

Development of a one-Dimensional boiling model: Part I – A two-phase flow pattern map for a heavy hydrocarbon feedstock

Pieter Verhees, Abdul Akhras Rahman, Kevin M. Van Geem, Geraldine J. Heynderickx

Laboratory for Chemical Technology, Ghent University

http://www.lct.UGent.be

CHISA, Prague, 28/08/2016

Fouling of heat exchangers

Fouling of heat exchangers

Fouling – Flow regime

Evaporating flow

Fouling – Flow regime

Evaporating flow

Fouling – Flow regime

Evaporating flow

Flow regime!

Fouling prediction <u>Step 1</u> Fouling model (~T) <u>Step 2</u> Determination flow regime <u>Step 3</u> Estimation wall temperature

Flow regime!

This work

Regime maps in literature are developed based on experiments for

Water Cooling fluids

In literature correction is proposed to other fluids

Valididation of the flow regime maps for heavy hydrocarbons

Adiabatic flow regime map

Baker (1954) [◊]

Based on experimental databases Water + air

Generalization to other fluids by correction parameters

$$\lambda = \left[\left(\frac{\rho_g}{\rho_{air}} \right) \left(\frac{\rho_l}{\rho_{water}} \right) \right]^{0.5}$$
$$\psi = \frac{\sigma_{water}}{\sigma} \left[\left(\frac{\mu_l}{\mu_{water}} \right) \left(\frac{\rho_{water}}{\rho_l} \right)^2 \right]^{1/3}$$

Valid for heavy hydrocarbons?

CFD Model

ANSYS FLUENT 13.0

Validated with Water + Air simulations

CFD simulations

Feed

Gasoil is complex hydrocarbon mixture

Represented by 1 pseudocomponent

Simulation conditions

7 simulations are performed

Operating conditions

All seven regimes are observed

CFD results

^oDe Schepper, S. C. K.; Heynderickx, G. J.; Marin, G. B., CFD modeling of all gas-liquid and vapor-liquid flow regimes predicted by the Baker chart. *Chemical Engineering Journal* **2008**, 138, (1-3), 349-357

CFD results

CFD results

Diabatic flow regime map

Kattan, Thome and Favrat (1998)

Based on experimental databases cooling fluid R134a

Correlations are developed to construct the boundaries

Boundaries dependent on Geometry Fluid property Wall heat flux

Correlations valid for heavy hydrocarbons?

^oKattan, N.; Thome, J. R.; Favrat, D., Flow boiling in horizontal tubes: Part 1 - Development of a diabatic two-phase flow pattern map. *Journal of Heat Transfer-Transactions of the Asme* **1998**, 120, (1), 140-147

CFD simulations

CFD model adaptation

CFD results

CFD results

Conclusions & future work

Adiabatic CFD model was validated by Baker chart

Diabatic CFD simulations did not completely agree with the constructed regime map

Proper regime map?

Nucleation at the wall

acknowledgement

Long Term Structural Methusalem Funding by the Flemish Government

UGent High-Performance Computing Stevin