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Abstract. Recently, shunted piezoelectric (PE) patches have been heavily investigated as pas-
sive dynamic vibration absorbers (DVAs) to reduce vibrations in mechanical structures. These
piezoelectric patches serve as an alternative to mechanical DVAs, which require physical space
both for the DVA itself and its stroke, while a piezoelectric DVA only requires space for an elec-
tronic circuit. Typically, the patch is shunted with a resistor and an inductor. As attaching the
patch and the shunt on a mechanical structure is equivalent to mechanically attaching a spring,
mass and damper, mechanical DVA tuning rules are applied to dimensionalize the circuit. This
equivalence between mechanical and piezoelectric DVAs is utilized in the paper to apply the
advances of the more mature mechanical DVA research field. The effect of nonlinear stiffness in
mechanical DVAs has been thoroughly investigated. A typical nonlinear phenomenon is called
targeted energy transfer (TET), where the vibration energy is suddenly transferred from the
structure to the DVA. In this paper, a nonlinear shunt is proposed, equivalent to a nonlinear
mechanical DVA. Then, by applying the nonlinear mechanical DVAs tuning rules, the TET
phenomenon is also found in PE patch with a nonlinear shunt.

1 INTRODUCTION

Excessive vibration in mechanical structures can lead to material fatigue or even structural
failure. These vibrations can also have an effect on humans, they can experience discomfort, noise
pollutions or develop health problems. In passive vibration absorption, excessive vibrations in a
main system are mitigated by adding several passive absorbing elements. As opposed to active
absorption, passive absorption requires no power source and no sensor, making it an elegant
and robust solution to vibration reduction in engineering structures. The elastic structure of
fig.1a represents the main structure to be protected such as a building, a metal structure, a
turbine vane, an airplane wing, car bodywork, . . . . A passive element is a correctly dimensioned
structure, locally added to the main system, that absorbs and/or counter-acts vibrations of
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the main system. It is often called a dynamic vibration absorber (DVA). The most commonly
used DVA is the mechanical type, where a correctly tuned mass-spring-damper system is added
to the main structure, see fig.1b. More recently, the DVA of the piezoelectric (PE) type has
been given a lot of attention in research. It was first proposed by Hagood and Von Flotow
in 1991 [1], where a piezoelectric patch, attached on a beam, was shunted with a resistance
and an inductance, as shown in fig.1c. The deformation of this patch induces a voltage in the
shunt, caused by the direct piezoelectric effect, causing a charge flow in the shunt. The electric
energy is then dissipated in the shunt. While the mechanical DVA both needs space for the
mass-spring-damper and its stroke, the PE DVA only needs space for its shunt and does not
vibrate itself. In this sense the PE DVA is a solid state vibration absorber. Many different type
of shunt circuits have been proposed, an overview can be found in [2]. This paper focusses on
the piezoelectric DVA, more specifically, on nonlinear shunts, as an analogy for the nonlinear
mechanical DVA’s.

The main structure is assumed to be linear, and can be decomposed into linear normal modes
(LNM). Information of the LNM is then used to tune a linear vibration absorber. One of the first,
and still very popular tuning method was proposed by Den Hartog [3], where a single vibration
mode is damped with an analytic frequency response function optimization. These linear, single
mode absorbing DVAs are still used intensively today in both research and industry. Adding
a PE DVA with a resistor-inductor (RL) circuit is equivalent to adding a spring-mass-damper,
with the inductor being the mass, the resistor being the damper and the an material capacitance
being the spring. This was first shown in [4], where the Den Hartog tuning was applied to obtain
RL values.

However, these linear DVAs have a few downsides. When properties of the main structure
or DVA change (eigenfrequencies, modeshape, ..), for example by age, heavy or sustained loads
or by structural modifications, the performance of the DVA might deteriorate seriously. This
deterioration is called detuning of the absorber. Another downside is the inability to absorb more
than one mode with a single DVA. To tackle these downsides, nonlinear vibration absorbers have
been proposed, having a nonlinearizable stiffness. In [5] it was shown that DVA with cubic or
non-smooth stiffness is more robust against detuning and that a single DVA can absorb multiple
eigenmodes.

