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  Summary 

Providing energy and nutrients, food production is essential for life. However it represents also 

an important environmental concern. Indeed, the rapidly growing world population is requiring 

an increased food production which is one of the greatest causes of environmental degradation 

throughout the world. Emitting a large amount of powerful greenhouse gases (GHG), such as 

methane (CH4) and nitrous oxide (N2O), agricultural production is one of the main contribution 

to climate change. Furthermore, agricultural production contributes to water pollution, land use 

and biodiversity loss.  

The agricultural system is based on complex relations that link agricultural productivity, 

environmental functions and environmental conditions. Therefore, moving towards less polluting 

production systems is of the utmost importance to satisfy the current demand for food without 

compromising the possibility for future generations to have access to a proper amount of food of 

adequate quality.  

Life cycle assessment (LCA) methodology is at the core of sustainability assessment. Indeed, 

considering the entire life cycle of a product or service, it allows to account for potential shifts of 

environmental impacts between environmental compartments or stages of the food supply chain. 

The use of LCA is widely spread both in business and in decision-making contexts as support to 

strategic decisions and for environmental communication.  

 

ISO 14040 and 14044 standards are internationally recognised as general references for the 

application of LCA. However, being applicable to different productive sectors, these standards 

do not specify how to deal with all the choices that a person has to make when performing a 

LCA, such as, by a way of example, the functional unit and the allocation procedures.  

With the aim of fostering the adoption of the same approach, guaranteeing the comparability of 

the results and, therefore, make easier the interpretation of environmental claims, several product 

category rules have been developed for different productive sectors and in different countries. 

However, these initiatives have contributed to the definition of a fragmented framework in which 

the results of LCAs on a certain product or service are hardly comparable. Moreover, the current 

situation can, on one hand, represent a market barrier for companies who wish to sell and 

communicate the environmental performance of their products in different countries and, on the 

other, limit consumers’ trust in environmental claims. In order to foster the diffusion of the most 

resource efficient products, the European Commission has defined two methods for the 
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assessment of the environmental performance of products (PEF) and organisations (OEF) and a 

set of principles for their communication. In this context, a pilot phase to test and implement the 

PEF and OEF methods is currently ongoing, involving several stakeholders.  

 

The general aim of the present thesis is to contribute to the ongoing debate on the harmonisation 

of the approaches to carry out a LCA referred to agro-food products in order to foster its 

reliability and effectiveness.  

The research activities were carried out between January 2014 and December 2016 at Institute of 

Agricultural and Environmental Chemistry of Università Cattolica del Sacro Cuore in Piacenza 

and at Institute for Environment and Sustainability (IES) of Joint Research Centre (JRC) in Ispra. 

 

The contents of each chapter are hereunder briefly described.  

 

Chapter 1 introduces the general framework in which the concept of the present thesis has been 

developed.  

 

Chapter 2 reports the aims of the thesis, a brief description of the chapters and the research 

questions discussed in Chapters 3, 4 and 5.  

 

In Chapter 3 the analysis of secondary datasets modelling arable crops production and belonging 

to three databases commonly used in the agro-food sector is described. The use of secondary 

datasets is a common practice in LCA when primary data are not available or their collection is 

too much resource-intensive. However, different inventory data and modelling approaches are 

used to populate secondary datasets, leading to different results. The analysis identified the 

characterising elements of datasets and highlighted important differences among them. Therefore 

recommendations were drawn from the datasets comparison, supporting the selection of the 

datasets coherently with the goal and scope of the study and interpretation of results. 

 

Chapter 4 reports some considerations on the development of a systematic approach to account 

for the burden of food loss and waste in LCA. Currently food loss and waste are rarely included 

in LCA studies and, when considered, different approaches are adopted leading to contrasting 

results. Considering the relevant impact associated with food loss and waste, their systematic 

inclusion in LCA studies is highly desirable. The chapter includes an analysis of the published 

relevant literature. It suggests a definition of food loss and waste to be adopted in LCA, it 

investigates the consequences of using such definition and it proposes potential paths for the 
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development of a common methodological framework to increase the robustness and 

comparability of the LCA studies. 

 

In Chapter 5 an analysis of the GHG emissions of three balanced dietary patterns for an Italian 

man is reported. The consumption phase of food is often omitted in LCA studies on diets. 

However, as demonstrated by our analysis, it can represent a significant contribution to the 

overall GHG emissions caused by a diet. Therefore the analysis highlighted the need to include 

the consumption phase within the system boundaries, above all when the environmental burdens 

of different diets are compared, and emphasised the central role of consumers in the reduction of 

the GHG emissions of the diet.  

