
The aDORe Federation Architecture

1

The aDORe Federation Architecture
Herbert Van de Sompel (1), Ryan Chute (1), Patrick Hochstenbach (2)

(1) Digital Library Research and Prototyping Team
Los Alamos National Laboratory
MS P362, PO Box 1663
Los Alamos, NM 87544-7113, USA
{herbertv,rchute}@lanl.gov
(2) Universiteitsbibliotheek
Universiteit Gent
Rozier 9, 9000 Gent, Belgium
patrick.hochstenbach@ugent.be

Abstract

The need to federate repositories emerges in two distinctive scenarios. In one scenario, scalability-related

problems in the operation of a repository reach a point beyond which continued service requires

parallelization and hence federation of the repository infrastructure. In the other scenario, multiple

distributed repositories manage collections of interest to certain communities or applications, and

federation is an approach to present a unified perspective across these repositories. The high-level, 3-Tier

aDORe federation architecture can be used as a guideline to federate repositories in both cases. This paper

describes the architecture, consisting of core interfaces for federated repositories in Tier-1, two shared

infrastructure components in Tier-2, and a single-point of access to the federation in Tier-3. The paper also

illustrates two large-scale deployments of the aDORe federation architecture: the aDORe Archive

repository (over 100,000,000 digital objects) at the Los Alamos National Laboratory and the Ghent

University Image Repository federation (multiple terabytes of image files).

Keywords

Interoperability, repository federation, OAI-PMH, OpenURL

Introduction

There is a growing interest in issues of scalability that are faced when designing,

deploying, and managing infrastructures for ingesting, storing, accessing, and providing

services for collections of digital objects. This increased interest in scalability is directly

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/84040534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The aDORe Federation Architecture

2

related to the exponential growth in the amount of digital artifacts that is being created on

a daily basis, both born-digital, and as a result of massive digitization efforts. Architects,

engineers and developers involved in creating digital asset management systems are

facing the harsh reality that their solutions need to handle an amount of artifacts that is

orders of magnitude higher than originally intended, and are reaching an understanding

that approaches that work at the originally intended scale do not necessarily work at that

next level. Whereas scalability used to be a concern for a limited group of traditional

custodians of vast content collections, it is rapidly appearing on the radar of a much

larger group of institutions worldwide, for example, as a result of their involvement in

digitization projects, eScience and eHumanities data curation activities, digital

preservation endeavors, and institutional repository efforts.

Scalability in digital libraries is a problem that extends into multiple dimensions. For

example, there are issues related to the amount of digital objects to be handled and issues

related to their size. There are issues related to the performance of processes such as

ingestion of objects into a repository, dissemination of stored objects, and introspection

upon stored objects among others driven by preservation requirements. Optimizing,

tuning, and tweaking the existing repository infrastructure can initially alleviate

performance problems, but eventually limits are reached. At that point, a major redesign

of the repository solution is an obvious option. An alternative is to move towards an

environment that consists of parallel instances of the existing repository solution and to

glue those together into a repository federation that behaves as if it were a single

repository. The desire to federate repositories in such a manner actually also emerges as

a result of the understanding that no single digital library hosts all artifacts that are

relevant for a specific subject domain, community, or application. The proposition of a

“single repository behavior” exposed by a federation consisting of any number of

distributed repositories is appealing, and has been the subject of digital library

interoperability efforts such as Dienst [22], NCSTRL [8], CORDRA [36, 33, 15],

DRIVER [9], and the Chinese DSpace federation [38]. Both federation paths, on one

hand the federation of multiple instances of a specific repository installation, and on the

other hand the federation of distributed repositories, reveal another dimension of the

The aDORe Federation Architecture

3

scalability problem in contemporary digital library efforts. Indeed, as a result of a

combination of low-level system scalability issues, and higher-level community needs,

there comes a point at which the reality of a multiple-repository environment must be

embraced. The challenge is then to devise an approach to federate repositories in a

manner that is functional, practically achievable, and … scaleable to a vast amount of

federated repositories.

This paper describes the aDORe repository federation architecture, an outcome of the

aDORe research and development effort by the Digital Library Research & Prototyping

Team of the Los Alamos National Laboratory (LANL). The architecture is the result of

three intersecting drivers. First, there is a general research interest in repository

interoperability as exemplified by the Team’s involvement in standardization efforts such

as the ANSI/NISO Z39.88-2004 OpenURL Framework for Context-Sensitive Services

(OpenURL) [35], the Open Archives Initiative Protocol for Metadata Harvesting (OAI-

PMH) [23, 24], and more recently the Open Archives Initiative Object Re-Use &

Exchange effort (OAI-ORE) [46]. Second, there is the Team’s research interest in digital

preservation matters illustrated by its involvement in National Digital Infrastructure and

Preservation Program (NDIIPP) projects. Third, there is the concrete need to design and

implement a solution for ingesting, storing and accessing the vast and growing scholarly

digital collection of the Research Library of the Los Alamos National Laboratory. This

paper also describes two quite distinctive implementations of the aDORe federation

architecture illustrating its applicability in a variety of settings including:

• An environment operated by a sole custodian with a need to ingest, store, and

access a large collection of digital objects, and where the size of the collection

makes parallelized and distributed approaches a necessity.

• An environment operated by a variety of custodians, each operating their own

software and hardware infrastructure but sharing a need for unified access to the

union of their collections.

The remainder of this paper is structured as follows. Section 2 summarizes the results of

the aDORe effort to date, and puts this paper in the perspective of previous aDORe-

The aDORe Federation Architecture

4

related communications. Section 3 describes the details of the aDORe federation

approach, introducing its 3-Tier architecture, detailing the core requirements imposed on

a repository to become part of a federation, and introducing the components that facilitate

exposing an environment consisting of multiple, possibly heterogeneous, repositories as a

single one. Section 4 is dedicated to the aDORe Archive developed and implemented at

LANL in response to the aforementioned challenge to handle the Library’s collection.

Section 5 discusses the Ghent University Image Repository federation that is under

development as a solution to the challenges posed by a large-scale, distributed,

university-wide digitization effort. Both these sections describe the respective use case

and how the concrete technological choices made in the deployment of the described

federations relate to the high-level aDORe federation architecture. Section 6 reflects on

the different implementation choices that were made in both use cases, and Section 7

concludes the paper.

Background

The aDORe effort started at the LANL Research Library around 2003 when it became

clear that the new information discovery solution for the digital library collection suffered

from three significant design problems. First, the approach was metadata-centric, treating

descriptive metadata records as first class citizens and the actual digital assets as auxiliary

items. Second, tens of millions of digital assets were directly stored as files in a file

system, resulting in a system administrator’s nightmare regarding file system

management and backup. Third, there was a tight integration between the content

collection and the discovery application, preventing other applications from leveraging

the rich content base. The solutions to these problems were straightforward and not

necessarily novel: introduce a compound object view of digital assets to replace the

metadata-centric view, bundle assets into storage containers that dramatically reduce the

amount of files in file systems, and cleanly separate the repository from applications that

leverage content hosted by the repository by providing the necessary machine interfaces.

Nevertheless, the concrete implementation of these three high-level solutions led to a

multi-year exploration by the Digital Library Research & Prototyping Team into the

realm of repository and federation architectures. The major, self-imposed constraints

The aDORe Federation Architecture

5

throughout this effort have been to leverage existing standards and technologies to make

deployment and adoption more straightforward, and to think in a distributed, component-

based manner as a means to meet challenges of scale.

One strand of exploration was concerned with the choice of a compound object model

and associated serialization. This led to direct involvement in the MPEG-21

standardization effort, in particular in the parts Digital Item Declaration [10], Digital Item

Declaration Language and Digital Item Identification [11], a suite of papers describing

the thinking with this regard [2, 6], and the release of the DIDLTools, a Java toolkit for

manipulating serializations of compound objects compliant with the MPEG-21 DID data

model [31].

Another strand of research investigated existing repository solutions such as Fedora [25],

DSpace [37], and commercial content management systems such as XML databases.

None of the investigated solutions provided adequate guarantees at the scale required by

LANL. Nevertheless, architectural concepts from the Fedora effort inspired the aDORe

research, and led to a regular exchange of ideas from which both efforts benefited. This

exploration of repository solutions led to the XMLtape/ARCfile storage solution [29] and

involvement in the WARC file [20] standardization effort.

Yet another strand of research was concerned with the nature and number of machine

interfaces that are required to access materials from a repository. The distributed

modeling approach automatically led to a choice of protocol-based machine interfaces

and in this realm the OAI-PMH and OpenURL were leveraged [3, 4, 5, 42].

The concrete situation at LANL required a large number of XMLtapes and ARCfiles to

store the collection, and naturally led to explorations in the realm of designing and

implementing repository federations that expose a “single repository behavior”. This

federation strand is to an extent described in [3, 14, 43] but this paper provides the first

overview of the aDORe federation concepts in a manner that is disconnected from

The aDORe Federation Architecture

6

specific technological choices made in the course of developing the aDORe Archive

solution.

Finally, the aDORe work led to the concept of dynamically associating disseminations

with stored bitstreams [3, 43]. These dynamic disseminations are the result of applying a

service to a stored bitstream, and the decision regarding which services can be applied to

which stored bitstreams. These decisions are guided by an on-the-fly introspection of the

properties of the bitstream and of its containing compound object. This dynamic

approach was dictated by considerations of scale, as the static binding of bitstreams and

services (behaviors) as was proposed by the Fedora architecture led to a major

maintenance overhead whenever a certain service that was statically bound to a large

number of objects had to be updated.

