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It has been established that Matrix Product States can be used to compute the ground state and
single-particle excitations and their properties of lattice gauge theories at the continuum limit.
However, by construction, in this formalism the Hilbert space of the gauge fields is truncated to a
finite number of irreducible representations of the gauge group. We investigate quantitatively the
influence of the truncation of the infinite number of representations in the Schwinger model, one-
flavour QED2, with a uniform electric background field. We compute the two-site reduced density
matrix of the ground state and the weight of each of the representations. We find that this weight
decays exponentially with the quadratic Casimir invariant of the representation which justifies the
approach of truncating the Hilbert space of the gauge fields. Finally, we compute the single-particle
spectrum of the model as a function of the electric background field.

PACS numbers:

I. INTRODUCTION

Wilsons’ famous paper ‘Confinement of quarks’ [1] has
led to a big breakthrough for quantum chromodynamics
(QCD), the theory describing strong interactions. Not
only did Wilson offer an explanation why no free quarks
appear in Nature, he also introduced his so-called Wilso-
nian path integral which enables to numerically compute
expectation values using the Monte-Carlo method [2].
With the increasing computing power, this method has
since its first results at the end of the Seventies [3] pro-
duced by far the most impressive results for QCD [4, 5].
Examples include the determination of the light hadron
masses [6], the determination of the quark masses [7] and
obtaining the phase diagram at finite temperature [8].
Despite its success this method is troubled by the sign-
problem for finite fermion densities and, as defined on an
Euclidean lattice, does not enable to perform real-time
evolution.

One year later, Kogut and Susskind presented their
so-called Kogut-Susskind Hamiltonian [9] which corre-
sponds to the Wilsonian path integral in the transfer ma-
trix formalism [10, 11]. As a Hamiltonian method, this
approach overcomes in principle the sign problem and
enables out-of-equilibrium simulations. A new problem
that arises is the many-body problem: the dimension of
the Hilbert space increases exponentially with the num-
ber of sites. This problem is not specific to QCD only,
but holds for any strongly correlated many-body system:
the Hilbert space describing the space of states is too
large to simulate on a classical computer.

Fortunately, often one is only interested in the low-
energy states of a system and it turns out that the area
law for entanglement entropy [12–14] gives a universal

identification of the physically relevant tiny corner of
Hilbert space for these states. This is where Tensor Net-
work States (TNS) [15, 16] come into play. They consti-
tute a variational class of states that efficiently represent
general low-energy states, by encoding the wave function
into a set of tensors whose interconnections capture the
proper entanglement behavior. The most famous exam-
ple of TNS are the Matrix Product States (MPS) [17]
in one spatial dimension, which underlie White’s Den-
sity Matrix Renormalization Group (DMRG) [18]. Since
the formulation of DMRG in terms of MPS, the number
of MPS algorithms for many-body systems has increased
rapidly. In particular for lattice gauge theories they have
been applied successfully in many different contexts [19–
33].

In the Kogut-Susskind formalism the Hilbert space is
defined by all the irreducible representations of the Lie-
algebra underlying the gauge group. If the gauge group
has an infinite number of irreducible representations, a
natural question one could ask is whether we can safely
truncate the infinite number of irreducible representa-
tions, defining the Hilbert space of the gauge fields, to
a manageable number of representations. In particular,
when approaching the continuum limit or a phase tran-
sition it is not obvious at all whether this is possible.
In this paper we answer this question for (1+1) dimen-
sional quantum electrodynamics (QED) also known as
the massive Schwinger model [34]. Despite its simplicity
as an abelian gauge theory in one spatial dimension, it
has many interesting physical features like for instance
confinement and chiral symmetry breaking. This made
this model very attractive to test analytical and numer-
ical methods [19–23, 27, 35–66]. This model also gained
interest from the experimentalists in the context of quan-
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tum simulators, see [67–70] and references therein. As a
U(1)-gauge theory, all the irreducible representations are
one-dimensional and can be labeled by an integer p ∈ Z.
As we will show in Sec. III, we will only need to retain a
few of these representations to obtain reliable results in
the continuum limit.

Besides the fermion mass m and the charge g, the
Schwinger model also depends on the electric background
field α ∈ [0, 1[. It has many interesting equivalent inter-
pretations ranging from labeling the different vacua in
the massless Schwinger model [52] to the charge between
an external quark-antiquark pair introduced in the empty
vacuum [36]. Here we determine the single-particle exci-
tations for different values of α. Surprisingly, earlier nu-
merical studies on the spectrum of the Schwinger model
in the non-perturbative regime exclusively focussed on
the cases α = 0 [19, 23, 62] and α = 1/2 [21–23]. An
overview of the low-energy spectrum is for instance useful
to have a better understanding of the dynamics induced
by a quench in the form of an electric field. Indeed, in
[66] we found that the behavior for small quenches can be
understood by looking at the single-particle excitations
of the Hamiltonian, even beyond linear response theory.

The paper is organized as follows. For the sake of com-
pleteness, in Sec. II we discuss the setup for the simula-
tions: the Kogut-Susskind formulation of the Schwinger
model, gauge invariant MPS and optimization methods
for MPS. The reader familiar with these subjects can
skip it and start directly from Sec. III where we introduce
the systematics on how to obtain field expectation values
from our simulations at finite lattice spacing. We prop-
erly address the issue on the needed variational freedom
to faithfully approximate the low-energy states when ap-
proaching the continuum limit and the phase transition.
We quantify the contribution of each of the irreducible
U(1)-representations to the ground-state expectation val-
ues by investigating the two-site reduced density matrix.
We also explain there how to extrapolate the expectation
values at finite lattice spacing to the continuum limit.
Finally, in Sec. IV we report the results on the single-
particle spectrum as a function of the electric background
field.

II. SETUP

A. Kogut-Susskind Hamiltonian

The massive Schwinger model is (1 + 1)-dimensional
QED with one fermion flavor and, hence, is described by
the Lagrangian density

L = ψ̄ (γµ(i∂µ + gAµ)−m)ψ − 1

4
FµνF

µν . (1)

Here, ψ is a two-component fermion field, Aµ (µ = 0, 1)
denotes the U(1) gauge field and Fµν = ∂µAν − ∂νAµ is
the corresponding field strength tensor.

In the following, we employ a lattice regularization
à la Kogut-Susskind [9]. Therefore the two-component
fermions are decomposed into their particle and antipar-
ticle components which reside on a staggered lattice.
These staggered fermions are converted to quantum spins
1/2 by a Jordan-Wigner transformation with the local
Hilbert space basis {|sn〉n : sn ∈ {−1, 1}} of σz(n) at
site n. The charge −g ‘electrons’ reside on the odd lat-
tice sites, where spin down (s = −1) denotes an occupied
site whereas spin up (s = +1) corresponds to an unoccu-
pied site. Conversely, the even sites are related to charge
+g ‘positrons’ for which spin down/up corresponds to an
unoccupied/occupied sites, respectively.

Moreover, we introduce the compact gauge field θ(n) =
agA1(n), which lives on the link that connects neigh-
boring lattice sites, and its conjugate momentum E(n),
which correspond to the electric field. The commutation
relation [θ(n), E(n′)] = igδn,n′ determines the spectrum
of E(n) up to a constant: E(n)/g = L(n)+α. Here, L(n)
denotes the angular operator with integer spectrum and
α ∈ R corresponds to the background electric field. Any
of the integer eigenvalues p ∈ Z of the angular operator
L(n) corresponds to an irreducible one-dimensional rep-
resentations of the U(1) gauge group. One of the main
goals of this paper is to investigate how one can deal
with this infinite number of representations in numerical
simulations, this is treated in more detail in subsections
III A and III B.

In this formulation the gauged spin Hamiltonian de-
rived from the Lagrangian density Eq. (1) reads (see
[9, 38] for more details):

H =
g

2
√
x

(∑
n∈Z

1

g2
E(n)2 +

√
x

g
m
∑
n∈Z

(−1)nσz(n)

+x
∑
n∈Z

(σ+(n)eiθ(n)σ−(n+ 1) + h.c.)

)
(2)

where σ± = (1/2)(σx ± iσy) are the ladder operators.
Here we have introduced the parameter x as the inverse
squared lattice spacing in units of g: x ≡ 1/(g2a2). The
continuum limit then corresponds to x → ∞. Notice
the different second (mass) term in the Hamiltonian for
even and odd sites which originates from the staggered
formulation of the fermions.

In the time-like axial gauge the Hamiltonian is still in-
variant under the residual time-independent local gauge
transformations generated by:

gG(n) =E(n)− E(n− 1)− g

2
(σz(n) + (−1)n) . (3)

As a consequence, if we restrict ourselves to physi-
cal gauge invariant operators O, with [O,G(n)] = 0,
the Hilbert space decomposes into dynamically discon-
nected superselection sectors, corresponding to the dif-
ferent eigenvalues of G(n). In the absence of any back-
ground charge the physical sector then corresponds to
the G(n) = 0 sector. Imposing this condition (for every
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n) on the physical states is also referred to as the Gauss
law constraint, as this is indeed the discretized version
of ∂zE − ρ = 0, where ρ is the charge density of the
dynamical fermions.

The other superselection sectors correspond to states
with background charges. Specifically, if we want to con-
sider two probe charges, one with charge −gQ at site mL

and one with opposite charge +gQ at site mR, we have
to restrict ourselves to the sector:

gG(n) = gQ(δn,mL
− δn,mR

) . (4)

Notice that we consider both integer and non-integer
(fractional) charges Q.

As in the continuum case [36], we can absorb the probe
charges into a background electric field string that con-
nects the two sites. This amounts to the substitution
E(n) = g[L(n) +α(n)] where α(n) is only nonzero in be-
tween the sites: α(n) = −QΘ(0 ≤ n < k); and L(n) has
an integer spectrum: L(n) = p ∈ Z. In terms of L(n) the
Gauss constraint now reads:

G(n) = L(n)− L(n− 1)− σz(n) + (−1)n

2
= 0 , (5)

and we finally find the Hamiltonian:

H =
g

2
√
x

(∑
n∈Z

[L(n) + α(n)]2 +

√
x

g
m
∑
n∈Z

(−1)nσz(n)

+x
∑
n∈Z

(σ+(n)eiθ(n)σ−(n+ 1) + h.c.)

)
, (6)

in accordance with the continuum result of [37]. For our
purpose we consider the Schwinger model in the ther-
modynamic limit in a uniform electric background field
(α(n) = α,∀n), hence the Hamiltonian reads

Hα =
g

2
√
x

(∑
n∈Z

[L(n) + α]2 +

√
x

g
m
∑
n∈Z

(−1)nσz(n)

+x
∑
n∈Z

(σ+(n)eiθ(n)σ−(n+ 1) + h.c.)

)
. (7)

Note that we explicitly denoted the α−dependence in
Hα.

B. Phase diagram and single-particle spectrum for
the Schwinger model

Before turning our attention to the numerics, we briefly
discuss the phase diagram and the the single-particle
spectrum that we can expect for the Schwinger model.
This is based on analytical studies in the weak-coupling
limit (m/g � 1) and the strong-coupling limit (m/g �
1), numerical studies in the non-perturbative regime in
earlier studies and also the new results that are discussed

in detail in Sec. IV. In units g = 1, there are two free
parameters: m/g and α. Moreover, the model is peri-
odic in α with period 1 and physics for α ∈ [0, 1/2[ can
be mapped to physics for α ∈ [1/2, 1] by the following
transformation:

L(n)→ −1− L(n+ 1), θ(n)→ −θ(n+ 1), (8a)

σ±(n)→ σ∓(n+ 1), σz(n)→ −σz(n+ 1). (8b)

Indeed, under this transformation we find that Hα is
mapped to H1−α. For α = 1/2, it follows that this is
actually a symmetry of the Hamiltonian: the so-called
CT symmetry (‘C’ charge conjugation, ‘T’ translation
over one site). As we discuss below, this symmetry plays
a special role as there is a critical value (m/g)c of (m/g)
above which this symmetry is spontaneously broken.
Also, for α = 0 the Hamiltonian has also a CT symmetry
but now with L(n)→ −L(n+ 1) instead of eq. (8a). In
this case, this symmetry is not spontaneously broken for
all values of m/g.