When the DVA is nonlinear, the main system is still assumed to be linear, while the compound
system (main structure + DVA) is now nonlinear. The dynamics of the nonlinear compound
system are analysed with so called nonlinear normal modes (NNM), a nonlinear extension of
LNM. A NNM can be defined as a (nonnecessarily synchronous) periodic motion of the conserva-
tive system [7]. The most important differences between LNM and NNM for this paper, is that
NNM can differ both in frequency and modeshape, depending on the energy in the structure,
and that NNMs can suddenly appear or disappear above a certain energy level, so-called mode
bifurcations. A LNM will always have the same frequency and mode shape for every energy
level of the compound system and they do not appear or disappear depending on this energy
level. NNMs have been around since the 1960s as a theoretical curiosity but recently got more
attention in nonlinear vibration absorption [6] and nonlinear structural dynamics [7]. Many
numerical and analytic methods [5, 8] have been developed to obtain NNM. As every class of
nonlinear systems requires a different analysis method, the numeric toolbox NI2D [9] is used to
investigate the system and generate the NNM.
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(a) (b)

(c)

Figure 1: (a) A mechanical elastic structure can experience excessive vibration under forcing or
initial conditions. (b) A mechanical DVA, consisting of a mass-spring-damper system can be
tuned to mitigate the vibration. (c) A piezoelectric DVA, shunted by an R, RL or the proposed
nonlinear circuit. The reduction of vibrations in (b) and (c) is shown here as smaller ’movement’
lines. Figures are adapted from [12]

The mechanism of vibration absorption for the considered nonlinear DVAs is called targeted
energy transfer (TET). It is defined as a sudden, irreversible transfer of vibration energy from
the main structure to the DVA [5]. An important property of TET is that this mechanism only
occurs when the initial or forcing energy in the main structure is above a certain threshold. This
threshold was analytically expressed in [10] where it was shown that a NNM mode bifurcation
is responsible for this threshold.

In electric circuits, nonlinearities are often undesirable and avoided, but deliberate nonlinear-
ities have been introduced in for instance variable capacitors (called varicaps) in AM/FM radio
tuners, while more recently, in the context of piezoelectric shunts, so-called synthetic impedances
have been developed, allowing to generate any desired electrical impedance [11]. For now these
synthetic impedances have been used to synthesize linear impedances, but can be extended to

3

106



Kevin Dekemele, Robin De Keyser and Mia Loccufier

nonlinear ones, as the voltage/current relation is programmed in a DSP.
The main contribution of this paper is that TET is possible in a shunted piezoelectric patch if
special nonlinear electrical components are added. As an RL shunt is equivalent to adding a
linear mechanical DVA, this equivalence is to allow for TET. In section 2, the dynamic model
of the effect of the PE patch and shunt (with a nonlinear component) on the main system
is constructed. By adding a nonlinear capacitor in series with the inductance and resistor the
mechanical-electrical equivalence is extended so that this capacitor is a nonlinear spring connect-
ing the inductance mass with the ground. This nonlinear capacitor is designed to ensure TET
in the shunt. In the past, this type of nonlinear, grounded mechanical vibration absorber has
been given some attention [6] but most research on TET was investigated ungrounded nonlinear
absorbers[5, 10, 13]. In the 3rd section, the NNMs of the compound system are derived, and it
is shown that when the shunt contains a ’cubic capacitor’, TET indeed does occur if energy in
the main system is high enough. In the 4th section, simulations are performed and show the
typical properties of TET; as the energy threshold and increased robustness against detuning.

2 SYSTEM ANALYSIS

A continuous mechanical main system is considered with a displacement Y(x, t), at point x
of the structure at time t. The piezoelectric patch has a charge Q flowing through the shunt
and has a voltage V over its electrodes. The main system is assumed to be linear, and either
by a mode reduction of the analytic expression [14] , or with a FEM formulation [12], can be
decomposed in a discrete number of modes:

Y(x, t) =

N∑
i=1

Φi(x)qi(t) (1)

with Φi(x) the i-th mode shape and qi(t) the i-th modal coordinate. The main structure,
subjected to both the external forces and piezoelectric force, fig.1c, can be formulated as:

q̈i + 2ζiωiq̇i + ω2
i qi − χiV︸︷︷︸

PE force

= Fi,ext︸ ︷︷ ︸
External force

, i ∈ [1, N ] (2)

with ωi the eigenfrequency of the mode, ζi the modal damping and χi the modal electromechan-
ical coupling factor (MEMCF)[14].

