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Abstract 10 

In this study the merits of polymerized imidazolium based ionic liquid (PIL) stationary phases 11 

obtained via condensation and free radical polymerizations are compared as stationary phases in gas 12 

chromatography (GC). Poly(1-vinyl-3-butyl-imidazolium – bis(trifluoromethane)sulfonamide) 13 

(poly(ViC4Im
+ NTf2

-)) was obtained via a chain-growth mechanism while poly(propylimidazolium-NTf2) 14 

(poly(C3Im
+ NTf2

-)) was synthesized via a step-growth polymerization. The thermal stability of both 15 

polymers was assessed using thermal gravimetric analysis and compared with bleeding profiles 16 

obtained from the statically coated GC columns (30 m x 0.25 mm x 0.25 µm). The performance was 17 

compared to what could be obtained on commercially available 1,5-di(2,3-18 

dimethylimidazolium)pentane2+ 2NTf2
- (SLB-IL111) ionic liquid based columns. It was observed that 19 

the step-growth polymer was more thermally stable, up to 325°C, while the chain-growth polymer 20 

showed initial degradation at 250°C. Both polymers allowed reaching minimal plate heights of 0.400 21 

to 0.500 mm for retained solutes such as benzaldehyde, acetophenone, 1-methylnaphthalene and 22 

aniline. Assessment of the McReynolds constants illustrated that the polarity of the step-growth 23 

polymer was similar to the SLB-IL111 column, while displaying improved column stability. The PIL 24 

phases and particularly the so far little studied condensation based polymer shows particular 25 

retention and satisfactory column performance for polar moieties such as esters, amine and carbonyl 26 

functionalities.  27 
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Highlights 34 

 Imidazolium based polymeric ionic liquid phases were manufactured. 35 

 Polymers obtained via chain- and step-growth mechanisms were prepared. 36 

 Step-growth polymer showed excellent thermal stability as stationary phase. 37 

 Optimal plate heights down to 0.4 mm were obtained on 0.25 mm columns. 38 

 The high polarity and broad applicability of the phases was demonstrated. 39 

 40 
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1. Introduction 66 

Since the notion of capillary columns was introduced by Golay in 1957, allowing for vastly improved 67 

efficiencies compared to what is achievable with packed columns, wall coated open tubular  columns 68 

(WCOT) have become the predominant column choice in gas chromatography. This approach was 69 

aided by the introduction of efficient coating processes [1], deactivating wall treatments procedures 70 

and stationary phases depicting increasing temperature stability. Most of the purchased columns 71 

today possess a thin layer of temperature stable polymer, which can be used for a wide variety of 72 

applications and which, in the case of polydimethylsiloxane (PDMS), allows for operation 73 

temperatures of up to 430°C to be reached [2]. However, when alternative separation selectivity is 74 

required, for example, towards the separation of polar or isomeric molecules, these phases often 75 

don’t offer satisfactory solutions [3,4]. The main disadvantage of the traditional polar phases, which 76 

have been developed for those purposes such as phenyl, cyanopropyl modified PDMS and 77 

polyethyleneglycol (WAX), is their decreasing maximum operating temperature, down to 250°C for 78 

cyanopropyl (HP-88) based columns and 280°C for most polar WAX phases. Therefore the 79 

introduction of ionic liquids (IL) as more stable alternatives has been promising as especially the 80 

latter substantially addresses the temperature stability issues of the most polar phases [5]. In this 81 

way highly polar commercial ionic liquid based phases can now be used up to 300°C.  82 

The ionic liquids (ILs) considered interesting for chromatographic purposes are typically a class of 83 

organic molecules consisting of an organic cation combined with a negatively charged organic or 84 

inorganic counterion. Ionic liquids possess no notable vapour pressure and can in some cases be 85 

thermally stable up to 350-380°C [5], while being chemically and electrochemically stable, even 86 

towards harsh acids and bases. Moreover, ionic liquids are non-flammable, have a high heat capacity 87 

and most of them are considered liquid at room temperature. This low melting point is due to the 88 

larger size of the cation compared to the anion inhibiting the possibility to fit into a crystalline 89 

structure. These liquid salts are able to dissolve a wide range of organic and inorganic salts, while 90 

being miscible with water and most organic solvents. Typical cations include imidazolium, pyridinium, 91 

alkylammonium and pyrrolidinium groups, while the most common anions are halides, 92 

hexafluorophosphate (PF6
-) or organic anions such as bis(trifluoromethane)sulfonimide (NTf2

-). The 93 

properties of the ionic liquid can be easily tuned by varying the cation and anion. One of the most 94 

interesting cations concerning its thermal stability is the imidazolium group, since the ring structure 95 

can divide the extra energy coming from the increasing temperature. Variations in anion type 96 

influence the hydrophobicity and thus its solubility as well as the thermal stability. Halide containing 97 

ILs are soluble in water, while NTf2
- and PF6

- anions make the structure insoluble in water. A similar 98 

trend is observed considering the thermal stability, where it increases using NTf2
- and PF6

- as 99 

counterion, compared to halide anions [6]. All the above mentioned characteristics have made the 100 

applications of IL numerous, especially in chemical analysis [7,8] whereby research has been 101 

conducted on the use of ionic liquids as extractive phase for SPME [9–13], as stationary phase in GC 102 

[14–17], LC [18–20] and as wall coating material in capillary electrophoresis [21–23].  103 

Ionic liquid GC columns have been commercialized and are increasingly implemented [24,25]. A 104 

limited number of ionic stationary phases are available, all possessing the same NTf2
- counterion, or 105 

mixtures of NTf2
- and trifluoromethylsulfonate (Tf-) anions. The commercialized IL phases typically 106 

contain cationic di- or trimer moieties linked by lengthy spacer segments. The more polar stationary 107 

phases possess an imidazolium cation (SLB-IL82,100,111) while the intermediate polarity columns 108 

depict phosphonium groups (SLB-IL59,60,61,76). As expected, the shorter the linker, the higher the 109 

polarity of the column, as can be seen when comparing SLB-IL111 with SLB-IL82, both depicted in 110 