The aDORe Federation Architecture: Introduction

The goal of the aDORe federation architecture is to facilitate a uniform manner for client

applications to discover and access content objects available in a group of distributed

repositories. This is achieved by means of a 3-Tier architecture illustrated in Figure 1.

Tier-3 provides client applications with a single point of access to all content available in

the federation, irrespective of the actual location of that content in federated repositories.

In order to realize this, the architecture requires all federated repositories to implement

the same, minimal set of machine interfaces to make their content accessible. These

repository interfaces constitute Tier-1 of the architecture. Moreover, the architecture

requires the introduction of a middle Tier, Tier-2, consisting of two shared infrastructure

components that keep the books on content objects, repositories, and repository interfaces

in the federation. These shared infrastructure components minimally expose one machine

interface each. In order to respond to client requests, the federation’s single point of

access interacts with these interfaces as well as with the interfaces exposed by the content

repositories. As a matter of fact, the single point of access to the federation supports

exactly the same minimal set of machine interfaces as each federated repository does,

effectively making the entire federation behave in the same manner as each individual

constituent repository. In principle, this design allows the aDORe federation concepts to

The aDORe Federation Architecture

7

be applied recursively, but no experiments have been conducted to date that demonstrate

the feasibility of the nested federations idea. The aDORe federation architecture is not

concerned with uniform operations to write, update and delete objects in repositories, and

considers these the responsibility of constituent repositories of the federation. However,

the architecture does ensure that results of these operations can be made apparent to client

applications.

Figure 1: The 3-Tier aDORe federation architecture

The aDORe Federation Architecture: Basic Design

Choices

All entities in the aDORe federation architecture, content objects, repositories, and

machine interfaces, are identified by means of URIs. The choice for URIs turns each

entity into a uniquely identified resource on the Web. And an appropriate choice of the

authority component of a URI scheme helps to avoid unwanted collapses of identifiers,

for example, for different content objects from various federated repositories. The

The aDORe Federation Architecture

8

architecture distinguishes between protocol-based URIs that can be de-referenced via a

common protocol to provide access to a representation, and non-protocol-based URIs for

which no common de-referencing mechanism approach exists. The choice between these

two types of URIs in the deployment of an aDORe federation relates to the use case at

hand and will be explored throughout the paper.

All machine interfaces in the aDORe federation architecture are protocol-based. This

choice simultaneously accommodates a multiple-custodian use case with constituent

repositories that are effectively distributed across the Internet, and a single-custodian use

case in which considerations of scale eventually require the distribution of components

across an intranet. Although the functionality provided by the proposed machine

interfaces can be implemented in a variety of ways, the desire to leverage existing

standards in the aDORe work has led to using community standards that fit the job. It

fact, a combination of the OAI-PMH and OpenURL can address all core requirements,

and is used in both implementations of the aDORe federation architecture described

below.

The aDORe Federation Architecture: Content Objects

The architecture recognizes three types of Content Objects: Digital Objects,

Datastreams and Surrogates. Certain properties related to identification, location and

time-stamping of Content Objects are core enablers of the architecture, and play a crucial

role in the federation’s machine interfaces. Both the types of Content Objects and their

core properties are described in the remainder of this section; their position in the overall

architecture is also illustrated in Figure 2. It must be emphasized that the aDORe

architecture does not require federated repositories to natively embrace these constructs,

but rather requires supporting them in their federation-facing machine interfaces. Also, as

will be shown, depending on the requirements of a specific instantiation of an aDORe

federation, even some of the core properties need not be supported. The architecture

supports expressing a variety of other properties and relationships pertaining to Content

Objects but only serves to convey them. There is no requirement for such properties or

The aDORe Federation Architecture

9

relationships to exist, nor are any interoperability requirements imposed on them; their

interpretation is left to applications overlaying the federation.

Figure 2: An overview of Tier-1 of the architecture showing the types of Content Objects, the Surrogate

Repository and the Datastream Repository, as well as their core Interfaces

Digital Objects

Compound digital objects, as initially proposed by Kahn-Wilensky [17, 18], have become

the norm in digital library environments [34], and most repository systems now have

some compound object model at their core. Logically, an aDORe federation also

embraces compound objects, and it does so by supporting a Digital Object which is an

identified aggregation of one or more Datastreams and properties pertaining to the

Datastreams and to the aggregation itself. A Digital Object is the perspective of a

repository’s native compound digital object that is shared with an aDORe federation.

Identification: A Digital Object must be identified by means of a URI, the DO-URI. A

Digital Object may have one or more DO-URIs. The DO-URI can be minted by a

repository or can be inherited from another environment. Hence, a Digital Object with the

The aDORe Federation Architecture

10

same DO-URI may exist in multiple repositories of a federation. A DO-URI can be

protocol-based or non-protocol-based, but in the former case the DO-URI is also treated

as a non-protocol-based URI. This means that, in the federation environment, a DO-URI

is never resolved using its native resolution protocol, but rather is conveyed as a

parameter in a protocol request issued against the federation’s machine interfaces. This

accommodates a use case like the Internet Archive’s, in which Web documents are

identified in the repository by means of their native HTTP URI and where dissemination

requests carry these HTTP URIs as a parameter. Example DO-URIs are info:some-

repo/do/1234 and http://some.repo.org/do/1234. Both are treated as non-protocol-based

in a federation.

Time-stamping: Digital Objects can change over time, and changes are communicated to

the federation by means of Surrogates and their Surrogate-datetime property.

Datastreams

A Datastream is a retrievable bitstream of whichever media type made available by a

repository to the federation. It is a perspective of a repository’s native bitstream that is

shared with an aDORe federation. Depending on the internal design and capabilities of a

federated repository, a Datastream (retrievable bitstream) can be a straight dissemination

of a bitstream stored by the repository, the dissemination of a bitstream stored external to

the repository (but that the repository treats as part of the content collection it makes

accessible), or the result of applying some service operation to either of those types of

bitstreams. A specific Datastream can be a constituent of multiple Digital Objects made

accessible by the federation, but there is only one repository in the federation from which

a bitstream corresponding with the Datastream can be retrieved (i.e. there is a repository

that “owns” and “serves” the Datastream).

Identification: A repository mints identifiers to be uniquely associated with the

bitstreams it makes retrievable. These identifiers can be:

• Datastream-URI: A non-protocol-based URI that identifies the Datastream.

Retrieval of the bitstream is achieved by using the Datastream-URI as a parameter

The aDORe Federation Architecture

11

against the appropriate machine interfaces of the federation. An example

Datastream-URI is info:some-repo/ds/5678.

• Datastream-URL: A protocol-based URI that identifies the Datastream.

Retrieval of the bitstream is achieved by de-referencing the Datastream-URL

using its native resolution protocol. An example Datastream-URL is

http://some.repo.org/ds/5678.

Time-stamping: The Datastream-datetime is a date/time when a Datastream underwent

changes of a nature that need to be communicated to the federation. Depending on a

repository, a Datastream-datetime could, for example, correspond with the time a

bitstream was ingested into the repository, the time of last modification of a bitstream as

recorded by a repository’s file system, the time a service-operation was associated with a

stored bitstream or when that service-operation was updated.

Update policies: Two repository policies exist that bear relationship with the

Datastream-datetime:

• New Datastream Policy: An update of a retrievable bitstream that corresponds

with a Datastream results in the introduction of a new Datastream, with a new

Datastream-URI (and/or Datastream-URL) and a new Datastream-datetime. The

original Datastream remains available. Under this policy, the Datastream-datetime

is always the date/time of creation of the Datastream. This is a typical digital

preservation scenario, in which the migration of a JPEG image identified by URI-

1 results in a JPEG-2000 image identified by URI-2, not URI-1.

• Update Datastream Policy: An update of a retrievable bitstream that correspond

with a Datastream remains associated with that same Datastream; the

Datatstream-URI (and/or Datastream-URL) remains the same, but the

Datastream-datetime is updated. The retrievable bitstream that originally

corresponded with the Datastream is no longer retrievable. Under this policy, the

Datastream-datetime is either the date/time of creation of the Datastream or the

date/time of most recent modification.

The aDORe Federation Architecture

12

Surrogates

A Surrogate is the serialization of a Digital Object into a machine-readable representation

that is made accessible by a repository. Surrogates are the vehicles repositories use to

keep the federation informed about the availability of their Digital Objects and about

changes those Digital Objects undergo. A Surrogate minimally expresses the DO-URI of

the Digital Object of which the Surrogate is a serialization, the identifiers of constituent

Datastreams of that Digital Object, as well as its own identifier. One or more Surrogates

can correspond with a given Digital Object in a federation, both because a Digital Object

with a specific DO-URI can exist in multiple repositories of the federation, and, because

a given repository may make multiple Surrogates available for a specific Digital Object.

The aDORe federation architecture allows for a choice of serialization formats such as

DIDL [6, 10], METS [33], or ORE Atom [26]. Use of the same format across a federation

is handy yet not essential. Still, it must be understood that a multiple format environment

will impose a conversion burden either on downstream applications or on the Tier-3

components, and that format crosswalks typically lead to information loss.