CpV −Q+
N∑
i=1

χiqi = 0 (3)

with Cp the equivalent electrical capacitance of the piezoelectric patch. To simplify the anal-
ysis, no external forcing is assumed and motion of the mechanical structure is assumed to be
dominated by a single mode j, simplifying (2) and (3) to:

q̈j + 2ζjωj q̇j + ω2
j qj − χjV = 0

CpV −Q+ χjqj = 0 (4)
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The proposed shunt contains a resistor R, inductor L and in series, a general electrical
component that produced a voltage VZ = f(Q):

V = −LQ̈−RQ̇− f(Q) (5)

This allows (4) and (5) to be rewritten as:

q̈j + 2ζjωj q̇j + ω2
j qj +

χ2
j

Cp
(qj −

Q
χj

) = 0

χ2
jL

Q̈
χj

+ χ2
jR

Q̇
χj

+ χjf(Q) +
χ2
j

Cp
(
Q
χj

− qj) = 0 (6)

or by introducing the variable Q = Q
χj
, a charge with unit m:

q̈j + 2ζjωj q̇j + ω2
j qj +

χ2
j

Cp
(qj −Q) = 0

χ2
jLQ̈+ χ2

jRQ̇+ χjf(Q) +
χ2
j

Cp
(Q− qj) = 0 (7)

which can be interpreted as a two degree of freedom mechanical system, see fig.2. It is as

if the modal system is connected with the ’inductance’ mass χ2
jL through the linear spring

χ2
j

Cp
.

The ’inductance’ mass itself is also grounded, like the modal system, through a damper, χ2
jR.

The general impedance f(Q) can be seen as some kind of stiffness connecting the inductance
mass to the ground. For instance, if f(Q) = Q

Clin
, actually a linear capacitor, then it is as if a

linear spring connects the inductance mass to the ground.
The impedance f(Q) will be designed in order to ensure targeted energy transfer. If Vz =

f(Q) = Q3

Ccub
, TET occurs when the system energy is above a threshold coinciding with a NNM

mode bifurcation.

3 NONLINEAR NORMAL MODES

Nonlinear normal modes are possibly synchronous periodic solutions of the conservative sys-
tem. System (7) still has damping, so by setting R = 0 and ζj = 0 the underlying conservative
system reads:

q̈j + ω2
j qj +

χ2
j

Cp
(qj −Q) = 0

χ2
jLQ̈+

χ4
jQ3

Ccub
+

χ2
j

Cp
(Q− qj) = 0 (8)

To construct these nonlinear normal modes, it is assumed that steady state motion of (8) is
a synchronous, single frequency vibration:
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1

χ2
jL

ω2
j 2ωjζj

χ2
j/Cp

χ2
jRχjf(Q)

qj

Q

Figure 2: The mechanical equivalent of the structure/patch system

qj = Acos(ωt)

Q = Bcos(ωt) (9)

of which both, A,B and ω are unknown. When replacing (9) in a linear system with n-degree
of freedom, n solutions for ω will be found, the eigenfrequencies, and for each ω, eigenvectors
or mode shape, which fixes the ratio between A and B. Both the frequencies and eigenvectors
will not change depending on the magnitude A or B. In nonlinear system, the ’eigenfrequencies’
and the mode shapes depend on the magnitude of A and B.

Replacing (9) in (8) yields the following solutions for A and B:

B = ±

√√√√√4Ccub

3χ4
j

χ2
jL(ω

2
j − ω2 +

χ2
j

Cp
)−

χ2
j

Cp
(ω2

j − ω2)

ω2
j − ω2 +

χ2
j

Cp

(10)

A =

χ2
j

Cp
B

ω2
j − ω2 +

χ2
j

Cp

(11)

The potential energy in the conservative system is:

E =
1

2
ω2
jA

2 +
χ2
j

2Cp
(A−B)2 +

χ4
j

4Ccub
B4 (12)

which is the total energy as when the assumed motion (9) is maximal, the speed is zero. In
NNMs, it is custom to graphically plot the so-called frequency-energy plot (FEP), which reveals
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the relation (12) and the frequency. Using the numerical values for the nonlinear shunt on tab.1,
the FEP is plotted on fig.3 using the toolbox NI2D.

The FEP clearly shows a change of eigenfrequency as the energy increases. In linear systems,
the FEP would just consist of horizontal lines. There are 2 main curves, called branches. The
first, the S11+ branch, is the in-phase nonlinear mode of the system while the second, S11−, is
the out of phase motion. Both of these branches start horizontally at the linearised frequencies,
that is the eigenfrequencies of (8) if it is linearised. As the energy increases, the upper branch
S11− bifurcates for log(E) = −0.817 into 3 solutions. The branch S11− bifurcates again for
log(E) = −0.174. It is this last bifurcation and the associated energy that are linked with TET
[5, 10, 15]. If the initial energy is just above this log(E) = −0.174, the energy in the main system
will be transferred to the absorber, where it will be dissipated if there is damping present. Just
below this energy level, the energy stays in the main system, and is only slowly mitigated. It is
assumed that initially, only the main system has an initial speed. This is called the impulsive
excitation. The initial (kinetic) energy in the system is then:

E =
1

2
q̇2j =

1

2
ω2
jA

2 > 10−0.174 ⇒ q̇j > 1.15m/s (13)

which yields the required initial speed to trigger TET. In the next section, simulations are
performed to show this sudden change in behaviour as the initial speed changes and a nonlinear
shunt is compared to a linear one.