For m/g = 0, the model is exactly solvable and
can be mapped to a Klein-Gordon field describing the
so-called Schwinger boson with mass g/

√
π. Historically,

this was the main motivation why Schwinger considered
this model [34]: the model is an example where a
massless gauge field, the photon, acquires mass [71] and
as such it was in fact a pioneer for the Higgs mechanism.

When m/g = 0, physics is independent from α. In
contrast, when m/g 6= 0 it does depend on α. The cases
α = 0 and α = 1/2 are somehow special as the model
exhibits in that case the CT symmetry. Therefore,
we first discuss the more generic case 0 < α < 1/2,
afterwards we treat the cases α = 0 and α = 1/2.

1. The case 0 < α < 1/2. In mass perturbation
theory [37, 52], m/g � 1, there are two single-particle
excitations for α ≤ 0.25 [108]. The first single-particle
excitations with energy E1 corresponds to the Schwinger
boson in the limit m/g → 0 while the second single-
particle excitation with energy E1 is easiest interpreted
as a bound state of two Schwinger bosons. When
α ≥ 0.25, the energy for the second eigenvalue becomes
larger than or equal to 2E1 and, therefore, it is not stable
anymore. On the other hand, in the weak-coupling limit
(m/g � 1) the number of single-particle excitations
grows approximately with (m/g)2/(1/2−α) for α < 1/2
[37].

As we see in Sec. IV, the behavior in the non-
perturbative regime (m/g ∼ O(1)) interpolates between
the strong- and the weak-coupling limit. For m/g . 0.3
we find the existence of a value αc below which there
are two single-particle excitations and above which
there is only one single-particle excitation. This value
of αc comes closer to 1/2 when m/g increases. When
m/g & 0.5 we find that there are at least three
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single-particle excitations for α < 0.5. Furthermore, our
simulations suggest that the number of stable excitations
increases when α tends to 1/2, although this should
be confirmed by other studies. This would then agree
qualitatively with the behavior in the weak-coupling
limit.

2. The case α = 0. For α = 0 the Hamilto-
nian has the CT symmetry Eq. (8), but where now
L(n) → −L(n + 1). Numerical simulations [19, 23, 62]
pointed out that, for all values of m/g, this symmetry
is not spontaneously broken. As a consequence, the
energy eigenstates are divided into vector excitations,
which flip sign under a CT transformation, and scalar
excitations, which are invariant under CT . The ground
state and the second single-particle excitation with
energy E2 behaves as a scalar under CT , while the
first single-particle excitation with energy E1 transforms
as a vector under CT . Furthermore, there is another
single-particle excitation with energy E3. This excitation
is best interpreted as a bound state of the excitations
with energy E1 and E2. For m/g . 0.3, we found that
this vector excitation is only stable due to symmetry
considerations (a vector excitation cannot decay into
two vector excitations) and, hence, disappears form the
single-particle spectrum for α 6= 0. Similar to the case
α > 0, the number of scalar and vector single-particle
excitations grows with (m/g)2 when m/g is large.

3. The case α = 1/2. As already mentioned be-
fore, for α = 0 the CT transformation Eq. (8) is a
symmetry of the Hamiltonian. Already in 1975, Cole-
man predicted the existence of a critical mass (m/g)c
below which the ground state has the CT symmetry
and above which the CT symmetry is spontaneously
broken [37], see Fig. 1. The most precise value for this
critical mass has been found with MPS simulations by
Byrnes [21–23] and he found that (m/g)c = 0.3335(2).
Byrnes also conjectured that the corresponding phase
transition falls in the university class of the Ising model.
When approaching the phase transition from below,
m/g ≤ (m/g)c, the mass gap decreases and becomes
zero at the phase transition. When m/g ≥ (m/g)c,
the vacuum is two-fold degenerate and the elementary
excitations are kinks connecting these two vacua. They
were also predicted by Coleman [37] and the most precise
estimates for their masses were found by Byrnes [21–23].

C. Gauge invariant MPS

Consider now the lattice spin-gauge system Eq. (7) on
2N sites. On site n the matter fields are represented by
the spin operators with basis {|sn〉n : sn ∈ {−1, 1}}. The
gauge fields live on the links and on link n their Hilbert
space is spanned by the eigenkets {|pn〉n : pn ∈ Z} of the
angular operator L(n). But notice that for our numerical
scheme we only retain a finite range: pmin(n+1) ≤ pn ≤

0 (m/g)
c

∞

m/g

0

1/2

1

α

FIG. 1: The phase diagram of the Schwinger model.
For α = 1/2 there is a phase transition at m/g = (m/g)c
related to the CT symmetry. When m/g < (m/g)c, the
symmetry is not spontaneously broken while for
m/g > (m/g)c the symmetry is spontaneously broken.

pmax(n + 1). We address the issue of which values to
take for pmin(n+ 1) and pmax(n+ 1) in subsection III B.
Furthermore, it is convenient to block site n and link n
into one effective site with local Hilbert space spanned
by {|sn, pn〉n}. Writing κn = (sn, pn) we introduce the
multi-index

κ =
(
(s1, p1), (s2, p2), . . . , (s2N , p2N )

)
= (κ1, . . . , κ2N ).

With these notations we have that the effective site n
is spanned by {|κn〉n}. Therefore the Hilbert space of
the full system of 2N sites and 2N links, which is the
tensor product of the local Hilbert spaces, has basis
{|κ〉 = |κ1〉1 . . . |κ2N 〉2N} and a general state |Ψ〉 is thus
a linear combination of these |κ〉:

|Ψ〉 =
∑
κ

Cκ1,...,κ2N
|κ〉

with basis coefficients Cκ1,...,κ2N
∈ C.

A general MPS |Ψ[A]〉 now assumes a specific form
for the basis coefficients [72]:

|Ψ[A]〉 =
∑
κ

v†LAκ1(1)Aκ2(2) . . . Aκ2N
(2N)vR |κ〉 , (9)

where Aκn
(n) is a complex D(n)×D(n+ 1) matrix with

components [Aκn
(n)]αβ and where vL ∈ CD(1)×1, vR ∈

CD(2N+1)×1 are boundary vectors. The MPS ansatz thus
associates with each site n and every local basis state
|κn〉n = |sn, pn〉n a matrix Aκn(n) = Asn,pn(n). The
indices α and β are referred to as virtual indices, and
D = maxn[D(n)] is called the bond dimension.

To better understand the role of the bond dimension
in MPS simulations it is useful to consider the Schmidt
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decomposition with respect to the bipartition of the lat-
tice consisting of the two regions A1(n) = Z[1, . . . , n] and
A2(n) = Z[n+ 1, . . . , 2N ] [17]:

|Ψ[A]〉 =

D(n+1)∑
α=1

√
σα(n)

∣∣∣ψA1(n)
α

〉 ∣∣∣ψA2(n)
α

〉
. (10)

Here
∣∣∣ΨA1(n)

α

〉
(resp.

∣∣∣ΨA2(n)
α

〉
) are orthonormal unit

vectors living in the tensor product of the local Hilbert
spaces belonging to the region A1(n) (resp. A2(n)) and
σα(n), called the Schmidt values, are non-negative num-
bers that sum to one. One can easily deduce that for a
general MPS of the form Eq. (9) at mostD(n+1) Schmidt
values are nonzero (for the cut at site n Eq. (10)). Hence,
we see that taking a finite bond dimension for the MPS
corresponds to a truncation in the Schmidt spectrum of
a state. The success of MPS is then explained by the
fact that ground states of local gapped Hamiltonians can
indeed be approximated very efficiently in D [12] and
that the computation time for expectation values of lo-
cal observables scales only with D3, allowing for reliable
simulations on an ordinary desktop.

To parameterize gauge invariant MPS, i.e. states that
obey G(n) |Ψ[A]〉 = 0 for every n, it is convenient to
give the virtual indices a multiple index structure α →
(q, αq);β → (r, βr), where q resp. r labels the eigenvalues
of L(n − 1) resp. L(n). In [62] it is proven that the
condition G(n) = 0, Eq. (5), then imposes the following
form on the matrices:

[As,p(n)](q,αq),(r,βr)
= [aq,s(n)]αq,βr

δq+(s+(−1)n)/2,rδr,p,

(11)
where αq = 1 . . . Dq(n), βr = 1 . . . Dr(n + 1). The first
Kronecker delta is Gauss’ law, G(n) = 0, on the vir-
tual level while the second Kronecker delta connects the
virtual index r with the physical eigenvalue p of L(n).
Because the indices q (resp. r) label the eigenvalues of
L(n − 1) (resp. L(n)) and we only retain the eigenval-
ues of L(n− 1) in the interval Z[pmin(n), pmax(n)] (resp.
of L(n) in the interval Z[pmin(n + 1), pmax(n + 1)]), we
have that Dq(n) = 0 for q > pmax(n) and q < pmin(n).
The formal total bond dimension of this MPS is D(n) =∑pmax(n)
q=pmin(n)

Dq(n), but notice that, as Eq. (11) takes a

very specific form, the true variational freedom lies within
the matrices aq,s(n) ∈ CDq(n)×Dr(n+1).

Gauge invariance Eq. (5) is of course also reflected in
the Schmidt decomposition Eq. (10): for states of the
form Eq. (11) the Schmidt values can be labeled with
the same double index α → (q, αq). More specifically,
the Schmidt decomposition Eq. (10) now reads:

|Ψ[A]〉 =

pmax(n+1)∑
q=pmin(n+1)

Dq(n+1)∑
αq=1

√
σq,αq

(n)
∣∣∣ψA1(n)
q,αq

〉 ∣∣∣ψA2(n)
q,αq

〉
.

(12)

Another advantage of MPS simulations is that one can
work directly in the thermodynamic limit N → ∞, see

[73–75], bypassing any possible finite size artifacts. In
the following we work in this limit. As in this limit
the Hamiltonian is invariant under translations over two
sites, aq,s(n) only depends on the parity of n. In partic-
ular it follows that the MPS ansatz eqs. (9) and (11),
depends on a finite number of parameters. Similar as in
[64] we block site 2n− 1 and 2n into one effective site n.
Hence, the MPS ansatz for the ground state reads:

|Ψ[a]〉 =
∑
κ

v†L

(
N∏
n=1

Aκ2n−1,κ2n

)
vR |κ〉 , (13a)

(N → +∞) with

[As1,p1,s2,p2 ](q,αq);(r,βr) = δp1,q+(s1−1)/2δp2,q+(s1+s2)/2

δp2,r[aq,s1,s2 ]αq,βr
(13b)

where [aq,s1,s2 ]αq,βr
∈ CDq×Dr (Dq = Dq(1)); s1, s2 =

±1 and q, p2 ∈ Z[pmin, pmax] (pmin/max = pmin/max(1)).

Finally, we note that, in the thermodynamic limit, the
expectation values of local observables are independent
of the boundary vectors vL and vR.

