
visualization techniques often resort to downsampling, thereby using only a sub-
set of all cells, to keep running times acceptable. Alongside these methods, new
algorithms are also being developed to highlight other patterns in flow cytometry
data. DREMIDREVI (density resampled estimate of mutual information-density
rescaled visualization) [43] visualizes dependencies between markers, whereas
Wanderlust [44] visualizes developmental changes in the cells, discussed further
below.
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Table 5.3: Overview of visualization techniques. Abbreviations used: DREMIDREVI, den-
sity resampled estimate of mutual information-density rescaled visualization; FlowSOM,
flow cytometry data analysis using self-organizing maps; SPADE, spanning tree progres-
sion of density normalized events; t-SNE, t-stochastic neighbour embedding.

TECHNIQUE AVAILABILITY METHOD

SPADE
Cytobank, Matlab
and Bioconductor

The cells are clustered hierarchically and shown in a
minimal spanning tree; the number of clusters needs to
be provided.

FlowMAP No code available
Similar to SPADE, but uses a stronger connected graph
structure instead of a tree, which makes it more robust.

FlowSOM Bioconductor
Similar to SPADE, but using a self-organizing map
instead of hierarchical clustering, which makes it faster;
the dimensions of the grid to be used need to be provided.

viSNE Cytobank and Matlab
No clustering; all cells are plotted on the basis of the
t-SNE dimensionality reduction technique.

PhenoGraph Matlab No clustering; all cells are plotted in a graph structure.

Scaffold map R package

The cells are clustered and shown in a graph structure,
with additional manually labelled landmarks. The
library provides a graphical user interface that can be
started with one line of code, but this only allows
viewing of their data, not mapping one’s own.

DREMI-DREVI Matlab
Does not plot the individual cells or clusters but offers
an alternative view on marker dependencies.
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Figure 5.1: Machine learning techniques are a class of data mining techniques that auto-
matically learn a model from examples. The ultimate goal of machine learning techniques
is to produce models that make good generalizations beyond the example data [45]. Two
major classes of models can be distinguished: unsupervised learning and supervised learn-
ing (see the figure). Unsupervised learning methods aim to recover a hidden structure from
unlabelled data. In this case, only descriptive variables for the data points are known.
The most well-known type of unsupervised learning is clustering analysis, in which data
points are grouped into distinct or overlapping clusters of similar points. Dimensionality
reduction techniques are another class of unsupervised learning technique. They project
high-dimensional datasets to a lower-dimensional (often two-dimensional) space, aiming
to preserve the main structure present in the data. Seriation methods aim to find an optimal
ordering of data points, ensuring a smooth transition of properties. Supervised learning
methods construct a model to learn the mapping between the variables describing the data
and an externally provided variable (denoted using different colours of the data points in
the figure). Depending on the nature of the external variable, three types of approaches
can be distinguished. Classification methods aim to learn a relationship between the de-
scriptive variables and a finite set of discrete class labels. A common application is to
distinguish between different phenotypic variables (for example, healthy versus diseased
patients). Regression models learn a mapping between the descriptive variables and a con-
tinuous variable (as is used, for example, when modelling dose-response curves). Finally,
survival analysis refers to a group of methods for analysing data in which the outcome vari-
able is the time until the occurrence of an event of interest (for example, the occurrence of
a disease or death)
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5.5.1 Methods Based on Dimensionality Reduction Techniques

Dimensionality reduction techniques aim to preserve the main structure in the data
while reducing a high-dimensional data description to a lower-dimensional pro-
jection. Traditional dimensionality reduction techniques, such as principal com-
ponent analysis (PCA), project the data such that the new coordinate system best
preserves the variance in the data [46]. More recent dimensionality reduction tech-
niques, including t-stochastic neighbour embedding (t-SNE) [47], apply another
principle, aiming to find a lower-dimensional projection that best preserves the
similarity in the original, high-dimensional space. This method has been shown to
work very well with flow and mass cytometry data; it is used by the viSNE [48]
technique, after subsampling the data, and by One-SENSE [49] in combination
with heatmaps to visualize marker expression in cell subsets. Graph-based ap-
proaches are also used, connecting similar cells in a graph and subsequently ap-
plying specific graph layout algorithms. For example, PhenoGraph [50] builds a
graph with weighted edges based on the number of nearest neighbours shared by
the cells, which is displayed using a force-directed algorithm.

5.5.2 Clustering Based Techniques

Whereas dimensionality reduction techniques aim to visualize all data points in
a lower-dimensional space, clustering based techniques first group cells into cell
type clusters in the original, high-dimensional space and subsequently use visu-
alization algorithms to represent these cell type clusters in a lower-dimensional
space. One of the most popular clustering based techniques to visualize flow and
mass cytometry data is the SPADE (spanning tree progression of density normal-
ized events) algorithm [51]. SPADE starts by applying a density-dependent down-
sampling step to the original dataset to obtain a subset of cells, and applies hi-
erarchical clustering to group these cells into cell type clusters. These cell type
clusters are subsequently visualized by using a minimal spanning tree (MST) lay-
out algorithm that highlights the relationships between the most closely related
cell type clusters. This approach can be extended to other visualization methods,
such as the density-based graph structure used by FlowMap [52]. Another cluster-
ing based technique to visualize cytometry data is the FlowSOM (flow cytometry
data analysis using self-organizing maps) algorithm [53]. FlowSOM uses self-
organizing maps (SOM) to simultaneously cluster and visualize cytometry data in
a two-dimensional grid of cell type clusters. In a subsequent step, either an MST
or t-SNE-based algorithm can be used to better highlight the relationships between
the cell type clusters. A comparative evaluation of three visualization techniques
(SPADE, t-SNE and FlowSOM) is presented in Figure 5.2. When using these
algorithms, results are interpreted by visualizing the marker values, an approach
illustrated in detail in Figure 5.3. The scaffold map algorithm [54], however, uses
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the CLARA (clustering for large applications) algorithm to cluster the cells and
then uses a force-directed algorithm to show a weighted graph, in which the edge
weights represent the cosine similarity between the median marker values. Next to
the clusters, scaffold maps also include manually gated populations as landmarks
on the graph (Figure 5.3), facilitating easier interpretation.

5.5.3 Strengths and Weaknesses of the Various Approaches

Whereas visualization techniques based on dimensionality reduction aim to plot
each cell as a data point, clustering based approaches aggregate information over
many cells, thus showing an average picture for each cluster (cell type). Dimen-
sionality reduction based techniques can thus visualize data at the single cell level
but, to keep running times acceptable, it is often necessary to select only a subsam-
ple of the data. In addition, clustering based techniques already provide groups of
cells that can be interpreted as cell types, whereas methods based on dimension-
ality reduction still need a subsequent clustering step to assign each cell to a cell
type.

An important aspect of almost all flow cytometry visualization techniques con-
cerns the stochastic nature of the methods. To keep running times acceptable, ap-
proximative methods that use an element of randomness can be used. As a result,
running the same visualization algorithm on the same dataset might produce dif-
ferent results in each run. As a user of these methods, it is therefore important to
run an algorithm multiple times on the same dataset to get an idea of the variabil-
ity as well as identify common trends over all runs. Ideally, support for running
these algorithms several times and aggregating the results should be built into the
algorithm, which is an important challenge remaining for algorithm developers.

The algorithmic properties underlying both types of visualization methods
strongly influence their interpretation, which is an important aspect for immunolo-
gists to realize. Methods based on t-SNE project data onto a lower-dimensional
space, aiming to preserve cell similarities from the original, high-dimensional
space. As a result, cells that are similar in the original space will be close in
the two-dimensional map, but the converse is not necessarily true: cells close in
the two-dimensional map may not necessarily be similar in the original marker
space. A similar word of caution applies to the MSTs that are used by SPADE and
FlowSOM. These spanning trees cannot be directly interpreted as developmental
hierarchies. Although cells that are close in the tree will be similar, it is not nec-
essarily the case that cells that are similar end up close by in the tree. As an MST
does not allow for cyclic paths, such paths will be artificially split, resulting in
separate branches that may end up in a totally different part of the visualization.

Finally, it should be noted that the computational complexity, and thus the run-
ning time, differs greatly between algorithms. While t-SNE based methods and
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Figure 5.2: Evaluation of three alternative visualization techniques using a manually
gated dataset. Splenocytes of a wild-type C57BL/6J mouse were stained with 11 mark-
ers. (a) An example of the traditional, manual gating analysis used to obtain populations
of the most common immune cells is shown. The subset of these live, single cells was
used as input for three different visualization algorithms. (b) The populations from the
manual gating are mapped onto the different representations used by SPADE (spanning
tree progression of density normalized events), t-SNE (t-stochastic neighbour embedding)-
based methods and FlowSOM (flow cytometry data analysis using self-organizing maps).
Colours correspond to the manual gating results and show that most immune cell types
are clearly distinguished in all three visualization methods. Only very rare cell types,
such as natural killer T (NKT) cells (which constitute only 0.3% of the dataset), are not
distinguished, whereas rare cell types such as neutrophils (which constitute 0.7% of the
dataset) are distinguished by all three methods. In the SPADE and FlowSOM maps, cir-
cles represent cell type clusters, and pie charts indicate the number of each manually
defined population present in the automatically determined cell type clusters. In the t-
SNE-based maps, each dot represents a single cell, coloured according to the manual
gating. Cells that are outgated in the manual analysis appear either as white pie charts
(for SPADE and FlowSOM) or as grey cells (for t-SNE). All raw data files are available
at http://flowrepository.org/id/FR-FCM-ZZQY and source code to reproduce all figures is
available at https://github.com/saeyslab/FlowCytometryScripts. DC, dendritic cell; FSC-A,
forward scatter area; FSC-H, forward scatter height; SSC-A, side scatter area.