Figure 1A. The thermal stability of these very polar stationary phases ranges from 230°C to 300°C. 111 

Some PEG linked imidazolium phases have been reported that allow operating ranges up to 350°C 112 
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[16]. The non-polymerized phases appear to some extend somewhat limited in terms of low viscosity 113 

at high temperatures and regarding thermal stability. Through the addition of a polymerizable unit to 114 

the cation and/or anion structure, polymeric ionic liquids (PILs) were introduced. Atop the enhanced 115 

viscosity, these polymers possess excellent thermal stability, combined with the characteristics of an 116 

ionic liquid and typical polymer properties such as improved mechanical stability and processability 117 

[26,27]. Poly(ionic liquid)s can be divided into two categories based on the way the polymerization is 118 

achieved: chain-growth PILs (Figure 1B) and step-growth PILs (Figure 1C) [27,28]. In the former case, 119 

the cationic moiety is present in the side-chain of the polymer structure. Since the monomer 120 

structure resulting in these polymers can be altered in many ways, this is by far the largest group. 121 

First of all, the polymerizable unit can either be vinyl, (meth)acryloyl or a styrene based structure 122 

[29–31]. All these monomers result in polymers with similar thermal stability ranging between 300°C 123 

and 340°C. The polymerization is started by adding a suitable radical initiator like AIBN and heating 124 

upon dissociation hereof. Secondly, there is a wide variety in cationic moieties. Phosphonium and 125 

imidazolium cations are used in most cases, as these possess the highest polarity, combined with 126 

excellent thermal properties. Thirdly, in order to effectively obtain a cationic function on phosphor or 127 

imidazole, an additional alkyl or similar substituent is needed, which as mentioned, affects the 128 

intrinsic polarity. The choice of the counterion is also critical as this has strong influence on the 129 

thermal stability. During the synthesis of the monomer, a halide anion is typically present. As was 130 

described  by Kroon et al. this ion induces undesired reactions at elevated temperatures [32]. It could 131 

thereby be shown that ionic liquids such as butylmethylimidazolium chloride (BMIM+ Cl-) can 132 

thermally decompose due to an SN2 reaction of the nucleophilic chloride anion on the methyl-group, 133 

resulting in dealkylation of the cation and the formation of chloromethane and butylimidazole. 134 

Similar reactions can be expected in polymers where either removal of alkyl substituent or a rupture 135 

of the polymer backbone, result in the loss of a cation in the polymeric structure. Even though these 136 

halide counterions introduce the highest polarity, the mentioned reactions make them less desirable 137 

for high temperature applications. Therefore the ion is typically exchanged for an NTf2
- or a similar 138 

counterion. These counterions don’t induce dealkylation reactions, but at higher temperatures 139 

thermal decomposition of NTf2
- with the formation of sulphur dioxide still occurs [6,32]. Polymerized 140 

ionic liquids based on this structural pattern have been applied in sample preparation techniques 141 

[33–35] as well as for stationary phase in gas chromatography [36,37].  142 

Figure 1 143 

The second group of polymeric ionic liquids is formed via a step-growth polymerization. Here the 144 

cationic moiety is present in the polymeric chain itself. No catalyst is needed as the polymerization 145 

takes places by increasing the temperature. The typical polymer structure is shown in Figure 1C.  In 146 

order to increase the thermal stability, the halide counterion is thereby also exchanged for an NTf2
- 147 

or similar anion. This polymer can reach higher thermal stabilities up to 400°C and has been tested as 148 

stationary phase in GC as well by Ho et al. [38,39] on somewhat shorter columns coated with thin 149 

polymer films (10 m x 0.25 mm x 0.20 µm).   150 

To allow for a one on one comparison of the condensation type polymer with the one obtained via 151 

free radical polymerisation in this work both types are synthesized and characterized using thermal 152 

gravimetric analysis (TGA) and NMR. Subsequently these polymers are coated in a similar way using 153 

the static coating method to obtain stationary phases in 30 m long capillary columns of 0.25 mm 154 

internal diameter for fundamental and practical evaluation of the respective gas chromatographic 155 

performance, whereby comparison is made with the performance of a commercial IL column. In 156 

order to do so, thermal stability is studied by recording bleeding profiles and the van Deemter curves 157 

for representative retained compounds are constructed (benzaldehyde, acetophenone, 1-158 



6 
 

methylnaphthalene and aniline). Additionally, the selectivity is studied by analysing a number of test 159 

mixtures containing molecules with different functionalities and polarity. In this way, the polarity by 160 

means of McReynolds constants is determined. As a case study, a mixture containing 37 fatty acid 161 

methyl esters (FAMEs) was analysed on the condensation type polymeric stationary phase. 162 

 163 

2. Experimental procedure 164 

2.1. Reagents and materials 165 

Imidazole, 1-bromo-3-chloropropane, lithium hydride, bis(trifluoromethane)sulfonimide lithium salt, 166 

1-vinylimidazole, 1-bromobutane, 2,2’-azo-bis(isobutyronitrile) (AIBN), nonane, decane, undecane, 167 

dodecane, tridecane, pentadecane, hexadecane, docosane, decalin, mesitylene, 1,3,5-tri(t-168 

butyl)benzene, 1-methylnaphthalene, 1-butanol, 2-pentanone, benzene, pyridine, 1-nitropropane, 169 

aniline, benzaldehyde, acetophenone,  THF (distilled in-house over sodium), methylenechloride, 170 

acetone, methanol, 2-propanol, ethylacetate, DMF (dried in-house over molecular sieves), 37 171 

component FAME mix (10 mg/ml in methylene chloride), linoleic acid methyl ester isomer mix (10 172 

mg/ml in methylene chloride), the SLB-IL111 column (30 m x 0.25 mm x 0.2 µm df) and bare non-173 

deactivated fused silica with an internal diameter of 0.250 mm were obtained from Sigma-Aldrich 174 

