

Bridges in modelling and simulation of steam cracking: from fossil to renewable feedstock and from molecule to furnace

Kevin M. Van Geem and Guy B. Marin

Laboratory for Chemical Technology, Ghent University http://www.lct.UGent.be

66th Canadian Chemical Engineering Conference "Sustainability & Prosperity" October 16-19 (2016) Québec City (Canada)

From molecule to industrial plant

Steam cracking: from fossil to renewables

atozforex.com; pnnl.org; districtenergy.org; scade.fr; schmidt-clemens.de; Linde Group

Steam cracking: Ghent University history

Steam cracking: hot section

Endothermic process 1050–1150 K 5

Ristic, N.D. et al., Journal of Visualized Experiments, Issue 114Toraman, H.E. et al., Journal of Chromatography A, 1460, 135-146, 2016

- Introduction
- Feedstock
- Kinetics
- Reactor
- Process
- Conclusions

- Introduction
- Feedstock: characterization
- Kinetics
- Reactor
- Process
- Conclusions

66th Canadian Chemical Engineering Conference "Sustainability & Prosperity" October 16-19 (2016) Québec City (Canada)

On-line GCxGC Pyl, S.P. et al., Journal of Chromatography A, 1218, 3217-3223, 2011 ethene 3D GC×GC chromatogram: 2 parts Conventional 1D part $\rightarrow C_{4}$ methane Comprehensive 2D part $\rightarrow C_{5+}$ propene tri-aromatics phenanthrene 1.3-butadiene acenapthene anthracenehthenoacenapthylene propane ethane 1-butene romatics propadiene biphenyl naphthalene diaromatics m thyl-indenes indene styrene naphthenovinylto uene methyl-na hthalenes aromatics ethyl-Bz benzene monoaromatics tri-methyl-Bz toluene xylenes pyrene tretra-aromatics 9 10-2016 18-1 20 60 80

SIMCO: ANN or Shannon entropy

Maximization of Shannon Entropy

S.P. Pyl et al., AIChE Journal, 56, 12, 3174-3188, 2010

SIMCO results: Hydrocarbons

- Introduction
- Feedstock: renewables
- Kinetics
- Reactor
- Process
- Conclusions

Thermochemical conversion of biomass

Toraman, H.E.et al., Bioresource Technology, 207, 229-236, 2016

Model components for biomass pyrolysis

66th Canadian Chemical Engineering Conference "Sustainability & Prosperity" October 16-19 (2016) Québec City (Canada)

De Bruycker, R. et al., Combustion and Flame, 164, 183-200, 2016 De Bruycker, R. et al., Proceedings of the Combustion Institute, 35, 515-523, 2015

- Introduction
- Feedstock
- Kinetics
- Reactor
- Process
- Conclusions

CRACKSIM: steam cracking kinetics

- Introduction
- Feedstock
- Kinetics: reaction network
- Reactor
- Process
- Conclusions

Families of elementary reactions

Bond dissociation and radical recombination

 $R_1 - R_2 \longrightarrow R_1 + R_2$

Hydrogen abstraction (inter- and intramolecular)

 $R_1-H + R_2^{\bullet} = R_1^{\bullet} + R_2-H$

Radical addition and β-scission (inter- and intramolecular)

$$R_1^{\bullet} + R_2^{-} = R_3 = R_1 - R_2 - R_3^{\bullet}$$

PSSA to µ radicals

CRACKSIM

β network Bi- and monomolecular reactions for β radicals $R_1 - R_2 = R_1 + R_2$ $R_1-H + R_2 \equiv R_1 + R_2-H$ $R_1 + R_2 = R_3 \equiv R_1 - R_2 - R_3$ 1324 reversible reactions 51 molecules

43 radicals

Validation

Experimental yields during steam cracking of bio-derived hydrocarbons Feedstock composition: MW_{average} = 230g/mol 51wt% normal alkanes – 49wt% branched alkanes F_{HC,0} = 0.04 g/s, F_{H2O,0} = 0.02 g/s, P = 0.17 MPa

calculated

Network generators

A new program for kinetic model construction

GENESYS -GENEration [of reacting] SYStems

Genesys: Kinetic model construction using chemo-informatics Vandewiele, N.M.; Van Geem, K.M.; Reyniers, M.-F.; Marin, G.B. Chemical Engineering Journal, 207-208, 526-538, 2012

Van de Vijver, R. et al. International Journal of Chemical Kinetics, 47 (4), 199-231, 2015

Graph theory yields powerful algorithms

- Introduction
- Feedstock
- Kinetics: ab initio
- Reactor
- Process
- Conclusions