COMPUTATIONAL FLOW CYTOMETRY 99

MHCII CD19 CD64

CD11c CD3 Autofluorescence

CD11b LyF6G NK1w1

MHCII
CD19

CD64

CD11c
CD3
Autofluorescence

CD11b
LyF6G

NK1w1

MHCII CD19 CD64

CD11c CD3 Autofluorescence

CD11b LyF6G NKw 1w1

Ba cells

Basophils

CD4a Ta cells

CD8a Ta cells

CLP

CMP

Eosinophils

gda Ta cells

GMP

Longa Terma HSC

Macrophages

Masta cells

mDCs

MEP

Monocytes

Neutrophils

NKa cells

NKTa cells

pDCs

Shorta Terma HSC

A: SPADE B: FlowSOM

C:a BarnesFHutatFSNE D:a Scaffolda Map

Figure 5.3: Marker visualization of mouse splenocytes. (ac) Visualization of mouse spleno-
cytes using SPADE, FlowSOM and t-SNE. SPADE uses density-based downsampling and
hierarchical clustering to group similar cells, which are visualized in a minimal spanning
tree. FlowSOM also uses a minimal spanning tree but does not use subsampling, and it
clusters the cells using a self-organizing map. By contrast, methods based on t-SNE (such
as viSNE and ACCENSE) do not cluster the cells but show each cell individually in two new
dimensions that take similarities in all the original dimensions into account. For SPADE
and t-SNE, a subplot is shown for each individual marker, in which the colour is more satu-
rated for higher expression levels. By comparing the different subplots, the cell type can be
determined. FlowSOM uses pie charts, combining all markers in a single plot. The height
of each part indicates the expression level. Owing to the density based subsampling, SPADE
analysis will even out the distribution of the different cell types. Although FlowSOM does
not do this, it is still able to distinguish populations as small as 0.7% (such as neutrophils
(which are CD11b+LY6G+) in this dataset), while at the same time running almost two
orders of magnitude faster (9 seconds versus 700 seconds on a single-threaded processor).
FlowSOM also offers additional visualization options, such as the original self-organizing
map grid or a t-SNE mapping of the nodes. All cells were used by SPADE and FlowSOM,
but owing to computational limitations only 10,000 cells were processed using t-SNE. (d)
Visualization of scaffold maps for the mouse immune reference data set from [54].
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SPADE are typically only able to process a few tens of thousands of cells, meth-
ods such as FlowSOM scale to much larger datasets than the other visualization
algorithms, allowing the algorithm to efficiently process millions of cells.

5.6 Automated Population Identification

To overcome the limitations of manual gating, several techniques for automated
population identification have been developed during the past decade. Technically,
the problem of assigning each cell to a cell type can be described as a clustering
problem. As there are many different clustering techniques, it comes as no surprise
that there are equally as many approaches to automated gating.

An important aspect of clustering techniques in general is determining the
number of clusters (that is, cell types in cytometry) that is anticipated to be present
in the data. Whereas some methods explicitly need such a parameter being set by
the user, others try to identify the number of cell types in an automated way by
trying out different options or have other parameters that influence the number of
clusters. In general, it is advisable to set the number of anticipated clusters higher
than the anticipated number of cell types – that is, perform over-clustering – to
ensure the relevant cell types can be found even if an expected population is split
in subpopulations.

5.6.1 Automated Gating Techniques

Automated gating techniques can be categorized on the basis of the clustering prin-
ciple they are building upon. Model based techniques, such as FLAME [45], flow-
Clust [55], flowMerge [56], flowGM [57], immunoClust [58] and SWIFT [59],
assume each cell type can be modelled as a multivariate statistical distribution and
then focus on fitting these distributions as well as possible to the data. Other meth-
ods, such as flowMeans [60], use an approach that is based on cluster representa-
tives, such as the popular K-means clustering algorithm. Alternative approaches
that use spectral clustering techniques (for example, SamSPECTRAL [61]) rely
on density-based clustering techniques (FLOCK [62] and flowPeaks [63]) or on
Bayesian methods (BayesFlow [64]). Although all these techniques are typically
applied to high-dimensional data, it is also possible to apply these techniques to
reduced data, such as that generated by the viSNE algorithm, for example. This
approach is used by ACCENSE [65] and DensVM [66].

Table 5.4 shows an overview of the most commonly used automated gating
techniques, describing their major characteristics and a runtime estimate of these
methods applied to the data described in Figure 5.2. We also indicate which meth-
ods provide a graphical user interface, for easy use by scientists with limited pro-
gramming experience, and whether the method automatically identifies the num-
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ber of clusters or whether this should be given as input. The running times differ
strongly between the algorithms, as their computational complexity is very di-
verse. While the clustering results also differ, it is hard to score these objectively.
A systematic comparison of the performance of automated gating techniques can
be found in Aghaeepour et al. [28].

Automated gating has several advantages compared with manual gating. Com-
putational approaches are more objective; they look at all cells in the sample and
are not biased towards known cell types. This allows them to identify novel pop-
ulations that may or may not correspond to known cell types. Their results are
also easier to reproduce and they better scale with the increasing dimensionality
of the data (that is, size of the marker panels) while still combining all marker
information simultaneously. In addition, they can be fully automated to process
experiments consisting of a large number of samples.

5.6.2 Challenges for Automated Gating

Automated gating techniques have been shown to greatly overcome some of the
major limitations of manual analysis, but several challenges remain. A first chal-
lenge is the consistent labelling of cell populations across multiple samples in the
presence of biological variability and heterogeneity. If the variability is small, cells
from different samples can be clustered as one dataset. However, when the vari-
ability increases, it becomes necessary to map corresponding clusters from differ-
ent samples. While some techniques, such as FLAME [45], HDPGMM [67] and
ASPIRE [68], already incorporate such a mapping, many other techniques do not.
The FlowMapFriedmanRafsky [69] algorithm was developed as a post-processing
step to fill this gap, but mapping cell types across samples still remains a challeng-
ing issue. Again here standardization will be crucial, especially when comparing
data between multiple centres or over time.

A second challenge regards the fact that many current tools are not yet able to
deal with appropriate negative staining controls, such as FMO controls. This may
result in negative populations being split further into negative and very negative
populations owing purely to data spread. Methods based on one-class classifiers
have been explored to include FMOs as reference controls [70], and both the flow-
Density [38] and openCyto [37] frameworks allow dealing with FMO controls.

A third challenge concerns the identification of very rare cell types, which are
easily mistaken for noise by many clustering algorithms. To identify all relevant
populations, it might be necessary to do an exhaustive gating, resulting in a strong
over-clustering, and then select only those features related to a phenotype (an ap-
proach detailed in the next section). With the traditional clustering algorithms,
it is recommended to ensure that only relevant markers are used for the cluster-
ing. Markers that vary little or that indicate properties not relevant for cell type
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Table 5.4: Overview of automated gating techniques. Autodetection refers to whether the
number of clusters is automatically detected. In the case of No, the number of clusters was
set explicitly to 10. All R code was run on a DELL Latitude e5530 laptop with 8 GB of RAM
and 4 cores. The Python code is executed on a laptop with 32 GB of RAM and 8 cores. ‡
Graphical user interface. § Implementation used for timings.

AVAILABILITY METHOD AUTO- TIME TO RUN

DETEC-
TION?

322,890
cells

10,000
cells

FLAME GenePattern‡§ Model-based clustering using skewed
t-distributions on the individual samples,
with an additional step to model
mapping between samples. Needs a
given number of clusters but can try a
range of values and automatically
determines the best.

No 7 h 10
min

FLOCK GenePattern‡,
Immport ‡,
C code§

Clustering based on centroids derived
from density estimation in a hypergrid.

Yes 2
min

<1
sec

ACCENSE Stand alone
executable‡§

Clustering on t-SNE result, has both
representative based (K-means) and
density based (DB-SCAN) options.

Yes Not
pos-
sible

2
min

flowClust
and
flowMerge

GenePattern‡,
Bioconductor§

Clustering based on t-mixture model.
flowClust can use either a specified
number of clusters or several options to
try. flowMerge picks the best possible
merge option, without specifying the
expected number of clusters.

No 22
min

30
sec

flowMeans GenePattern‡,
Bioconductor§

Clustering based on the K-means
algorithm, which is representative-based.
Either needs an explicit number of
clusters or a maximum number.

No 3
min

5 sec

Sam-
SPECTRAL

GenePattern‡,
Bioconductor§

Graph-based clustering. Some extra
parameters need to be tuned for optimal
results, which will influence the number
of clusters.

Yes 2 h 15
sec

immuno-
Clust

Bioconductor§ Model based clustering of the individual
samples, with an additional step to
model a mapping between samples.

Yes 1 h 1
min

flowPeaks Bioconductor§ Uses density-based peak finding
combined with K-means clustering.

Yes 13
sec

<1
sec

FlowSOM
meta

Bioconductor§ Consensus clustering of the FlowSOM
clusters (two step clustering).

No 15
sec

4 sec

HDPGMM Python
library§

Generates an aligned data model by
analysing several samples
simultaneously. Uses a parallelized
implementation for quick computations.

No 12
min

30
sec

SWIFT Matlab‡§ Clustering based on splitting and
merging of Gaussian mixture models.
Specifically developed to identify rare
populations.

Yes 2 h 6
min

ASPIRE Matlab and
C++ §

Similar to HDPGMM but optimized for
mapping samples with higher technical
or biological variations.

Yes >4 h 2
min
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identification (for example, activation markers) are best left out, as these will only
contribute noise to the similarity calculation. An adapted distance measure, which
assigns different importance scores to different markers, can in some cases also be
helpful.