D. TDVP for ground state

The Time-Dependent Variational Principle (TDVP),
introduced in [76], provides a tool to evolve the
Schrödinger equation (SE) within a variational mani-
fold in a global optimal way. Starting from the action
principle for the SE, applying the Euler-Lagrange equa-
tions with respect to the variational parameters gives the
TDVP equations. They have also a nice geometric inter-
pretation [77]. Note that recently it has been shown that
the TDVP unifies a lot of optimization methods for MPS
such as the Density Renormalization Group algorithm
and the infinite Time Evolving Block Decimation algo-
rithm [78, 79].
Here we use the framework of [73, 80] to apply the
TDVP to the manifold of MPS of the form Eq. (13) with
a fixed bond dimension. The TDVP replaces the SE,
i∂t |Ψ[A]〉 = Hα |Ψ[A]〉, by

iȧq,s1,s2 = bq,s1,s2 [a], q ∈ Z[pmin, pmax]; s1, s2 ∈ {−1, 1},

where bq,s1,s2 [a] ∈ CDq×Dq+(s1+s2)/2 is a (quite com-
plicated) expression, depending on all aq,s1,s2 ∈
CDq×Dq+(s1+s2)/2 and Hα, which can be computed effi-
ciently [80]. To obtain an MPS approximation |Ψ[a]〉 for
the ground state and the ground-state energy E0,α, the
evolution is performed in imaginary time τ (dτ = idt).
A first-order Euler algorithm yields the following update-
scheme

aq,s1,s2(τ + dτ) = aq,s1,s2(τ)− bq,s1,s2 [a(τ)]dτ. (14)

Starting from an initial guess aq,s1,s2(0) and after suf-
ficient iterations with |dτ | � 1, this scheme provides
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the aq,s1,s2 that yields the optimal MPS approximation
|Ψ[a]〉 of the ground state of Hα within the class of states
Eq. (13). Note that although the TDVP equation does
not yield a steepest descent in parameter space, it pro-
duces the best approximation to a gradient descent in
the full Hilbert space. In particular, we can also com-

pute η =
√〈

Φ[b, a]|Φ[b, a]
〉
, with

|Φ[b, a]〉 =
d

dτ
|Ψ[a+ bτ ]〉

∣∣∣∣∣
τ=0

,

which yields a notion of the norm of the gradient in full
Hilbert space. In our computations we halt the algorithm
when η = 10−9. Due to the infinite size of the lattice,
2N → +∞, the ground-state energy is infrared divergent:

E0,α = 2N Ẽ0,α, (15)

with Ẽ0,α the finite energy per site which can be obtained
from the TDVP algorithm. Finally, we note that this
steepest descent can also be extended to a naive varia-
tional conjugate gradient method, see [81] for an exam-
ple.

E. Rayleigh-Ritz for single-particle excitations

In the previous section we discussed how one can use
the TDVP to find an optimal MPS approximation |Ψ[a]〉,
Eq. (13), for the ground state of Hα. For the single-
particle excitations with momentum k ∈ [−π

√
x, π
√
x]

we now use the ansatz [80]:

|Φk[b, a]〉 =

N∑
n=1

e2ikn/
√
x

∑
{ζn}

v†L

(∏
m<n

Aζm

)
Bζn

(∏
m>n

Aζm

)
vR |ζ〉 , (16a)

where ζm = (κ2m−1, κ2m) = (s2m−1, p2m−1, s2m, p2m),
sk ∈ {−1, 1}, pk ∈ Z[pmin, pmax]; |ζ〉 = |ζ1, . . . , ζN 〉
and Aζ corresponds to the ground state Eq. (13) of Hα.
Gauge invariance is imposed by

[Bs1,p1,s2,p2 ](q,αq);(r,βr) = δp1,q+(s1−1)/2δp2,q+(s1+s2)/2

δp2,r[bq,s1,s2 ]αq,βr
(16b)

with bq,s1,s2 ∈ CDq×Dr .

The ansatz is an extension of the Feynman-Bijl ansatz
[82, 83], the single mode approximation [84] and the

Rommer-Östlund ansatz [85] for single-particle excita-
tions to the thermodynamic limit. Motivated by [86, 87],
where it is proven that the momentum-k eigenstates with
energy separated from the rest of the spectrum in that
momentum sector can be created by acting with local op-
erators on the vacuum, we expect that the states Eq. (16)

provide a good ansatz for bound states as long as their en-
ergies are separated sufficiently far from the other eigen-
states in their momentum sector.

As the matrices aq,s1,s2 in |Φk[b, a]〉 are already fixed
by the requirement that they correspond to the optimal
approximation Eq. (13) for the ground state of Hα, we
only need to optimize the matrices bq,s1,s2 such that〈

Φk[b, a]|Hα|Φk[b, a]
〉〈

Φk[b, a]|Φk[b, a]
〉

is minimal with the requirement that |Φk[b, a]〉 is orthog-
onal to |Ψ[a]〉. As the ground-state energy is infrared
divergent, see Eq. (15), we subtract its contribution from
Hα, i.e. we consider Hα ← Hα − E0,α. As discussed in
[80], this boils down to a generalized eigenvalue equation
of the form

Heff (k) · b = E(k) Neff (k) · b (17)

with b the vector containing all the elements bq,s1,s2 for
q ∈ Z[pmin, pmax], sk ∈ {−1, 1}. Here Heff and Neff
are expressions depending on Hα and aq,s1,s2 for which
the action on b can be computed efficiently. Hence, using
an iterative eigenvalue solver we obtain approximations
|Φk[b, a]〉 for the low-energy eigenstates with momentum
k and their energies E(k).

III. FROM MPS TO FIELD EXPECTATION
VALUES

To obtain ground state expectation values and excita-
tion energies for the Schwinger model, we have two tasks:

T1. Computing reliable MPS approximations for the
ground state and single-particle excitations for sev-
eral values of the lattice spacing 1/g

√
x.

T2. Extrapolating the results at non-zero lattice spac-
ing to the continuum limit x→ +∞.

For T1, we compute MPS approximations of
the form eqs. (13) and (16) to the ground
state and the single-particle excitations for x =
{9, 16, 25, 36, 50, 60, 75, 90, 100}. These are then used to
compute the expectation values. However, as already
noted, these MPS approximations are an effective trun-
cation in the Schmidt spectrum associated to a half chain
cut of the lattice and we only recover the exact ground
state in the limit Dq → +∞ and pmax → +∞, see
Eq. (12). In subsection III A, we develop a systematic
way to choose Dq and pmax according to the distribution
of the Schmidt values among the eigenvalue sectors q of
L(n). Then we assign an error on our results, originating
from taking finite values for Dq and pmax. We show that
our results are reliable up to 10−6 for the ground state
expectation values and up to order 10−3 for the energies
of the single-particle excitations. In subsection III B, we
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perform a detailed analysis on how the needed number of
variational parameters changes (i.e., Dq and pmin/max) as
a function of α and m/g. In particular, we find that this
number grows when approaching the continuum limit and
the phase transition. However, even close to these limits
we are still able to obtain accurate results with a manage-
able number of parameters. Moreover, we argue that we
only need to retain a small number of irreducible repre-
sentations of the U(1) group which represent the Hilbert
space of the gauge fields.

T2 is performed in subsection III C. We ex-
plain there how to extrapolate the results for
x = 9, 16, 25, 36, 50, 60, 75, 90, 100 to the continuum
limit by fitting the data against polynomials in 1/

√
x

and assign a proper error to our results originating
from the choice of fitting interval and fitting function.
As a check, we perform for m/g = 0.125 an indepen-
dent continuum extrapolation by using the results for
x = 90, 100, 150, 200, 250, 300, 350, 400 and show that
the continuum estimates are in agreement with the ones
obtained from x = 9, 16, 25, 36, 50, 60, 75, 90, 100.

The results for α = 0 have already been ob-
tained in [62]. Here, we perform computations for
α = 0.05, 0.10, 0.15, 0.20, . . . , 0.40, 0.45, 0.47, 0.48, 0.50
and use interpolating fits to obtain the results for
α ∈ [0, 1/2]. The results for all values of α follow from
the CT transformation Eq. (8) and periodicity in α with
period 1, see subsection II B.

The observables that are considered here are
the ground-state energy per unit of length√
xE0,α/2N =

√
x 〈Hα〉0 /2N , the electric field

Eα = 〈E〉0, the chiral condensate Σα =
〈
ψ̄ψ
〉
0

and the axial fermion current density Γ5
α = i

〈
ψ̄γ5ψ

〉
0
.

Here 〈. . .〉0 denotes the expectation value with respect
to the ground state of Hα. We refer to Eq. (A.1)
in appendix A 1 for the discretized versions of these
quantities.

Both the electric field and the axial fermion current
density transform as vectors under a CT transforma-
tion. Hence, they serve as an order parameter for the
spontaneous symmetry breaking of the CT symmetry
at α = 1/2. Also, as for α = 0 the CT symmetry is
not spontaneously broken, they are then always zero:
Eα=0 = Γ5

α=0 = 0. Finally, we note that these quan-
tities are UV-finite.

The chiral condensate is a scalar under the CT trans-
formation. Note however that, for m/g 6= 0, the chiral
condensate is a UV-divergent quantity. In [20, 63] it is
shown that for α = 0 this divergence originates from
the free chiral condensate (i.e. the chiral condensate for
g = 0). Here we remove the divergence by subtracting
the chiral condensate for α = 0, i.e. we consider

∆Σα = Σα − Σα=0,

which is also UV finite. The energy per unit of length is

-4 -3 -2 -1 0 1 2 3 4

q

10
-20

10
-10

10
0

σq,αq

ǫ = 2.5× 10
−17

(a)

-4 -3 -2 -1 0 1 2 3 4

q

10
-20

10
-10

10
0

σq,αq

(b)

FIG. 2: m/g = 0.3, x = 100, α = 0.4. Dq is chosen such
that the smallest Schmidt values in each eigenvalue
sector of L(n) equals approximately ε = 2.5× 10−17.
We have set everywhere pmin = −pmax. (a) pmax = 3.
(b) pmax = 4.

UV divergent as well, and similar as for the chiral con-
densate, we obtain a UV-finite quantity by considering
the so-called string tension σα:

σα =
√
x

(
E0,α − E0,α=0

2N

)
.

This nomenclature stems from the investigation of con-
finement where σα indeed corresponds to the string ten-
sion (asymptotic force per unit of length) between an
external quark-antiquark pair with charge α [36, 64].

Finally, we will consider the energy of the excited states
(with respect to the ground-state energy), obtained via
the method in subsection II E. The energies are denoted
by E1,α, E2,α, . . . with E1,α ≤ E2,α ≤ . . .

A. The limits Dq → +∞ and pmax → +∞

1. Ground state

Here we discuss how to fix Dq and pmax in the numer-
ical simulations and estimate the errors that this intro-
duces. Taking a finite bond dimension Dq corresponds
to a truncation in the Schmidt decomposition Eq. (12):

|Ψ[a]〉 =

pmax∑
q=pmin

Dq∑
αq=1

√
σq,αq

∣∣∣ψA1(2n)
q,αq

〉 ∣∣∣ψA2(2n)
q,αq

〉
(18)

where we take into account translation invariance over
two sites and where the half-chain cut is taken between
an even site and an odd site.