(Bornem, Belgium). Tetradecane, heptadecane, bicyclohexyl and butylcyclohexane were purchased 175 

from TCI Europe (Zwijndrecht, Belgium). Water (18.2 MΩ/cm) was purified and deionized in house 176 

via a Milli-Q plus instrument from Millipore (Bedford, New Hampshire, USA). DB-WAX (30 m x 0.25 177 

mm x 0.25 µm df) was obtained from Agilent Technologies (Diegem, Belgium). Stock solutions of all 178 

compounds were prepared at 10 mg/ml in dichloromethane and diluted herein to 1000 and 100 179 

µg/ml for the Van Deemter and selectivity studies, respectively.  180 

2.2. Synthesis of PIL obtained using a step-growth mechanism: Poly(propylimidazolium - 181 

bis(trifluoromethane)sulfonimide) (poly(C3Im+ NTf2
-)) 182 

The polymeric ionic liquid formed via a step-growth mechanism was synthesized using the reaction 183 

scheme shown in Figure 2, adapted from Amarasekara et al. [40]. The monomer was produced as 184 

followed: 0.046 mol imidazole, dissolved in 25 ml dry THF, was added slowly to a suspension of 185 

lithiumhydride (0.046 mol) in 25 ml dry THF and stirred for 90 minutes at 0°C, under nitrogen 186 

atmosphere in a 250 ml round bottom two-neck flask. Next 1-bromo-3-chloropropane (0.046 mol) 187 

was added dropwise at 0°C and the resulting mixture was stirred at room temperature for 24 hours. 188 

In order to terminate the reaction, 100 ml of water was slowly added, as hydrogen gas was formed 189 

during this process. The monomer was extracted with 3 times 75 ml dichloromethane, which was 190 

dried over Na2SO4. After filtration, the solution was concentrated with a rotary evaporator using a 191 

water bath at room temperature. The resulting oil was stored in the freezer to prevent self-192 

polymerization.  193 

The subsequent polymerization was done in a straightforward way as no initiator was thereby 194 

needed. The monomer only required heating to 110°C, under inert atmosphere in a pressure vial, in 195 

order to perform a step-growth polymerization. As no side product is formed during an addition 196 

polymerization, no extensive clean-up was required. The resulting white solid was dissolved in little 197 

methanol. This solution was then poured into an excess of acetone, resulting in a white precipitate 198 

that was filtered on a por. 5 glass filter obtained from Robu® Glasfilter-Geräte GmbH (Hattert, 199 

Germany). The resulting powder was dried for 1 day in an oven at 60°C. The polymer was stored in a 200 

desiccator under vacuum, as poly(C3Im
+ Cl-)  is hygroscopic by nature. 201 
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In order to significantly improve the thermal stability of the polymer, the chloride counterion was 202 

exchanged for a bis(trifluoromethane)sulfonimide (NTf2
-) ion. Therefore, 3 gram of polymer (0.021 203 

mol) was dissolved in 10 ml water, to which a 3 equivalent excess of LiNTf2 (0.063 mol) dissolved in 204 

10 ml water was added and stirred for 24 hours. The resulting precipitation was filtered and rinsed 205 

with water, until no more chloride was detected in the rinsing water using AgNO3.  206 

Figure 2 207 

2.3. Synthesis of PIL obtained using a chain-growth mechanism: Poly(1-vinyl-3-208 

butylimidazolium - bis(trifluoromethane)sulfonimide)(poly(ViC4Im+ NTf2
-)) 209 

The other PIL was synthesized via a chain-growth mechanism, as shown in Figure 3, based on work 210 

from Marcilla et al [41] and Green et al [29]. The ionic liquid monomer is formed in a reaction 211 

between 1-vinylimidazole (0.05 mol) and 1-bromobutane (0.06 mol) in ethyl acetate, stirred and 212 

refluxed for 16 hours in a 250 ml round-bottom flask, resulting in a separate viscous layer. After 213 

decanting and rinsing with 3 times 50 ml ethyl acetate, the product was dried using a rotary 214 

evaporator with the water bath at 45°C to remove residual 1-bromobutane and ethyl acetate. 215 

Next, 5 gram of monomer (0.022 mol) was dissolved in 20 ml dry DMF and 0.00044 mol of the 216 

initiator AIBN was added in a 50 ml round-bottom flask. The solution was purged with nitrogen and 217 

subsequently heated to 90°C for 12 hours under nitrogen atmosphere. After completion, the reaction 218 

mixture was cooled down to room temperature with the formation of a white precipitate. 219 

Additionally, acetone was added to ensure complete precipitation. After filtration, the polymer 220 

(poly(ViC4Im
+ Br-)) containing bromide as counterion was obtained. 221 

Finally, this bromide ion was exchanged for an NTf2-ion, in a similar way as described for the 222 

condensation polymer in 2.2, resulting in the final poly(ViC4Im
+ NTf2

-). 223 

Figure 3 224 

2.4. Characterization of monomers and polymers  225 

NMR data of monomers and polymers were obtained on a Bruker 400 MHz Ultrashield™ and are 226 

provided in supplementary information. Thermal gravimetric analyses were performed on a 227 

TGA/SDTA851e system (Mettler-Toledo, Zaventem, Belgium) in a temperature range from 25°C to 228 

800°C at 10°C/min under N2-atmosphere (200 ml/min).  229 

2.5. GC capillary column coating 230 

Both polymers were coated in a capillary column using the static coating method [1]. Therefore the 231 

condensation polymer (poly(C3Im
+ NTf2

-)) was dissolved in acetone, while the addition polymer 232 

(poly(ViC4Im
+ NTf2

-)) was dissolved in dichloromethane. The applied concentration is depending on 233 

the desired film thickness (df), which can be calculated using (1) with c = concentration of the 234 

polymer solution, df = desired film thickness, ρ = density of the polymer and dc = internal diameter of 235 

the column. Here, a film thickness of 0.25 µm was intended in the 0.25 mm capillary column, as 236 

solutions had a concentration of 4 mg/g.  237 

𝑐 =
4 𝑑𝑓 𝜌

𝑑𝑐
               (1) 