5.7 Biomarker Identification

The automated identification of cell populations that are predictive of a pheno-
typic outcome makes computational flow cytometry techniques an ideal tool for
biomarker discovery. These biomarkers can serve various purposes, including di-
agnosis, prognosis or stratification of patient cohorts, patient monitoring to study
treatment response, drug or vaccine safety and efficacy studies, as well as risk pro-
filing. As the increasing size of marker panels leads to a combinatorial increase
in the number of potential cell types that can be measured in a sample, machine
learning-based techniques can be used to identify the most important cell types
(biomarkers) that can be used to link the sample to a clinical outcome of inter-
est. To this end, several supervised machine learning techniques (Figure 5.1) can
be used. These techniques typically build on automated gating techniques, us-
ing information on the automatically identified populations as input variables for
a subsequent mathematical model that associates these variables to an outcome
of interest. Common applications include: classification, in which different sam-
ple groups are compared (for example, healthy versus diseased patients, knockout
mice versus wild-type mice); regression, in which an association with a continu-
ous outcome variable is modelled (for example, efficacy of a drug); and survival
analysis, in which the time until the occurrence of an event of interest is modelled
(for example, time until progression to a disease or death of a patient). When using
such biomarker detection techniques in practice, it is crucial to use an appropriate
evaluation scheme, typically performing biomarker selection on a training cohort
and keeping an independent validation cohort for testing.

Several computational flow cytometry approaches to biomarker discovery have
been proposed. A first option is to cluster the data using a population-identification
method and subsequently compare the cluster cell counts with statistical tests.
Such an approach was used, for example, by Zare et al. [71] to distinguish be-
tween mantle cell lymphoma and small lymphocytic lymphoma; SamSPECTRAL
was combined with a feature selection algorithm, identifying the ratio of the mean
fluorescence intensities between CD20 and CD23 as the most important diagnostic
marker. In a similar manner, Bashashati et al. [72] used a combination of flow-
Clust and survival modelling to identify a group of B cells with high side scatter
that correlates well with inferior survival in diffuse large B cell lymphoma. This
population could thus be used as a biomarker to identify patients at high risk of
relapse.
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Table 5.5: Computational techniques for biomarker identification. Abbreviations used:
GUI, graphical user interface.

TECHNIQUE AVAILABILITY METHOD

FlowMapFR Bioconductor Uses the FriedmanRafsky (FR) statistic to map populations
between clustering results. Can be combined with most
automated gating methods and the results can be used as
input for any predictive algorithm

Citrus R package
with Shiny
GUI

Makes use of hierarchical clustering to extract information
about cell populations, which are then used in a regularized
regression model to make predictions. The GUI can be
started with one line of code

flowType /
RchyOptimyx

Bioconductor Makes use of exhaustive splitting in positive and negative
populations to extract the information. RchyOptimyx will
select the most informative populations for biomarker
detection

FloReMi R script
(github)

Uses flowType to extract features but filters redundant
features and uses a Random Forest as prediction model

COMPASS Bioconductor Investigates the differences between stimulated and
unstimulated samples for all combinatorial functional cell
subsets, given a gating result

Competitive
SWIFT

Matlab Builds separate SWIFT models for the separate groups and
uses competitive assignment of new samples to these
models as predictive algorithm

An alternative option for biomarker identification consists of using dedicated
computational pipelines, which use a more exhaustive clustering, followed by a
feature selection step to select the most relevant populations (Table 5.5). Several
approaches exist, such as flowTypeRchyOptimyx [73] (which use density base
clustering), Citrus [74] (which uses hierarchical clustering) or COMPASS [75]
(which uses model based clustering). They all strongly over-cluster the data and
include clusters on various levels (more general versus very specific cell popula-
tion definitions) and apply statistical tests on these clusters to select the ones that
correlate with the property of interest. Competitive SWIFT [76] uses another ap-
proach: it builds separate models for the different groups and uses a competition
framework to determine which model fits best for the new sample.

To objectively benchmark the predictive performance of computational flow
cytometry models, several challenges organized by the FlowCAP initiative were
launched. The FlowCAP II challenge [28] focused on disease classification from
cytometry data, with sub-challenges aiming to detect acute myeloid leukaemia,
discriminate between two antigen stimulation groups of individuals after HIV vac-
cination and predict HIV exposure in African infants. Although highly predictive
models could be constructed using the first two applications, the last application
turned out to be unsuccessful, probably owing to limited biological background
knowledge to design an appropriate marker panel. Together, these results show
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that there is a great need for more benchmark datasets on a wider variety of prob-
lems, as many of the current FlowCAP II classification problems are relatively
easy to tackle. The FlowCAP IV challenge aimed to predict the time to progres-
sion to AIDS among a cohort of HIV positive subjects, using antigen-stimulated
peripheral blood mononuclear cell (PBMC) samples [29]. The goal of this chal-
lenge was to identify novel cell populations that correlate well with progression
and thus could be used as biomarkers. This challenge proved to be quite difficult,
with only two algorithms FloReMi [77] and the pipeline flowDensityflowType-
RchyOptimyx attaining statistically significant predictive values. Moreover, the
latter challenge demonstrated some of the intricacies of biologically interpreting
some of the new cell populations that were identified as biomarkers by the predic-
tive models.

5.8 Cell Development Modelling

Although the conventional analysis of flow cytometry data aims to find well-
delineated populations of cells, the single-cell nature of this data allows us to
model gradients or transitions between stable cell states as well. This is, how-
ever, not possible using the classical (manual) analysis owing to the current high
dimensionality of flow cytometry data, and recently a new class of computational
techniques has been introduced to model cellular process in a much more continu-
ous way (Figure 5.4). The central idea is to model cellular development processes
by following gradients in the data, thereby inferring cell developmental trajecto-
ries using unsupervised seriation techniques. Starting from a snapshot cytometry
dataset, which is assumed to be a mixture of cells in different stages of a develop-
mental process, seriation algorithms aim to automatically reconstruct the underly-
ing developmental trajectory that cells are following.

The Wanderlust algorithm [44] orders all cells in a sample with regard to a
user-defined starting cell, which represents either the most immature or most ma-
ture cell in the sample. Subsequently, a K-nearest neighbour graph (KNN graph)
is used to model local similarities between cells, and every cell is ordered with
respect to the starting cell by its shortest path in the KNN graph. A bootstrap-like
procedure is then applied, averaging over slight variations of the KNN graph to find
a robust solution. Wanderlust was shown to reconstruct B cell development in the
bone marrow in an almost unsupervised way (the starting cell has to be provided
by the user), and it can be assumed to be generally applicable to any linear gradual
process measured by cytometry data. An example of the output of Wanderlust is
shown in Figure 5.4h. Similarly, probability state modelling [78], as implemented
in the commercial software Gemstone, has been shown to successfully model cell
developmental processes, although it requires more supervision than the Wander-
lust algorithm. Probability state modelling has been applied for modelling CD8+
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Figure 5.4: Cell development modelling. Unsupervised seriation techniques can be used
to infer pseudo-temporal trajectories that correspond with cellular development processes.
The upper part of the figure shows a single trajectory consisting of three states (part a).
Cells are starting from an immature state (state 1) and proceed through a transitional state
(state 2) to a mature end state (state 3). A simplified dataset characterized by only two
markers is shown(parts b, c ). Marker values change with development (part b), and the
inferred trajectory (red line) that aims to reconstruct the sequence of cell states from the
marker descriptions of the cell is shown (part c). Note that the Euclidean distance between
cells X and Y might lead to the misleading interpretation that they are closely related. Cell
X might be on the path between state 1 and 2, whereas cell Y might be situated between
state 2 and 3. The lower part of the figure shows a more complex, but realistic scenario
where two different mature end states originate from a common progenitor (parts dg). In
this case, cells follow a common path from the immature state to the transitional state
and subsequently branch to result in two end states; this results in two different cell types.
Inferring the correct branching topology will thus imply reconstructing two trajectories
that share a common path between state 1 and state 2. This situation cannot be dealt with
adequately by traditional seriation techniques, as these often only allow to reconstruct a
single ordering of all cells. These more complex scenarios therefore call for more advanced
modelling techniques, as typically used in the domain of dynamical systems theory. An
example of Wanderlust output on a dataset of B cell development [44] (part h), which was
produced using the Cyt toolbox.
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T cell differentiation [79], as well as B cell differentiation [80].
When applying these algorithms in practice, it is important to note the follow-

ing requirements. Wanderlust assumes the developmental process to be gradual,
thus requiring all intermediate stages to be present in the sample. Associated to
this, it is important that the marker panel is adequately chosen, as leaving out
important markers may result in mixing of several stages, and unnecessary mark-
ers should be removed, as these may contribute noise. A pre-filtering step may
be necessary to focus only on the cells in the developmental process to be mod-
elled, leaving out all other cells in the sample. Otherwise these cells will be forced
into the developmental process, obfuscating patterns. Finally, Wanderlust can only
model linear (that is, non-branching) trajectories.

To overcome these limitations, recent algorithms, such as SCUBA (single-cell
clustering using bifurcation analysis) [81] and Wishbone [82], combine trajec-
tory inference with branch point detection, allowing the generalization of seri-
ation methods to real developmental hierarchies that include branching. Whereas
SCUBA combines trajectory inference with bifurcation analysis, Wishbone further
extends the approach of Wanderlust. Currently, the development of both linear and
branching seriation algorithms is a growing topic in the novel field of single-cell
transcriptomics [83–85], but it can be expected that such techniques will become
broadly applicable to any high-throughput, single-cell technology.