 

Finally, Chapter 6 reports the general conclusions of the present thesis and potential future 

research proposals.  
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1. Background and introduction  

1.1 Outline of the environmental impacts of the food system 

The scientific community agrees that we are currently exploiting resources and polluting the 

environment at a speed much higher than its natural restoration rate (Ewing et al., 2010; FAO, 

2012). Climate change is often perceived as one of the main environmental issue to be currently 

faced, but it is not the only one. Rockström et al. (2009) highlighted that anthropic activities are 

responsible of other environmental changes – such as the loss of biodiversity and the alteration 

of the nitrogen cycle - that have brought our planet to an environmental state beyond the 

planetary boundaries which define a “non-dangerous situation for humanity”. The food system, 

intended as the set of processes and infrastructures involved in feeding a population, is one of the 

main drivers of these environmental alterations.  

It has been estimated that in developed countries food consumption generates between 15% and 

28% of the overall national greenhouse gas (GHG) emissions (Garnett, 2011). Contributing from 

17% to 32% of the global GHG emissions, agricultural production is by far the most GHG-

emitting stage of the supply chain. With the mineralisation of biological carbon stocked in soil 

and trees, land use change associated with agricultural activities accounts for 6% to 17% of the 

global GHG emissions. Moreover, direct emissions of methane, mainly due to ruminants’ enteric 

fermentation, and emissions of nitrous oxide associated with nitrogen fertilisers application 

represent 10% to 12% of the global GHG emissions (Figure 1) (Bellarby et al., 2008).  

 

 
Figure 1: Contribution of the agriculture sector to global GHG emissions (Adapted from Bellarby et al., 2008) 
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Garnett (2011) estimated that in the UK, about 45% of the GHG emissions of the food system 

(excluding the contribution of land use) are due to agricultural production whereas the reaming 

55% pertains to the downstream stages of the supply chain. With the share of 12% of the GHG 

emissions each, food manufacturing and transport are the main contributors, followed by food 

preparation at home (9%), packaging (7%), retail (7%), catering (6%) and waste disposal (2%).  

It has been estimated that we are using about 34% of the global land area, excluding Antarctica 

and Greenland, for agricultural purposes (Ramankutty et al., 2008) and it represents the largest 

use of land on the planet (Foley et al., 2011). In addition to causing GHG emissions, changes in 

land use from natural ecosystems into agricultural or urban areas are among the main causes of 

biodiversity loss, which, being estimated to be 100 to 1000 times higher than what could be 

considered natural, have already reached a dangerous level (Rockström et al., 2009). Díaz and 

colleagues (2006) highlighted that this process represents a threat for human well-being. Indeed, 

we clearly benefit from the diversity of organisms for the production of medicines, food, fibres 

and other renewable resources, for the access to water and other basic materials and for the 

capability of facing environmental changes. Furthermore, unsustainable management of 

agricultural activities could lead to accelerated soil erosion with negative consequences for soil 

fertility and quality (Lal, 2008).  

Through the production of fertilisers and the cultivation of pulses, agriculture is responsible of 

converting about 120 million tons per year of nitrogen from molecular form (N2) into other 

reactive nitrogen forms, such as nitrous oxides which contributes to global warming, nitrates 

which pollute rivers and lakes and ammonia and nitrogen oxides that are an atmospheric 

pollution source. The amount of converted nitrogen because of anthropic activities is 

considerably above the combined effects of all Earth’s terrestrial processes (Rockström et al., 

2009).  

In addition, with up to 70 percent of the water we take from rivers and groundwater going into 

irrigation, the agricultural sector is the largest and often one of the most inefficient users of water 

and, at the same time, a major source of water pollution. (FAO, 2012).  

All these elements not only make agriculture a driver of the above mentioned environmental 

pressures, but also affect the viability of the agricultural sector itself, influencing, therefore, the 

entire food system. Indeed, it has been demonstrated that climate change affects crop yields and 

the environmental performance of cultivation (Lobell and Field, 2007; Niero et al., 2015), that the 

over-exploitation of the soil decreases its quality and fertility and, therefore, its productivity (Lal, 

2008), that climate change causes more and more frequently severe draught stress which 

negatively affect agricultural production (Pachauri et al., 2015). These are only some examples of 
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the complex cause-effect relationships that involve the food system and the environment, based 

on a complex balance involving several factors.  