Identification: A repository mints identifiers to be uniquely associated with the

Surrogates it makes retrievable. These identifiers can be:

• Surrogate-URI: A Surrogate-URI is a non-protocol-based URI that identifies the

Surrogate. Using a Surrogate-URI as a parameter in a protocol requests against

the appropriate machine interfaces in the federation retrieves the corresponding

serialization of a Digital Object. An example Surrogate-URI is info:some-

repo/su/9012.

• Surrogate-URL: A Surrogate-URL is a protocol-based URI that identifies the

Surrogate. Retrieval of the Surrogate is achieved by de-referencing the Surrogate-

URL using its native resolution protocol. An example Surrogate-URL is

http://some.repo.org/su/9012.

Time-stamping: The Surrogate-datetime is a date/time when a Digital Object

underwent changes of a nature that needs to be communicated to the federation.

Minimally, a Surrogate-datetime changes when changes the Digital Object’s constituency

The aDORe Federation Architecture

13

changes, i.e. when Datastreams are added or removed. But, for those federations that

implement the Datastream-URL or Datastream-datetime properties, a change to their

values likely needs to be communicated, and hence will result in an update of the

Surrogate-datetime. Some federations may even require an update of the Surrogate-

datetime whenever any property or relationship pertaining to a Digital Object or its

constituent Datastreams changes.

Update policies: Two repository policies exist that bear relationship with the Surrogate-

datetime:

• New Surrogate Policy: A change to a Digital Object that needs to be

communicated to the federation leads to the introduction of a new Surrogate for

the Digital Object, with a new Surrogate-URI (and/or Surrogate-URL), and a new

Surrogate-datetime. The previous Surrogate remains available.

• Update Surrogate Policy: A change to a Digital Object that needs to be

communicated to the federation leads to updating the existing Surrogate for the

Digital Object. The Surrogate-URI (and/or Surrogate-URL), is maintained, but its

Surrogate-datetime is updated. The previous Surrogate is no longer available.

The aDORe Federation Architecture: Tier-1

Tier-1 of the architecture, illustrated in Figure 2, consists of machine interfaces for

federated repositories that support the Surrogate and Datastream notions introduced in the

above, and that leverage their core properties related to identification, location and time-

stamping. It should be noted that additional interfaces that leverage other properties of

content objects can be added as required, but these are beyond the scope of the minimalist

federation approach proposed here. In Tier-1 of the architecture, each repository exposes

itself to the federation as two logical Repositories:

• A Surrogate Repository to facilitate access to Surrogates.

• A Datastream Repository to facilitate access to Datastreams.

Both types of Repositories are identified by means of a URI, the Repository-URI. The

Repository-URI is a non-protocol-based URI that serves as a key to associate a

The aDORe Federation Architecture

14

Repository with its machine Interfaces. The proposed core Interfaces are discussed

below, and are further illustrated in Figure 3. Each Interface is itself identified by means

of a non-protocol-based URI, the Interface-URI, which uniquely corresponds with the

network location of an Interface, the Interface-URL. The choice for non-protocol-based

URIs to identify Repositories and Interfaces yields a stable identification across the

federation, even when the network location of Interfaces changes.

As will be shown in the sections describing implementations of the architecture,

Datastream Repositories are necessary when only Datastream-URIs are associated with

Datastreams made available by a repository. If Datastream-URLs exist, they can directly

be de-referenced using the Internet infrastructure.

Figure 3: Core Interfaces for Surrogate and Datastream Repositories

Surrogate Repositories: Core Machine Interfaces

Surrogate Repositories are essential for a repository to communicate the availability of

Digital Objects, as well as changes applied to these Digital Objects to the federation. The

proposed interfaces for a Surrogate Repository are described here.

The aDORe Federation Architecture

15

Harvest Surrogates

The Harvest Surrogates Interface provides an essential mechanism for the federation to

remain aware of Digital Objects that are available from a repository, as well as of

changes in their configuration. The simplest instantiation of this Interface would return

all Surrogates available from a repository in response to every request. While such an

approach is possible, it seems that leveraging the Surrogate-datetime property in this

Interface yields increased scalability and flexibility. Hence, the following is proposed for

this Interface:

• Request parameters:

o from indicating that only Surrogates with a Surrogate-datetime later than

or equal to the specified date/time should be returned;

o until indicating that only Surrogates with a Surrogate-datetime earlier than

or equal to the specified date/time should be returned;

• Response: List of Surrogates with a Surrogate-datetime that match the specified

request parameters.

• Typical implementation: OAI-PMH ListRecords with the federation’s chosen

Surrogate format as Metadata Format, and with Surrogate-URIs as OAI-PMH

item identifiers.

o A sample harvesting request using OAI-PMH is

http://some.repo.org/sur/oaipmh?verb=ListRecords&metadataPrefix=didl

&from=2006-09-07 where didl indicates the Surrogate Format used in the

federation.

Obtain Surrogate

The Obtain Surrogate Interface serves the purpose of obtaining a Surrogate with the

most recent Surrogate-datetime that corresponds with a specified Digital Object, or with a

Digital Object of which a specified Datastream is a constituent. In case Surrogates are

identified by means of a Surrogate-URI, and not a Surrogate-URL, this Interface can also

be used to return a Surrogate with a specified Surrogate-URI. The following is proposed

for this Interface:

• Request Parameters:

The aDORe Federation Architecture

16

o identifier with a value of DO-URI, Datastream-URI, or Surrogate-URI

• Response: The Surrogate with the most recent Surrogate-datetime that

corresponds with the Digital Object identified by the specified DO-URI, or that

corresponds with the Digital Object of which the Datastream specified by

Datastream-URI is a constituent.

• Typical implementation: OpenURL, with Referent Identifier set to DO-URI,

Datastream-URI, or Surrogate-URI and with a ServiceType Identifier expressing

an “Obtain Surrogate” service.

o A sample request using OpenURL is

http://some.repo.org/openurl?url_ver=z39.88-2004&rft_id=info:some-

repo/do/1234&svc_id=info:ourfederation/svc/ObtainSurrogate.DIDL

where ObtainSurrogate.DIDL indicates that a Surrogate expressed using

DIDL as a Surrogate Format is requested.

Locate Surrogates

The Locate Surrogates Interface is relevant for repositories that have multiple

Surrogates for a given Digital Object, or that have Digital Objects that share Datastreams.

The Interface facilitates locating all Surrogates that correspond with a specific Digital

Object, or with Digital Objects that have a specific Datastream as their constituent. The

following is proposed for this Interface:

• Request Parameters:

o identifier with a value of DO-URI, Datastream-URI, or Datastream-URL

• Response: A list of Surrogate-URIs and/or Surrogate-URLs each of which

identifies a Surrogate that corresponds with the Digital Object with the specified

DO-URI, or with a Digital Object that has a Datastream with the specified

Datastream-URI as its constituent.

• Typical implementation: OpenURL, with Referent Identifier set to DO-URI, or

Datastream-URI, and with ServiceType Identifier expressing an “Locate

Surrogates” service.

The aDORe Federation Architecture

17

o A sample request using OpenURL is

http://some.repo.org/openurl?url_ver=z39.88-2004&rft_id=http://

some.repo.org/ds/5678&svc_id=info:ourfederation/svc/LocateSurrogates.

Datastream Repositories: Core Machine Interfaces

Datastream Repositories are essential for repositories that only assign Datastream-URIs

(no Datastream-URLs) to the Datastreams they make available to the federation. Using

the Harvest Surrogate Interfaces of the federation will lead to discovering the existence of

such Datastreams, but since the Datastream-URIs are non-protocol-based, additional

information is required to de-reference them. The core Datastream Interfaces make such

information available to the federation. The proposed interfaces for a Datastream

Repository are described below.

Obtain Datastream

The Obtain Datastream Interface serves the purpose of retrieving the bitstream that

corresponds with a Datastream with a given Datastream-URI. The following is proposed

for this Interface:

• Request Parameters:

o identifier with a value of a Datastream-URI

• Response: The bitstream that corresponds with a Datastream with the specified

Datastream-URI

• Typical implementation: OpenURL, with Referent Identifier set to Datastream-

URI and with a ServiceType Identifier expressing an “Obtain Datastream”

service.

o A sample request using OpenURL is

http://some.repo.org/openurl?url_ver=z39.88-2004&rft_id=info:some-

repo/ds/5678&svc_id=info:ourfederation/svc/ObtainDatastream.

Harvest Datastream Identifiers

The Harvest Datastream Identifiers Interface provides a mechanism for the federation

to keep track of which Datastream-URIs are in use by the Datastream Repository (i.e.

The aDORe Federation Architecture

18

which Datastream-URIs can be used against the Datastream Repositories’ Obtain

Datastream Interface). This information is used to populate the Identifier Locator of Tier-

2 of the architecture. As a result, the Identifier Locator will facilitate determining to

which Datastream Repository a given Datastream-URI can be submitted as a parameter.

This Interface has characteristics similar to those of the Harvest Identifiers Interface of

Surrogate Repositories as described above. It could be implemented in a manner whereby

each request always returns all Datastream-URIs, or in a manner that allows incremental

gathering of Datastream-URIs. In the latter case, the following Interface is proposed:

• Request parameters:

o from indicating that only Datastream-URIs of Datastreams with a

Datastream-datetime later than or equal to the specified date/time should

be returned;

o until indicating that only Datastream-URIs of Datastreams with a

Datastream-datetime earlier than or equal to the specified date/time should

be returned;

• Response: List of Datastream-URIs that match the specified request parameters.