5.9 Conclusions and Future Perspectives

Methods for computational flow and mass cytometry have emerged during the past
decade as a novel toolbox to assist immunologists in interpreting their data. These
tools have now reached a level of maturity that not only allows bypassing of man-
ual gating, but also opens up new and more unbiased avenues for visualization,
interpretation and modelling of cytometry data. Currently, only a limited number
of tools are supported by easy-to-use graphical interfaces, such as GenePattern and
Cytobank. In addition, many tools are available as open source packages in pro-
gramming frameworks such as R and MatLab. Together with the growing number
of modelling approaches, in particular to better understand cellular differentiation
processes, these recent advances thus provide evidence that basic programming
and modelling skills will be increasingly required to get the most out of high-
dimensional cytometry data in the field of immunology. As cytometric equipment
that measures dozens of parameters might soon be available to most research labo-
ratories, it is now time to start training the next generation of flow cytometry users.
Reduced costs of flow cytometers that were once too expensive in the clinical set-
ting will ensure that these techniques will hit the clinic sooner rather than later,
and clinical biologists will also be faced with the complexity of high-dimensional
data sets. We believe that computational flow cytometry also has great potential
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for improving the early diagnosis and close follow up of patients enrolled in clin-
ical trials or undergoing treatments that perturb the immune and haematopoietic
systems.
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6
CytofNorm: A Cross-Sample

Cell-Type Specific Normalization
Algorithm for Clinical Mass

Cytometry Datasets

In this chapter, we propose a normalization method for clinical mass cytometry
data. As machine learning algorithms learn from the data presented to them, it
is important that this data is of good quality. Otherwise all results learned might
be skewed towards the errors in the data. One issue that often occurs with clin-
ical cytometry data is the presence of batch effects when samples are processed
over a longer time period. The processing procedure might vary slightly from the
beginning towards the end. When comparing the samples, it might be difficult
to distinguish the real biological differences from the differences caused by the
time difference. Our algorithm will first identify separate cell types, because these
might behave differently under the batch effects. For each of the cell populations,
a quantile normalization procedure is executed.
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Abstract High-dimensional flow and mass cytometry have become technologies
able to do deep phenotyping of cellular systems at a clinical scale. The resulting
high-content datasets allow characterizing the human immune system with un-
precedented single cell resolution. However, the results are highly dependent on
sample preparation and measurements might drift over time, and while plenty of
controls exist for assessment and improvement of data quality in a single sample,
the challenges of cross-sample normalization attempts have been limited to align-
ing the distribution of subjects. These approaches, inspired by bulk genomics and
proteomics assays, ignore the single-cell nature of the data and risk the removal of
biologically relevant signals.

We propose a new normalization algorithm to ensure internal consistency be-
tween clinical samples. In this approach a shared control is included in each batch
of samples, from which a machine learning algorithm will then learn a transforma-
tion for each control (e.g. from each analysis day). Importantly, some sources of
technical variation are strongly influenced by the amount of protein expressed on
each cell, which means that a simple transformation for all cell types would never
sufficiently adjust all cells from a heterogeneous sample. To address this, our
approach first identifies the overall cellular distribution before calculating a trans-
formation for the different control samples. This transformation is then applied to
all other clinical samples in the batch to remove all batch-specific variations.

To evaluate our algorithm, an extra control was taken along on all the plates,
which should converge if the normalization algorithm works correctly. We make
use of Earth Mover’s Distance to determine the remaining differences between the
plates after normalization, and are able to gain a strong reduction compared to
a quantile normalization without cell population identification. This stresses the
need for a cell-type specific approach.

6.1 Introduction

Mass cytometry is a variant on the traditional flow cytometry technique, in which
antibodies are bound to metal tags instead of fluorochromes and time-of-flight
measurements of cell particles in a spectrometer are used to identify labeled pro-
teins [1]. The main advantage of mass cytometry over traditional flow cytometry
is the increase in the amount of proteins that can be measured simultaneously.
Whereas with flow cytometry the current limit is about twenty [2], mass cytome-
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try can easily reach forty and promises to go up even further.
This technique can be used to investigate many different kinds of cell popula-

tions and tissues, one example being the follow-up of the immune system, giving
insight in infection, inflammation and cancer [3]. However, to make scientific
sound observations when following a patients development or comparing between
different patients, data quality is crucial. One of the known properties of the mass
cytometer is signal variation over time, due to changes in instrument performance
and sample preparation [4].

The slight drift over time that happens while measuring one sample, is typically
corrected for by including beads in the sample [5]. However, these beads will not
capture any differences in sample preparation or channel-dependent changes. As
such, additional corrections need to be applied to solve the technical variability be-
tween samples. The state-of-the-art technique to remove technical variability and
differences in sample preparation is called barcoding [6]. This approach allows
comparability between samples by first staining each of the individual samples
with a specific set of tags, allowing unique identification of the samples. After-
wards, the samples can be merged together and further processed as one batch,
removing all variability in the sample handling from that point on, including the
staining with the panel of interest and the time of measurement in the machine.

Due to the limited amount of tags that can be measured simultaneously in
a traditional flow cytometry setting, the barcoding technique is mainly used for
mass cytometry experiments. This is a great solution if your amount of samples
is limited and all samples are available at the same time. However, for practical
reasons, samples are often split in multiple groups, each of which is processed
on one plate and barcoded together. While comparisons between samples on the
same plate are then feasible, comparisons between the plates will still suffer from
variability in sample handling.

We propose to include an identical control sample on each of the plates, which
can be aliquoted from a healthy control patient. Using the information from this
control sample, our algorithm can remove batch effects between different plates
which are each barcoded separately. This results in normalized data which can be
compared between plates and used for further analysis.

6.2 Problem Statement: Characterizing Batch Ef-
fects

When a sample is split over multiple plates and each plate is analyzed separately,
the measurements will differ slightly. To investigate if this is really due to the
sample handling or whether it is caused by the small differences in the aliquots,
we took two control samples along over multiple plates.
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From Figure 6.1, we can conclude that the main differences are really caused
by batch effects: both samples on the same plate have always undergone a similar
change in comparison to the other plates. From this observation, we can assume
that all samples on one barcoded plate will have similar changes happening. If we
can learn these shifts based on one control sample taken along on all the plates, this
will give us sufficient information to correct for the technical variability caused by
the batch effects.

We can also identify another important characteristic of the batch effects in
Figure 6.1. The size of the shift seems dependent on the intensity value: often the
line indicating the 25% quantiles follows a different pattern than the line indicating
the 75% quantiles. Just applying a linear shift to all cells will not remove the batch
effect correctly, so we need to take this into account in our solution. We will
do this by using spline functions. However, to estimate these splines, the control
sample should contain sufficient information about all possible intensity ranges.
Therefore, it can be necessary to include both stimulated and unstimulated control
samples in your experimental setup.

Another characteristic of the batch effects is not visible in Figure 6.1. Because
we show the quantiles per marker separately, we cannot identify dependencies
between markers. However, cell type dependent effects can occur. An example
is shown in Figure 6.2, where cells have about the same intensity values for the
HLADR marker, but they still show a very different pattern depending on their
other markers (gated as B cells or macrophages). To handle these cell type specific
batch effects, we will first apply a clustering on the cytometry data, using the
FlowSOM algorithm.

6.3 Proposed Method

A schematic overview of the proposed method is given in Figure 6.3. The method
consists of two main parts: the batch effects are first modeled using the control
samples and after that, all files are normalized using the resulting models.

6.3.1 Modeling the Batch Effects

To model the batch effects, we use a pipeline consisting of multiple steps. First
we cluster the cells of the control files to capture the different cell types present in
the data. Next we compute quantiles, to capture the distribution of the cells over
the marker values. We determine a goal distribution based on the means of the
quantiles, and finally compute splines to translate the original values to new values
that confirm to the goal distribution.

To cluster the cells, we use the FlowSOM algorithm [7]. Because we want
to capture all cell types present in the result, the control files are first aggregated
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Figure 6.1: Aliquots of blood samples from two healthy volunteers were measured on ten
separately barcoded plates. The ten plates are represented on the x-axis, where the y-axis
indicates the median and quantiles of the arcsinh-transformed intensity values. The first
three rows contain surface markers, the last two intracellular markers. If the measurements
had been executed perfectly, all measurements for a patient would be exactly the same,
resulting in flat lines. However, the measurements differ slightly for the separate plates. It
is notable that the patterns of these shifts are very similar for both patients, which indicates
that these shifts are caused by batch effects: samples from the same plate are affected
similarly.
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Figure 6.2: Aliquots of blood samples from two healthy control patients were measured on
ten separately barcoded plates. We focus on the median HLADR intensities for manually
gated B cells and macrophages (gated as resp. CD45+CD66-CD3-CD7-CD11c-CD123-
and CD45+CD66-CD3-CD7-CD11c+CD123-CD11b+CD33+CD14+). Even on the same
intensity level, these cells undergo different variations, while the same effects are still oc-
curring on the samples of both patients. This indicates that the batch effects can be cell type
specific and a one-dimensional approach will not be sufficient to remove them.

and the FlowSOM algorithm is applied on all of them together. For computational
reasons, it is possible to select a random subset of cells to build the clustering,
and then map all the original cells on the clusters for further analysis. The Flow-
SOM algorithm uses a two-step clustering: the data is first overclustered using
a self-organizing map and additionally the resulting cluster centers are clustered
themselves using a consensus hierarchical clustering. By using this two-step clus-
tering, the FlowSOM algorithm can detect clusters of varying sizes and shapes,
without the computational overhead of density-based clustering algorithms. When
applying clustering on the data first, we make the assumption that while the mea-
surements might have shifted between the different samples, the differences be-
tween the cell types are still bigger than the shifts caused by the batch effects. A
certain cell type might end up in different clusters of the self organizing map for
the different files, but will still be in the same meta-cluster detected by the con-
sensus clustering. Each meta-cluster will typically correspond with a different cell
type.

Once the clusters are detected, we will apply normalization per cluster. This
means that all control files get separately mapped to the FlowSOM clustering, and
the cells belonging to each cluster are used for further analysis. Because we are
using only one cluster at a time, we assume no further dependencies between the
markers and will normalize each marker separately. To describe the distribution
of the cells for a specific marker, we make use of quantiles. A quantile indicates
a boundary value for which a certain percentage of cells is lower, for example
the 0.5 quantile corresponds with the median value, whereas the 0 quantile cor-
responds with the minimum value and the 1 quantile with the maximum. A 0.25
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Figure 6.3: Schematic overview of the proposed workflow. First the batch effects are
learned on the control sample (blue part). Afterwards, the other samples can be normalized
(red part). Because an extra control sample was included on the plates, we can evaluate
whether these samples become more similar as well.
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quantile will indicate the boundary for which one fourth of the cells are lower. By
computing 21 quantiles, going from 0 to 1 in steps of 0.05, we get an overview of
the distribution for each control file separately.