1.2 The challenge of a sustainable food system 

According to the United Nations projections, the global population is expected to increase 

importantly in the next years, reaching almost 10 billion inhabitants by 2050 (United Nations - 

Department of Economic and Social Affairs, 2015) and, at the same time, making the demand 

for food growing. Moreover, the access to food is characterised by a strong paradox: while 800 

millions of people suffer from chronic undernourishment and do not get a sufficient amount of 

food and nutrients for an active and healthy life (FAO, 2014a), we are facing worldwide an 

increase in food-related health problems as cardiovascular diseases, obesity, and diabetes because 

of rich foods, modern diets, sedentary lifestyles, and overeating (IHME, 2016).  

Policy makers are increasingly aware that they have to face the double challenge of guaranteeing 

food security, namely the production of a suitable quantity of food to satisfy the nutritional needs 

of the growing population and, at the same time, promote the adoption of adequate dietary 

patterns, reducing the onset of diseases related to unbalanced nutritional patterns. Furthermore, 

as illustrated in the previous paragraph, our food system exerts a considerable pressure on the 

environment which can potentially threaten the sustainability of the system itself, namely the 

capability of producing food for the current generation without offsetting the possibility of doing 

the same for future generations.  

The food system is based on a complex set of relationships which involve socio-economic, 

nutritional, environmental and ethical elements (Figure 2). Therefore, in order to achieve the 

afore mentioned objectives, a holistic approach that combines the attention for all these elements 

should be applied (Kearney, 2010). Within the scientific literature, different actions are suggested 

to implement a sustainable food system. De Laurentiis et al. (2016) and Foley et al. (2011) agreed 

that the transition towards a sustainable food system should be based on i) the adoption of 

sustainable primary production methods, ii) changes in diets composition, reducing the intake of 

animal-origin foods and iii) a decrease of the amount of food that is lost and wasted within the 

supply chain. 

As far as the first pathway is concerned, being responsible of land use, soil degradation, water 

consumption, eutrophication, biodiversity loss and the introduction of hazardous chemicals in 

the environment, agriculture is a major source of environmental impacts (Reisch et al., 2013). 

Stopping the expansion of agriculture would be beneficial for biodiversity, carbon storage and 

important environmental services without compromising the increasing demand for food. 

Indeed, Foley and colleagues (2011) argued that the production benefits of tropical deforestation 
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are often limited especially if compared with its environmental burdens. Therefore, to guarantee 

an adequate food production without expanding the agricultural soil, it would be essential to 

optimise the agricultural yields with innovative approaches – based on the organic systems and 

precision agriculture - that do not further degrade the soil and, at the same time, limit the 

environmental pollution. Moreover, the pathway towards a sustainable food system should 

encompass the increase of crop productivity and the optimisation of the use of resources, such as 

water, nutrients and chemicals. Indeed, despite fertilisers and chemicals have played a major role 

in agricultural intensification, nowadays the distribution of nutrients is not balanced, with certain 

areas of the world characterised by water pollution due to nutrients excess and other 

characterised by nutrients deficiency.  

 

 

Figure 2: Model developed by IAASTD1 on the complex relationships that characterise the agricultural system (S=Same; 
O=Opposite; R=Reinforcing; B=Balancing) (BCFN, 2011) 

In addition, a potential increase of food availability is expected to be associated with the shifting 

of crop to human consumption, instead of being used for livestock feed, bioenergy crops and 

other non-food applications. Particularly, it has been estimated that shifting 16 major crops to 

100% human consumption would increase by about 30% food availability and that other minor 

                                                 
1 International Assessment of Agricultural Knowledge, Science and Technology for Development of the United 
Nation 
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changes in diets, such as shifting grain-fed beef consumption to poultry and pork pasture-fed, 

could increase food availability while reducing the environmental impacts of agriculture.  

Finally, the reduction of food loss and waste within the supply chain has the potentiality to 

enhance food availability while reducing the environmental impact of food production. Indeed, 

FAO (2011) has estimated that about 30% of food produced worldwide is not consumed by 

humans and this represent an enormous waste of resources. Although agronomists suggest that a 

food supply of 130% of our nutritional needs is necessary to guarantee food security, the current 

food production in affluent countries is by far above this threshold, representing, de facto, a 

threaten for food security (Papargyropoulou et al., 2014).  

1.3 Life Cycle Thinking (LCT) and Life Cycle Assessment (LCA) to improve the 

environmental performance of the food system  

Life Cycle Assessment (LCA) – based on the life cycle thinking (LCT) approach - addresses the 

environmental aspects and the potential environmental impact throughout a product’s life cycle, from raw material 

acquisition, through production, use, and-of-life treatment, recycling and final disposal  (ISO, 2006a). The 

assessment of the potential impact through LCA is based on a four-steps, iterative procedure 

(Figure 3).  