The 30 m long column was pretreated as followed: first 1M NaOH solution was flushed through using 238 

a nitrogen-pressurized glass container, followed by milli-Q water. Next 1M HCl was pumped through 239 

the column and rinsed with water, after which methanol was used to remove any water residue 240 

present in the column. Finally, the column was rinsed with the solvent used for dissolving the 241 
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subsequently applied polymer. When the capillary was completely filled with the polymer solution, 242 

the open end was sealed by immersing it into silicone. Next the capillary filling nitrogen pressure was 243 

lowered to atmospheric pressure and left like this for 30 minutes to ensure a thorough sealing with 244 

the silicone. Subsequently, the other end was attached to a vacuum pump while the column was 245 

immersed into a temperature controlled water bath (40°C for poly(C3Im
+ NTf2

-) and 22°C for 246 

poly(ViC4Im
+ NTf2

-)). Now the vacuum was applied to evaporate the solvent resulting in the 247 

deposition of a thin layer of polymer onto the inner surface of the capillary. This procedure was 248 

completed within 48 hours for both polymer solutions. 249 

2.6. Chromatographic conditions for GC 250 

All analyses were performed on an Agilent 6890 GC-FID system with the exception of the FAME mix 251 

which was analysed on 7890B GC-FID system from the same manufacturer. Prior to chromatographic 252 

testing, the columns were subjected to various temperature ramps to compare the bleeding profiles 253 

from 40°C on at 2.5 °C/min up to 200°C, 250°C, 270°C, 300°C, 325°C and 350°C where the 254 

temperature was kept during 10 min before cooling the instrument. Hydrogen was used as a carrier 255 

gas throughout this work of which the flow rate was set at 1 ml/min in these initial experiments. All 256 

data points in the Van Deemter curves were collected in triplicate while the oven was set 257 

isothermally at 130°C. Exact column void times for the construction of the Van Deemter curve were 258 

obtained via injection of the headspace of dichloromethane (to avoid a saturated detector signal). 259 

During these and during the subsequent analyses 0.2 µL of sample was injected into a split/splitless 260 

liner with single taper, heated at 250°C, using a split ratio of 100:1. The flow rate of the carrier gas 261 

was set at 1.2 mL/min for the retention and selectivity study, corresponding to an average velocity of 262 

40 cm/sec. Temperature gradients from 40°C to 200°C were thereby used at 2.5 °C/min. The linoleic 263 

acid methyl ester isomer mix was analysed using a temperature gradient from 60°C, held for 2 264 

minutes, to 180°C at 8°C/min. 1 µl of the FAME mix was finally injected into a split/splitless liner with 265 

single taper, heated at 250°C, using a split ratio of 50:1. Separations were performed with hydrogen 266 

as carrier gas at a constant flowrate of 1.2 ml/min. Temperature gradients from 100°C, held for 1 267 

minute, to 250°C were thereby used at 5 °C/min and held for 2 minutes. In all experiments the FID 268 

was operated at 250°C, with following gas flow settings: H2 = 30 ml/min, Air = 300 ml/min; N2 = 40 269 

ml/min. 270 

 271 

3. Results and discussion 272 

3.1. Thermal properties of the (P)IL based columns 273 

Although thermal gravimetric analysis doesn’t necessarily reflect the applicability of a polymer as a 274 

coating in a gas chromatographic column, it allows comparison of the relative stability of materials. 275 

The thermograms of both types of polymer with various counterions are represented in Figure 4. 276 

With chloride containing polymers an initial weight loss is observed below 100°C. This is related to 277 

the hygroscopic nature of these polymers. When exchanging the chloride or bromide counterions 278 

with bis(trifluoromethane)sulfonimide, an increase in thermal stability of over 100°C is observed 279 

confirming the significant stabilizing effect this group offers [32]. Comparison of the condensation 280 

type polymer with the one obtained via free radical polymerisation learns that the former depicts 281 

significantly improved thermal stability compared to the latter as observable degradation via TGA is 282 

only measured from 400°C on for poly(C3Im
+ NTf2

-) compared to 300°C for poly(ViC4Im
+ NTf2

-).  Note 283 

that the inorganic residue of poly(C3Im
+ NTf2

-) is about 5% higher compared to poly(ViC4Im
+ NTf2

-). 284 

This is a consequence of the larger relative weight of the counterion in the former polymer. 285 

Figure 4 286 
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Evaluation of the influence of the thermal properties of the polymers on the applicability in gas 287 

chromatography is only possible via direct evaluation of the columns in GC as a minor weight loss in a 288 

TGA experiment can already result in saturated background signals, losses in retention time and peak 289 

symmetry limiting the practical relevance of columns coated with such polymers. Therefore the 290 

bleeding profile of the columns coated with both polymers were measured and compared with a 291 

commercial SLB-IL111 column in GC-FID as shown in Figure 5. Both in-house made columns were 292 

therefore ramped up (at 2.5°C/min) to 200°C, 250°C, 270°C, 300°C and additionally to 325°C and 293 

350°C for poly(C3Im
+ NTf2

-). The commercial SLB-IL111 was used up to its maximum allowable 294 

operating temperature (MAOT) of 270°C where the increase in background signal measured 20 pA 295 