Because we are working with control files, the distribution of the cells should
be very similar. If the values for the quantiles do not correspond, we can assume
a technical issue is causing these shifts. We will build a model that updates the
data in such a way that all control files will have the same quantiles in the end.
Therefore, the mean value is computed for each of the quantiles over the different
control files and these boundaries are set as the goal distribution.

To model the shifts, we use spline functions. A spline is a piece-wise defined
function, used to interpolate between given points, while still keeping a certain
smoothness at the transitions between the piece-wise defined functions. For each
control file, we use the original quantiles as the x values and the corresponding
quantiles from the goal distribution as the y values to define the interpolation
points. The resulting spline function can then be used to translate all original
marker values to the new values, in such a way that the resulting data will be close
to the goal distribution.

Running this whole procedure will result in one spline per marker per cluster
per control file.

6.3.2 Normalizing the Data

To normalize the other files on the plates, we will use the FlowSOM clustering and
the splines computed in the previous part.

First the new files are mapped on the given FlowSOM clustering, where every
cell gets assigned to a cluster. Then, for every cell in the dataset, we know the
cluster, the markers and the control file of relevance. By applying the correspond-
ing spline function on each of the measured values, we will apply the same shifts
to the cells from the new files as we have learned from the control files. That way,
we end up with data from which we can assume all batch effects, as detected in
the control files, are removed and for which all variation left is representing real
biological variation.

This whole pipeline is implemented as an R package and will be submitted
to Bioconductor. As input, the user needs to define the fcs files from the control
samples, the fcs files that need to be normalized and a labeling indicating from
which batch each of these files come. In the end, a new set of fcs files is generated
with normalized values.



CYTOFNORM 127

6.4 Results

6.4.1 Unstimulated Samples from Two Healthy Controls

We will first demonstrate our method on a dataset for which each plate contains
two unstimulated control samples, both from healthy controls. This way, we can
use the controls from the first patient to learn the batch effects and normalize the
control samples from the second patient. Then we check if the normalization is
working as expected: all aliquots from the second patient should become very
similar. This evaluation is done per cell type, using a manual gating of the dataset
(see Figure S1). After all, small differences in the aliquots might be present, and
the goal is to align the different cell types over the plates.

To compute how well the samples correspond with each other, we make use
of the Earth Movers Distance (EMD). This is a distance measurement developed
specifically to compare distributions. To describe the distributions, we bin the data
in bins of size 0.1 (on transformed data). For every cell type and every normalized
marker, we compute the pairwise EMDs for all the files and take the maximum
value, indicating how much two cell populations which should actually be the
same can differ from each other. The lower this value is, the better. We apply this
measurement on both the original and the normalized files and plot those values
against each other, resulting in Figure 6.4. We can conclude that most distances
decrease, except a few that were already very small in the first place. We ignore
all distances smaller than 2 (as those represent the marker - cell type combina-
tions which have not really undergone any batch effects) and compute the mean
percentage of decrease in distance, resulting in a reduction of 0.636.

Additionally, we also applied quantile normalization on the whole dataset,
without clustering first. We compare the results from this approach to the nor-
malized files as described before. This comparison is shown in Figure 6.5 and
indicates that most marker distributions per cell type become more similar when
using the clustering approach. When computing the reduction compared to the
original distances as before, this algorithm only results in a 0.335 reduction.

6.4.2 Additional Stimulated Samples from Two Healthy Con-
trols

To show the importance of representative control files, we extend our dataset with
stimulated control samples that were also taken along on the plates. The cells in
these stimulated files express some cytokines that were negative in the unstimu-
lated files. We explore three different settings: training on only the unstimulated
files of patient 1, training on only the stimulated files of patient 1, or training on
both. The results on the files from patient 2 are shown in Figure 6.6.

When we train only on the unstimulated file from patient 1, we estimate the
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Figure 6.4: Overview of the improvements made by the normalization for patient 2, files
not used to learn the batch effects. In the main panel (middle) every dot corresponds with
the marker distribution for a specific cell type (37 markers x 10 cell types = 370 dots).
The values indicate the maximal EMD between plates, for the original files (x-axis) and
the normalized files (y-axis). The lower this distance, the stronger all plates resemble each
other, which should be the case as all samples are aliquots from the same patient. All
dots below the red line have a lower maximal distance after normalization and are thus
improved. A few dots lay above the line, which means their distributions are less similar
after normalization, but this is mainly the case for very small values: they were already
almost identical to begin with and they are still very similar afterwards. On the sides, four
specific cases are shown in more detail. The marker distribution is shown as a histogram
for the ten plates underneath each other, and a blue line indicates the median marker value.
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Figure 6.5: Overview of the improvements made by the normalization compared to nor-
malization without clustering first. Figure interpretation similar to Figure 6.4, every dot
represents a specific marker distribution for a specific cell type, and the values indicate the
maximum EMD between two plates. Everything below the red line has been improved by
using the clustering approach.
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Figure 6.6: Maximal EMDs between plates for the samples of patient 2, computed on the
original files (x-axis) and the normalized files (y-axis). Every dot represents the distribution
for one specific marker for one specific cell type. Everything above the red diagonal has
become worse after normalization. This is especially present when we normalize the stimu-
lated files after having only trained on the unstimulated files or vice versa, because the cells
of the training files do not span the full expression range of the cells in the files to normalize.
When we use the correct training set we have little problems, only for populations which
were not moving much in the first place. When we use both training sets together, all files
get normalized well, indicating that this is a good strategy if you are not sure what will be
present in the other wells on the plate.
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batch effects correctly for the unstimulated files of patient 2: almost all distances
become smaller, as shown in the previous part as well. However, when we use
this model on the stimulated files, many distances are becoming larger instead
of smaller. This can be easily explained: the batch effects are not linear over
the range of the expression values and we could only train on cells where the
expression values were low. The model has no information about the batch effects
for high expression and makes mistakes when extrapolating. When we train on
the stimulated files, this problem is solved and the stimulated files are correctly
normalized. However, now the unstimulated files can pose a problem because the
negative populations are not always represented in the stimulated files.

The solution is straightforward: we use both the stimulated and the unstimu-
lated samples for training. This way, the model is built on information over the
whole range of expression and works well in all situations. Therefore, it might be
advisable to include two or more control samples in your setup if you are not sure
what the range of the cells in the other wells on the plate might be.

6.4.3 Other Datasets

Finally, we show that the method is generalizable by applying it to two clinical
datasets for mass cytometry analysis of: 1) normal pregnancy and 2) a immune-
modulating nutritional supplement as an intervention post-surgery. Both datasets
include longitudinal samples collected clinically over the course of several months
and include respectively a total of 19 and 11 plates. For these datasets, only one
control patient was taken along, from which both a stimulated and an unstimulated
sample were present on all the plates. We use the stimulated samples to train
the algorithm and the unstimulated ones to normalize. As shown in the previous
paragraph, this might give issues, especially for the intracellular markers which are
strongly influenced by the stimulation. Therefore, we only apply the normalization
on the surface markers in these datasets. On these datasets, our algorithm produced
reductions of 35.2 and 35.9 percent. See Figure 6.7.

6.5 Discussion

We propose a normalization strategy that enables mass cytometry analysis of large
clinical cohorts. Importantly, to avoid accidental removal of biologically relevant
signals, the algorithm makes no assumptions about the distributions of the clinical
samples and relies on the internal consistency of cellular barcoding and externally
spiked control samples. Also, the algorithm uses a multi-layer learning strategy to
account for cell type specific technical variations. The results demonstrate signif-
icant improvements in the quality of primary clinical samples based on both auto-
mated and manual analysis of data. This strategy has already been implemented in
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(a) Pregnancy dataset:
19 plates, reduction: 0.245.

(b) Post-surgery dataset:
11 plates, reduction: 0.318.

Figure 6.7: Results on two additional datasets. For both datasets, the model is trained on
the stimulated control samples and the results are computed on the unstimulated control
samples. Only surface markers were taken into account.

several clinical studies at Stanford. An open source R package is available upon
request (and soon through Bioconductor).
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7
Conclusion

In the last decade, technological advances in the cytometry field resulted in an
increasing number of cells, markers and patients measured. Manual analysis can-
not keep up with these changes and the need for computational flow cytometry
techniques emerged for cell population detection and patient diagnostics.

By using machine learning techniques, multiple research groups developed al-
gorithms to detect cell populations. However, many algorithms either make strong
assumptions on the distribution of the data or have a very high execution time to
cluster the data. Additionally, there was a clear need for a more visual approach
compared to just returning cell counts from the clusters. Therefore, we developed
the FlowSOM algorithm. The innovative aspect of this algorithm is the two-step
clustering. First, the data is overclustered, which is useful to give a detailed view
of the data. By using a metaclustering step afterwards, the assumptions made by
the SOM are lifted, resulting in a fast algorithm without strong assumptions on
the data. This technique seems very promising and allowed us to collaborate with
multiple wet lab teams, resulting in two co-publications and improved function-
ality of our available software. FlowSOM’s combination of a good accuracy with
fast running times was also confirmed in an independent review by Weber and
Robinson, published in Cytometry Part A, December 2016.

In our next work, FloReMi, we did not just focus on cell population detec-
tion, but rather on a whole pipeline, analysing a dataset from start to finish. This
included multiple preprocessing steps to clean the data. The implementation of
functions for automated quality control could be very helpful to flag problems for
the researcher, who might not always do an extensive check of possible issues. We
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did not use FlowSOM to extract features in this approach, but rather the flowDen-
sity/flowType combination. Where FlowSOM will identify the main populations,
flowType will really identify all possible populations. While this is not optimal
to get a clear general overview of the data, in this case we wanted to specifically
identify which populations showed any correlation with the clinical outcome (HIV
progression time). This made it possible to first evaluate many possible popu-
lations and then only focus on those with a good correlation with the outcome
and minimal redundancy between themselves. Due to the time limit of the chal-
lenge, our cross-validation strategy was limited. This showed in the final results,
as we submitted three variations of our algorithm of which two overfitted strongly.
This stresses the importance of a good cross-validation practice when building new
models, especially because the potential number of features is huge. However, our
third variation used random survival forests. This non-linear technique has more
power and random forests are also known for being more robust against overfit-
ting. This resulted in statistical significance on the test set as well, giving a starting
point for further research towards the selected populations.

