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From molecule to industrial plant
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Steam cracking: from fossil to renewables

3

66th Canadian Chemical Engineering Conference “Sustainability & Prosperity” October 16-19 (2016) Québec City (Canada)

atozforex.com; pnnl.org; districtenergy.org; scade.fr; schmidt-clemens.de; Linde Group

Crude oil

Natural gas

Bio-based feeds

Steam cracking Consumer goods from
chemical industry

Naphtha

Light gasoil

crude oil

Natural gas 
liquids

Gas-
condensates

Hydrode-
oxygenated

FAME

Ethene

Propene

Butadiene

Aromatics



4

Steam cracking: Ghent University history
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Steam cracking: hot section
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GC×GC

Analytical 
techniques
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Toraman, H.E. et al., Journal of Chromatography A, 1460, 135-146, 2016Ristic, N.D. et al.,Journal of Visualized Experiments, Issue 114
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918-10-2016

State-Key Laboratory of Chemical 
Engineering@ECUST September 22, 2009

GC�GC chromatogram: 2 parts
Conventional 1D part     � C4-
Comprehensive 2D part � C5+

3D view
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On-line GCxGC
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Pyl, S.P. et al.,Journal of Chromatography A, 1218, 3217-3223, 2011



SIMCO: ANN or Shannon entropy
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• Average molecular 
weight

• Elemental composition
• Specific density 
• Global PINA analysis
• Boiling point data 

(e.g. D2887 simdist)
• Aromatic Sulfur

Maximization of Shannon Entropy
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Feedstock properties Detailed composition
• Species identity

Feedstock 
reconstruction

± 20 properties More than 100 unknown 
mole fractions

Shannon 
entropy 
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S.P. Pyl et al., AIChE Journal, 56, 12, 3174-3188, 2010



SIMCO results:  Hydrocarbons
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n-paraffins i-paraffins

Naphthenes Aromatics
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Thermochemical conversion of biomass
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Toraman, H.E.et al.,Bioresource Technology, 207, 229-236, 2016



Model components for biomass pyrolysis
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CO CO2H2O CH4 H2 C2H4

Study molecules with
structural moieties found 
in biomass

For example:

T



Gamma-ValeroLactone (GVL) pyrolysisReaction families
1) Scission
2) Hydrogen abstraction
3) β-scission/addition
4) Concerted ring opening
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De Bruycker, R. et al.,Proceedings of the Combustion Institute, 35, 515-523, 2015
De Bruycker, R. et al., Combustion and Flame, 164, 183-200, 2016
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CRACKSIM: steam cracking kinetics
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Families of elementary reactions

Bond dissociation and radical recombination
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R1 R2 R1 R2
• •

+

Hydrogen abstraction (inter- and intramolecular)

R1 H R1R2
••

R2 H++

Radical addition and β-scission (inter- and intramolecular)

R1 R2 R3R1
•

R2 R3
•+
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Decomposition scheme: n-hexane
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RH

β species

PSSA to µ radicals
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µ and β networks: CRACKSIM
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β network µ network

CRACKSIM

Bi- and monomolecular
reactions for β radicals

Monomolecular reactions
for µ radicals
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1324 reversible reactions
51 molecules
43 radicals

13584 schemes
676 molecules
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Validation
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Experimental yields during steam cracking of bio-derived hydrocarbons
Feedstock composition: MWaverage = 230g/mol 51wt% normal alkanes – 49wt% branched alkanes
FHC,0 = 0.04 g/s, FH2O,0 = 0.02 g/s, P = 0.17 MPa

calculated 



Network generators
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GENESYS  -
GENEration [of reacting ] SYStems

25

A new program for kinetic model construction
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Van de Vijver, R. et al. International Journal of Chemical Kinetics, 47 (4), 199-231, 2015

Genesys: Kinetic model construction using chemo-informatics
Vandewiele, N.M.; Van Geem, K.M.; Reyniers, M.-F.; Marin, G.B.
Chemical Engineering Journal, 207-208, 526-538, 2012
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Graph theory yields powerful algorithms 
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Vandewiele, N.M. et al., Journal of Computational Chemistry, 36 (3), 181-192, 2015

“Kinetics of Chemical Reactions : Decoding Complexity”
G.B. Marin and G.S. Yablonsky,Wiley-VCH Verlag, 446 pages, 2011
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Objective: data base 

Reactor model

Solver

Reaction network

Kinetic and thermodynamic data

Develop a consistent data set based on ab initio 
calculations

Reactor simulation for hydrocarbon radical chemistry

? Larger speciesusing group additivity
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Van de Vijver, R. et al., Chemical Engineering Journal, 278, 385–393, 2015
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Benson’s group additive method
Benson group

X: Central atom
Valence ≥ 2
{ C, Cd, O, CO, CCO, C•, Cd

• }

A, B, C, D: Ligand
H, C, Cd , O, CO, CCO, 
C•, Cd

•, O•,CO•,CCO•

Group additivity for thermochemistry
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Corrections for non-nearest-neighbor interactions (NNI)
� hydrogen bonds
� gauche interactions
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From small to large species with group additivity