(Figure 5C). When increasing the temperature up to 300°C, the degradation of this phase resulted in 296 

an excessive bleeding signal of more than 100 pA. When comparing this data to the performance of 297 

both polymeric ionic liquid phases significant disparities appeared between the polymer obtained by 298 

free radical polymerization and the one synthesized via the condensation reaction. The former 299 

poly(ViC4Im
+NTf2

-) already depicted a significant bleeding profile below 250°C and therefore 300 

underperformed compared to the commercial (non-polymeric) ionic liquid based column. Further 301 

heating to 300°C let to intense degradation of the stationary phase. This pattern was not unexpected 302 

at it corroborates the TGA data. By contrast it has been reported that the similar (yet not equal) 303 

poly(1-vinyl-3-hexylimidazolium) polymer (containing a hexyl instead of the butyl group used in this 304 

work) depicted onset bleed temperatures of 335°C-345°C [36]. The latter data was, however, 305 

obtained on shorter columns (5 m) coated with thinner films (as calculated with equation 1). As can 306 

be seen in Figure 5 the bleeding observed in the columns coated with the polymer obtained the step 307 

growth mechanism poly(C3Im
+ NTf2

-) appeared significantly lower compared to the other two 308 

columns. 309 

When increasing the maximum temperature of the temperature gradient to 325°C for this polymer, a 310 

comparably yet slightly higher bleeding of 30 pA was obtained as measured at the maximal operating 311 

temperature for the of SLB-IL111 at 270°C. Increasing the maximum temperature for this polymer up 312 

to 350°C resulted in a bleeding profile that was in the same range as when SLB-IL111 was heated 313 

above its maximum operating temperature to 300°C. As the commercial column is characterized by 314 

at thinner film thickness of 0.20 µm compared to 0.25 µm for the poly(C3Im
+ NTf2

-) based column this 315 

data illustrates the practical potential of the latter polymer as coating material in GC for the analysis 316 

of very polar solutes in terms of thermal stability. Note that when heating the poly(C3Im
+ NTf2

-) based 317 

column to 350°C, subsequently no loss of column performance was measured neither in plates or 318 

retention. This is, however, obviously bound to be detrimentally affected upon long exposure of this 319 

polymer to such temperatures. Although the improved stability of the condensation type polymer is 320 

apparent it is surprising that it has thus far been the lesser described and used type in terms of 321 

imidazolium based GC columns. To the best of our knowledge the description of the use of the 322 

condensation type of polymer in GC has been limited to one contribution [39]. Unfortunately in 323 

literature few chromatograms can be found obtained on this type of stationary phase, whereby 324 

analysis is limited to apolar solutes, alcohols and phthalates complicating assessment of the relative 325 

performance of columns coated with the chain and step growth polymerization, respectively.  326 

Figure 5 327 

3.2. Column efficiency study 328 

In order to determine the optimal operation conditions of the manufactured columns and to obtain 329 

more insight into mass transfer aspects of this type of stationary phases, the corresponding Van 330 

Deemter curves were constructed via isothermal GC-FID experiments [5]. The lowest plate heights 331 

while still retaining sufficient retention to assess the latter without distortion were obtained at 332 
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130°C. The corresponding plots for benzaldehyde, acetophenone, 1-methylnaphthalene and aniline 333 

on both developed column types and a commercial SLB-IL111 column are depicted in Figure 6. 334 

Representative chromatograms are provided in the supplementary information section. In general, 335 

the commercial IL column provided somewhat lower plate-heights compared to both PIL columns, 336 

while both in-house made columns resulted in very similar Van Deemter curves. For the majority of 337 

the data points relative standard deviations on measured plate heights were below 5%, with some 338 

transgressions thereof in the B term regime where analysis times are long and peaks are much 339 

broader typically leading to somewhat poorer precision. As can be seen in Figure 6 and as depicted in 340 

Table 1 on the commercial column, minimal plate heights reached 0.3 mm at optimal velocities 341 

varying between 41 and 62 cm/sec. On the column coated with the condensation type polymer, the 342 

plate heights ranged between 0.394 and 0.479 mm with corresponding optimal velocities between 343 

31 and 44 cm/sec. The columns coated with the PIL obtained via free radical polymerisation led to 344 

somewhat higher minimal plate heights varying between 0.433 and 0.514 mm with comparable 345 

optimal velocities as observed for the other PIL phase. Towards small polar molecules that depict no 346 

protic interaction with the stationary phase, like acetophenone the Van Deemter curves obtained on 347 

both PIL columns appeared similar, while approaching the performance of a commercial ionic liquid 348 

column. For protic analytes like aniline a somewhat larger deviation from the optimal plate heights 349 

seems to occur. The columns made in this work consequently allowed reaching 2000-2500 plates/m 350 

for the various solutes with retention factors between 0.77 and 3.05. Although this is 40-50% less 351 

compared to the theoretically expected 4000 plates/m achievable on thin film PDMS columns, the 352 

obtained data compares favourably with literature [37] as the data was obtained for both PILs on 353 

conventional column dimension (30 m x 0.25 mm) and film thicknesses (0.25 µm) facilitating 354 

subsequent practical implementation. Note that although higher plate counts can be obtained when 355 

further raising the temperature, this inevitably leads to significant reductions in retention and to 356 

artificially enhanced plate counts due to the reduced residence time in the stationary phase. As 357 

retention factors are quite low in these experiments, benzylbenzoate (k = 17.98 for poly(ViC4Im
+NTf2

-358 

) and k = 20.62 for poly(C3Im
+ NTf2

-)) was injected, resulting in comparable plate heights to those 359 

obtained with the 4 analytes. The C term appears somewhat steeper in the polymerized phases, this 360 

appears to be related to the slower diffusion in stationary phase although it cannot be excluded that 361 

this could also be caused by coating imperfections or wettability issues as it was observed that the 362 

application of straightforward column pre-treatment procedures (see experimental section) 363 

significantly improved the measured columns efficiencies. Interestingly the mass transfer in both 364 

polymerized stationary phases appears not excessive compared to the non-polymerized ionic liquid 365 

column illustrating the non-trivial fact that diffusion in a polymerized stationary phase of this type is 366 

not significantly affected by polymerization process. Also it should be noted that obtaining 367 

comparable, usable plate heights of between 0.4 and 0.5 mm on both types of polymer is of 368 

relevance as one might have expected that the polymer depicting higher imidazolium density 369 

obtained via condensation polymerisation could have led to slower mass transfer. As in all 370 

experiments the column efficiencies obtained on the column coated with the condensation type 371 

polymer outperforms slightly the columns coated to the chain growth polymer, while the former also 372 

depicts the higher thermal stability this strengthens the case for more broader usage of the 373 

condensation type of imidazolium based column coating, which has as mentioned thus far been 374 

somewhat neglected to the benefit of the broader use of the chain growth polymers. Note again that 375 

in the current work the alkyl side chain on the PIL obtained via free radical polymerisation is shorter 376 

compared to previous studies [36,37].  377 

Figure 6 378 

Table 1 379 
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3.3. Retention and selectivity evaluation of the PIL phases 380 