Although it might seem less like a traditional machine learning task, practice
taught us that preprocessing is also a crucial step in any flow cytometry analysis.
After all, your results can only be as good as the input you give to the algorithm.
With CytofNorm, we focused on the normalization of mass cytometry data. We
initially tried several approaches to solve this problem, but in the end a cell type
specific approached proved necessary. While our algorithm was developed with
barcoded mass cytometry plates in mind, it can also be applied to any other setting
in which batches of samples are processed, as long as a control is taken along
which is comparable between all batches. This will enable researchers to have
more trust in the comparison between samples from different batches.

While the main focus was on algorithm development for flow cytometry data,
it is also important that these algorithms find their way to the people in the lab.
Because of this, we spent some effort in reaching a broader audience than just the
computational flow cytometry community. Part of this were collaborations with
wet lab teams, but the Nature Review paper is also an important element in in-
troducing these new techniques to immunologists. This way, computational flow
cytometry can really have an impact on immunologic research and drug develop-
ment.

7.1 Future perspectives

While our algorithms were well perceived by the community, there is of course
still room for further development of computational flow cytometry techniques.
Both the FlowSOM and FloReMi approach could be improved upon themselves,
while complementary techniques will also enhance cytometry analyses.
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One of the possible improvements on FlowSOM is purely technical: the devel-
opment of a parallelized version with better memory handling. While FlowSOM
scales linear with respect to the number of cells and strongly improves the run-
ning time over SPADE, the R implementation runs on a single core and keeps the
whole training dataset in memory. This will cause issues for datasets which are
combining many samples, resulting in high memory usage and waiting time. As
parallelized versions of the SOM algorithm exist, a new implementation which
uses these variations will enable further speed-up without changing the accuracy
of the clustering.

As was already explored in Chapter 3, the minimal spanning tree visualization
also has its limitations. If any loops would be present in the real cluster structure,
the MST will just cut them at a random point, resulting in a tree that is difficult
to interpret. While we explored some other layout options, none of them seemed
optimal yet. A graph-based approach can overcome the topological limitations,
but often still needs manual parameter tuning to obtain good results. Algorithms
which could learn the optimal parameter settings from the data might alleviate this
issue.

Additionally, estimating the amount of clusters in a dataset is a well-known
problem in machine learning. While several approaches exist, they do not always
correspond with the expert’s biological knowledge. In FlowSOM, this issue can
be regarded on two levels: determining the size of the SOM grid and determining
the number of meta-clusters. Currently, both need to be defined up front. Several
SOM-inspired algorithms exist which can extend the grid when it does not seem
sufficient to explain the data, such as growing neural gas [1] and the growing hier-
archical self-organizing map [2], which avoid determining the grid size. However,
as the goal of the first clustering is to overcluster the data, these algorithms might
need some adaptations to work in this setting. But as the data is overclustered, it
also means the grid size is not that crucial, as long as it is big enough. The second
level of clustering is harder, as the actual cell types need to be distinguished at
that point. Where clustering the FlowSOM nodes allows using slower algorithms
because the number of nodes is limited, it might be necessary to use more informa-
tion than just the cluster centers to estimate the optimal number of cell populations
automatically.

This brings us to the biggest remaining problem: detecting rare cell types. As
the number of markers is limited, the flow cytometrist often picks a set of markers
which can give detailed information about a small subpopulation. However, this
also means that many other cell populations cannot be distinguished, resulting in
some big clusters and then a few very small ones which might be of clinical rele-
vance. While the two-level clustering of FlowSOM allows a wide range of cluster
sizes, very rare cell types will already be overshadowed when building the grid.
Incorporation of negative controls and FMO’s in the clustering algorithms might
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help to reveal more of the biological interpretation, where the raw measurements
might suffer from too much noise to clearly distinguish these populations.

New techniques also bring new challenges. For example, an imaging flow cy-
tometer does not just measure the fluorescent light scattered by the cell, but takes
an actual photograph of the cell measured. This allows information about the loca-
tion of the proteins, which can give unprecedented insights, but also complicates
the computational aspect of the analysis. Image processing algorithms can extract
many features, but they are often highly correlated and it is uncertain whether they
contain relevant information or not. This is very different from the typical cytom-
etry features, which are expert-picked to contain maximal information. Feature
selection algorithms will need to be incorporated in the workflow to handle this
type of data. A similar argument can be made for single-cell RNAseq, where gene
expression is measured for individual cells. While the traditional RNAseq algo-
rithms will need adaptations due to the single-cell nature of the data, single-cell
techniques as described in this thesis will also need adaptations to work with the
increased number of features which might be highly correlated.

Whereas feature selection is not yet necessary for cell population identification
in most cases, it is already crucial for building diagnostic and prognostic models
on the patient level. This was incorporated in our FloReMi pipeline, but as it
was build against a sharp deadline for participation in the FlowCAP IV challenge,
further exploration of the possibilities would be valuable. Both supervised and
unsupervised feature selection techniques might be of interest. Where supervised
techniques will enable the researcher to concentrate on the cell populations cor-
related with the clinical outcome, they will often need to be applied in a filter
approach, as thousands of features can be extracted from flow cytometry data, too
many to explore all multivariate possibilities. Using unsupervised feature selection
might allow the researcher to first build a good fingerprint of the patient’s immune
system, in which multivariate models might pick up unexpected multivariate sig-
nals of interest.

The other building blocks in the FloReMi pipeline could also be further op-
timized. While the preprocessing steps showed good results on this dataset, the
parameter tuning was done by visually inspecting many samples. New algorithms
have been published in the meantime, but they also are dependent on correct pa-
rameter tuning. Automated flagging of samples in which measurement issues oc-
cur would be very valuable in any flow cytometry experiment, even when a tradi-
tional analysis is used further on. The feature extraction step could also use further
optimization. Where the flowType/flowDensity seems very promising and exhaus-
tive, it only builds populations on binary splits: every cell is labeled as positive
or negative for a marker. Dim populations will not be identified. Furthermore,
some markers might need different cutoffs depending on which cell type they are
present. Further exhaustive clustering algorithms could be explored in combina-
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tion with multiple diagnostic models. A more extensive benchmark on multiple
datasets is necessary to either determine the optimal combination or to determine
the specific cases in which one approach works better than another, if there is no
one-fits-all solution.

Additional attention will need to be paid to batch effects when analyzing clini-
cal data. When data is collected over a longer time period, small technical changes
are unavoidable. When comparing patients, these technical variations should be
removed before making any biological conclusions. With the CytofNorm algo-
rithm, we showed that a cell-type-specific approach is necessary. However, we fo-
cused on applying this technique on barcoded mass cytometry data. This approach
should be further evaluated on non-barcoded batches to evaluate the performance
on flow cytometry data and its general usefulness in the clinic.

All computational flow cytometry algorithms are currently mainly evaluated
on accuracy. However, while accuracy is of utmost importance, stability is another
aspect of machine learning techniques that should be further investigated. If a
dataset differs slightly (a very reasonable assumption, imagine the researcher mea-
suring a few more or a few less cells), the main conclusions, such as the clusters
which are detected and the biomarkers which are identified for clinical prediction,
should stay the same. However, several techniques might end up returning very
different results if the dataset differs slightly. This complicates the interpretation
of the resulting models and more stable techniques will allow more insights into
the underlying biological systems. The stability of a technique can be investigated
by artificially creating slightly different datasets, e.g. by randomly changing the
order of the cells or by taking multiple subsets containing 90% of the data etc. By
evaluating whether the conclusions hold true for these modified datasets as well,
more trust can be put in the results.

Finally, other types of analyses might be explored on flow cytometry data. Tra-
jectory inference is one example, where the data is not divided in separate clusters,
but rather one path through the data is inferred, describing a cellular differentiation
process. Current algorithms are able to detect linear paths, but further research is
applied to detect more complex structures, such as bifurcating or merging paths
and loops. These paths are typically derived from snapshot data in which all states
through the differentiation process are present, but this approach can also be ex-
tended to time series data, where the goal is to identify which cell types are being
replaced by others during the course of a treatment and how the presence of these
different cell types influence each other.

While many algorithms are being developed, one of the main challenges re-
mains the easy incorporation of these new techniques in the lab. Currently, the field
is still relatively new and strongly developing, with many alternative approaches
being proposed and compared against each other. It is important that these tech-
niques are tested on multiple real-life datasets, as they might work nicely on the
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dataset they were originally developed for, but might not always generalize very
well. Therefore, good benchmark datasets will play an important role in the devel-
opment of the algorithms. Additionally, good annotation tools will be necessary
to allow the interpretation of these new results. As the field matures further, a
selection of techniques will be incorporated in the traditional point-and-click anal-
ysis tools used by the immunologists, allowing them to profit from all the benefits
provided by these automated techniques.
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A
External Validation

In this appendix, we present some evaluation results as published by other research
groups.
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A.1 FlowSOM
In this section, we include some figures as published by Weber and Robinson:
Comparison of clustering methods for high-dimensional single-cell flow and mass
cytometry data. Cytometry Part A 89(12), 1084-1096, December 2016.
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Figure A.1: Evaluation of multiple clustering algorithms. This dataset consists of 265,627
bone marrow cells from 2 healthy donors, stained for 32 surface markers. The F1-score
is computed based on 14 manually gated populations (consisting of 104,184 cells (39%)).
FlowSOM, with a fixed number of metaclusters, has both the best F1-score and the fastest
runtime (41s).
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Figure A.2: Evalution on an additional dataset consisting of 396,460 peripheral blood cells
from a healthy donor, stained for 14 markers. The F1-score evaluates the detection of a rare
population consisting of 109 cells (0.03%). FlowSOM does not have the optimal result (it
has a good recall, but only 50% accuracy, which means some other cells are clustered
together with this small population). However, most other clustering algorithms perform
worse, or make a big trade-off in computation time (e.g. X-shift takes more than 3 hours,
where FlowSOM takes less than 3 minutes.
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A.2 FloReMi

In this section, we include the results from the FlowCAP IV challenge, as pub-
lished by Aghaeepour et al.:
A benchmark for evaluation of algorithms for identification of cellular correlates
of clinical outcomes. Cytometry Part A 89(1), 16-21, January 2016.