Objective: data base

Van de Vijver, R. et al., Chemical Engineering Journal, 278, 385–393, 2015

Benson's group additive method

Benson group

Group additivity for thermochemistry

$$f = \sum_{i} GAV_{f}(\text{group}_{i}) + \sum_{j} NNI_{j} \qquad f = \Delta_{f} H^{\circ}, S_{\text{int}}^{\circ}, C_{p}^{\circ} \qquad S_{\text{int}}^{\circ} = S^{\circ} + R \ln(\frac{\sigma}{n_{\text{opt}}})$$
Group additive values
(GAV)
Corrections for non-nearest-neighbor interactions (NNI)
 \checkmark hydrogen bonds
 \checkmark gauche interactions
 \checkmark other interactions

66th Canadian Chemical Engineering Conference "Sustainability & Prosperity" October 16-19 (2016) Québec City (Canada)

From small to large species with group additivity

2-methoxy-2-methylbut-3-enoic acid

additive groups

- Introduction
- Feedstock
- Kinetics: thermo first
- Reactor
- Processen
- Conclusions

Thermo e.g. for oxygenates: GAV data base

Database of thermodynamic data, $\Delta_f H^\circ$, S° and C_p° (300 K-1500 K)

- 450 oxygenate compounds
- CBS-QB3 methodology
- 1D-HR approximation for all internal rotors

- 157 GAVs using Benson's GA method
- 26 NNI corrections (mainly hydrogen bonds)
- 77 HBIs for the thermochemistry of radicals

- Introduction
- Feedstock
- Kinetics: rate coefficients
- Reactor
- Process
- Conclusions

Kinetics: computational approach

Conventional Transition State Theory (high pressure limit)

 $A + B \Longrightarrow [AB]^{\ddagger} \Longrightarrow C$

Transition state

$$k_{\infty}(T) = \frac{\kappa(T)}{h} \frac{k_B T}{q_A q_B} V_m e^{-\frac{\Delta E_0}{RT}}$$

Electronic barrier ΔE_0 The CBS-QB3 ab initio method is used.

Partition functions q

- Ideal gas approximation
- Hindered Rotor (1D-HR)

F

Tunneling coefficient κ

• Eckart

Group additivity for kinetics:data base of ΔGAV°

Group additivity for Arrhenius parametersPrimarySecondaryTertiary $E_a(T) = E_{a,ref}(T) + \sum_{i=1}^{2} \Delta GAV_{E_a}^{o}(C_i) + \sum_{i=1}^{3} \Delta GAV_{E_a}^{o}(X_i) + \sum_{i=1}^{3} \Delta GAV_{E_a}^{o}(Y_i) + \Delta E_{e_{a,res}}^{o}$ $\log \tilde{A}(T) = \log \tilde{A}_{ref}(T) + \sum_{i=1}^{2} \Delta GAV_{\log \tilde{A}}^{o}(C_i) + \sum_{i=1}^{3} \Delta GAV_{\log \tilde{A}}^{o}(X_i) + \sum_{i=1}^{3} \Delta GAV_{\log \tilde{A}}^{o}(Y_i) + \Delta \log \tilde{A}_{res}^{o}$

Proposed by Saeys et al. for activation energies (*AIChE J.* **2004**, *50* (2), 426-444.) Extended by Sabbe et al. for pre-exponential factors (*Phys. Chem. Chem. Phys.* **2010**, *12*, 1278-1298)

Kinetics: data base of ΔGAV^{o}

Kinetics: validation of group additivity

Sabbe et al. *ChemPhysChem* **2008**, *9*(1), 124-140 Sabbe et al. *ChemPhysChem*, **2010**, 11(1), 195-210 Sabbe et al. *PhysChemChemPhys*, **2010**, 12 (6), 1278-1298

- Introduction
- Feedstock
- Kinetics
- Reactor
- Process
- Conclusions

- Introduction
- Feedstock
- Kinetics
- Reactor : pilot scale
- Process
- Conclusions

66th Canadian Chemical Engineering Conference "Sustainability & Prosperity" October 16-19 (2016) Québec City (Canada)

- Introduction
- Feedstock
- Kinetics
- Reactor: 3D alternatives
- Process
- Conclusions

Coke formation

Deposition of a carbon layer on the reactor surface

Thermal efficiency

Product selectivity

Decoking procedures

Estimated annual cost to industry: \$ 2 billion

[Muñoz, 2013]

Mitigation by

- Feed additives
- Metallurgy & surface technology
- 3D reactor technology

Coke formation: 3D reactor technologies

Reduce convective heat resistance

Increase surface area

Better mixing

66th Canadian Chemical Engineering Conference "Sustainability & Prosperity" October 16-19 (2016) Québec City (Canada)

"There ain't no such thing as a free lunch"

66th Canadian Chemical Engineering Conference "Sustainability & Prosperity" October 16-19 (2016) Québec City (Canai