O

O
OH

2-methoxy-2-methylbut-3-enoic acid additive groups
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Outline
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Ince, A.et al. AIChE Journal, 61 (11), 3858–3870, 2015
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Thermo e.g. for oxygenates: GAV data base

Database of thermodynamic data, ∆fH°, S° and Cp° (300 K-1500 K)
• 450 oxygenate compounds
• CBS-QB3 methodology
• 1D-HR approximation for all internal rotors

• 157 GAVs using Benson’s GA 
method 

• 26 NNI corrections (mainly 
hydrogen bonds) 

• 77 HBIs for the thermochemistry of 
radicals

NNI8 Hbr_H-O-C-CO 

2-hydroxy-2-methyl-propanal
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Kinetics: computational approach
Conventional Transition State Theory (high pressure limit)

The CBS-QB3 ab initio method is used.

Electronic barrier ∆E0

• Ideal gas approximation
• Hindered Rotor (1D-HR) 

Partition functions q

• Eckart 

Tunneling coefficient κ
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Group additivity for kinetics:data base of ∆GAVo

Proposed by Saeys et al. for activation energies (AIChE J. 2004, 50 (2), 426-444.)
Extended by Sabbe et al. for pre-exponential factors (Phys. Chem. Chem. Phys. 2010, 12, 1278-1298)

Transition state for hydrogen 
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Kinetics: data base of ∆GAVo

Hydrogen abstraction ( ethyl + ethenyl methylether)

CH=CH2
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+4.7 kJmol-1 +0 kJmol-169.7 kJmol-1 -18.2 kJmol-1

Ea, ab initio= 62.0 kJmol-1Ea,GA = 62.6 kJmol-1

C1-(C)(H)2 C2-(O)(H)2CH3 + CH4

-0.866 +0.4805.268 +0

logAab initio= 5.203log(AGA /m3 mol-1s-1)= 5.095 

-0.053

O-(C2)(Cd)C-(C1)(H)3 H
-

+6.8 kJmol-1 -0.4 kJmol-1

C1-(C)(H)2 C2-(O)(H)2CH3 + CH4 O-(C2)(Cd)C-(C1)(H)3 H
-

-0.512
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Paraskevas, P. et al.,Journal of Physical Chemistry A, 119 (27), 6961-6980, 2015



37

Kinetics: validation of group additivity

Sabbe et al. ChemPhysChem 2008, 9 (1), 124-140
Sabbe et al. ChemPhysChem, 2010, 11(1), 195-210
Sabbe et al. PhysChemChemPhys, 2010, 12 (6), 1278-1298 
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Steam Cracking Pilot Plant

Gas-Fired Furnace + Reactor

Online Analysis
Section

Control “Room”

High temperature
sampling system

HC
Feed

H2O
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Pilot results: C1/C2/C3/C4
Process conditions

Feed 3 wt% C1
67 wt% C2
22  wt%C3
8 wt% C4

COT 1005-1119 K

COP 0.152-0.157 MPa

Steam dilution 0 kg/kg
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Coke formation
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Mitigation by
- Feed additives
- Metallurgy & surface technology
- 3D reactor technology

Deposition of a carbon layer on the reactor surface

Thermal efficiency

Product selectivity

Decoking procedures

Estimated annual cost to industry: $ 2 billion 

2L. Benum, "Achieving Longer Furnace Runs at NOVA Chemicals," in AIChE Spring National 
Meeting, 14th Annual Ethylene Producers’ Conference, New Orleans, Louisiana, 2002.
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Coke formation: 3D reactor technologies
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~ 15 °C

~100 °C

Reduce convective heat resistance

Better mixingIncrease surface area

Cokes formed here
T ↑ � coking rate ↑↑ 

~60 °C

*Borealis.com, kubota.com, Technip.com



Computer Models

Quantify

coking & 

selectivity effect

“There ain’t no such thing as a free lunch”

45
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* Milton Friedman - TANSTAAFL

3D reactor 

technology

Economics Selectivity ↓

Increased
heat transfer

Reduced
coking rate

Longer run length
More capacity

Increased
friction

Higher
average 
reactor 

pressure

Flow Chemistry

3D CRACKSIM
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Helicoidal finned tubes

α Pitch

Radius
Radiant coils in Borealis Furnace, KBR

D

e

Computational domain: 1 fin with periodic boundaries
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Reynolds-Averaged Navier-Stokes (RANS)
Single model for all scales, additional 
equations  to provide closures

Large Eddy Simulation (LES)
Resolve relevant energy containing 
scales, model the smaller 
energy dissipating eddies

Direct Numerical Solution (DNS)
Fully resolve all time and length scales 48

Resolving turbulence
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Radial temperature profiles