Table A.1: Overview of the other methods submitted to the challenge.

METHOD SHORT DESCRIPTION

BorFlowFP Exhaustive all-relevant feature selection with the Boruta method over
the flow cytometry fingerprints data followed by modeling with
Survival Random Forest algorithm.

FloReMi.1 Partitioning of cells (e.g., into positive or negative) to identify cell
populations, followed by feature extraction of both cell population size
and MFI values. Features with minimal redundancy were selected as
input for a random survival forest for survival time prediction.

FloReMi.2 As FloReMi.1, but using a Cox-proportional hazards model for
survival time prediction.

FloReMi.3 As FloReMi.1, but using an additive hazards model for survival time
prediction.

flowDensity/ flowType/
6RchyOptimyx

Density-based getting and partitioning of cells (e.g., into positive or
negative) followed by dynamic programming to ID k-shortest paths to
important cell populations.

GANN Identifying profiles of individual bin channels of fluorescence for the
different cell markers which can be used for distinguishing different
groups / categories.

RTOMT Partitioning of cells (e.g., into positive or negative). Combining
clinical diagnosis and survival time into a single target vector.
Regression tree.

SPADE.SNR SPADE was used to derive cell clusters in high-dimensional space.
Important clusters were selected by a signal-to-noise ratio based on
cell frequency of subjects who showed disease progression.

UQS Clustering using expectation maximization fitting of skew-t mixture
models was used for feature extraction. A random survival forest was
used for building the predictive model.



EXTERNAL VALIDATION 147

Figure A.3: Evalution of all submitted algorithms to the FlowCAP IV challenge on the
training set (A) and independent test set (B). FloReMi 1, the version which uses Random
Survival Forest as the prediction model, is the best performing algorithm on the test set,
whereas the other two variations overfit.
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B
FlowSOM R Vignette

In this Appendix, the FlowSOM vignette is given, a tutorial for use of the Flow-
SOM R package. All these examples can be replicated by executing the given
scripts after installing the FlowSOM package.

The FlowSOM package can be installed by running
devtools::install github("saeyslab/FlowSOM",

build vignettes = TRUE)
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Abstract

The FlowSOM package provides new visualization opportunities for cytometry
data. A four-step algorithm is provided: first, the data is read and preprocessed,
then a self-organizing map is trained and a minimal spanning tree is built, and
finally, a meta-clustering is computed. Several plotting options are available,
using star charts to visualize marker intensities and pie charts to visualize cor-
respondence with manual gating results or other automatic clustering results.

1 The easy way

The easiest way to use this package is using the wrapper function FlowSOM. It
has less options than using the separate functions, but in general it has enough
power. It returns a list, of which the first item is the FlowSOM object (as
required as input by many functions in this package) and the second item is the
result of the metaclustering.

> library(FlowSOM)

> fileName <- system.file("extdata","lymphocytes.fcs",

+ package="FlowSOM")

> fSOM <- FlowSOM(fileName,

+ # Input options:

+ compensate = TRUE,

+ transform = TRUE,toTransform=c(8:18),

+ scale = TRUE,

+ # SOM options:

+ colsToUse = c(9,12,14:18), xdim = 7, ydim = 7,

+ # Metaclustering options:

+ nClus = 10,

+ # Seed for reproducible results:

+ seed = 42)

> PlotStars(fSOM$FlowSOM,

+ backgroundValues = as.factor(fSOM$metaclustering))
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CD8 <Pacific Blue−A>
TCRyd <APC−A>TCRb <APC−Cy7−A>

NK1/1 <PE−A>
CD4 <PE−Texas Red−A> CD19 <PE−Cy5−A>

CD3 <PE−Cy7−A>

Background
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2 Reading the data

The FlowSOM package has several input options.

The first possibility is to use an array of character strings, specifying paths to
files or directories. When given a path to a directory, all files in the directory
will be considered. This process does not happen recursively. You can specify
a pattern to use only a selection of the files. The default pattern is ".fcs",
making sure that only fcs-files are selected. When you are already working
with your data in R, it might be easier to use a flowFrame or flowSet from
the flowCore package as input. This is also supported. If multiple paths or
a flowSet are provided, all data will be concatenated. You should check and
apply normalization if needed using other packages.

When reading the data, several preprocessing options are available. The data
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can be automatically compensated using a specified matrix, or using the $SPILL
variable from the fcs-file (when compensate is TRUE but no value is given for
spillover). The data can be transformed for specified columns. If no columns
are provided, all columns from the spillover matrix will be transformed. Finally,
the data can be scaled. By default, it will scale to a mean of zero and standard
deviation of one. However, specific scaling parameters can be set (see the base
R scale function for more detail).

> set.seed(42)

> library(flowCore)

> library(FlowSOM)

> fileName <- system.file("extdata","lymphocytes.fcs",

+ package="FlowSOM")

> fSOM <- ReadInput(fileName,compensate = TRUE,

+ transform = TRUE, toTransform=c(8:18),

+ scale = TRUE)

> ff <- suppressWarnings(flowCore::read.FCS(fileName))

> fSOM <- ReadInput(ff,compensate = TRUE,transform = TRUE,

+ scale = TRUE)

This function returns a FlowSOM object, which is actually a list containing
several parameters. The data is stored as a matrix in $data, and all parameter
settings to read the data are also stored. The begin and end indices of the
subsets from the different files can be found in $metadata.

> str(fSOM,max.level = 2)

List of 12

$ pattern : chr ".fcs"

$ compensate : logi TRUE

$ spillover : num [1:11, 1:11] 1.00 4.84e-04 ...

..- attr(*, "dimnames")=List of 2

$ transform : logi TRUE

$ toTransform : chr [1:11] "FITC-A" "Pacific Blue-A" ...

$ transformFunction:Formal class 'transform'

[package "flowCore"] with 2 slots

$ scale : logi TRUE

$ prettyColnames : Named chr [1:18] "Time <Time>" ...

..- attr(*, "names")= chr [1:18] "Time" "FSC-A" "FSC-H" ...

$ data : num [1:19225, 1:18] -1.65 -1.65 -1.65 ...

..- attr(*, "dimnames")=List of 2

$ metaData :List of 1

..$ C:/Users/.../lymphocytes.fcs: num [1:2] 1 19225

$ scaled.center : Named num [1:18] 3356 88594 68698 84405 ...
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..- attr(*, "names")= chr [1:18] "Time" "FSC-A" "FSC-H" ...

$ scaled.scale : Named num [1:18] 2038 15064 3236 ...

..- attr(*, "names")= chr [1:18] "Time" "FSC-A" "FSC-H" ...

- attr(*, "class")= chr "FlowSOM"

3 Building the self-organizing map

The next step in the algorithm is to build a self-organizing map. Several pa-
rameters for the self-organizing map algorithm can be provided, such as the
dimensions of the grid, the learning rate, the number of times the dataset has
to be presented. However, the most important parameter to decide is on which
columns the self-organizing map should be trained. This should contain all
the parameters that are useful to identify cell types, and exclude parameters
of which you want to study the behavior on all cell types such as activation
markers.

The BuildSOM function expects a FlowSOM object as input, and will return a
FlowSOM object with all information about the self organizing map added in
the $map parameter of the FlowSOM object.

> fSOM <- BuildSOM(fSOM,colsToUse = c(9,12,14:18))

> str(fSOM$map,max.level = 2)

List of 15

$ xdim : num 10

$ ydim : num 10

$ rlen : num 10

$ mst : num 1

$ alpha :List of 1

..$ : num [1:2] 0.05 0.01

$ radius :List of 1

..$ : num [1:2] 6 0

$ init : logi FALSE

$ distf : num 2

$ grid :'data.frame': 100 obs. of 2 variables:

..$ Var1: int [1:100] 1 2 3 4 5 6 7 8 9 10 ...

..$ Var2: int [1:100] 1 1 1 1 1 1 1 1 1 1 ...

..- attr(*, "out.attrs")=List of 2

$ codes : num [1:100, 1:7] -0.226 -0.397 -0.164 ...

..- attr(*, "dimnames")=List of 2

$ mapping : num [1:19225, 1:2] 10 99 2 96 42 92 91 ...

$ nNodes : int 100

$ colsUsed : num [1:7] 9 12 14 15 16 17 18

$ medianValues: num [1:100, 1:18] 0.138 -0.643 0.256 0.18 ...
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..- attr(*, "dimnames")=List of 2

$ sdValues : num [1:100, 1:18] 0.966 0.839 0.965 0.971 ...

..- attr(*, "dimnames")=List of 2

4 Building the minimal spanning tree

The third step of FlowSOM is to build the minimal spanning tree. This will
again return a FlowSOM object, with extra information contained in the $MST

parameter.

> fSOM <- BuildMST(fSOM,tSNE=TRUE)

> str(fSOM$MST)

List of 4

$ graph:IGRAPH UNW- 100 99 --

+ attr: name (v/c), weight (e/n)

+ edges (vertex names):

[1] 1 --3 1 --12 2 --3 2 --11 4 --14 5 --6 ...

$ l : num [1:100, 1:2] 1.68495 2.27903 2.02504 ...

$ l2 : num [1:100, 1:2] -129.5 -175.6 -177.3 106.6 41.5 ...

$ size : num [1:100] 13 12.62 14.19 5.63 13.52 ...