• Typical implementation: OAI-PMH ListIdentifiers with Datastream-URIs as

OAI-PMH item identifiers, and a Metadata Format that only expresses the

Datastream-datetime. This metadata will never be requested via an OAI-PMH

ListRecords request, but its choice guarantees that the OAI-PMH datestamp

changes whenever the Datastream-datetime changes.

o A sample harvesting request using OAI-PMH is

http://some.repo.org/ds/oaipmh?verb=ListIdentifiers&metadataPrefix=da

tetime&from=2006-09-07 where datetime indicates a Metadata Format

used in the federation to expresses Datastream-datetimes only.

The aDORe Federation Architecture: Tier-2

Two shared infrastructure components, the Identifier Locator and the Service Registry,

are introduced in Tier-2 of the aDORe federation architecture to manage the state of the

environment, and to facilitate exposing the entire federation as a Surrogate and

Datastream Repository in Tier-3.

The aDORe Federation Architecture

19

Identifier Locator

In its simplest instantiation, the content maintained by the Identifier Locator is a

straightforward look-up table that stores the correspondence between identifiers of

Content Objects available to the federation and identifiers of Surrogate Repositories and

Datastream Repositories in the federation that make Content Objects with those

identifiers accessible. Necessarily, the Identifier Locator will maintain this

correspondence for all non-protocol-based identifiers used in the federation, as this

information is essential to enable using these URIs in the Interfaces of Tier-3 of the

Architecture, since Tier-3 Interfaces are not aware of either the identity of Repositories of

the federation or about the network location of their Interfaces. Hence, maintained

identifiers minimally include the DO-URIs, which are all treated as non-protocol-based

URIs, but depending on the implementation of the architecture can also include

Surrogate-URI and/or Datastream-URI. The content of the Identifier Locator is

maintained by recurrently interacting with the Harvest Surrogates and Harvest

Datastream Identifiers Interfaces of the federation’s Surrogate and Datastream

Repositories, respectively. The Identifier Locator knows about the existence of these

Repositories and their Interfaces by interacting with the Service Registry.

Locate Repositories

The Identifier Locator is identified by a non-protocol-based URI the IdentifierLocator-

URI, and minimally exposes the Locate Repositories Interface, itself identified by

means of a non-protocol-based Interface-URI with a corresponding network location, the

Interface-URL. This Interface bears resemblance with the Locate Surrogates Interface

described above, and hence the following is proposed:

• Request Parameters:

o identifier with a value of DO-URI, Surrogate-URI, or Datastream-URI

• Response: A list of Repository-URIs of Surrogate and/or Datastream Repositories

that make the Content Object with the specified identifier available.

• Typical implementation: OpenURL, with Referent Identifier set to DO-URI,

Surrogate-URI, or Datastream-URI, and with ServiceType Identifier expressing

an “Locate Repositories” service.

The aDORe Federation Architecture

20

o A sample request using OpenURL is

http://idlocator.ourfederation.org/openurl?url_ver=z39.88-

2004&rft_id=http://some.repo.org/do/1234&svc_id=info:ourfederation/sv

c/LocateRepositories.

Service Registry

The Service Registry keeps track of all components of the federation, as well as of their

respective Interfaces. These components are all Surrogate and Datastream Repositories

of the federation, and also the Identifier Locator, the Service Registry itself, and the

Repositories introduced in Tier-3 of the architecture. In essence, the content consists of

two lookup tables, one listing the correspondence between the URI of a component (e.g.

Repository-URI) and its matching Interface-URIs, the other listing the correspondence

between these Interface-URIs and their Interface-URLs. Note that the type of Interface is

expressed in the first look-up table, in order to allow client-applications (typically the

components of Tier-3 or the Identifier Locator) to select the appropriate Interface for the

task at hand.

Obtain Registry Record

The Service Registry is identified by a non-protocol-based URI the ServiceRegistry-

URI, and minimally exposes the Obtain Registry Record Interface, itself identified by

means of a non-protocol-based Interface-URI with a corresponding network location, the

Interface-URL. The following is proposed for this Interface:

• Request Parameters:

o identifier with a value of the URI of a component (e.g. Repository-URI),

or of an Interface-URI.

• Response: A list of Interface-URIs and corresponding Interface-type that match

the specified component URI, or the Interface-URL that corresponds with the

specified Interface-URI.

• Typical implementation: OpenURL, with Referent Identifier set to the URI of the

component or of the Interface, and with ServiceType Identifier expressing an

“Obtain Registry Record” service.

The aDORe Federation Architecture

21

o A sample request using OpenURL is

http://svcregistry.ourfederation.org/openurl?url_ver=z39.88-

2004&rft_id=info:some-repo/

&svc_id=info:ourfederation/svc/ObtainRecord.

The aDORe Federation Architecture: Tier-3

In Tier-3, the entire federation is presented to downstream applications as a single

Surrogate Repository, and, depending on the implementation, an additional single

Datastream Repository. These Repositories have exactly the same Interfaces as described

in Tier-1. Applications overlaying the federation only need to know about the existence

of the federation’s single Surrogate and Datastream Repository to build upon the content

made available in all federated repositories that are effectively hidden from them.

The Surrogate and Datastream Repositories of Tier-3 can support the core Surrogate and

datastream Interfaces, respectively, by interacting with the appropriate Interfaces of Tier-

2 components and Tier-1 Repositories. For example, presume an overlay client uses the

Locate Surrogate Interface of the Tier-3 Surrogate Repository in order to find all

Surrogates in the federation that correspond with a specific DO-URI. In order to generate

a response, the Tier-3 Surrogate Repository first issues a request against the Identifier

Locator’s Locate Repositories Interface with this DO-URI as parameter, and receives a

list of Repository-URIs of Tier-1 Surrogate Repositories that expose Surrogates for the

given DO-URI in response. Next, for each of these Repository-URIs, the Tier-3

Surrogate Repository does a look-up in the Service Registry to find the network location

of the Locate Surrogate Interface for the identified Repository. At this point, the Tier-3

Surrogate Repository can respond to the client with a list of Locate Surrogate requests

each carrying the DO-URI as a parameter and targeted at a Tier-1 Surrogate Repository

that was listed in the response from the Identifier Locator. The client can now issue each

requests itself, and build a list of all matching Surrogates in the federation understanding

that a single Surrogate Repository may expose multiple Surrogates for a given Digital

Object.

The aDORe Federation Architecture

22

Alternatively, the Tier-3 Surrogate Repository could issue all these requests, merge all

responses and return the resulting list to the client. Whichever approach is taken, the

client can now retrieve all Surrogates corresponding with the specified DO-URI. In an

environment where Surrogate-URIs are used, this is achieved by using these URIs as a

parameter in requests against the Tier-3 Surrogate Repositories’ Obtain Surrogate

Interface. If Surrogate-URLs are used, they can be de-referenced using the Internet

infrastructure.

The aDORe Archive

Use Case

The Research Library of the Los Alamos National Laboratory (LANL) hosts a significant

digital scholarly collection and makes services based on that collection available to its

customer base. The collection currently consists of licensed content from both secondary

and primary publishers (e.g. APS, BIOSIS, EI, Elsevier, Thomson Scientific, etc.) and

unclassified LANL Technical Reports, and is expected to grow to include a wide variety

of unclassified digital assets that result from the Laboratory’s research endeavors. As

explained in the Background Section, previous incarnations of the Library’s repository

had fallen victim to issues of scalability. A uniform approach for ingesting, storing, and

disseminating content was necessary to ensure the collection’s manageability,

accessibility, and preservation. Also, the sheer volume of the collection required

parallelization for ingestion and dissemination, and distribution for storage.

The aDORe Archive was designed and developed in response to this challenge. It is a

major source of inspiration for high-level federation concepts described above. The

aDORe Archive software is available for download from the aDORe project site [30], and

illustrates the benefit of consistently using standards throughout a software solution, as

doing so allows the re-use of major building blocks developed by third parties. For

example, OCLC’s OAI-PMH and OpenURL packages have been used throughout the

aDORe Archive solution. The remainder of this section categorizes the aDORe Archive

The aDORe Federation Architecture

23

in terms of the aDORe federation concepts introduced above. Figure 4 illustrates the

architectural relationship, and Table 1 and Table 2 provide a summary of choices

regarding Content Objects and Interfaces, respectively.

Some core characteristics of the aDORe Archive are a direct result of its write-once/read-

many approach that was motivated by the batch manner in which LANL typically obtains

content from publishers. Interestingly enough, those characteristics are also appealing for

digital preservation scenarios. The fundamental storage components in the aDORe

Archive are ARCfiles and XMLtapes. ARCfiles were introduced by the Internet Archive

as a means to concatenate large amounts of documents resulting from a Web crawl into a

single file (the ARCfile). Individual documents are made accessible through APIs that

leverage indexes external to the ARCfile. ARCfiles are used in the aDORe Archive as a

container to store constituent bitstreams of Digital Objects. XMLtapes are similar to

ARCfiles, but are well-formed XML files that concatenate large amounts of Surrogates.

As is the case with ARCfiles, documents in XMLtapes can be accessed via APIs and

indexes external to the XMLtapes. Since XMLtapes are XML files, they can also be

handled using off-the-shelf XML tools. Both ARCfiles and XMLtapes are read-only

storage components.

