

Opportunities for Automation in the Microkinetic Assessment of Complex Reactions: from Conventional to Renewable Feeds

Tapas Rajkhowa, Brigitte R. Devocht, Kenneth Toch, Guy B. Marin Joris W. Thybaut

Laboratory for Chemical Technology, Ghent University http://www.lct.UGent.be

PETROTECH-2016, New Delhi, India, December 5-7

information driven catalyst & reactor design

J.W. Thybaut et al., Topics Catal. 52 (2009) 1251-1260

Single-Event MicroKinetics (SEMK)

- thermal cracking
- acid catalysis
 - catalytic cracking
 - methanol to olefins

Sabbe et al. AIChE J. 57 (2011) 482-496

Quintana-Solorzano et al. Chem. Eng. Sci. 62 (2007) 5033-5038 Kumar et al. Catal. Today 215 (2013) 224-232 Kumar et al. Ind. Eng. Chem. Res. 52 (2013) 1491-1507

- metal catalysis
 - Fischer Tropsch synthesis
 - hydrogenation

Lozano-Blanco et al. Ind. Eng. Chem. Res. 47 (2008) 5879-5891 J. Van Belleghem et al. Appl. Catal. A Gen. 524 (2016) 149-162 Bera et al. ACS Catalysis 2 (2012) 1305-1318

- bifunctional catalysis
 - hydrocracking
 - catalytic reforming
 - ethene oligomerization

Thybaut et al. J. Catal. 202 (2001) 324-339 Cochegrue et al. Oil Gas Sci. Technol. 66 (2011) 367-397 Toch et al. Appl. Catal. A Gen 489 (2015) 292-304

lube oil production

- pour point reduction
- slight decrease in viscosity index

- enhance isomerization
- avoid product losses via cracking

J.A. Martens et al. Angew. Chem. Intl. Ed. 34 (1995) 2528 W. Souverijns et al. J. Catal. 174 (1998) 177

ZSM-22 as catalyst

- pore mouth sites: isomerization
- micropore sites: cracking linear alkanes
- bridge sites: aselective reactions

C.S.L. Narasimhan et al. J. Catal. 218 (2003) 135-147 C.S.L. Narasimhan et al. J. Catal. 220 (2003) 399-413

reaction pathway analysis

C.S.L. Narasimhan et al. J. Catal. 220 (2003) 399-413 I.R. Choudhury et al. J. Catal 290 (2012) 165-176

superior ZSM-22 synthesis

H. Kazuaki et al. Chem. Eur. J. 13 (2007) 10070-10077 US20100181229 (catalyst synthesis) US20110042267 (lube oil dewaxing process)

- original ZSM-22
 - calcination
 - "stronger" sites
 - additional micropore sites creation
- novel ZSM-22
 - dual ion exchange
 - "weaker" sites
 - comparatively less micropore sites.

aromatic hydrogenation

xylene isomerization: SEMK catalyst design

Xylene isomerization on a bifunctional Pt/H-ZSM-5 catalyst

-70

-60

-90

ΔH_{pr}(kJ mol⁻¹)

-100

long alkane hydrocracking over BETA

renewable feed conversion

complex mixtures \rightarrow model compounds

outline

- introduction
- kinetics assessment automation
 - opportunities
 - Fischer Tropsch synthesis
 - network generation algorithm
- renewable feeds
 - challenges and strategy
 - glycerol hydrogenolysis
- conclusions

opportunities for automation

complex mixture

reaction families

- reaction types

 (de)protonation
 pcp-branching
 β-scission
 alkylation
- intermediate stability carbon atom type nearest neighbour effects

n_e

Ĩ

opportunities for automation

complex mixture

ethene oligomerization on Ni on acid support

number of alkenes	1220
number of carbenium ions	972
number of elementary steps	
metal-ion oligomerization	5
protonation	1985
deprotonation	1985
pcp-branching	1096
1,2 alkyl shift	668
alkylation	330
β-scission	330

example: Fischer-Tropsch synthesis

reaction families based on carbene insertion mechanism

- initiation: dissociation of hydrogen and CO formation of CH_x groups on the surface
- 2. chain growth: CH₂ group insertion into adsorbed alkyl species
- **3. termination**: hydrogenation or recombination of surface species to paraffins and desorption of olefins

example: Fischer-Tropsch synthesis

reaction families based on carbene insertion mechanism

- 1. initiation
- 2. chain growth
- 3. termination

hydrogen adsorption
hydrogen desorption
CO adsorption
CO desorption
CO dissociation
oxygen hydrogenation

reaction families

carbon hydrogenation carbene insertion carbene deinsertion olefin desorption olefin adsorption β- Hydrogen elimination

Fischer Tropsch reaction network

reaction families

hydrogen adsorption hydrogen desorption CO adsorption CO desorption **CO** dissociation oxygen hydrogenation carbon hydrogenation carbene insertion carbene deinsertion olefin desorption olefin adsorption β- Hydrogen elimination user input iterate over species check each reaction family execute reaction family recipe add products and reactions to network are termination criteria met?