Once this step is finished, the FlowSOM object can be used for visualization.
You can plot the nodes in several layouts (”MST”: Minimal spanning tree (de-
fault),”grid”: SOM grid, ”tSNE”: alternative layout, only possible when tSNE
was TRUE in BuildMST)
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> PlotStars(fSOM)

CD8 <Pacific Blue−A>
TCRyd <APC−A>TCRb <APC−Cy7−A>

NK1/1 <PE−A>
CD4 <PE−Texas Red−A> CD19 <PE−Cy5−A>

CD3 <PE−Cy7−A>

> PlotStars(fSOM,view="grid")

CD8 <Pacific Blue−A>
TCRyd <APC−A>TCRb <APC−Cy7−A>

NK1/1 <PE−A>
CD4 <PE−Texas Red−A> CD19 <PE−Cy5−A>

CD3 <PE−Cy7−A>
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> PlotStars(fSOM,view="tSNE")

CD8 <Pacific Blue−A>
TCRyd <APC−A>TCRb <APC−Cy7−A>

NK1/1 <PE−A>
CD4 <PE−Texas Red−A> CD19 <PE−Cy5−A>

CD3 <PE−Cy7−A>

If you do not want the size to depend on the number of cells assigned to a
node, you can reset the node size. This can be used in combination with any
of the plotting functions.

> fSOM <- UpdateNodeSize(fSOM, reset=TRUE)

> fSOM$MST$size <- fSOM$MST$size/2

> PlotStars(fSOM)

> fSOM <- UpdateNodeSize(fSOM)
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CD8 <Pacific Blue−A>
TCRyd <APC−A>TCRb <APC−Cy7−A>

NK1/1 <PE−A>
CD4 <PE−Texas Red−A> CD19 <PE−Cy5−A>

CD3 <PE−Cy7−A>

It might also be interesting to compare with a manual gating. The cellTypes

can be any factor which has a value for each individual cell, so you can also
map other clustering results.

> #<<>>=

> library(flowUtils)

> flowEnv <- new.env()

> ff_c <- compensate(ff,description(ff)$SPILL)

> colnames(ff_c)[8:18] <- paste("Comp-",

+ colnames(ff_c)[8:18],

+ sep="")

> gatingFile <- system.file("extdata","manualGating.xml",

+ package="FlowSOM")

> gateIDs <- c( "B cells"=8,

+ "ab T cells"=10,

+ "yd T cells"=15,

+ "NK cells"=5,
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+ "NKT cells"=6)

> cellTypes <- names(gateIDs)

> gatingResult <- ProcessGatingML(ff_c, gatingFile,

+ gateIDs, cellTypes)

> PlotPies(fSOM,cellTypes=gatingResult$manual)

Unknown
B cells
ab T cells
yd T cells
NK cells
NKT cells

If you are interested in one specific marker, you can use the PlotMarker func-
tion.

> print(colnames(fSOM$map$medianValues))

$P1N $P2N

"Time" "FSC-A"

$P3N $P4N

"FSC-H" "FSC-W"

$P5N $P6N

"SSC-A" "SSC-H"

$P7N $P8N
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"SSC-W" "FITC-A"

$P9N $P10N

"Pacific Blue-A" "AmCyan-A"

$P11N $P12N

"Qdot 605-A" "APC-A"

$P13N $P14N

"Alexa Fluor 700-A" "APC-Cy7-A"

$P15N $P16N

"PE-A" "PE-Texas Red-A"

$P17N $P18N

"PE-Cy5-A" "PE-Cy7-A"

> PlotMarker(fSOM,"Pacific Blue-A")

Pacific Blue−A

−1.008

−0.278

0.490

1.258

2.026

2.794
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If you need to refer to the nodes, it might be useful to number them.

> PlotNumbers(UpdateNodeSize(fSOM,reset=TRUE))
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You can use this number for a 2D scatter plot indicating the node values.

> PlotClusters2D(fSOM,"PE-Texas Red-A","Pacific Blue-A",

+ c(81,82,91,92,93))
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5 Meta-clustering the data

The fourth step of the FlowSOM algorithm is to perform a meta-clustering of
the data. This can be the first step in further analysis of the data, and often
gives a good approximation of manual gating results.

If you have background knowledge about the number of cell types you are
looking for, it might be optimal to provide this number to the algorithm.

> #<<>>=

> metaClustering <- metaClustering_consensus(fSOM$map$codes,k=7)

> PlotPies(fSOM,cellTypes=gatingResult$manual,

+ backgroundValues = as.factor(metaClustering))
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Unknown
B cells
ab T cells
yd T cells
NK cells
NKT cells

Background

1
2
3
4
5
6
7

You can also extract the meta-clustering for each cell individually

> metaClustering_perCell <- metaClustering[fSOM$map$mapping[,1]]

6 Detecting nodes with a specific pattern

If you do not have a manual gating to map on the tree, it might be time-
consuming to interpret all the different nodes. Therefore, you can also query
the tree to indicate nodes similar to a specified pattern. This function is still
being optimized, so make sure to check the marker values to see if it corresponds
to your expectations.

> # Look for CD8+ ab T cells

> query <- c("PE-Cy7-A" = "high", #CD3

+ "APC-Cy7-A" = "high", #TCRb

+ "Pacific Blue-A" = "high") #CD8

> query_res <- QueryStarPlot(UpdateNodeSize(fSOM,reset=TRUE),

+ query,

+ plot = FALSE)

> cellTypes <- factor(rep("Unknown",49),

+ levels=c("Unknown","CD8 T cells"))
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> cellTypes[query_res$selected] <- "CD8 T cells"

> PlotStars(fSOM,

+ backgroundValues=cellTypes,

+ backgroundColor=c("#FFFFFF00","#0000FF22"))

CD8 <Pacific Blue−A>
TCRyd <APC−A>TCRb <APC−Cy7−A>

NK1/1 <PE−A>
CD4 <PE−Texas Red−A> CD19 <PE−Cy5−A>

CD3 <PE−Cy7−A>

Background

Unknown
CD8 T cells

7 Comparing different groups

It is possible to compare between groups with the FlowSOM package as well.
The tree should be build on either a concatenation of all files, or a representative
subset of all cell types. Then a list identifying which files belong to specific
groups should be defined, and the differences will be computed. For a smaller
number of samples, you can look at the fold change between the groups. For
coloring, a treshold is used. A treshold of 0.50 means the difference should
be at least 50% of the max of both groups, which corresponds with a 2-fold
change. The higher the threshold, the stricter, a threshold of 0 will colour each
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node. For a larger number of samples you can also use a wilcox test. This will
be selected when a value is provided for the p tresh parameter.

> library(FlowSOM)

> # Build the FlowSOM tree on the example file

> fileName <- system.file("extdata","lymphocytes.fcs",

+ package="FlowSOM")

> flowSOM.res <- FlowSOM(fileName,

+ compensate=TRUE,transform=TRUE,

+ scale=TRUE,

+ colsToUse=c(9,12,14:18),

+ nClus = 10,

+ seed=1)

> # Have a look at the resulting tree

> # PlotStars(flowSOM.res[[1]],

> # backgroundValues = as.factor(flowSOM.res[[2]]))

>

> # Select all cells except the branch that corresponds with

> # automated cluster 7 (CD3+ TCRyd +) and write te another

> # file for the example. In practice you would not generate

> # any new file but use your different files from your

> # different groups

> ff <- flowCore::read.FCS(fileName)

> ff_tmp <- ff[flowSOM.res[[1]]$map$mapping[,1] %in%

+ which(flowSOM.res[[2]] != 7),]

> flowCore::write.FCS(ff_tmp,file="ff_tmp.fcs")

[1] "ff_tmp.fcs"

> # Make an additional file without cluster 7 and double

> # amount of cluster 10

> ff_tmp <- ff[c(which(flowSOM.res[[1]]$map$mapping[,1] %in%

+ which(flowSOM.res[[2]] != 7)),

+ which(flowSOM.res[[1]]$map$mapping[,1] %in%

+ which(flowSOM.res[[2]] == 5))),]

> flowCore::write.FCS(ff_tmp,file="ff_tmp2.fcs")

[1] "ff_tmp2.fcs"

> # Compare the original file with the two new files we made

> groupRes <- CountGroups(flowSOM.res[[1]],

+ groups=list("AllCells"=c(fileName),

+ "Without_ydTcells"=

+ c("ff_tmp.fcs","ff_tmp2.fcs")))

[1] "C:/Users/.../FlowSOM/extdata/lymphocytes.fcs"

[1] "ff_tmp.fcs"

[1] "ff_tmp2.fcs"
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> # PlotGroups(flowSOM.res[[1]], groupRes)

>

> # Compare only the file with the double amount of

> # cluster 10

> groupRes <- CountGroups(flowSOM.res[[1]],

+ groups=list("AllCells"=c(fileName),

+ "Without_ydTcells"=c("ff_tmp2.fcs")))

[1] "C:/Users/.../FlowSOM/extdata/lymphocytes.fcs"

[1] "ff_tmp2.fcs"

> PlotGroups(flowSOM.res[[1]], groupRes)

$Without_ydTcells

[1] -- -- -- --

[6] -- -- -- --

[11] -- -- -- --

[16] -- -- -- --

[21] -- -- -- --

[26] -- -- -- --

[31] -- -- -- --

[36] -- -- -- --

[41] -- -- -- --

[46] -- -- Without_ydTcells --

[51] AllCells AllCells -- --

[56] -- Without_ydTcells Without_ydTcells --

[61] AllCells AllCells -- --

[66] -- -- -- --

[71] -- -- -- --

[76] -- -- -- --

[81] -- -- -- --

[86] -- -- -- --

[91] -- -- -- --

[96] -- -- -- --

Levels: -- AllCells Without_ydTcells



17

CD8 <Pacific Blue−A>
TCRyd <APC−A>TCRb <APC−Cy7−A>

NK1/1 <PE−A>
CD4 <PE−Texas Red−A> CD19 <PE−Cy5−A>

CD3 <PE−Cy7−A>

Background

−−

AllCells

Without_ydTcells

Without_ydTcells

8 Summary

In summary, the FlowSOM package provides some new ways to look at cytom-
etry data. It can help to keep an overview of how all markers are behaving
on different cell types, and to reduce the probability of overlooking interesting
things that are present in the data.
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