When ingesting a batch of compound objects, an XML-based Surrogate corresponding

with each object is created, and the resulting Surrogates are concatenated into one or

more XMLtapes. Similarly, the bitstreams of the batch of compound objects are

concatenated into ARCfiles. It is worthwhile to note the handling of different

configurations of a same Digital Object. Examples of such different configurations

include different (publication) versions of a Digital Object that share a DO-URI, and

different Premis representations [7, 27] of a same Digital Object. These Premis

representations vary in their constituent Datastreams as a result of the migration of some

underlying bitstreams and the introduction of a new Datastream for such migrated

bitstreams. Ingesting a new configuration of a previously ingested Digital Object is

treated as any other ingestion: no checking is performed as to whether a Digital Object

with a specified DO-URI already exists, and a new Surrogate with a new Surrogate-URI

The aDORe Federation Architecture

24

and new Surogate-datetime is created. Updating a Digital Object, for example, because a

constituent bitstream needs to be migrated, is treated as the combination of retrieving

both the most recent Surrogate for the Digital Object and the problematic bitstream,

followed by ingesting a Digital Object that shares all characteristics with the initially

retrieved one, with the exception of having the migrated bitstream as a constituent

Datastream. The new Digital Object will have the same DO-URI(s), but will be

instantiated as a new Surrogate, with a new Surrogate-URI and a new Surrogate-datetime.

The various Surrogates for a given Digital Object exist autonomously in the Tier-1

repositories of the aDORe Archive, but can be joined through intermediation of Tier-2’s

Identifier Locator that, among others, keeps track of the location of all repositories that

host a Digital Object with a specific DO-URI. Note that this approach allows dynamically

constructing an audit trail of the various configurations of a Digital Object.

Figure 4: The aDORe Archive

The aDORe Federation Architecture

25

Content Objects

The Digital Objects at the LANL Research Library are scholarly artifacts (e.g. journal

papers) or descriptions of these artifacts (e.g. records from abstracting and indexing

databases). In all cases, they are compound, consisting of multiple bitstreams. In order to

implement a common representation approach for the Digital Objects in LANL’s aDORe

Archive deployment, MPEG-21 DIDL was chosen as a Surrogate Format. It should be

noted, however, that the aDORe Archive software itself is neutral regarding a choice of

Surrogate Format. Datastreams of the aDORe Archive directly correspond with stored

bitstreams.

At ingestion time, all Content Objects are assigned non-protocol-based URIs in the

info:lanl-repo/ namespace, resulting in an environment that achieves a complete

virtualization (repositories can be moved around at will) but that requires additional

components for URI de-referencing. For Surrogates and stored bitstreams, the values for

these URIs as computed using the UUID algorithm [28]. For Digital Objects, the values

for the info:lanl-repo/ URIs are typically derived from the publishers’ non-URI

identifiers (e.g. Inspec identifiers). In addition to that, Digital Objects inherit URIs that

were assigned by publishers, such as DOIs (expressed as URIs in the info:doi/

namespace) or HTTP URIs. Note that such URIs are always treated as non-protocol-

based, even if they were minted in a protocol-based URI scheme such as HTTP. The

identifiers listed by Surrogates in the aDORe Archive are DO-URIs, Surrogate-URIs, and

Datastream-URIs. No Surrogate-URLs or Datastream-URLs are listed. Retrieval of

Surrogates or Datastreams is achieved via the appropriate Interfaces.

The New Surrogate and New Datastream Policies of the aDORe Archive are a direct

result of the write-one/read-many approach described above, but are maintained in

storage approaches other than XMLtape/ARCfile that are under development for the

aDORe Archive.

The aDORe Federation Architecture

26

Tier-1

A typical content repository in the aDORe Archive is an XMLtape or an ARCfile. These

directly correspond with a Surrogate Repository and a Datastream Repository of the

aDORe federation architecture, respectively. The Interfaces for these Repositories

leverage the APIs of the underlying storage components. However, other repository

types can be added. For example, in order to meet the need to ingest objects one at a time,

instead of in batch mode, a storage solution combining a relational database that stores

Surrogates as blobs (Surogate Repository), and a file-system with appropriate directory

structure that stores individual bitstreams (Datastream Repository) was recently

developed. In all cases, all core Tier-1 Interfaces were implemented, hiding the

underlying repository technology, and providing consistent protocol-based access to

Surrogates and Datastreams irrespective of the repository type. All Repositories and

Interfaces are identified by means of URIs in the info:lanl-repo/ namespace with a value

generated by the UUID algorithm.

Since an aDORe Archive is designed to host a large amount of XMLtapes and ARCfiles

(already in the order of 10,000 at the time of writing in the LANL deployment) a solution

was devised that provides a single-point of access for each core Interface of all

XMLtapes and ARCfiles, respectively, rather than a separate Interface for each. This is

achieved by introducing a registry of XMLtapes and ARCfiles. In addition to the core

Interfaces, the aDORe Archive also provides a generic XQuery capability that allows

collection administrators to issue ad hoc queries against individual Surrogate

Repositories.

Tier-2

In Tier-2, the Service Registry keeps track of the Repositories of Tier-1, as well as of the

identity, type and location of their Interfaces. In addition to this basic information, the

Service Registry also stores a variety of metadata pertaining to the collections made

accessible by the Repositories. This metadata is typically associated with a batch of

Digital Objects at ingestion time, and along with the Repository-URIs, Interface-URIs

The aDORe Federation Architecture

27

and Interface-URLs, it is registered into the Service Registry during the ingestion

process. The Service Registry stores information in a manner that is compatible with the

IESR specification [1, 16], and its implementation is based on the Ockham Registry

software. It provides the core Obtain Registry Record Interface, but also supports

harvesting and searching via OAI-PMH and SRU Interfaces, respectively.

Also in Tier-2, the Identifier Locator stores the correspondence between DO-URIs,

Surrogate-URIs, and Datastream-URIs on one hand, and Repository-URIs on the other.

It is populated by interacting with the Datastream Repositories’ Harvest Datastream

Identifiers Interface, and with a special-purpose Harvest Identifiers Interface that was

introduced for Surrogate Repositories as an optimization to harvesting identifiers via the

Harvest Surrogates Interface. For each XMLtape and ARCfile added to the environment

this interaction takes place at the very end of the ingestion process. For Repositories such

as the aforementioned MySQL/file-system combination, identifiers are collected on a

recurrent basis. The Identifier Locator is implemented as a highly optimized instance of

MySQL that provides sub-10ms responses for its Locate Repositories Interface. At the

time of writing the Identifier Locator stores over 400,000,000 URIs of Content Objects.

Tier-2 of the aDORe Archive also contains Registries that standardize property

vocabularies across the environment. The Format Registry lists locally assigned URIs to

identify bitstream types and flavors of XML, and associated metadata including format

identifiers assigned by other authorities (e.g. MIME media types and Pronom identifiers).

The Semantic Registry lists locally assigned URIs used to semantically characterize

Content Objects, and associated metadata that mainly consists of a human readable

explanation of what the semantic URI stands for. Commonly used URIs characterize

bitstreams as a full-text scholarly paper, a bibliographic description of a scholarly paper,

or a reference made in a scholarly paper. Both Registries have machine interfaces based

on OAI-PMH and OpenURL.

The aDORe Federation Architecture

28

Tier-3

In Tier-3, aDORe Archive’s front-ends are introduced to serve as sole gateways to the

Tier-1 repositories: the OAI-PMH Federator implements the Harvest Surrogate Interface

for the entire environment, whereas the OpenURL Resolver implements the remaining

core Surrogate and Datastream Repository Interfaces. In order to respond to requests,

both front-ends first interact with the Identifier Locator and Service Registry of Tier-2,

and next with the Interfaces of the Repositories of Tier-1. A rule-based engine that

dynamically associates service-driven disseminations with stored bitstreams powers the

OpenURL Resolver. This functionality is exposed by an additional Interface that allows

requesting a list of available disseminations for any URI-identified Content Object. In

this list, all available disseminations are expressed as dissemination requests directed at

the same Interface [5].

The aDORe Federation Architecture

29

Table 1: Content Objects in the aDORe Archive and the Ghent Image Server Federation

Content Object Property aDORe Archive Ghent Image Server

Federation

Digital Object

 DO-URI URIs in the info:lanl-repo/

namespace minted during

ingestion, and URIs (e.g.

DOIs) inherited from other

environments.

URIs in the info:ugent-repo/

namespace minted during

ingestion.

 Digital Objects with

same DO-URI in

federation?

Multiple publication

versions and multiple Premis

representations of the same

object share a DO-URI.

DOs can be fragmented over

multiple repositories.

 Digital Objects with

same Datastreams in

federation?

Digital Objects can share

Datastreams although this is

currently not the case.

DOs can in theory share

Datastreams although this is

currently not the case.

Surrogate

 Surrogate-URI URIs in the info:lanl-repo/

namespace minted during

ingestion.

URIs in the info:ugent-repo/

namespace that leverage

internal identifiers assigned

by the repositories involved.

 Surrogate-URL n/a n/a

 Surrogate-datetime Datetime of Surrogate

creation

Datetime of most recent

change to Digital Object

 New Surrogate Policy A new Surrogate is created

to reflect a different

configuration of a Digital

Object.

n/a

 Update Surrogate

Policy

n/a Existing Surrogate is updated

to reflect a different

configuration of a Digital

Object.