The distribution of Dq is chosen by looking at the
Schmidt coefficients σq,αq

and demanding that the
smallest coefficients of each sector approximately equal
a preset tolerance ε. In Fig. 2 we show this for an
example with ε = 2.5× 10−17. Furthermore, a particular
choice of pmin and pmax implies taking Dq = 0 for
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q /∈ Z[pmin, pmax] and, hence, also corresponds to a
truncation in the Schmidt spectrum. Similarly as in
Fig. 2, we find in general the relevant eigenvalues sectors
of L(n) to be centered around p0 = 0 for |α| . 0.5.
Physically this is explained by the first term in the
Hamiltonian Eq. (7) which punishes large expectation
values for the electric field. The largest Schmidt value
in each q-sector decreases as we move farther away from
q = p0. For instance, from Fig. 2b we clearly observe
that the eigenvalue sectors q = ±4 are redundant for
ε = 2.5 × 10−17, i.e. ∀αq = 1 . . . Dq : σq,αq ≤ ε for
|q| ≥ 4. In general, we found for |q| & 5 that all the
Schmidt values σq,αq were sufficiently small, even when
approaching the continuum limit, and we could safely
take Dq = 0 for these values of q.

From Eq. (18) it is clear that by taking smaller
and smaller values for ε, the threshold below which we
discard the Schmidt values in Eq. (18), our MPS approx-
imation |Ψ[a]〉 becomes closer to the real ground state.
As our reference state we take the MPS approximation
|Ψ[a0]〉 with

ε = 2.5× 10−17 and pmax = −pmin = 4. (19a)

To check whether this value for ε is sufficiently small, we
perform additional simulations with resp.

ε = 2.5× 10−17 and pmax = −pmin = 3, (19b)

ε = 10−16 and pmax = −pmin = 4, (19c)

ε = 10−16 and pmax = −pmin = 3 (19d)

leading to the MPS approximations resp. |Ψ[a1]〉,
|Ψ[a2]〉, and |Ψ[a3]〉 and check how the results differ
among the simulations.

The observables of interest take the form

O =

N−1∑
n=1

T 2n−2oT−2n+2,

where o is an operator with support on the effective sites
1 and 2 (consisting of the physical sites and links 1, 2, 3, 4)
and T is the translation over one site. For the expectation
value per site O[a] with respect to |Ψ[a]〉 we have that

O[a] =
1

2N
〈Ψ[a]|O|Ψ[ā]〉 = tr (ρ2[a] · o) (20)

where ρ2 is the two-site reduced density matrix of |Ψ[a]〉
(see Appendix B for the details). As is shown in Ap-
pendix B, gauge invariance of O, [O,G(n)] = 0, implies
that

O[a] = tr (ρ2[a] · o) =

pmax∑
q=pmin

tr (ρ2,q[a] · oq) (21)
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FIG. 3: m/g = 0.125, x = 25, 100, 400. (a) ∆ρ2
(defined in Eq. (23) as the differences in the two-site
reduced density matrices between the MPS result
|Ψ[a0]〉 and the other MPS approximations |Ψ[an]〉
(n ≥ 1) with less precision) as a function of α. (b)
Variance ∆E0,α of Hα, Eq. (24), with respect to the
MPS approximation |Ψ[a0]〉 of the ground state.

where ρ2,q[a] and oq can be found in Eq. (B.2) in Ap-
pendix B.

When comparing the expectation values of two dif-
ferent MPS approximations |Ψ[a]〉 and |Ψ[a′]〉 for the
ground state (aq,s1,s2 ∈ CDq×Dq+(s1+s2)/2 , a′q,s1,s2 ∈
CD

′
q×D

′
q+(s1+s2)/2), we note that Hölder’s inequality im-

plies that

|O[a]−O[a′]|

≤

(
pmax∑
q=pmin

∣∣∣∣∣
∣∣∣∣∣ρ2,q[a]− ρ2,q[a′]

∣∣∣∣∣
∣∣∣∣∣
1

)
·
(

max
pmin≤q≤pmax

||oq||∞
)
(22)

where || · ||m denotes the m−Schatten norm of the opera-
tor (i.e., the m-norm of the vector containing the singular
values). For the local variables of interest (e.g., electric
field, energy,. . .) ||oq||∞ is bounded by a polynomial in q,
see Appendix B. Hence,

∆ρ2[a, a′] =

pmax∑
q=pmin

∣∣∣∣∣
∣∣∣∣∣ρ2,q[a]− ρ2,q[a′]

∣∣∣∣∣
∣∣∣∣∣
1

is a good measure to compare two different MPS approx-
imations |Ψ[a]〉 and |Ψ[a′]〉 for the same ground state.

Now, from the MPS approximations |Ψ[a0]〉, |Ψ[a1]〉,
|Ψ[a2]〉, and |Ψ[a3]〉, see Eq. (19), we compute the re-
duced density matrices ρ2[a0], ρ2[a1], ρ2[a2] and ρ2[a3].
This enables us to compute the quantity

∆ρ2 = max
n=1,2,3

(
pmax∑
q=pmin

∣∣∣∣∣
∣∣∣∣∣ρ2[an]− ρ2[a0]

∣∣∣∣∣
∣∣∣∣∣
1

)
, (23)

which is shown in Fig. 3a for m/g = 0.125, x =
25, 100, 400 and 0.05 ≤ α ≤ 0.5. In all cases ∆ρ2 is
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of order 10−8 or smaller. This is in fact what we would
expect because taking ε . 10−16 corresponds to discard-
ing in the Schmidt decomposition Eq. (12) terms with
norm smaller than

√
ε . 1× 10−8.

We can also compute the variance of Hα with respect
to |Ψ[a]〉,

∆E0,α[a] =
1√
2N
||Hα |Ψ[a]〉 − E0,α |Ψ[a]〉||

=

√
1

2N

〈
Ψ[ā]

∣∣∣(Hα − E0,α)
2
∣∣∣Ψ[a]

〉
(24a)

with

|| |Ψ〉 || =
√
〈Ψ|Ψ〉, (24b)

which is also a good measure to quantify how good our
MPS approximates the real ground state. The compu-
tation of ∆E0,α[a] can be done efficiently using conven-
tional MPS techniques [88]. In Fig. 3b we show ∆E0,α
for m/g = 0.125 which equals

∆E0,α = |∆E0,α[a0]| (24c)

with a0 corresponding to the MPS ground-state ap-
proximation |Ψ[a0]〉, see Eq. (19a). Although this
quantity is of order 10−6 or smaller, it is two order of
magnitudes larger than ∆ρ2, see Fig. 3a. This is no
contradiction because ∆E0,α[a] involves the computation
of the expectation value of H2

α which is not a local
operator and, hence, cannot be computed as in Eq. (21).

We conclude that the TDVP simulations with
pmax = −pmin = 4 and ε = 2.5 × 10−17 provides
us faitfhul MPS approximations for the real ground state
of Hα.

2. Single-particle excitations

As explained in subsection II E, once we have an MPS
approximation |Ψ[a]〉 for the ground state of Hα, we can
use the ansatz |Φk[b, a]〉, see Eq. (16), to approximate
the momentum-k excitations. As the Schwinger model
is Lorentz invariant (in the continuum limit) the excita-
tion energies E(k) of the states with momentum k can
be obtained from the ones with zero momentum by the
Einstein dispersion relation E(k) =

√
E(0)2 + k2. There-

fore we restrict ourselves to the zero-momentum states
(k = 0).

Not all the solutions of the generalized eigenvalue equa-
tion Eq. (17) correspond to single-particle excitations.
For instance, the generalized eigenvalue equation Eq. (17)
also gives solutions that correspond to multi-particle ex-
citations. Note however, that it is clear that an ansatz
of the from Eq. (16) is not suited for these type of ex-
citations, and, hence, that the solution of Eq. (17) gives
in fact the overlap of a state of the from Eq. (16) with a

n (ε, pmax) E(n)1,α E(n)2,α E(n)3,α

0 (2.5× 10−17, 4) 0.75333 1.40854 1.631

1 (2.5× 10−17, 3) 0.75332 1.40849 1.629

2 (10−16, 4) 0.75323 1.40849 1.641

3 (10−16, 3) 0.75323 1.40850 1.639

Em,α 0.75333 1.40854 1.631

δEm,α 1.0× 10−4 5.3× 10−5 1.0× 10−2

∆Em,α 6.2× 10−3 3.0× 10−2 0.38

TABLE I: m/g = 0.125, α = 0.15, x = 400. We
compare the three lowest eigenvalues E1,α, E2,α and E3,α
obtained from the generalized eigenvalue equation
Eq. (17) for different tolerances in our simulations. E1,α
and E2,α correspond to single-particle excitations, while
E3,α originates from a multi-particle state. Indeed, in all
cases we have E3,α > 2E1,α, hence it can decay in two
particles with smaller energy. From the differences

between the E(0)k,α with E(n)k,α we can compute δEm,α,

Eq. (25), which is displayed as well. We also compute
the variance ∆Em,α, Eq. (26). We find that the errors
on E3,α are at least one order in magnitude larger than
the errors on E1,α and E2,α.

multi-particle eigenstate. Therefore, these solutions are
not reliable. For two-particle scattering states an MPS-
ansatz is introduced and discussed in [89].

Let us consider a specific example example from our
simulations to explain how we separate the solutions cor-
responding to single-particle excitations from solutions
corresponding to multi-particle excitations. In table I

we show the three lowest eigenvalues E(n)1,α , E(n)2,α and E(n)3,α

of the generalized eigenvalue equation Eq. (17) where
we started from the MPS approximation |Ψ[an]〉 for the
ground state with ε and pmax = −pmin as in Eq. (19).
As our final result we take the result corresponding
to our simulation for (ε, pmax) = (2.5 × 10−17, 4), i.e.

Em,α = E(0)m,α and an error δEm,α on this result is esti-
mated by comparing it with the energies of the other
simulations:

δEm,α = max
n=1,2,3

|E(n)m,α − E(0)m,α|. (25)

From table I one observes that the energies E1,α and E2,α
are stable under the limit ε→ 0 within an error of 10−4

whereas the error on E3,α is two orders in magnitude
larger.

Note that E3,α ≥ 2E1,α, hence we expect that this en-
ergy corresponds to a state Eq. (17) which has overlap
with a two-particle eigenstate of Hα. On the other hand,
we have that E2,α ≤ 2E1,α and there is no reason why
E2,α should not correspond to a single-particle excita-
tion. In Fig. 4a we show how δEm,α varies for different
values of α. We indeed find that the error on the lowest
eigenvalue E1,α does not significantly change as a func-
tion of α. In contrast, the error on the second eigenvalue
increases. As we discuss in subsection IV, the second
particle with energy E2,α indeed disappears in the multi-
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FIG. 4: m/g = 0.125, x = 400. Measures for the error
in the excitation energies E1,α (red), E2,α (magenta) and
E3,α (green) as a function of α. (a) δEm,α, Eq. (25),
which is obtained by comparing the estimates with
other estimates obtained from simulations with less
precision. (b) The variance ∆Em,α, Eq. (26), of Hα with
respect to our MPS approximation for the excited state.

particle spectrum for α & 0.35, i.e. for α & 0.35 we find
that E2,α ≥ 2E1,α. In general we thus only consider the
solutions (Em,α, |Φ0[bm, a]〉) for which Em,α ≤ 2E1,α.

Similar to Eq. (24), we can also compute the variance
as a measure for the error,

∆Em,α[a] =
1√
2N
||Hα |Φ0[b, a]〉 − Em,α |Φ0[b, a]〉 ||,

(26a)
which can be done efficiently using MPS techniques [88].
Note however, that as this quantity is a sum of negative
and positive terms with comparable magnitude, there can
be relatively large errors in ∆Em,α[a] and this quantity
is very likely to overestimate the error. However it can
at least give a good indication whether |Φ0[b, a]〉 corre-
sponds to an eigenstate of Hα. In Fig. 4b we show

∆Em,α ≡ ∆Em,α[a0] (26b)

for m/g = 0.125 and x = 400 for different values of α.
We indeed find that ∆Em,α correlates with the behavior
of δEm,α, but that it is two orders of magnitude larger
than δEm,α.