In order to obtain a broader idea on the relative retention, selectivity and peak symmetry 381 

characteristics of the prepared PIL columns, a mixture of 8 compounds possessing different 382 

functionalities was injected on the PIL based columns (Figure 7). Aniline (E) appears significantly 383 

more retained on the poly(C3Im
+ NTf2

-) based column, while carvone (C) and γ-nonanoic lactone (G) 384 

were more retained on poly(ViC4Im
+NTf2

-) based phases. For the other compounds comparable 385 

retention times are observed. The increased retention of bases such as aniline reflects increased 386 

protic and dipole-dipole interactions of the condensation based polymer compared to the chain 387 

growth based polymers. This can be related to improved accessibility of the imidazolium-groups in 388 

poly(C3Im
+ NTf2

-). The increased retention of the (non-aromatic) carvone (C) and γ-nonanoic lactone 389 

(G) could be related to the hydrophobic interactions with the aliphatic carbon chain poly(ViC4Im
+ 390 

NTf2
-). Overall the peak shape of all solutes appeared better on poly(C3Im

+ NTf2
-) compared to 391 

poly(ViC4Im
+ NTf2

-), confirming the higher plate counts which were achieved on the former column. 392 

Also note the rising background in the chromatogram of poly(ViC4Im
+NTf2

-), whereas the baseline of 393 

the more thermally stable poly(C3Im
+ NTf2

-) is unaffected, confirming the prior bleeding tests.  394 

Figure 7 395 

Rationalisation of the qualitative assessment above can be obtained via measurement of the 396 

retention indices. In this way, one can compare several stationary phases towards their affinity with 397 

certain functional groups in organic molecules. 7 molecules, containing no hetero-atoms as well as an 398 

alkane series (C7-C17 + C22) were therefore injected and their respective Kovats indices were 399 

calculated, represented in Table 2. This largely apolar mixture was selected as it has been extensively 400 

used for column selectivity assessment before and shows relevance to depict the capacity of the 401 

column to separate the aromatic from the aliphatic solutes. It is clear that for all compounds in this 402 

mixture, the retention index is the highest using the commercial ionic liquid column, while the 403 

condensation polymer resulted in the lowest ones, except for mesitylene and 1-methylnaphthalene. 404 

The structure of poly(C3Im
+NTf2

-) where there is the lesser availability of alkyl chains seems to result 405 

in an overall lower affinity towards alkanes. The bi-aromatic solute is more retained on this phase 406 

possibly due to the better accessibility allowing more aromatic interactions. The aromatic retention is 407 

not reflected with tri-t-butylbenzene, probably due to the steric interactions depicted by this 408 

molecule.  409 

Table 2 410 

As ionic liquid based columns show most promise and relevance for the analysis of polar solutes, 411 

comparison of the McReynolds constants for the respective columns can provide more insight into 412 

the merits of the developed columns. The procedure involved injection of 5 polar solutes whereby 413 

retention indices are compared to the ones obtained on a non-polar squalane based column [42]. 414 

Based on these values interactions such as dispersion, dipole and proton acceptor/donor can be 415 

identified. The five resulting McReynolds constants for all 4 columns can be seen in Table 3. The 416 

overall polarity of the condensation polymer appears similar to that of SLB-IL111, while poly(ViC4Im
+ 417 

NTf2
-) is significantly less polar. Towards aromatic structures such as benzene, the condensation 418 

based polymer showed significant affinity, confirming the above observed retention of non-sterically 419 

hindered aromatic solutes. The polar retention of the alcohols and ketones containing compounds 420 

appeared similar between the poly(C3Im
+ NTf2

-) based column and the commercial analogue. Towards 421 

nitropropane, the McReynolds constant of poly(C3Im
+ NTf2

-) somewhat lower than for SLB-IL111. Both 422 

polymers are characterized by a significant degree of protic interactions as the McReynolds constant 423 

for pyridine is considerable larger compared to the one for the ionic liquid column.  424 
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The data can be summarized as followed: for the chain-growth polymer interactions are comparable 425 

to those measured on a WAX column, with exception for pyridine, for which the proton 426 

donor/acceptor capabilities are much higher. The condensation polymer based column shows 427 

similarity with some of the most polar commercially available ionic liquid columns, while possessing 428 

additional proton donor capacities.  429 

Table 3 430 

In order to illustrate the potential of the poly(C3Im
+NTf2

-) based column a number of selected group 431 

type application is shown in Figure 8. A comparison was thereby made with the poly(ViC4Im
+NTf2

-) 432 

based column. Overall it appeared that solutes containing carbonyl or ester functionalities retain 433 

particularly well and with excellent peak symmetries on the poly(C3Im
+NTf2

-) based column. On both 434 

columns separation and peak shapes were good for the phenone series, with symmetry factors of 0.8 435 

to 1.2. Again note the difference in rising of the background between both stationary phases, as the 436 

condensation polymer showed virtually no increase, whereas poly(ViC4Im
+NTf2

-) showed some 437 

considerable background while eluting hexanophenone.  438 

Figure 8 439 

3.4. Case study: Separation of 37 fatty acid methyl esters 440 

Commercial ionic liquid columns like SLB-IL111 have frequently been applied for the separation of 441 

fatty acid methyl esters (FAMEs) [43,44]. As the condensation polymer showed a similar polarity to 442 

this commercial column, a 37 component FAME mix was analysed, depicted in Figure 9A. Identity of 443 

the compounds was confirmed using GC-MS. Since the poly(C3Im
+NTf2

-) column was only 30 meters 444 

long, no complete separation of all compounds was achieved. Separation was insufficient for the 445 

cis/trans isomer of C18:1n9, for the positional isomers of C20:3 and for mono-unsaturated versus 446 

saturated higher fatty acids methyl esters (C22 and C24). All other analytes showed good peak 447 

symmetry. It should be noted that compared to the separation with the commercial column, some 448 

elution differences were observed. For example C15:1 eluted after C16 on the SLB-IL111 stationary 449 

phase, while this is not the case for the condensation polymer. To show the capabilities of the 450 

condensation polymer towards the separation of cis/trans isomers, a mixture containing 4 cis/trans 451 

isomers of linoleic acid was injected, shown in Figure 9B. It is observed that separation is achieved 452 

despite the lack of plates using this column.  453 

Figure 9 454 

4. Conclusion 455 

A one to one comparison between gas chromatographic columns coated with imidazolium based 456 

polymerized ionic liquid obtained via a step and chain growth mechanism is performed in this work. 457 