 Surrogate Format MPEG-21 DIDL MPEG-21 DIDL

Datastream Only stored bitstreams. Only service-based

disseminations of stored

bitstreams. Stored bitstreams

The aDORe Federation Architecture

30

not accessible.

 Datastream-URI URIs in the info:lanl-repo/

namespace minted during

ingestion.

n/a

 Datastream-URL n/a KEV OpenURLs with DO-

URI as Referent Identifier

and an indication of the

requested service (e.g.

GetThumbnail) as the

ServiceType Identifier.

 Datastream-datetime Datetime of ingestion of

bitstream.

Date/time of associating the

service-based dissemination

with a stored bitstream.

 New Datastream

Policy

Yes, but not implemented in

practice yet.

n/a

 Update Datastream

Policy

n/a Yes.

The aDORe Federation Architecture

31

Table 2: Interfaces in the aDORe Archive and the Ghent Image Server Federation

Repository Interface aDORe Archive Ghent Image Server Federation

Surrogate

Repository

 Available for all XMLtapes. Available for both eRez and

Aleph.

 Harvest Surrogates OAI-PMH with MPEG-21

DIDL as Metadata Format.

OAI-PMH with MPEG-21

DIDL as Metadata Format.

 Obtain Surrogate KEV OpenURL with DO-

URI, Surrogate-URI, or

Datastream-URI as Referent

Identifier. Response is

DIDL.

KEV OpenURL with DO-URI

or Surrogate-URI as Referent

Identifier. Response is DIDL.

 Locate Surrogates KEV OpenURL with DO-

URI, Surrogate-URI, or

Datastream-URI as Referent

Identifier. SRU XML

Response containing the

URI that was used as the

value of Referent Identifier

and the corresponding

Repository-URI.

So far, no use case has been

identified that requires

implementing this Interface.

Datastream

Repository

 Available for all ARCfiles. No Datastream Repositories.

 Obtain Datastream KEV OpenURL with

Datastream-URI as Referent

Identifier.

n/a

 Harvest Datastream

Identifiers

KEV OpenURL with

Repository-URI as Referent

Identifier. Response is a

plain text list of identifiers,

delimited by new line

character.

n/a

The aDORe Federation Architecture

32

The Ghent Image Repository Federation

Use Case

In 2006, Ghent University started providing funds for digitizing image collections held

by departments across the campus. These collections consist of a wide variety of

materials including slides, maps, x-rays, hard copies of material used in university

courses, and syllabi, and each holds anywhere between a few hundred to tens of

thousands of objects. In digitized form, collection sizes range between a few gigabytes to

several terabytes. Early estimates indicate an annual data growth of about 8 terabytes,

overall. In addition to this, in 2007, the Ghent University Library signed a partnership

with Google Books [40] that will result in the digitization of three hundred thousand

books that eventually will be made part of the university’s content network.

The results of the digitization efforts are managed in a variety of ways. Some

departments remain custodians of their collections, operating them on a content

management system of their choosing. Other departments lack the resources or

enthusiasm for in-house management, and make use of a centrally provided storage and

management facility. Still, within this hybrid environment, Ghent University aims at

maximizing return on investment, and wants to avoid a fragmented landscape that

prevents straightforward use of materials across departmental and software boundaries.

For example, all materials must be directly accessible in the university’s Minerva e-

Learning environment. Hence, a solution is required that allows for consistent discovery

and re-use of the outcomes of the massive digitization effort.

In response to this challenge, the Ghent University Library has embarked on a pilot

project that uses aDORe federation concepts as the design guideline. Unlike the aDORe

Archive case described above, in which all repositories largely share the same design

(XMLtapes and ARCfiles), and are managed by the same custodian, the Ghent Library

takes heterogeneity as the starting point. It works towards a solution whereby all media

management systems across campus can be taken on board, and where each can continue

providing its native functionality to the target customer base. However, in order to

The aDORe Federation Architecture

33

achieve a unified perspective of the distributed collection, and to allow cross-system

applications, the Library’s strategy is based on extending each system with core

Interfaces proposed by the aDORe federation architecture, and to implement some of its

Tier-2 and Tier-3 components. In the ongoing pilot, the Library incorporates two

repositories: the commercially available eRez imaging server that hosts about 40,000

scanned images, a total of about 2 terabytes, and Ex Libris’ Aleph catalogue system that,

among others, hosts the bibliographic metadata pertaining to these images. The Picture

Database application [39] overlays both repositories, and exemplifies an application that

could eventually be deployed across Ghent University’s distributed image management

systems.

The remainder of this section categorizes the Ghent Image Repository federation in terms

of the aDORe federation concepts introduced above. Table 1 and Table 2 provide a

summary of choices regarding Content Objects and Interfaces, respectively.

Content Objects

The Digital Objects in the Ghent pilot are the digitized images of the eRez server on one

hand, and their bibliographic description as maintained by Aleph, on the other. The eRez

server stores TIFF master images, and implements the concept of single source dynamic

imaging, which facilitates dynamically generating image variations and common media

types from a single master. As a matter of fact, the TIFF master itself is never made

accessible by eRez, only its service-based transforms are. As a result, the Datastreams

that eRez exposes to the federation are not the stored TIFF bitstreams but their service-

based transforms. Each Datastream is only identified by means of a Datastream-URL,

which is an OpenURL that contains both the eRez identifier of the TIFF and the

indication of the requested service as parameters. Each TIFF master is the seed for a

Digital Object that consists of a set of Datastreams, each of which is a service-based

transform of the master. The amount and nature of available Datastreams for any given

Digital Object is dynamically decided in a rule-engine based process inspired by the one

described in [3]. The eRez server allows attaching IPTC [12] and EXIF [13] metadata to

stored masters, but the Ghent Library preferred to use the existing Aleph cataloguing

The aDORe Federation Architecture

34

environment for manually generated metadata. Each Datastream for the Aleph system is a

MARCXML record describing an image master and is identified by a Datastream-URL

only. Digital Objects in Aleph consist of this single Datastream only. Both eRez and

Aleph use the same DO-URI to identify Digital Objects that pertain to the same TIFF

master, indicating that both repositories have part of the perspective on any given object,

and allowing merging of perspectives in overlaying applications. The DO-URIs are

expressed in the info:ugent-repo/ namespace, and actual URIs combine an appropriate

string that identifies the pilot project, and an identifier minted during the ingestion

process. Both eRez and Aleph use MPEG-21 DIDL as the Surrogate Format, and both

systems dynamically generate their Surrogates upon request. Surrogates are uniquely

identified by means of Surrogate-URIs, again expressed using the info URI scheme, that

combine a string identifying the repository that exposes the Surrogate (eRez or Aleph),

and an internal identifier minted by those repositories. The Surrogates list DO-URI,

Datastream-URLs, and the Surrogate-URI as identifiers. The dynamic nature of deciding

on the constituent Datastreams of an eRez Digital Object, and of generating Surrogates

for both eRez and Aleph yields an environment that adheres to the Update Surrogate

Policy. Only Surrogates that denote the current configuration of a Digital Object are

available. Also, the dynamic generation of disseminations in eRez, and the overwrite-

approach of Aleph that is typical of cataloguing systems, leads to an Update Datastream

Policy for both repositories.

Tier-1

The content repositories in the current pilot are the eRez and Aleph systems, but will

eventually include the image management systems operated across Ghent University. For

both eRez and Aleph, Surrogate Repositories based on OCLC's OAI-PMH package were

implemented that support all proposed Surrogate Interfaces. For Aleph, the

implementation was straightforward and was based on one of the many examples

provided in OCLC’s software that detail connecting with a relational database. For eRez,

implementation was less obvious since the system has no relational database but rather a

Lucene search engine as its back-end for accessing stored objects. In essence, three main

requirements must be met in order to implement OAI-PMH for these types of systems:

The aDORe Federation Architecture

35

the system must have an index for document identifiers, an index for document

datestamps, and it must support a query that returns all documents. The latter requirement

was the most challenging and was tackled by developing an XML-based search API that

serves as the access point for OCLC’s OAI-PMH package. The API leverages the

datestamp indexes and specially crafted eRez templates. With this API in place,

providing the OAI-PMH-based Surrogate Repository was straightforward: incoming

Harvest Surrogate Requests are mapped to eRez API calls that fetch image metadata as

well as URIs for all associated Datastreams (dynamic disseminations of the stored

image); all resulting information is then written into MPEG-21 DIDL Surrogates that are

returned to the harvesting client. Obtain Surrogate interfaces for both systems are

provided by a home-grown OpenURL servlet. For eRez, a DO-URI provided on an

OpenURL request is first submitted as a search term to the aforementioned XML API.

The response is a Surrogate-URI that is then used by the OpenURL servlet as the key on

a GetRecord request submitted to the eRez OAI-PMH repository. The resulting MPEG-

21 DIDL Surrogate is returned to the client. For Aleph, an extra index had to be added to

the database to resolve DO-URIs to Surrogate-URIs. Once a Surrogate-URI is available,

the Aleph OAI-PMH repository is used in the same manner as described for eRez. Since

all Datastream identifiers are protocol-based, no Datastream Repositories had to be

introduced.

Tier-2

The simplicity of the pilot environment and the fact that the same custodian operates both

repositories as well as the overlaying Picture Database application, did not call for the

introduction of a Service Registry. However, as soon as the federation will be extended to

include a centrally operated eRez system to serve departments that prefer not to locally

manage their image collections, this shared infrastructure component will be introduced.