In general we found that the errors on the excitation
energies were significantly larger than the ones on the
ground state expectation values but they were still under
control: in general smaller than 10−2 and in most cases
only of order 10−4.

B. Charge sector occupation

In [64] we found that the half-chain Von Neumann en-
tropy,

S = −
∑
q

∑
αq

σq,αq
log(σq,α),

scales as

S ∼ log(ξ
√
x)

with ξ the correlation length and x the inverse lattice
spacing squared, as was predicted by Cardy and Cal-
abrese [90]. Given the fact that for a MPS

|S| . log(D), D =
∑
q

Dq,

we can anticipate that the bond dimension should scale
as

D ∼
(
ξ
√
x
)β
, (27)

for some power β. In particular, when approaching the
continuum limit (x → +∞) or the phase transition for
m/g → (m/g)c and α → 1/2 (ξ → +∞), we expect to
need large Dq. As truncating the eigenvalues of L(n)
between pmin and pmax corresponds to taking Dq = 0
for q /∈ Z[pmin, pmax], one expects that we would also
need larger values for |pmin| and pmax. However, as we
already mentioned, we found for all our simulations that
σq,αq

≤ 2.5 × 10−17 for |q| ≥ 5, implying that pmax = 4
sufficies.

To quantify the weight of each of the eigenvalue sec-
tors of L(n), we consider again the MPS approximation
|Ψ[a0]〉 Eq. (13) for the ground state of Hα obtained by
using the TDVP where

pmax = −pmin = 4 and ε = 2.5× 10−17,

i.e. we have chosen Dq such that the smallest eigenvalue
in each of the sectors equals approximately ε = 2.5 ×
10−17, see Fig. 2. Then we compute the quantity D̃q,

D̃q = #{σq,αq ≥ 10−16 : αq = 1 . . . Dq},

which counts the number of Schmidt values larger than
or equal to 10−16. It is obvious that D̃q gives a good
measure for the weight of each of the eigenvalue sectors
of L(n) in the ground state.

In general, we are interested in expectation values
of local gauge-invariant quantities. To identify the
contribution of each of the eigenvalue sectors of L(n) to
these expectation values, we note that it follows from
Eq. (21) that the contribution of each of the eigenvalue
sectors q of L(n) to the expectation value with respect
to |Ψ[a0]〉 is

tr[ρ2,q[a0] · oq],

which is bounded by (Hölder’s inequality)

|tr[ρ2,q[a0] · oq]| ≤ ||ρ2,q[a0]||1 · ||oq||∞,

where || · ||m denotes the m−Schatten norm of the op-
erator. We refer to Eq. (B.2) in Appendix B for the
explicit expressions of ρ2,q[a0] and oq. There we also
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FIG. 5: m/g = 0.125, α = 0.5. Scaling of D̃q and

||ρ2,q||1 to the continuum limit x→ +∞. (a) D̃q

increases with
√
x in each of the eigenvalue sectors of

L(n), but falls of very fast with |q|. (b) By performing a
polynomial extrapolation of log10(||ρ2,q||1) in 1/

√
x, we

obtain estimates for the continuum value of ||ρ2,q||1 (red
error bars). The green line represents the parabolic fit
through these estimates, Eq. (28), and shows that
||ρ2,q||1 falls of exponentially with q2 in the continuum
limit.

show that for the quantities we are interested in (elec-
tric field, energy,. . .), ||oq||∞ scales at most polynomially
with q. Provided that ||ρ2,q||1 ≡ ||ρ2,q[a0]||1 decreases
fast enough (e.g. exponentially) with q, it follows that
the contribution of the eigenvalue sectors q of L(n) for
large |q| to the ground state expectation values is negli-
gible. Therefore we also investigate the quantity ||ρ2,q||1,
which is the sum of the singular values of ρ2,q[a0].

1. From coarse to fine lattices

Here we investigate the weight of the eigenvalue sectors
of L(n) when approaching the continuum limit 1/

√
x→

+∞. In Fig. 5a we show the needed variational freedom
in each of the sectors for x = 25, 100, 400 corresponding
to the lattice spacings 1/

√
x = 0.2, 0.1, 0.05 in units g =

1. The figure shows that for each of the eigenvalue sectors
q of L(n), Dq increases with

√
x which is in agreement

with Eq. (27).

From Fig. 5b we find that the contribution of the
eigenvalue sectors q of L(n) to local expectation values
decreases very fast with q. The figure suggests that
log(||ρ2,q||1) fits a parabola (note that the scale of
the Y−axis is logarithmic) for all values of x. More-
over, we can even do a polynomial extrapolation of
log10 ||ρ2,q||1 in 1/

√
x using our computations for x =

16, 25, 36, 50, 60, 75, 90, 100, 150, 200, 250, 300, 350, 400,
see Fig. 6a [109]. These continuum estimates are shown
by the red error bars in Fig. 5b. It is clear that they can
be fitted against a quadratic function in q which yields

||ρ2,q||1 ≈ exp(−1.63(5)q2 − 0.84(2)q − 0.1(1)), (28)
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(a) q = 2,m/g = 0.125.
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FIG. 6: α = 0.5. (a) Linear (full line), quadratic
(dashed line) and cubic fit (dotted line) of log ||ρ2,q||1
against 1/

√
x for x ∈ [9, 400] (blue circles). These fits

allows us to obtain an estimate for log ||ρ2,q||1 in the
continuum limit (stars). (b) We show here the
(continuum estimates of) log ||ρ2,q||1 as a function of
the mass gap E1. The mass gaps correspond, in
increasing order, to the fermion masses m/g = 0.3, 0.25
and m/g = 0.125. The value E1 = 0 corresponds to the
phase transition at m/g = (m/g)c ≈ 0.33. We observe
an almost linear behavior (red line) which allows us to
estimate log ||ρ2,q||1 at the phase transition (star).

where the errors on the coefficients are obtained by com-
paring with the same fit through q = −3,−2, . . . , 2, 3.
The parabola Eq. (28) is shown in Fig. 5b with the
green line. For other values of m/g and α, a sim-
ilar result can be obtained from our simulations for
x = 9, 16, 25, 50, 60, 75, 90, 100. Apparently, the dynam-
ical gauge term ∼

∑
nE(n)2 in the Hamiltonian Hα

weights the eigenvalue sectors of L(n) with a Gaussian
in the ground state.

2. Towards the phase transition

Let us now investigate what happens when we ap-
proach the phase transition for (m/g, α) = ((m/g)c ≈
0.33, 1/2). At that point the system becomes gapless
and the correlation length ξ diverges, which leads again
to the need of many variational parameters, see Eq. (27).
Although MPS simulations are hard around the critical
point, we were able to get very close to it. In Fig. 7 we
show D̃q (for x = 100) and ||ρ2,q||1 (in the continuum
limit) for α = 1/2 and investigate their scaling towards
m/g → (m/g)c.

We observe that for (m/g, α) = (0.3, 1/2) and x = 100,

D̃q is large (e.g., D̃0 ≈ 176), but still easily manageable
for a classical computer. In addition, when searching
for the optimal MPS ground-state approximation close
to the critical point, we also need a large amount of it-
erations Eq. (14) to get the norm of the gradient below
η = 10−9. The TDVP takes a few weeks to obtain an
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FIG. 7: α = 0.5. Scaling of D̃q and ||ρ2,q||1 when
approaching the phase transition m/g → (m/g)c ≈ 0.33.

(a) D̃q increases in each of the eigenvalue sectors of
L(n) when getting close to (m/g)c. Fortunately, it falls
off very fast with |q|. (b) By performing a polynomial
extrapolation of log10(||ρ2,q||1) in the mass gap E1, we
obtain an estimate for the value of ||ρ2,q||1 at
m/g = (m/g)c (red error bars). The green line
represent a parabolic fit through these estimates,
Eq. (29), and shows that ||ρ2,q||1 falls off exponentially
with q2 at the phase transition.

optimal ground state. In contrast, for m/g . 0.25 and
α . 0.48 simulations take only a few hours until a day.

In Fig. 7b, we show the continuum estimates of
||ρ2,q||1, obtained from our simulations for x ∈
{16, 25, 36, 50, 60, 75, 90, 100} as in Fig. 6a, for m/g =
0.125, 0.25 and m/g = 0.3. At the critical point, (m/g) =
(m/g)c, the system becomes gapless and it turns out
that we can perform a linear extrapolation in the mass
gap E1. In Fig. 6b, we show log10 ||ρ2,q=2||1 as a func-
tion of the mass gap E1 of the Schwinger model for
m/g = 0.125, 0.25, 0.3 (we refer to subsection III C for
a discussion on how to obtain E1). One observes that
they almost fit a straight line and, hence, we estimate
the value of log10 ||ρ2,q=2||1 at the phase transition by the
section of the linear fit with the (E1 = 0)-axis, see Fig. 6b.
The estimates for ||ρ2,q||1 for (m/g) = (m/g)c are now
shown by the red error bars in Fig. 7b. A parabolic fit
though the points now gives (see green line Fig. 7b)

||ρ2,q||1 ≈ exp
(
−1.60(6)q2 − 0.81(2)q − 0.0(2)

)
, (29)

which is very similar to Eq. (28). This shows that even
at the phase transition we can safely truncate the Hilbert
space of the gauge fields to a relatively small number of
irreducible U(1)-representations.

3. General dependence on m/g and α

When α is sufficiently small the mass gap becomes
larger when ranging from the strong-coupling (m/g � 1)
limit to the weak-coupling limit (m/g � 1) (see subsec-
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FIG. 8: x = 100, α = 0.1. Scaling of D̃q and ||ρ2,q||1
when ranging from the strong-coupling regime
(m/g � 1) to the weak-coupling regime (m/g � 1). (a)

D̃q decreases in each of the eigenvalue sectors of L(n)
with increasing m/g. (b) ||ρ2,q||1 falls of exponentially
with q2 and is almost independent of m/g.

tion IV). For α = 0, we found in [62] that we needed sub-
stantially smaller values of Dq when m/g increases. This
is also what we observe in Fig. 8a for α = 0.1: the num-
ber of Schmidt values above 10−16 decreases when m/g
increases. Note that this is the case for all the eigenvalue
sectors q of L(n). This behavior is observed for all values
of α smaller than 0.4. Furthermore, in Fig. 8b we observe
as before that ||ρ2(q)||1 ∼ exp(−q2). This implies that
the main contribution to the ground state expectation
values comes from the small eigenvalue sectors of L(n).

For a fixed value of m/g, we find in general that we
need more variational freedom when α increases, see
Fig. 9. An explanation is that the mass gap decreases
with increasing α, see subsection IV. In particular, when
α = 1/2, D̃q becomes suddenly very large. Indeed there

is a large difference between D̃q for α = 0.48 and α = 0.5
in Fig. 9a. Here we also find that the contribution to
the local expectation values mainly originates from the
eigenvalue sectors of L(n) with small q, see Fig. 9b, con-
firming the general picture.