52.6

33.4

100

-4 0.5-2 log10(E)

Frequency [Hz]

-0.817 -0.174

S11-

S11+

Figure 3: The nonlinear normal modes of system (8), visualised with the frequency-energy plot

4 Simulations

In [14] a cantilever beam was fitted with a piezoelectric patch. The mechanical and piezo-
electric parameters from this setup are used to simulate both a nonlinear and linear shunt. The
tuning of the linear shunt was performed in [14] see tab.1 for numerical values, with only a
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Table 1: Numerical values of mechanical system and shunt. The values for the linear shunt are
taken from a mechanical setup from [14]

Quantity Linear Nonlinear

ωj [ rads ] 324.5 324.5
χj [Cm ] 0.0045 0.0045
Cp [F ] 9.16 · 10−9 9.16 · 10−9

R [Ω] 58.62 · 103 58.62 · 103
L [H] 1060 2400

Ccub [
C3

V ] — 9.16 · 10−18

resistor and inductor in the shunt circuit. For the nonlinear shunt, the values used to draw the
NMM are used.
First, the designed nonlinear shunt is simulated for several initial q̇j(0), see fig.4. In the previous
section, is was determined that q̇j(0) should be above 1.15 m/s for TET to happen. When the
initial speed is below the critical value (here q̇j(0) = 0.8 m/s), the main system vibrations,
fig.4a, mitigate very slowly, and the absorber charge, fig.4b, is low compared to the other initial
speeds. If the main system is excited with q̇j(0) = 1.15 m/s, the vibrations are reduced very
fast, and the absorber charge is persistently larger than before. If the initial speed is then further
increased (here q̇j(0) = 1.5 m/s, the vibration reduction is slower, yet still significantly faster
than when the initial speed was below 1.15 m/s.

The fact that this vibration absorber don’t work below, optimally on, and suboptimally above
the energy threshold was already discussed in [5].

Next, the main system’s vibration reduction is compared when using the nonlinear shunt
and a tuned linear shunt, tuned in [14], on fig.5. First, the main system is excited with the
optimal initial speed for the nonlinear shunt, fig.5a. Here, the linear absorber is better than
the nonlinear one in the beginning. After 0.29 s however, the linear and nonlinear shunts
have reduced the main system vibration to somewhat the same level. A correctly tuned linear
absorber is always faster than a correctly tuned absorber of the kind on fig.2 [5, 16]. One of the
advantages of the nonlinear shunt is that it is more robust. If the main system is detuned, by
reducing eigenfrequency ωj three times by 0.9, so ωj = 290, 260 and 232 rad/s, it is observed
that linear shunt’s performance deteriorates a lot faster than the nonlinear shunt, fig.5a, fig.5b
and fig.5c.

5 Conclusion

In this paper, it is shown that the targeted energy transfer (TET) phenomenon, normally
associated with mechanical dynamic vibration absorbers (DVA), also occurs in piezoelectric
DVAs for a carefully designed shunt. By assuming a single vibration mode in the main system,
the electrical charge in the shunt is equivalent to a mechanical displacement. In this mechanical-
electrical equivalence, an RL shunt is then seen as a mass spring damper system, attached on the
main structure. If a nonlinear electrical element is added in the shunt, the shunt is equivalent
to a nonlinear mechanical DVA so the tuning rules to achieve TET in mechanical DVA can be
applied to the nonlinear shunt. Some simulations were performed to show the initial energy
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-80.1 s
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Figure 4: The main systems displacement qj (a) and charge in the nonlinear shuntQ (b) for
initial main system’s speed q̇j = 0.8 m/s (grey), q̇j = 1.15 m/s (dark blue) and q̇j = 1.5 m/s
(light blue)
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(a)
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(c)
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-0.8
0.790.61

(d)

Figure 5: The main systems displacement qj for initial speed q̇j = 1.15 both when using a linear
shunt (blue) and nonlinear shunt (grey) (a), for a detuned eigenfrequency ωj = 290 rad/s (b),
ωj = 260 rad/s (c) and ωj = 232 rad/s (d)
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dependence on the performance of TET. The nonlinear shunt was also compared to a linearly
tuned shunt. While a perfectly tuned linear shunt mitigate vibrations faster than the nonlinear
shunt, the nonlinear shunt is a lot more robust if there is detuning.
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