At that point, an Identifier Locator that supports requesting a Surrogate for any DO-URI

used in the federation will also be introduced.

The aDORe Federation Architecture

36

Tier-3

A harvester whose task it is to create and maintain a central cache of all Surrogates of the

federation will be the initial client of the Service Registry. This central cache will be the

single point of access to harvest Surrogates from the entire federation. It corresponds to

the Tier-3 Surrogate Repository of the aDORe federation architecture, and will support

all core Interfaces. The Identifier Locator will actually be populated by harvesting from

this Tier-3 Surrogate Repository instead of from all Tier-1 Repositories as is the case in

the aDORe Archive that maintains no centralized Surrogate cache but rather dynamically

polls all appropriate Surrogate Repositories of the federation to respond to harvesting

requests. The information stored by the Identifier Locator will allow implementing an

OpenURL-based Obtain Surrogate Interface, which returns a Surrogate for any DO-URI

used in the federation.

Discussion

The major distinction between the aDORe Archive and Ghent Image Repository

federation is the omission of Datastream Repositories in the latter, as a result of a choice

for only protocol-based URIs to identify Datastreams. When working with repositories

that are distributed across the Internet, this choice is quite sensible because the

identifying Datastream-URLs can be de-referenced using the available Internet

infrastructure and without additional know-how regarding a special-purpose de-

referencing infrastructure that is required when Datstream-URIs are chosen to identify

Datastreams. Nevertheless, in environments such as the aDORe Archive that have some

long-term digital-preservation aspirations, the long-term horizon yields concerns about a

tight coupling between identifier and identifier de-referencing as established by protocol-

based URIs. This concern is motivated by practice that shows that access URLs for

repository objects change over time as a result of technical, policy or custodianship

issues. Meanwhile, the internal identification assigned to these objects remains stable

even across generations of content management systems. In this case, non-protocol-based

URIs that leverage the stability of those internal identifiers, but are turned into URIs of

non-protocol-based schemes such as info [44], ARK [21], and tag [19] are appealing

The aDORe Federation Architecture

37

because they introduce both global uniqueness and a level of virtualization (i.e.

identifiers of Content Objects can remain stable, while the physical location of the objects

can change over time). Also, non-protocol-based URIs allow intentional collapses of

identifiers. Such collapses are useful when multiple repositories hold a copy of the same

object and use the same identifier for it, as can be the case in preservation scenarios. They

are also of interest to cases where a single repository holds multiple copies of an object

with the same identifier; the Internet Archive serves as an example. Protocol-based URIs

effectively makes such wanted collapses impossible.

Another noteworthy design difference between the two cases is the introduction of a

Surrogate cache in the Ghent case to implement the Tier-3 Surrogate Repository. In the

aDORe Archive, no such cache is created as the Tier-3 Surrogate Repository responds to

Harvesting requests by dynamically harvesting from the appropriate Tier-1 Surrogate

Repositories. Again, Ghent’s choice is sensible in the context of the operating

environment that consists of multiple, distributed repositories with one likely being more

reliable and responsive than the other. As already described in [14], the dynamic

harvesting approach taken in the aDORe Archive can successfully be deployed in Intranet

environments, but may cause problems in truly distributed set-ups where a harvesting

session against a federation’s Tier-3 Surrogate Repository may fail only because one of

the federated repositories fails to respond. The larger the federation becomes, the higher

the chances of such failures become, indicating a problem of scale with the federation.

Ghent’s approach avoids this problem through the creation of a central cache that

becomes the single point of access for harvesting from the federation. An alternative is to

disclose the Tier-2 Service Registry to overlaying applications, and allow those to build

their own harvesting strategies, and directly harvest from Tier-1 Surrogate Repositories.

This approach is especially attractive when the Service Registry has an additional search

Interface and rich registry records that detail the nature of the each repositories’

collection.

Another concern of scale in the federation pertains to the Identifier Locator. Indeed, the

size of the database underlying the Identifier Locator depends on the amount of Content

The aDORe Federation Architecture

38

Objects in a federation, on whether only Digital Objects are identified by means of non-

protocol-based URIs or whether all Content Objects are. It also depends on whether the

Identifier Locator maintains auxiliary data such as Surrogate-datetime, Datastream-

datetime, or for informative purposes, even Surrogate-URLs and Datastream-URLs. The

aDORe Archive example illustrates that the Identifier Locator database can grow to such

an extent that eventually, in its own right, it becomes subject to distribution and

federation. That is why, in the aDORe Archive, the Identifier Locator is implemented

using multiple MySQL instances running on a blade server environment, and a front-end

that allows querying the entire set-up. In an Internet environment, distribution of the

Identifier Locator can also be achieved, for example, by having each Repository operate

its own Identifier Locator. This approach removes the need to harvest identifiers into a

central environment, but introduces the need for reliable approach to query across the

distributed Identifier Locators. This could, for example, be achieved by means of the

introduction of a distributed search application in Tier-2 of the architecture, which would

effectively replace the shared Identifier Locator.

Finally, it is worth noting that the choice of Surrogate update policy is likely to influence

the choice of Surrogate-URIs. Indeed, the aDORe Archive follows the New Surrogate

Policy, making a different Surrogate available to correspond with the various

configurations of a Digital Object. In this case, Surrogate-URIs are orthogonal to DO-

URIs. The Ghent Image Server Federation follows the Update Surrogate Policy, making

one Surrogate available for each Digital Object, which only reflects the most recent

configuration of the Digital Object. In this case, Surrogate-URIs and DO-URIs could be

chosen to coincide. A Fedora repository meticulously records an audit trail of the changes

that a Fedora object undergoes. Assuming a one-to-one correspondence between a Fedora

object and a Digital Object, this creates two ways in which Fedora could implement

Surrogates. It can associate a single Surrogate with a Fedora object, in which case Fedora

would adhere to the Update Surrogate Policy, but interestingly enough, each Surrogate

would convey all configurations of the associated Digital Object. In this case, the

Surrogate-URI could coincide with the DO-URI. Alternatively, Fedora can associate

multiple Surrogates with a Digital Object, one per configuration, in which case Fedora

The aDORe Federation Architecture

39

would follow the New Surrogate Policy. In this case, the Surrogate-URI could be some

unique combination of a DO-URI and an audit trail date/time.

Conclusion
The starting point of this paper was the consideration that the need to federate

repositories naturally occurs in two distinct environments. One is characterized by the

existence of a single custodian in charge of managing a vast digital object collection in an

Intranet context, the other by multiple custodians each operating a collection of interest to

some community or application, with hosting repositories distributed across the Internet.

This paper has detailed the core concepts of the high-level aDORe federation

architecture, and has shown examples of two federations whose design and

implementation was guided by the architecture. In Tier-1, repositories expose common

interfaces that leverage two properties of content objects: identifiers and timestamps. By

restricting interfaces to only these two core properties, the architecture imposes minimal

interoperability requirements on federated repositories, but, as a result, requires cross-

federation applications to address requirements that pertain to other properties. The Tier-

2 components, Identifier Locator and Service Registry, actually bind the individual

repositories of Tier-1 into a federation as they facilitate discovering identifiers and

services across those repositories. As a matter of fact, these two tiers suffice to make a

federation operational. However, in certain use cases, a “single repository behavior” may

be required for the entire federation; this is achieved by introducing Tier-3. This tier

removes complexity for clients of the federation, but introduces challenges especially

related to harvesting Surrogates from all federated repositories via a single interface [14].

To an extent, the issues that were raised in this paper, and the solutions that were

proposed may come across as of interest in only a marginal set of use cases. Interestingly

enough, when taking a parochial perspective of the repository landscape they may indeed

be. However, when looking at repositories from a collective perspective in which

distributed repositories are regarded the basis of a future scholarly communication

infrastructure [41, 45, 47], the solution to certain requirements lies in federating. For

example, after approximately ten years of global institutional repository efforts, there still

The aDORe Federation Architecture

40

is no reliable and comprehensive infrastructure that allows locating a self-archived and

hence freely available copy of a paper with a known Digital Object Identifier. To an

extent this is due to the mistreatment of pre-existing identifiers of scholarly materials as

second-class metadata upon ingestion in repositories. To a larger extent, this is due to the

lack of collective, federated thinking.

References

1. Apps A (2005) The JISC Information Environment Service Registry. ASSIGNation 22(3), pp 9-11.

2. Bekaert J, Hochstenbach P, Van de Sompel H (2003) Using MPEG-21 DIDL to represent complex

digital objects in the Los Alamos National Laboratory Digital Library. D-Lib Magazine 9(11) DOI

10.1045/november2003-bekaert

3. Bekaert J, Balakireva L, Hochstenbach P, Van de Sompel, H (2004) Using MPEG-21 and NISO

OpenURL for the dynamic dissemination of complex digital objects in the Los Alamos National

Laboratory Digital Library. D-Lib Magazine 9(11) DOI 10.1045/february2004-bekaert

4. Bekaert J, Van de Sompel H (2005) A Standards-based Solution for the Accurate Transfer of Digital

Assets. D-Lib Magazine 11(6) DOI 10.1045/june2005-bekaert

5. Bekaert, J (2006) Standards-based interfaces for Harvesting and Obtaining assets from Digital

Repositories. PhD Thesis, Ghent University. Retrieved from http://hdl.handle.net/1854/4833

6. Bekaert J, De Kooning E, Van de Sompel H (2006) Representing digital assets using MPEG-21 Digital

Item Declaration. Int. J. on Digital Libraries 6(2), pp 159-173 DOI 10.1007/s00799-005-0133-0

7. Caplan P, Guenther R (2005) Practical Preservation: The PREMIS Experience. Library Trends 54(1),

pp. 111–124

8. Davis JR, Lagoze C (1999) NCSTRL: Design and Deployment of a Globally Distributed Digital

Library. Journal of the American Society for Information Science 31(3), pp 273 – 280 DOI

10.1002/(SICI)1097-4571(2000)51:3<273::AID-ASI6>3.0.CO;2-6

9. DRIVER (2006) Digital Repository Infrastructure Vision for European Research. Retrieved from

http://www.driver-repository.eu/

10. International Organization for Standardization (2003) ISO/IEC 21000-2:2003. Information technology

-- Multimedia framework (MPEG-21) -- Part 2: Digital Item Declaration (1st ed.) Geneva,

Switzerland.