In conclusion, the fast decay Eq. (28) and Eq.(29) and the
aforementioned results, implies that for the study of the
Schwinger model we only need to retain a few of the infi-
nite number of U(1)-representations to obtain reliable re-
sults in the continuum limit. From a broader perspective,
this holds optimism for the study of any lattice field the-
ory in the Wilsonian formulation. As the Hamiltonian of
a SU(N) Yang-Mills theory has a quadratic electric field
term [10], generally referred to as the quadratic Casimir
operator, we might expect that the contribution of each
of the irreducible representations of SU(N) to local ex-
pectation values also decays exponentially fast with its
quadratic Casimir invariant. Hence, we expect that also
for these theories we could safely truncate the Hilbert
space of the gauge fields to a relatively small number of
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FIG. 9: m/g = 0.3, x = 100. Scaling of D̃q and ||ρ2,q||1
when varying α. (a) D̃q increases in each of the
eigenvalue sectors of L(n) when α grows. Note also the

difference between the values of D̃q for α = 0.48 and
α = 0.5. (b) ||ρ2,q||1 falls of exponentially with q2.

irreducible representations, not undermining the possi-
bility of performing efficient tensor network simulations.

C. The continuum limit: x→ +∞

In this subsection we discuss how to obtain the con-
tinuum limit of the ground-state expectation values and
excitation energies which we have computed for

x ∈ X1 = {9, 16, 25, 36, 50, 60, 75, 90, 100}. (30a)

In addition we quantify the uncertainty in our result
which originates from the choice of fitting procedure. By
performing a similar independent continuum extrapola-
tion for

x ∈ X2 = {90, 100, 150, 200, 250, 300, 350, 400}, (30b)

we show that our results are robust against the choice
of fitting interval, and in particular, that the chosen
x−range gives reliable continuum extrapolations. Fi-
nally we also check, where possible, our results against
mass-perturbation theory [52] and with the results of
Byrnes [21–23].

In Fig. 10, we show the energy density ε0,α(x) =
E0,α/2N

√
x, the renormalized chiral condensate ∆Σα(x),

the axial fermion current density Γ5
α(x) and the electric

field Eα(x) as a function of the lattice spacing 1/
√
x

(in units g = 1) for m/g = 0.125 and α = 0.4. As
can be observed from the circles in Fig. 10, we have
computed these quantities for the x−values in X1 and
X2, see Eq. (30). As has already been noticed in earlier
studies [19, 21–23, 41, 62–64], these quantities scale
polynomially in 1/

√
x when approaching the continuum

limit x → +∞. Therefore we propose to fit the data

against the following polynomials in 1/
√
x:

f1(x) = A1 +B1
1√
x
, (31a)

f2(x) = A2 +B2
1√
x

+ C2
1

x
, (31b)

and

f3(x) = A3 +B3
1√
x

+ C3
1

x
+D3

1

x3/2
. (31c)

By considering different sets of consecutive x−values
and fitting them to fn (n = 1, 2, 3), we obtain several
estimates for the continuum limit. Similar as in [65],
we take the median of the distribution of all these esti-
mates weighed by exp(−χ2/Ndof ) to obtain a continuum
estimate for each of the fitting functions fn and take
the 15%− 85% confidence interval to assign an error on
this result for the choice of fitting interval. By compar-
ing the different continuum estimates for each of the fn
(n = 1, 2, 3) we obtain also an error for the choice of fit-
ting function. We refer to appendix C for the technical
details and to [65] for an even more extended discussion.

In Fig. 10 we show the fits that determine the contin-
uum estimate (full line and filled circle at 1/

√
x = 0).

One observes that for all the quantities displayed in
Fig. 10, the results are almost on top of each other. Note
that as the error bars are very small, they are not drawn
there. As another check, we show in Fig. 10a that the
continuum estimate of the ground-state energy density
ε0,α is very close to its real result −1/π (dashed line)
within an error of 1 × 10−4 (for x → +∞: Hα/2

√
x be-

comes the Heisenberg XY model).

Fig. 11 shows the same as fig. 10, but now for the en-
ergy E1,α of the first excited state and for different values
of α. One observes now that the slope of E1,α(x) with
respect to 1/

√
x changes as α crosses 0.4. This makes

a continuum extrapolation hard for α = 0.4, see figs.
11c, and, hence, introduces large errors for these values.
Therefore we compute for m/g = 0.125 the excitation
energies for α = 0.42 instead of α = 0.4. Note however
that we do not face this problem for the ground-state ex-
pectation values, see fig. 10, or when α is farther away
from α = 0.4, see figs. 11a and 11d. In particular, we
find that also that the continuum estimates of the exci-
tation energies, obtained independently from the sets X1

and X2, are in agreement with each other.

As another check, we compare in Appedix A 2 our re-
sults with mass perturbation theory and with the results
of [21–23] for α = 0.5. We find that our results agree in
the appropriate regimes and, therefore, we can be confi-
dent that our procedure to obtain a continuum estimate
from the simulations at non-zero lattice spacing 1/

√
x

provides a reliable method. Therefore, we adopt this
method to obtain continuum estimates of ground-state
expectation values and excitation energies from our sim-
ulations with x = 9, 16, 25, 36, 60, 60, 75, 90, 100.
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FIG. 10: m/g = 0.125, α = 0.4. Continuum
extrapolation of ground-state expectation values. The
blue circles are the data for
x = 9, 16, 25, 50, 60, 75, 90, 100 while the green circles
represent the data for x = 150, 200, 250, 300, 350, 400.
The magenta line is the best polynomial fit in 1/

√
x

through the data for
x ∈ X1 = {9, 16, 25, 50, 60, 75, 90, 100} while the yellow
line is the best fit in 1/

√
x through the date for

x ∈ X2 = {90, 100, 150, 200, 250, 300, 350, 400}. The
intersection of these curves with the (1/

√
x = 0)-axis

gives the continuum estimate. In all cases, the
continuum estimates obtained for X1 and X2 are in
good agreement within an error 4× 10−4. (a) Energy
density ε0 and comparison with the exact result −1/π
(dashed line). (b) Renormalized chiral condensate ∆Σα.
Note that the figure confirms that ∆Σα is a UV-finite
quantity and, hence, we have properly renormalized it.
(c) For the axial fermion current density Γ5

α, the cut-off
effects at smaller values of x are more severe and a
higher order polynomial extrapolation is necessary.
Note however that the continuum estimates for x ∈ X1

and x ∈ X2 agree. (d) The electric field Eα.

IV. SINGLE PARTICLE SPECTRUM

Most of the ground-state properties have already
been investigated in the context of confinement [64].
Therefore we present our results in Appendix A 3. Here
we focus on the single-particle spectrum as a function of
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FIG. 11: m/g = 0.125. Similar as Fig. 10 but now the
continuum extrapolation of the mass gap E1 for
different values of α. One observes that the slope of
E1,α(x) with respect to 1/

√
x changes when crossing

α = 0.4. Around α = 0.4 a continuum extrapolation
gives very large errors. Note however that the error
bars from the continuum estimates obtained from
x ∈ X1 and x ∈ X2 do overlap.

α.

As explained in subsection II B, for α = 0, there
are two single-particle excitations with CT = −1 and
energies E1,α, E3,α and one single-particle excitation
with CT = 1 and energy E2,α with the hierarchy
E1,α < E2,α < E3,α, see [62]. For m/g = 0.125, 0.25, 0.3
we have that E1 < E2 + E3 and E3,α > 2E1,α while for
m/g & 0.5 we have E3,α ≤ 2E1,α. This means that for
m/g = 0.125, 0.25, 0.3 the decay of E3,α into two elemen-
tary particles is only prevented by the CT symmetry.
When 0 < α < 1/2, the CT symmetry is broken and this
decay is no longer forbidden. This is indeed what we
observe in the single-particle spectrum: for α > 0, only
the excitations with energy E1,α correspond to single-
particle excitations, see fig. 12(a)-(c). Furthermore, we
observe that the binding energy Ebind = 2E1,α − E2,α
decreases as α tends towards 1/2.

For m/g = 0.125, see fig. 12, the second particle is
stable until α . 0.35. For α = 0.42 our estimates are
E1,α = 0.414(4) and E2,α = 0.852(7), indicating that the
second excited state is unstable against decay into two
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particles with energy E1,α: E2,α > 2E1,α. When α ≥ 0.35
we have E2,α(x) > 2E1,α(x) for all the x−values we used.
We conclude that there are two single-particle excitations
for α . 0.35 and only one single-particle excitation for
α & 0.42. This agrees qualitatively with mass perturba-
tion theory, m/g � 1, where there are two single-particle
excitations for α ≤ 1/4 and one single-particle excitation
for 1/4 < α ≤ 1/2 [37].

For m/g = 0.25, see fig. 12b, our estimates for the
energy E2,α were unstable against variation of the bond
dimension D for α ≥ 0.48. The errors on E2,α were too
large and prevent an extrapolation towards x =∞. Nev-
ertheless, in our simulations we have E2,α(x) < 2E1,α(x)
for all our x−values and the fact that E2,α(x) decreases
as the bond dimension increases might suggest that this
particle is still stable but with very small binding en-
ergy. For α = 1/2, the ground state is CT invariant
for m/g ≤ (m/g)c allowing us to classify the excitations
according to their CT -number with the method similar
as in [62]. We compute the excitation energies with and
without classifying the states according to their CT num-
ber for (m/g, α) = (0.25, 1/2). In both cases, we found
only one single-particle excitation. In the vector sector
(CT = −1) all other states have energies that are larger
than 3E1,α and in the scalar sector (CT = 1) the energies
were larger than 2E1,α. This corresponds to a theory with
one single-particle excitation. Therefore we estimate the
value of the electric background field where the second
elementary particle disappears to be larger than 0.47 but
smaller than 0.5 for m/g = 0.25.

A similar picture arises for m/g = 0.3, see Fig. 12c.
Here we estimate that the second elementary particle
disappears between α = 0.48 and α = 0.5. One also
observes that the mass gap decreases as we approach
the phase transition (m/g, α) → ((m/g)c, 1/2): for
(m/g, α) = (0.3, 1/2) our estimate for the mass gap is
E1,α = 0.0527(5).

We conclude that for m/g ≤ (m/g)c and relative small
values of α there are two single-particle excitations with
energies E1 and E2. Above a certain value of α, the ex-
citation with energy E2 does not correspond to a single-
particle excitation anymore and, hence, disappears in the
continuum of the spectrum. This mechanism is best un-
derstood as the binding energy of the second excited state
becoming too small to be stable against a decay into two
elementary particles with smaller energy. Not surpris-
ingly, we find that when approaching the phase transition
that the mass gap becomes smaller. In particular, when
m/g is close to the critical mass, the mass gaps decreases
more suddenly when approaching α = 1/2 compared to
the more smooth behavior for m/g = 0.125.

This picture changes for m/g ≥ (m/g)c. For instance,
form/g = 0.5 we have for all values of α that E3,α < 2E1,α
and thus at least three single-particle excitations exist,
see Fig. 12d. When α → 1/2 we observe that the dif-
ference between the energies E1,α, E2,α and E3,α becomes
smaller. This results in the fact that the ansatz Eq. (16)
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FIG. 12: Energy of the single-particle excitations as a
function of α for different values of m/g. The energy
E1,α of the first single-particle excitation is shown with
a green line, the energy E2,α of the second single
particle excitation is shown with a red line and the
energy E3,α of the third single-particle excitation is
shown with a blue line. The yellow line shows the
continuum spectrum consisting of multi-particle states
with energy larger than 2E1,α. For m/g = 0.125, 0.25,
0.3 the excitation with energy E3,α corresponds only to
a single-particle excitation for α = 0 and α = 1 (blue
star).

is less accurate in approximating the single-particle exci-
tations. Indeed, for α ≥ 0.45 we observe large error bars
for E3,α. Anyway, we found that E1,α, E2,α and E3,α were
stable for all values of x. Furthermore, for α ≥ 0.45 we
found even a fourth solution to the eigenvalue problem
Eq. (16) that might correspond to a single-particle ex-
citation. However, because its energy was very close to
2E1,α the errors on this energy using the ansatz Eq. (16)
for fixed values of x were too large to obtain a reliable
continuum estimate.