A superior performance of the condensation type polymer is thereby observed compared to the one 458 

obtained via a free radical polymerization mechanism in terms of thermal stability, columns 459 

efficiency, minimal plate heights, retention of polar solutes and the peak shape thereof. Although 460 

higher plate heights are still obtained compared to commercial non polymerized ionic liquid based 461 

columns, it appears that the polymerisation thereof does not lead to significant reductions in 462 

diffusivity in the stationary phase and in this way does not hinders the chromatographic potential, 463 

while increasing the thermal stability of the material. The late onset of significant column bleeding at 464 

325°C of the column coated with the condensation type of polymer when using 465 

bis(trifluoromethane)sulfonimide as counterion broadens the applicability range of this type of 466 

columns. The PIL based columns depict interesting selectivities towards amine, carbonyl and ester 467 
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functionalities with excellent peak shapes, while showing promising separation potential for the 468 

analysis of fatty acid methyl esters. 469 
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Figure Captions 602 

Figure 1: Structure of 2 commercial ionic liquid GC stationary phases (n = 1: SLB-IL111; n = 8: SLB-603 
IL82) (A) and two polymeric ionic liquids applied as stationary phase in GC in this study. Poly(1-vinyl-604 
3-alkylimidazolium X-), obtained via a chain-growth polymerization (B) and poly(propylimidazolium X-605 
), synthesized using a step-growth mechanism. 606 

Figure 2: Synthesis of 3-chloropropylimidazole, followed by the step-growth polymerization towards 607 
Poly(propylimidazolium – chloride) (poly(C3Im

+ Cl-)) and ion exchange to obtain the final polymer: 608 
Poly(propylimidazolium – bis(trifluoromethane)sulfonimide)  (poly(C3Im

+ NTf2
-)). 609 

Figure 3: Synthesis of 1-vinyl-3-butylimidazolium bromide, followed by the chain-growth 610 
polymerization to obtain Poly(1-vinyl-3-butylimidazolium bromide) (poly(ViC4Im

+ Br-)) and ion 611 
exchange to form the final polymer: Poly(1-vinyl-3-butylimidazolium -  612 
bis(trifluoromethane)sulfonimide) (poly(ViC4Im

+ NTf2
-)) 613 

Figure 4: Thermal gravimetric analysis of the poly(C3Im
+ X-) and poly(ViC4Im

+ X-) with X being Cl-/Br-  or 614 
NTf2

-. Temperature program: 25°C-800°C at a heating rate of 10°C/min; N2 flow: 200 ml/min. 615 

Figure 5: Bleeding profiles of prepared PIL columns and commercial SLB-IL111 column for a blank 616 

analysis on GC-FID with a temperature program starting at 40°C and ending at different 617 

temperatures for 10 minutes (A = 200°C, B = 250°C, C = 270°C, D = 300°C, E = 325°C, F = 350°C). 618 

Figure 6: Constructed Van Deemter curves for 2 in-house made PIL columns (poly(C3Im
+ NTf2

-)(●); 619 
poly(ViC4Im

+ NTf2
-)(∆)) and a commercial IL column  (x) for 4 molecules (A = Benzaldehyde, B = 620 

Acetophenone, C =  1-methylnaphthalene and D =  Aniline). Oven temperature: 130°C 621 

Figure 7: Analysis of 8 compounds on GC columns with poly(C3Im
+ NTf2

-) and poly(ViC4Im
+ NTf2

-) as 622 
stationary phase (30m x 0.25 mm x 0.25 µm; oven temperature: 40°C - 200°C @ 2.5°C/min, H2 flow: 623 
1.2 ml/min (A = Benzaldehyde; B = Methylsalicylate; C = Carvone; D = 3-nitrotoluene; E = Aniline; F = 624 
Cinnamaldehyde; G = γ-nonanoic lactone;  H = Benzylbenzoate) 625 

Figure 8: Analysis of 4 phenones and of benzylacetate on GC columns with poly(C3Im
+ NTf2

-) and 626 
poly(ViC4Im

+NTf2
-) as stationary phase (30m x 0.25 mm x 0.25 µm; oven temperature: 40°C - 200°C @ 627 

2.5°C/min, H2 flow: 1.2 ml/min (A = Acetophenone; B = Propiophenone; C = Butyrophenone; D = 628 
Benzylacetate; E = Hexanophenone) 629 

Figure 9: A: Analysis of 37 component FAME mix using poly(C3Im
+ NTf2

-) as stationary phase (30m x 630 
0.25 mm x 0.25 µm; oven temperature: 100°C (1 min) - 250°C @ 5°C/min, hold 2 min), H2 flow: 1.2 631 
ml/min (1 = C4:0; 2 = C6:0; 3 = C8:0; 4 = C10:0; 5 = C11:0; 6 = C12:0; 7 = C13:0; 8 = C14:0; 9 = C14:1; 632 
10 = C15:0; 11 = C15:1; 12 = C16:0; 13 = C16:1; 14 = C17:0; 15 = C17:1; 16 = C18:0; 17 = C18:1n9c; 18 633 
= C18:1n9t; 19 = C18:2n6c; 20 = C18:2n6t; 21 = C18:3n6; 22 = C18:3n3; 23 = C20:0; 24 = C20:1n9;  634 
25 = C20:2; 26 = C20:3n6; 27 = C20:3n3; 28 = C20:4n6; 29 = C20:5n3; 30 = C21:0; 31 = C22:0; 32 = 635 
C22:1n9; 33 = C22:2; 34 = C22:6n3; 35 = C23:0; 36 = C24:0; 37 = C24:1n9); B: Analysis of linoleic acid 636 
methyl ester isomer mix using poly(C3Im