Helicoidal finned tubes

Radiant coils in Borealis Furnace, KBR

Computational domain: 1 fin with periodic boundaries

- Introduction
- Feedstock
- Kinetics
- Reactor : CFD models
- Process
- Conclusions

Resolving turbulence

Reynolds-Averaged Navier-Stokes (RANS)

Single model for all scales, additional equations to provide closures

Large Eddy Simulation (LES)

Resolve relevant energy containing scales, model the smaller energy dissipating eddies

Direct Numerical Solution (DNS)

Fully resolve all time and length scales

66th Canadian Chemical Engineering Conference "Sustainability & Prosperity" October 16-19 (2016) Québec City (Canada)

Radial temperature profiles

Axial wall temperature and coking profile

Effect on start of run yields

Radical reaction model 26 components 13 radical species 212 elementary reactions

- Introduction
- Feedstock
- Kinetics
- Reactor: "run length"
- Process
- Conclusions

66th Canadian Chemical Engineering Conference "Sustainability & Prosperity" October 16-19 (2016) Québec City (Canada)

Run length simulation

0.326 kg/kg

c-Rib

903.7 °C

170 kPa

Millisecond propane cracker

- Feedstock
- Propane conversion
- Steam dilution
- CIT

Bare

COP

Different geometries simulated

Fin

- Same reactor volume
- Same axial length
- Same minimal wall thickness

Tube Metal Temperature

Pressure drop

- Introduction
- Feedstock
- Kinetics
- Reactor
- Process
- Conclusions

- Introduction
- Feedstock
- Kinetics
- Reactor
- Process: fire box
- Conclusions

Coupled reactor-furnace simulation

External coil temperature

Heat flux to reactors

Full furnace simulation

Ultra Selective Conversion (USC)

- 100% floor burner
- Fuel composition mol%: CH₄(89%)-H₂(11%)
- > U coil
- Feedstock: Naphtha

Coupled modeling

- 3D CFD furnace model
- ID reactor model (COILSIM1D)
- Detailed cracking kinetics (CRACKSIM)

Flue gas: velocity and concentration fields

Methane mole fraction

Tube wall temperature field: local hot spots

- Introduction
- Feedstock
- Kinetics
- Reactor
- Process: convection section
- Conclusions

Steam cracker convection section

Mahulkar, A.V. et al., Chemical Engineering Science, 110, 31-43, 2014

Gas condensate: multicomponent mixture

- Wider stick regime as compared to that in single component droplet regime map
- For splash and limited splash, the no. of daughter droplets formed is greater than predicted by correlations available in literature

Mahulkar, A.V. et al., Chemical Engineering Science, 130, 275-289, 2015

- Introduction
- Feedstock
- Kinetics
- Reactor
- Process: hot section
- Conclusions

The COILSIM1D package

UNIVERSITEI

AVGI

The COILSIM1D package

AVGI

- Introduction
- Feedstock
- Kinetics
- Reactor
- Process
- Conclusions

Conclusions

- Shannon Entropy maximization to reconstruct feedstocks in terms required for a microkinetic model
- Consistent data set for thermochemistry and kinetics of hydrocarbon and oxygenates radical chemistry
- Ab initio simulation of steam cracking of C₂/C₃/C₄ and oxygenates
- Compatibility of renewable feedstocks with existing plants
- Emergence of 3D reactor technologies based on CFD
- Integration of reactor/convection section/furnace

integration of computational chemistry methods with
engineering tools at larger time and length scales and
experimental validation provides a powerful tool for
the optimization and/or design of industrial units
66th Canadian Chemical Engineering Conference "Sustainability & Prosperity" October 16-19 (2016) Ouébec City (Canada)

Acknowledgments

Opening new horizons

The Long Term Structural Methusalem Funding

Long Term Structural Methusalem Funding of the Flemish Government

Acknowledgments

- Profs. Marie-Françoise Reyniers, Geraldine Heyndericks Maarten Sabbe, Tony Arts, Feng Qian
- Drs. Steven Pyl, Amit Mahulkar, Nick Vandewiele, Ruben Debruycker, Carl Schietekat, Thomas Dijkmans, Paschalis Paraskevas, Marco Djokic, Andres Munoz
- PhD students David Van Cauwenberghe, Pieter Reyniers, Brigitte Devocht, Ruben Van de Vijver, Laurien Vandewalle, Nenad Ristic, Alper Ince, Ezgi Toraman, Yu Zhang, Marco Virgilio

- SFT: Swirl Flow Tube, a tube with a helicoidal centerline. The helix amplitude is smaller than or equal to the tube radius.
- Swirl flow: a whirling or eddying flow of fluid.
- Swirl number: ratio of tangential over axial momentum transfer
- Wall shear stress: component of stress parallel with the wall. It is the product of the viscosity and the derivative of axial velocity with respect to the radial coordinate.