Our results thus show that the spectrum of m/g = 0.5
differs from the spectrum for m/g ≤ (m/g)c. For
α = 1/2, due to spontaneous symmetry breaking of the
CT symmetry, there are two vacua and kink excitations
which connect these two vacua [21–23]. Local excita-
tions constructed on top of one of the two vacua are
scattering states containing an equal number of kinks
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and antikinks. Away from α = 1/2, the CT symme-
try is explicitly broken and only one of the two vacua
survives as ground state, while individual kinks do no
longer exist. The splitting in energy density between the
two vacua acts as a linear attractive potential between
kink-antikink pairs. As such, the elementary excitations
on top of the ground state that we observe for α close to
1/2, such as those with energies E1,α, E2,α, E3,α, emerge as
remnant of the symmetry breaking and can be thought
of as kink-antikink bound states stabilized by the attrac-
tive interaction. As α → 1/2, the slope of the potential
decreases and more and more bound states come closer
together in the spectrum, below our limit of energy reso-
lution, and finally make up the kink-antikink continuum
for α = 1/2.

V. CONCLUSIONS

In this paper we presented an overview of the low-
energy properties of the Schwinger model in terms of the
fermion mass m/g and the electric background field α,
complementing earlier studies [21–23, 37, 52] for α = 0
and α = 1/2 with numerical MPS-simulations for α ∈
[0, 1/2]. We also investigated in great detail the influence
of truncating the infinite dimensional Hilbert space of the
gauge fields by quantifying the contribution of each of the
irreducible U(1)-representations to ground state expec-
tation values. The conclusion is that, even close to the
continuum limit and a phase transition, this contribution
falls of exponentially with the quadratic Casimir invari-
ant of the representation. We expect the same conclusion
to hold for any SU(N) Yang-Mills gauge-theory, that is,
that the infinite Hilbert space of the gauge fields poses no
obstacle to study Yang-Mills theories in the Hamiltonian
framework by means of tensor network methods.

However, there are still formidable challenges for the
TNS framework to overcome: possibly the biggest one is
going to higher dimensions. The generalization of MPS
to higher dimensions are the Projected Entangled-Pair
States (PEPS) [91]. Although some interesting studies
of gauge theories with PEPS have appeared [92–96], at
present, the need for a large number of variational free-
dom when approaching the continuum limit, is still hin-
dering a truly variational study of gauge field theories
[97]. Fortunately, in the last years the PEPS methods
have significantly improved [98–107]. In particular, for
some models the PEPS framework can already compete
with state-of-the-art results of Monte-Carlo simulations
[103]. This makes us confident that the TNS framework
will provide a tool in the near future for the study of
gauge field theories in the illusive regimes which are in-
accessible with other methods.
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Appendix A: Ground-state properties

1. The quantities and their lattice version

In this paper we consider the following quantities:

- The electric field Eα:

Eα = 〈E〉0 =
g

2
〈L(1) + L(2) + 2α〉0 , (A.1a)

- The chiral condensate Σα

Σα =
〈
ψ̄ψ
〉
0

= g

√
x

4
〈−σz(1) + σz(2) + 2〉0 , (A.1b)

- The axial fermion current density Γ5
α:

Γ5
α = i

〈
ψ̄γ5ψ

〉
0

= g

√
x

4

(〈
σ+(1)eiθ(1)σ−(2) + h.c.

〉
0

−
〈
σ+(2)eiθ(2)σ−(3) + h.c.

〉
0

)
, (A.1c)

where 〈. . .〉0 denotes the expectation value with respect
to the ground state of Hα with an electric background
field gα. As the chiral condensate is UV-divergent, we
consider its renormalized version: if Σα is the chiral con-
densate of the ground state of Hα with electric back-
ground field α then we consider

∆Σα = Σα − Σα=0,

with Σα=0 computed at the same value of m/g.

Furthermore, the ground-state energy E0,α = 〈Hα〉0 is
IR-divergent and UV-divergent

E0,α = g2N
√
xε0,α (A.2a)

with ε0,α finite as N → +∞ and x→ +∞. As Hα/2
√
x

becomes the Heisenberg XY model in the limit x→ +∞
we have that

ε0,α = −1/π for x→ +∞ (A.2b)
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which is independent of m/g and α. Another possibility
to renormalize the ground-state energy is to substract the
zero-background contribution and consider the so-called
string tension

σα = g
√
x
E0,α − E0,α=0

2N

which is also UV-finite.

2. Comparison with earlier studies

Adam [52] showed in mass-perturbation theory
(m/g � 1) that

E1,α = µ0

√
1 + 3.5621

m

µ0
cos(2πα) + (5.4807− 2.0933 cos(4πα))

(
m

µ0

)2

+O

[(
m

g

)3
]

(A.3a)

Eα = −2π
m

g
Σ̃ sin(2πα) + π

(
m

g

)2

Σ̃2E+ sin(4πα) +O

[(
m

g

)3
]

(A.3b)

∆Σα = −Σ̃(cos(2πα)− 1) +
m

g

Σ̃2

2
E+(cos(4πα)− 1) +O

[(
m

g

)2
]

(A.3c)

Γ5
α = −Σ̃ sin(2πα)− m

g

Σ̃2

2
E+ sin(4πα) +O

[(
m

g

)2
]
, (A.3d)

with µ0 = g/
√
π, Σ̃ = −eγµ0/2π, γ ≈ 0.5772 (the Euler-

Mascheroni constant) and E+ = −28.0038/g2.

In fig. 13 we compare our results (full line) with
the perturbative results (dash line) for the quantities
E1,α, ∆Σα, Γ5

α and Eα (dashed line) for m/g = 0.125
and m/g = 0.25. Although we are for m/g = 0.125
beyond the strong-coupling regime, we observe that
our results converge towards the perturbative results as
m/g → 0. In particular, for the excitation energy E1,α
the agreement is striking for m/g = 0.125.

As another check, we compare in table II some
quantities for α = 0.5 with the results of Byrnes [21–23].
When m/g = 0.25, 0.30 the electric field Eα and the
axial fermion current density Γ5

α are zero due to the CT
symmetry. We recovered this in our numerical simula-
tions for all our values of 1/

√
x up to 10−7. Therefore

a continuum extrapolation is useless. For m/g = 0.5
and α = 0.5, the elementary excitations are kinks which
cannot be captured with the ansatz Eq. (16). The
lowest solutions to the generalized eigenvalue equation
Eq. (17) correspond to excitations with at least twice
the energy of the kinks and, hence, are also not faithfully
represented by the ansatz Eq. (16). Therefore we do not
have a reliable estimate for the mass gap for α = 0.5
and m/g = 0.5.

m/g E1 Eα Γα

0.25 Buyens 0.1338(7) - -

Byrnes [23] 0.134(2) - -

0.3 Buyens 0.0527(5) - -

Byrnes [23] 0.05(2) - -

0.5 Buyens - 0.4206(2) 0.136(2)

Byrnes [23] 0.246(3) 0.421(1) 0.135(2)

TABLE II: α = 0.5. Comparison with the results of
Byrnes [23] for m/g = 0.25, 0.3, 0.5 and α = 0.5. For
m/g = 0.125 and m/g = 0.25 the ground is CT
invariant and, hence, Eα = Γ5

α = 0. In our numerics we
recovered this up to 10−7 and, hence, a continuum
extrapolation makes no sense. For m/g = 0.5 and
α = 0.5 the elementary excitations are kinks which
cannot be approximated by the ansatz Eq. (16).
Therefore we do not have an estimate for that.

We were also able to obtain a rough estimate for the
critical mass (m/g)c. Therefore we fitted m/g against
E1 for m/g = 0.125, 0.25, 0.3. As can be observed from
fig. 14, E1 behaves almost linear in m/g [21–23]. Hence,
the critical mass (m/g)c is obtained by the intersection
of the linear fit with the (E1 = 0)-axis. Indeed, the mass
gap vanishes at the phase transition. A linear fit gives
yields (m/g)c = 0.3308 . . . which is in agreement with
the result of Byrnes, (m/g)c ≈ 0.3335(2), up to 3×10−3.
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FIG. 13: Comparison of our results for m/g = 0.125
and m/g = 0.25 (full line) with the results in mass
perturbation theory of Adam [52](dashed line) for
different quantities. We observe convergence towards
the perturbative results for m/g → 0. In particular, for
the mass gap E1 the result for m/g = 0.125 matches
very well the predicted behavior in mass-perturbation
theory.

E1

0 0.1 0.2 0.3
0.1

0.15

0.2

0.25

0.3

0.35
m/g

FIG. 14: We show here the mass gap E1 as a function
of m/g for m/g = 0.125, 0.25, 0.3 (red circles). A linear
fit (blue line) enables us to extrapolate the curve to
E1 = 0 which gives us the estimate (m/g)c ≈ 0.3308 . . .
(red star) for the critical mass.

By performing additional simulations for m/g ∈ [0, 0.3]
we could improve this results, but this falls beyond the
scope of this paper.
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FIG. 15: Results for the ground state for α ∈ [0, 1] for
m/g = 0.125, 0.25, 0.3, 0.5. (a) String tension σα. (b)
Electric field Eα. (c) Renormalized chiral condensate
∆Σα. (d) Axial fermion current density Γ5

α.

3. Results

In [64] we found that the string tension σα, see fig.
15a, interpolates smoothly between the behavior in the
strong-coupling limit for small values of m/g and the
weak-coupling limit for large values ofm/g. In particular,
for m/g = 0.5 we find that the string tension is non-
differentiable for α = 1/2 which is a consequence of the
spontaneous breaking of the CT symmetry. Indeed, an
order parameter for this spontaneous symmetry breaking
is the electric field Eα, see fig. 15b, which is related to
the string tension by

Eα =
∂σα
∂α

.

Hence, the discontinuity of Eα at α = 1/2 implies that
σα is non-differentiable at α = 1/2. This holds for all
values of m/g ≥ (m/g)c. Similarly, we find that the
renormalized chiral condensate ∆Σα, see fig. 15c, which
is related to the string tension by

∆Σα =
∂σα
∂m

,

is non-differentiable at α = 1/2 for (m/g) ≥ (m/g)c.
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Note that for m/g = 0.125 and m/g = 0.25 it is hard to
see with the naked eye whether σα and ∆Σα is differen-
tiable at α = 1/2. However, the differentiability follows
from the fact that the electric field is zero and continuous
at α = 1/2.

Finally, in fig. 15d we show the axial fermion current
density. This quantity also switches sign under a CT
transformation and, hence, serves as an order parameter
as well. In fact, one observes that Γ5

α correlates with
Eα. However note that Eα increases with m/g while Γ5

α

decreases with m/g. Similarly, ∆Σα correlates with σα,
but again, σα increases with m/g while ∆Σα decreases
with m/g.

Appendix B: Reduced density matrix of a MPS

Here, we briefly discuss how to compute the reduced
density matrices of a MPS of the form Eq. (13):

|Ψ[a]〉 =
∑
κ

v†L

(
N∏
n=1

Aκ2n−1,κ2n

)
vR |κ〉 , (B.1a)

N → +∞, κn = (sn, pn), sn ∈ {−1, 1}, pn ∈
Z[pmin, pmax], with

[As1,p1,s2,p2 ](q,αq);(r,βr) = δp1,q+(s1−1)/2δp2,q+(s1+s2)/2

δp2,r[aq,s1,s2 ]αq,βr
(B.1b)

where aq,s1,s2 ∈ CDq×Dq+(s1+s2)/2 .