+ NTf2
-) as stationary phase (30m x 0.25 mm x 0.25 µm; oven 637 

temperature: 60°C (2 min) - 200°C @ 8°C/min), H2 flow: 1.2 ml/min (1 = C18:2n9t, 12t; 2 and 3 = 638 
C18:2n9c, 12t andC18:2n9t, 12c; 4 = C18:2n9c, 12c) 639 

 640 

 641 

 642 

 643 
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SLB-IL111 Benzaldehyde Acetophenone 1-Methylnaphthalene Aniline 

Hopt (mm) 0.298 0.303 0.303 0.302 

Uopt (cm/sec) 61.65 61.65 56.49 40.86 

k 1.09 2.08 3.69 3.30 

     poly(C3Im
+
NTf2

-
) Benzaldehyde Acetophenone 1-Methylnaphthalene Aniline 

Hopt (mm) 0.394 0.436 0.479 0.441 

Uopt (cm/sec) 39.65 39.65 30.58 44.13 

k 0.77 1.44 1.83 3.05 

     poly(ViC4Im
+
NTf2

-
) Benzaldehyde Acetophenone 1-Methylnaphthalene Aniline 

Hopt (mm) 0.441 0.433 0.488 0.514 

Uopt (cm/sec) 31.87 41.39 31.87 41.39 

k 0.80 1.01 1.08 1.09 
Table 1: Overview of the optimal plate heights, velocities and retention factors for 4 compounds (Benzaldehyde, 644 
Acetophenone, 1-methylnaphthalene and Aniline) on the commercial SLB-IL111 column and 2 in house manufactured PIL 645 
columns (poly(C3Im

+
NTf2

-
) and poly(ViC4Im

+
NTf2

-
)). 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 
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Molecule poly(C3Im
+ NTf2

-) poly(ViC4Im
+ NTf2

-) SLB-IL111 

Butylcyclohexane 1008.3 1056.9 1099.9 

Decalin trans 1065.8 1112.4 1199.2 

Decalin cis 1107.4 1162.6 1262.2 

Mesitylene 1339.8 1182.5 1432.1 

Bicyclohexyl 1257.6 1360.6 1521.7 

Tri-t-butylbenzene 1454.8 1536.7 1633.2 

1-methylnaphthalene 2052.6 1775.3 2449.4 
Table 2: Kovats indices of 7 organic molecules on two in house made PIL columns (poly(C3Im

+ 
NTf2

-
) and poly(ViC4Im

+ 
NTf2

-667 
)) and a commercial SLB-IL111 column. 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 
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Probe 
compound poly(C3Im

+NTf2
-) poly(ViC4Im

+NTf2
-) SLB-IL111 

 
DB-WAX 

Benzene 521 223 553 283 

1-butanol 771 594 823 580 

2-pentanone 617 360 655 289 

Nitropropane 818 598 931 523 

Pyridine 1016 1064 853 454 

Sum 3743 2839 3815 2130 
Table 3: McReynolds constants for 5 probe molecules on two in house made PIL columns ((poly(C3Im

+ 
NTf2

-
) and 693 

poly(ViC4Im
+ 

NTf2
-
)), a commercial SLB-IL111 and DB-WAX column. 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 
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 719 

Figure 1 720 

 721 

 722 

 723 

 724 

Figure 2 725 

 726 

 727 

 728 

Figure 3 729 

 730 
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 731 

Figure 4 732 

 733 

 734 

 735 
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 736 

Figure 5 737 

 738 

 739 

 740 

 741 
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 742 

Figure 6 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 
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 758 

Figure 7 759 

 760 

 761 

Figure 8 762 

 763 

 764 

 765 

Figure 9 766 

  767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 
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Article supplementary information 775 

NMR Data 776 

1-(3-chloropropyl)-1H-imidazole 777 

1H NMR (400 MHz, DMSO): 7.64 (1H), 7.19 (1H), 6.90 (1H), 4.09 (2H), 3.54 (2H), 2.16 (2H) 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 
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1-vinyl-3-butyl-imidazolium chloride (ViC4Im
+ Cl-) 792 

1H NMR (400 MHz, D2O): 9.09 (1H), 7.81 (1H), 7.63 (1H), 7.18 (1H), 5.86 (1H), 5.47 (1H), 4.29 (2H), 793 

1.92 (2H), 1.37 (2H), 0.96 (3H) 794 

 795 

 796 

  797 
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Poly(C3Im
+ Cl-) 798 

1H NMR (400 MHz, D2O): 9.02 (1H), 7.63 (2H), 4.39 (4H), 2.58 (2H) 799 

 800 

 801 

 802 

  803 
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Poly(ViC4Im
+ Cl-) 804 

1H NMR (400 MHz, D2O): 7.55 (2H), 4.85 (1H), 4.53-4.16 (3H), 2.58 (2H), 1.86 (2H), 1.40 (2H), 0.99 805 

(3H) 806 

 807 

 808 

 809 

 810 

 811 

 812 

 813 

  814 
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Representative chromatogram Van Deemter 815 

2.7. poly(C3Im+ NTf2
-) 816 

2.8. 40 cm/sec 817 

 818 

A = Benzaldehyde; B = Acetophenone; C = 1-methylnaphthalene; D = Aniline 819 

 820 
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2.9. poly(ViC4Im+ NTf2
-) 821 

2.10. 40 cm/sec 822 

 823 

A = Benzaldehyde; B = Acetophenone; C = 1-methylnaphthalene; D = Aniline 824 

 825 
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2.11. SLB-IL111 826 

2.12. 40 cm/sec 827 

 828 

A = Benzaldehyde; B = Acetophenone; C = 1-methylnaphthalene; D = Aniline 829 

 830 

 831 

 832 