More uniform gas temperature
Lower metal temperature

Bare Straight Helix SmallFins

Optimized



Axial wall temperature and coking profile
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Cracking reaction model
26 components

13 radical species
212 elementary reactions

Coking 
model

Coke
model 

- 50°C

- 49%

S. Wauters and G.B. Marin; Chemical Engineering Journal, 82, 267-279, 2001
S. Wauters and G.B. Marin, IEC Research, 41, 2379-2391, 2002



Effect on start of run yields
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- 0.7 wt% 
+ 0.3 wt%

Radical reaction model
26 components

13 radical species
212 elementary reactions
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Run length simulation
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SOR 96h48h

Increasing run length



Millisecond propane cracker 
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• Feedstock 118.5 kg/h propane
• Propane conversion 80.15 % (± 0.05%)
• Steam dilution 0.326 kg/kg
• CIT 903.7 °C
• COP 170 kPa

Different geometries simulated
• Same reactor volume
• Same axial length
• Same minimal wall thickness

Bare c-RibFin



Non-uniform coke layer growth
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SOR (0 hrs)

48 hrs

Fin c-Rib

SOR

10 days



Tube Metal Temperature
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Max. TMT increasesThermal resistance coke layer

Bare

c-Rib

Fin



Pressure drop
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Pressure drop increases
Cross-sectional flow area 

decreases due to coke 

Bare

c-Rib

Fin
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Coupled reactor-furnace simulation

External coil temperature

Heat flux to reactors

Reactor

(COILSIM1D)
Furnace simulationconvergence

FURNACE/
COILSIM1D

66th Canadian Chemical Engineering Conference “Sustainability & Prosperity” October 16-19 (2016) Québec City (Canada)

Hu, G. et al.,Industrial & Engineering Chemistry Research, 54 (9), 2453-2465, 2015
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Ultra Selective Conversion (USC)

� 100% floor burner

� Fuel composition mol%: CH4(89%)-

H2(11%)

� U coil

� Feedstock: Naphtha

Coupled modeling
� 3D CFD furnace model

� 1D reactor model (COILSIM1D)

� Detailed cracking kinetics 

(CRACKSIM)

Full furnace simulation
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detailed simplified

Detailed : long flame burners
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� Detailed case

• Stronger turbulence

• Faster reaction

detailed simplified

Methane mole fraction

Flue gas: velocity and concentration fields
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T
his

inform
ation is key

for
control

Tube wall temperature field: local hot spots
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Outline

• Introduction

• Feedstock

• Kinetics

• Reactor 

• Process: convection section

• Conclusions
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Steam cracker convection section
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heater-2

Flue gas 
out ~ 700K

Flue gas in
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Heavy 
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Gas condensate: multicomponent mixture 

• Wider stick regime as compared to that in single component
droplet regime map

• For splash and limited splash, the no. of daughter droplets formed
is greater than predicted by correlations available in literature

Rebound

Stick
Splash 

Limited Splash  

0

200

400

600

800

1000

1200

480 530 580 630 680 730 780

N
o

rm
a

l 
W

e
b

e
r 

n
u

m
b

e
r

Wall temperature (K)

Stick

Rebound

Splash

Limited Splash

820
TLF

crit
NormWe

66th Canadian Chemical Engineering Conference “Sustainability & Prosperity” October 16-19 (2016) Québec City (Canada)

Mahulkar, A.V.  et al., Chemical Engineering Science, 130, 275-289, 2015



68

Outline

• Introduction

• Feedstock

• Kinetics

• Reactor 

• Process: hot section

• Conclusions
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The COILSIM1D package

Reactor Coil

Transfer Line Exchanger
Convection section

Firebox

Long Flame Burners

Wall Burners
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The COILSIM1D package

Downstream 

simulators

...

Upstream 

simulators

…
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Outline

• Introduction

• Feedstock

• Kinetics

• Reactor 

• Process

• Conclusions
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Conclusions

integration of computational chemistry methods with 
engineering tools at larger time and length scales and 
experimental validation provides a powerful tool for 
the optimization and/or design of industrial units

• Shannon Entropy maximization to reconstruct feedstocks in 
terms required for a microkinetic model

• Consistent data set for thermochemistry and kinetics of 
hydrocarbon and oxygenates radical chemistry

• Ab initio simulation of steam cracking of C2/C3/C4 and 
oxygenates

• Compatibility of renewable feedstocks with existing plants

• Emergence of 3D reactor technologies based on CFD

• Integration of reactor/convection section/furnace
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Glossary

• SFT: Swirl Flow Tube, a tube with a helicoidal
centerline. The helix amplitude is smaller than or
equal to the tube radius.

• Swirl flow: a whirling or eddying flow of fluid.
• Swirl number: ratio of tangential over axial

momentum transfer
• Wall shear stress: component of stress parallel

with the wall. It is the product of the viscosity and
the derivative of axial velocity with respect to the
radial coordinate.
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