species representation

kinetic model parameters

for each reaction family:

$$k = \frac{\sigma_{gl,r}}{\sigma_{gl,\ddagger}} \frac{k_B T}{h} exp\left(\frac{\Delta \tilde{S}^{0,\ddagger}}{R}\right) exp\left(\frac{\Delta H^{0,\ddagger}}{RT}\right)$$

determined by the reaction network generation code

constant for a reaction family (chain length independent)

 $\Delta \tilde{S}^{0,\ddagger}$ single-event activation entropy Calculated based on changes in translational degrees of freedom

 $\Delta H^{0,\ddagger}$ activation enthalpy obtained by regression to experimental data

 $n_{parameters} = n_{reaction families}$

thermodynamic model parameters

Thermodynamic consistency of the overall Fischer Tropsch reaction is guaranteed by using the principle of microscopic reversibility:

network generation algorithm

ReNGeP – Reaction Network Generation Program reaction family concept, nearest neighbour effects

outline

- introduction
- kinetics assessment automation
 - opportunities
 - Fischer Tropsch synthesis
 - network generation algorithm
- renewable feeds
 - challenges and strategy
 - glycerol hydrogenolysis
- conclusions

challenges renewable feedstocks

new challenges for network generation and kinetic model construction?

- accounting for heteroatoms
- new functions \rightarrow new reaction families, next nearest neighbour effects,...
- smarter (adaptive) network size control
- corresponding strategy
 - assessment of simple reaction network: glycerol hydrogenolysis
 - extension towards more complex ones: hydrodeoxygenation

glycerol hydrogenolysis kinetics

acetol is a primary product (from glycerol dehydration)

acetol hydrogenation is faster than glycerol

higher activation energy for dehydration step

(\triangledown) 1-propanol; (\bigcirc) 2-propanol.

T. Rajkhowa et al. revised version submitted to Appl. Catal. B Env. 24

reaction network

graph representation

- v simplicity
- x covers small range of possible elements possible structures

 v more complex, flexible data structures
 v application graph-theoretic algorithms chemoinformatics
 e.g. calculation symmetry numbers

kinetics assessment and model performance

Rate	٨	E	k
coefficient	A	с _а	к ₄₈₃
k ₁ ^{comp}	10 ¹⁵	78.5 ± 2.15	3.2 x 10 ⁶
k_2^{comp}	10 ¹³	59.8 ± 1.07	3.4 x 10 ⁶
k ₃	1013	98.9 ± 11.2	2.0 x 10 ²
k ₄	1013	93.8 ± 11.1	7.1 x 10 ²
k ₅	1014	91.6 ± 1.26	1.2 x 10 ⁴
k ₆	1014	91.6 ± 0.97	1.3 x 10 ⁴
k ₇	1014	88.8 ± 1.18	2.5 x 10 ⁴
k ₈	10 ¹²	112.4 ± 3.51	0.70
Adsorption	A C 0	۸ ப 0	V
coefficient	Δ3*	-20-	к ₄₈₃
K _G	-168	71.2 ± 1.09	8.4 x 10 ⁻²
K _A	-166	68.0 ± 3.97	4.8 x 10 ⁻²
К _{РG}	-143	53.6 ± 1.45	2.1 x 10 ⁻²
К _н	-136	64.8 ± 10.6	8.0 x 10 ⁻¹
К _{н20}	-154	53.3 ± 1.27	5.3 x 10 ⁻³
Equilibrium	A C 0	A H 0	V
coefficient	Δ3°	-ΔΠ°	к ₄₈₃
K _{AH}	0	5.3 ± 1.8	1.00
F value	1.7 x 10 ⁵ (F _{tab} : 2.79)		

T. Rajkhowa et al. revised version submitted to Appl. Catal. B Env.

network generation algorithm

- accounting for heteroatoms
- new functions → new reaction families, next nearest neighbour effects
- adaptive network size control

conclusions

- elementary kinetics based models
 - detailed insight in reaction mechanism
 - information driven catalyst and reactor design
- complex mixtures \rightarrow automated assessment
 - reaction families
 - kinetic and thermodynamic parameter estimation and calculation
- transition from conventional to renewable feeds
 - hetero-atoms (oxygen, nitrogen, sulfur)
 - reaction family definition, (next) nearest neighbour effects
 - species representation and reaction generation
 - network size control

acknowledgements

- dr. Laxmi Narasimhan
- dr. Lozano Blanco
- dr. Indranil Choudhary
- dr. Tapan Bera
- dr. Pravesh Kumar
- dr. Bart Vandegehuchte
- dr. Kenneth Toch
- ir. Jonas Van Belleghem
- ir. Tapas Rajkhowa
- ir. Brigitte Devocht
- prof. Guy B. Marin

European Research Council