We assume that the state is proper normalized, i.e. the
largest eigenvalue of the transfer matrix

E =
∑
κ1,κ2

Aκ1,κ2
⊗Aκ1,κ2

,

equals one and the matrices ΛL and ΛR corresponding to
the left and right leading eigenvector are positive definite.
Moreover, Eq. (B.1b) implies that

[ΛL](q,αq);(r,βr) = δq,r[λL,q]αq,βr
,

[ΛR](q,αq);(r,βr) = δq,r[λR,q]αq,βr

for λR,q, λL,q ∈ CDq×Dq positive definite matrices. Con-
sider an operator O of the form

O =

N∑
n=1

T 2n−2oT−2n+2,

where o acts on the effective sites 1 and 2 (i.e. sites
1, 2, 3, 4 and links 1, 2, 3, 4) and where T is the translation
operator (over one site). If O is gauge-invariant, i.e. for
all n:

[O,G(n)] = 0, G(n) = L(n)−L(n− 1)− σz(n) + (−1)n

2
,

then

1

2N
〈Ψ[ā]|O|Ψ[a]〉 = tr (ρ2[a] · o)

=

pmax∑
q=pmin

tr (ρ2,q[a] · oq)

where ρ2,q[a] and oq ∈ C2⊗4×2⊗4

have components

〈s1, s2, s3, s4|ρ2,q[a]|t1, t2, t3, t4〉 = tr
(
λL,qaq,t1,t2aq+(t1+t2)/2,t3,t4λR,q+(t1+t2+t3+t4)/2[aq+(s1+s2)/2,s3,s3 ]†[aq,s1,s2 ]†

)
δt1+t2+t3+t4,s1+s2+s3+s4 (B.2a)

(sk, tk ∈ {−1, 1}, k = 1, 2, 3, 4) and

〈s1, s2, s3, s4|oq|t1, t2, t3, t4〉 = 〈s1, p1, s2, p2, s3, p3, s4, p4|o|t1, r1, t2, r2, t3, r3, t4, r4〉 δs1+s2+s3+s4,t1+t2+t3+t4 . (B.2b)

with

p1 = q +
s1 − 1

2
, r1 = q +

t1 − 1

2
(B.2c)

p2 = q +
s1 + s2

2
, r2 = q +

t1 + t2
2

, (B.2d)
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p3 = q +
s1 + s2 + s3 − 1

2
, r3 = q +

t1 + t2 + t3 − 1

2
,

(B.2e)

p4 = q +
s1 + s2 + s3 + s4

2
= q +

t1 + t2 + t3 + t4
2

= r4,

(B.2f)
pk, rk ∈ Z[pmin, pmax]; sk, tk ∈ {−1, 1}.

We find that the contribution of each of the eigenvalue
sectors q of L(n) to this expectation value equals

tr[ρ2,q[a] · oq] (B.3a)

for which the magnitude is bounded by (Hölder’s inequal-
ity)

|tr[ρ2,q[a] · oq]| ≤ ||ρ2,q[a]||1 · ||oq||∞. (B.3b)

Note that ||oq||∞ equals the largest singular value (i.e.
the largest eigenvalue of O(q) in magnitude). For in-
stance, to compute the expectation value of the electric
field,

E =
g

2
〈Ψ[ā]|L(1) + L(2) + 2α|Ψ[a]〉 ,

we have

||oq||∞ ≤ g(|q|+ 1 + |α|).

For the expectation value of the electric field squared E2,

E2 =
g2

2

〈
Ψ[ā]|(L(1) + α)2 + (L(2) + α)2|Ψ[a]

〉
,

we find similarly

||oq||∞ ≤ g2 (|q|+ 1 + |α|)2 .

For the Hamiltonian Hα, Eq. (7), we have

||oq||∞ ≤
g

2
√
x

(|q|+ 1 + |α|)2 +m+ g

√
x

2
.

We conclude that for the quantities we are interested
in (electric field, energy,. . .) that ||oq||∞ scales at most
polynomially q. Provided that ||ρ2,q[a]||1 decreases fast
(e.g. exponentially) with q, it follows from Eq. (B.3)
that we can indeed conclude that the contribution of the
eigenvalue sectors q of L(n) for large |q| is negligible.

Appendix C: Continuum extrapolation of the
quantities

In this appendix we explain how we performed the con-
tinuum extrapolation of all the quantities discussed in
section III C. We employ the method used in [65] which
is based on the methods discussed in [19, 20].

Consider a quantity O(x) for which we compute its
values for

x = x1, . . . , xM .

The goal is to obtain a continuum value O =
limx→+∞O(x) and to estimate a reliable error on this
extrapolation. For the quantities we considered here we
observed that they behave polynomially (see for instance
figs. 10 and 11 in main text) as a function of 1/

√
x, there-

fore we fit our data against the following polynomials in
1/
√
x:

f1(x) = A1 +B1
1√
x

(C.1a)

f2(x) = A2 +B2
1√
x

+ C2
1

x
(C.1b)

and

f3(x) = A3 +B3
1√
x

+ C3
1

x
+D3

1

x3/2
. (C.1c)

Let us discuss in more detail how we obtain a con-
tinuum estimate for each of the fitting ansätze fn (sub-
section C 1) and a final continuum estimate (subsection
C 2).

1. Obtaining a continuum estimate for the fitting
ansatz fn

For every type of fitting ansatz, i.e. a particular fn (n =
1, 2, 3) Eq. (C.1), we determine an estimate O(n) for the
continuum value and an error ∆(n)O which originates
from the choice of fitting interval. Given our dataset
{(xj ,O(xj)) : j = 1, . . . ,M} of M points. We perform all
possible fits of fn against at least n+ 5 consecutive data
points where the coefficients An, Bn, Cn, Dn (Cn = 0 if
n < 2, Dn = 0 if n < 3) are estimated using an iterative
generalized least-squares algorithm.

By taking at least n + 5 consecutive data points we
reduce the problem of overfitting: the fitted function fn
fits the considered points extremely well, but fails to fit
the overall data. Furthermore we also discard the fits
that give statistically insignificant coefficients (p-value ≥
0.05). In practice, this means that we discard the fits fn
where the error on one of its coefficients (An, Bn, Cn, . . .)
is larger than approximately half of its value.

For every fit θ of fn against a subset of at least n +
5 consecutive x−values, say {xj}j∈fitθ, which produces

statistically significant coefficients we obtain values

A(θ)
n , B(θ)

n , C(θ)
n , D(θ)

n ,

with C
(θ)
n = 0 for n < 2 and D

(θ)
n = 0 for n < 3, and a

corresponding fitting function gθ(x).

gθ(x) = A(θ)
n +B(θ)

n

1√
x

+ C(θ)
n

1

x
+D(θ)

n

1

x3/2

All the values A
(θ)
n are an estimate for the continuum

value of O for the fitting ansatz fn. Let us denote with
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{A(θ)
n }θ=1...Rn

all the An’s obtained from a fit θ against
fn which produces significant coefficients with

A(1)
n ≤ A(2)

n ≤ . . . ≤ A(Rn)
n .

For each fit θ we also compute its χ2 value:

χ2
θ =

∑
j∈fitθ

(
gθ(xj)−O(xj)

∆O(xj)

)2

(C.2)

where ∆O(xj) is a measure for the error in O(xj) orig-
inating from taking a finite value for the virtual dimen-
sions Dq. For the ground-state expectation values we
take ∆E0, see Eq. (24), while for the excitation energies
E1,α and E2,α we take ∆Em, see Eq. (26). When our
dataset is large enough the quantity χ2

θ/N
θ
dof , with Nθ

dof

the number of degrees of freedom of the fit (here the num-
ber of data points used in the fit minus n + 2), gives an
indication whether gθ fits the dataset well (χ2

θ/N
θ
dof � 1)

or not (χ2
θ/N

θ
dof � 1).

If we have at least 10 fits θ with χ2
θ/N

θ
dof ≤ 1 we can

obtain a reliable continuum estimate by taking the me-

dian of {A(1)
n , . . . , A

(Rn)
n } weighted by exp(−χ2

θ/N
θ
dof ),

see also [19, 65]. More specifically we build the cumula-
tive distribution Xθ,

Xθ =

∑θ
κ=1 exp(−χ2

κ/N
κ
dof )∑Rn

κ=1 exp(−χ2
κ/N

κ
dof )

,

and take as our continuum estimate O(n) for the fitting

ansatz fn: O(n) = A
(θ0)
n where θ0 corresponds to the

value for which Xθ0 is the closest to 1/2, i.e.

θ0 = arg min
θ
|Xθ − 1/2|.

The systematic error ∆(n)O from the choice of x-interval
comes from the %(68, 3)-confidence interval, it is com-
puted as

∆(n)O =
1

2

(
A(θ2)
n −A(θ1)

n

)
with

θ1 = arg min
θ
|Xθ − 0.85|, θ2 = arg min

θ
|Xθ − 0.15|.

If we have less than 10 fits θ with χ2
θ/N

θ
dof ≤ 1, only

a few fits dominate the histogram of the χ2-distribution.
Therefore we adopt the more conservative approach from
[20]. We only consider the fits with statistically signifi-
cant coefficients and with χ2

θ/N
θ
dof ≤ 1; the correspond-

ing continuum estimates are

A(1)
n ≤ A(2)

n ≤ . . . ≤ A
(R′n)
n , with R′n ≤ Rn.

Of these estimates we take the A
(θ0)
n which corresponds

to the θ for which the mean squared of the variances ∆O
is minimal, i.e.

θ0 = arg min
θ

1

|fitθ|

√ ∑
j∈fitθ

(∆O(xj))
2

 .

As the systematic error originating from the choice of
fitting range we take the difference in magnitude of this

estimate with the most outlying A
(θ)
n (for the same type

of fitting ansatz):

∆(n)O = max
1≤θ≤R′n

|A(θ0)
n −A(θ)

n |.

2. Final continuum estimate and uncertainty

Using the method discussed in subsection C 1 we now
have three estimates for O (O(1),O(2) and O(3)) cor-
responding to the fitting functions f1, f2 and f3. As
our final estimate we take the estimate from the fitting
function fn0

which had the most statistically significant
fits with χ2

θ/N
θ
dof ≤ 1. The error originating from the

choice of fitting function is then computed as the maxi-
mum of the difference with the continuum estimates from
the other fitting functions. As our final result we report
O = O(n0) and the error ∆O is the maximum of

i. max (maxj δO(xj)) , where

δO(xj) = max
n=1,2,3

||O(xj)[an]−O(xj)[an]||.

O(xj)[an] is the expectation value of O(xj)[an]
with respect to the MPS ground-state approxima-
tion |Ψ[an]〉 (see Eq. (13)) obtained with the pa-
rameters ε and pmax as shown in Eq. (19). In
particular, for the excitations energies Em we find
δO(xj) = δEm(xj) as defined in Eq. (25),

ii. the error originating from the choice of x-range:
∆(n0)O,

iii. the error originating from the choice of fitting
ansatz: maxn=1,2,3 |O − O(n)|.
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[15] R. Orús, Annals of Physics 349, 117 (2014),

arXiv:1306.2164.
[16] J. I. Cirac and F. Verstraete, Journal of Physics A Math-

ematical General 42, 504004 (2009), arXiv:0910.1130.
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90, 042305 (2014), arXiv:1407.4995.
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