11. International Organization for Standardization (2003) ISO/IEC 21000-3:2003: Information technology

-- Multimedia framework (MPEG-21) -- Part 3: Digital Item Identification (1st ed.) Geneva,

Switzerland.

12. International Press Telecommunications Council (2005)"IPTC Core" Schema for XMP. Retrieved

from http://www.iptc.org/IPTC4XMP/

The aDORe Federation Architecture

41

13. Japan Electronic Industries Development Association (1998) Exchangeable Image File Format v 2.1.

Retrieved from http://www.exif.org

14. Jerez H, Liu X, Hochstenbach P, Van de Sompel H (2004) The multi-faceted use of the OAI-PMH in

the LANL Repository. Joint Conference on Digital Libraries Proceedings, pp 11-20 DOI

10.1109/JCDL.2004.1336089

15. Jerez H, Manepalli G, Blanchi C, Lannom L (2006) ADL-R: The First CORDRA Registry. D-Lib

Magazine 12(2) DOI 10.1045/february2006-jerez

16. Joint Information Systems Committee (2006) Information Environment Service Registry Metadata.

Retrieved from http://iesr.ac.uk/metadata/

17. Kahn R, Wilensky R (1995) A framework for distributed digital object services. Retrieved from

http://hdl.handle.net/cnri.dlib/tn95-01

18. Kahn R, Wilensky R (1995) A framework for distributed digital object services. International Journal

on Digital Libraries 6(2), pp 115-123 DOI 10.1007/s00799-005-0128-x

19. Kindberg T, Hawke S (2005) RFC 4151: The 'tag' URI Scheme. Retrieved from

http://www.ietf.org/rfc/rfc4151.txt

20. Kunze J, Arvidson A, Mohr G, Stack M (2006) The WARC File Format Version 0.9. Retrieved from

http://archive-access.sourceforge.net/warc/warc_file_format-0.9.html

21. Kunze J, Rodgers RPC (2007) Internet Draft: ARK Identifier Scheme. Retrieved from

http://www.ietf.org/internet-drafts/draft-kunze-ark-14.txt

22. Lagoze C, Davis JR (1995) Dienst - An Architecture for Distributed Document Libraries.

Communications of the ACM 38 (4), p 47.

23. Lagoze C, Van de Sompel H (2001) The Open Archives Initiative: Building a low-barrier

interoperability framework. Proceedings of the 1st ACM/IEEE-CS joint conference on Digital

Libraries, pp 54-62, DOI 10.1145/379437.379449

24. Lagoze C, Van de Sompel H, Nelson ML, Warner S (Eds.) (2003). The Open Archives Initiative

protocol for metadata harvesting (2nd ed.). Retrieved from

http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

25. Lagoze C, Payette S, Shin E, Wilper C (2006) Fedora: An Architecture for Complex Objects and Their

Relationships. International Journal of Digital Libraries 6(2), pp 124-138 DOI 10.1007/s00799-005-

0130-3

26. Lagoze C, Van de Sompel H, Nelson ML, Sanderson R, Warner S (Eds.) (2007). ORE Specification -

Resource Map Profile of Atom. Retrieved from http://www.openarchives.org/ore/0.1/atom

27. Library of Congress, Preservation Metadata Maintenance Activity (2007) PREMIS. Retrieved from

http://www.loc.gov/standards/premis/

28. Leach P, Mealling M, Salz R (2005) RFC 4122: A Universally Unique IDentifier (UUID) URN

Namespace. Retrieved from http://www.ietf.org/rfc/rfc4122.txt

The aDORe Federation Architecture

42

29. Liu X, Balakireva L, Van de Sompel H (2005) File-based storage of Digital Objects and constituent

datastreams: XMLtapes and Internet Archive ARC files. Lecture Notes in Computer Science Volume

3652, pp 254-265 DOI 10.1007/11551362_23

30. Los Alamos National Laboratory Research Library (2006) aDORe Archive. Retrieved from

http://african.lanl.gov/aDORe/projects/adoreArchive/

31. Los Alamos National Laboratory Research Library (2006) DIDLTools. Retrieved from

http://african.lanl.gov/aDORe/projects/DIDLTools/

32. Manepalli G, Jerez H, Nelson ML (2006) FeDCOR: An Institutional CORDRA Registry. D-Lib

Magazine 12(2) DOI 10.1045/february2006-manepalli

33. McDonough JP (2006) METS: standardized encoding for digital library objects. International Journal

on Digital Libraries 6(2), pp 148-158 DOI 10.1007/s00799-005-0132-1

34. Nelson ML, Van de Sompel H (2006) IJDL special issue on complex digital objects: Guest editors'

introduction. International Journal on Digital Libraries 6(2), pp 113-114 DOI 10.1007/s00799-005-

0127-y

35. National Information Standards Organization. ANSI/NISO Z39.88-2004: The OpenURL Framework

for Context-Sensitive Services. Bethesda, MD: NISO Press.

36. Rehak D, Daniel R, Lannom R (2005) A Model and Infrastructure for Federated Learning Content

Repositories. Interoperability of Web-Based Educational Systems Workshop, Volume 143 or CEUR

Workshop Proceedings. Retrieved from

http://cordra.net/cordra/information/publications/2005/www2005/cordrawww2005.pdf

37. Tansley R, Bass M, Stuve D, Branschofsky M, Chudnov D, McClellan G, Smith M (2003) The

DSpace institutional digital repository system: current functionality. Joint Conference on Digital

Libraries Proceedings, pp 87-97

38. Tansley R (2006) Building a Distributed, Standards-based Repository Federation. D-Lib Magazine

12(7/8) DOI 10.1045/july2006-tansley

39. Universiteitsbiliotheek Gent (2006) Topografische Collectie. Retrieved from

http://adore.ugent.be/topo/

40. Universiteitsbibliotheek Gent, Google (May 23 2007) Google and Ghent University Library to make

hundreds of thousands of Dutch and French books available online. Press Release. Retrieved from

http://lib1.ugent.be/cmsites/default.aspx?ref=ABAFBB&lang=NL_BO

41. Van de Sompel H, Payette S, Ericksson J, Lagoze C, Warner S (2004) Rethinking Scholarly

Communication: Building the System that Scholars Deserve. D-Lib Magazine 10(9) DOI

10.1045/september2004-vandesompel

42. Van de Sompel H, Nelson ML, Lagoze C, Warner S (2004) Resource Harvesting within the OAI-PMH

Framework. D-Lib Magazine 10(12) DOI 10.1045/december2004-vandesompel

The aDORe Federation Architecture

43

43. Van de Sompel H, Bekaert J, Liu X, Balakireva L, Schwander T (2005) aDORe. A Modular,

Standards-based Digital Object Repository. The Computer Journal 48(5), pp 514-535 DOI

10.1093/comjnl/bxh114

44. Van de Sompel H, Hammond T, Neylon E, Weibel S (2006) RFC 4452: The "info" URI Scheme for

Information Assets with Identifiers in Public Namespaces. Retrieved from

http://www.ietf.org/rfc/rfc4452.txt

45. Van de Sompel H, Lagoze C, Bekaert J, Liu X, Payette S, Warner S (2006) An interoperable fabric for

scholarly value chains. D-Lib Magazine 12(10) DOI 10.1045/october2006-vandesompel

46. Van de Sompel H, Lagoze C (2007) Interoperability for the Discovery, Use, and Re-Use of Units of

Scholarly Communication. CT Watch Quarterly, Volume 3, Number 3. Retrieved from

http://www.ctwatch.org/quarterly/articles/2007/08/interoperability-for-the-discovery-use-and-re-use-

of-units-of-scholarly-communication/

47. Warner S, Bekaert J, Lagoze C, Liu X, Payette S, Van de Sompel H (2007) Pathways: Augmenting

interoperability across scholarly repositories. International Journal on Digital Libraries 7(1-2), pp 35-

52 DOI 10.1007/s00799-007-0025-6

Acknowledgments

Herbert Van de Sompel acknowledges the fundamental contributions that were made to the aDORe effort

by past and present members of the Digital Library Research and Prototyping Team: Lyudmila Balakireva,

Jeroen Bekaert, Ryan Chute, Patrick Hochstenbach, Henry Jerez, Xiaoming Liu, and Kjell Lotigiers. Many

thanks go out to our Fedora colleagues at Cornell University for inspiration and appreciation: Carl Lagoze

and Sandy Payette. And many thanks also to Michael Nelson at Old Dominion University for proofreading

a draft of this paper.