 

Figure 3: Steps of a LCA, according to ISO (2006b) 

The definition of goal and scope consists in the description of the product system under analysis, 

including the definition of system boundaries and functional unit, to which the results of the 

study are referred and the description of the reasons why the study is carried out. Furthermore, in 

this first step of the LCA, other important elements, such as the allocation criteria, should be 

defined. The life cycle inventory (LCI) is the step in which data collection is planned and realised. 

It consists in the definition and quantification of all input and output flows that enter and exit the 

product system. When available, primary data collected directly from the actors of the supply 

chain should be preferred. If this is not possible, secondary data reported in databases and 
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literature o tertiary data, e.g. from estimates, can be used. The life cycle impact assessment 

(LCIA) step includes the characterisation of the results, namely the quantification of the potential 

environmental impacts associated with resource used and emissions generated within the supply 

chain. This is obtained multiplying each input and output flow by a characterisation factor that 

expresses the extent to which a certain substance contributes to a certain environmental impact 

or impact category. For each impact category, the characterisation factors are defined through the 

application of characterisation models that should be scientifically and technically valid and link 

the substances to their potential impact, on the basis of distinct, identifiable environmental 

mechanisms or reproducible empirical observations (EC, 2010). The final step is the 

interpretation of the results in order to satisfy the aim or the aims of the study. 

 

LCT and LCA have a central role in supporting the definition of a sustainable food system. 

Indeed, through their holistic approach, they allow to avoid the shifting of the environmental 

burdens between different environmental compartments and stages of the supply chain (Sala et 

al., 2017). LCT and LCA are commonly applied to agro-food products in different contexts, e.g. 

business and policy making, and with different purposes, such as support to strategic decisions to 

improve their environmental performance and environmental communication.  

LCA is internationally ruled by the standards ISO 14040 (ISO, 2006b) and 14044 (ISO, 2006a), 

which define the general principles of LCA, encompassing several fields of potential application. 

The principles of LCT and LCA are at the basis of numerous methods and schemes for 

measuring and benchmarking the environmental performance of products and services. Within 

these schemes the general principles of LCT and LCA are inflected taking into consideration the 

specificities of the field of application. By way of example, the development of product category 

rules (PCRs) is a requisite of the type III-environmental declarations (ISO, 2006c). The main 

aims of PCRs and other specific guidelines are to guarantee a transparent calculation procedure 

and the comparability of the results between different studies and to harmonise the 

communication of the environmental performance of products (Schau and Fet, 2008). However, 

the existence of different schemes for the assessment of the environmental performance of 

products and services has led to an extremely varied framework. Such situation represents a 

limiting element to the spread of products and services with reduced environmental impact both 

from companies’ and consumers’ points of view. Indeed, on one hand the existence of several 

environmental schemes can represent an additional cost and a market barrier for companies who 

wish to sell their products and services in different countries. On the other hand, surveys have 

shown that the purchase of “green products” is often limited by a lack of consumers’ trust 
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towards environmental claims and by the absence of comparable information on the 

environmental performance of products (EC, 2013a). 

With the aim of fostering the construction of a single market for green products, overcoming the 

aforementioned limiting elements, in 2010 the Council of the European Union called on the 

Commission to develop a harmonised method for the calculation of the environmental footprint 

of products. Such initiative has led to the definition of two methods for the calculation of the 

environmental footprint of products (PEF) and organisations (OEF) which require the definition 

of product category rules (EC, 2013b).  

Currently, the European Commission is leading an environmental footprint pilot phase2 which 

involve several stakeholders with the aims to test i) the process of developing the product and 

organisation category rules, ii) the approach to verification and iii) the possible communication 

vehicles for the environmental performance of products and organisations. This initiative 

encompasses several productive sectors and particularly a large focus is on the food sector. 

Indeed, almost half of the pilots are focused on food products or contexts related also to food 

distribution, such as the retail.  

In addition, from 2012 to 2016 the United Nation Environmental Programme (UNEP) and the 

Society of Environmental Toxicology and Chemistry (SETAC) lead the third phase of the Life 

Cycle Initiative, whose aim was to enhance the streamlining of the LCA approaches in three 

areas: i) data, methods and product sustainability information; ii) capability development and 

implementation and iii) communication and stakeholder outreach. For each area, there were one 

or more working group dealing with specific different aspects and, thanks to this initiative, 

reference documents on the definition of a shared approach for LCA have been published.  

1.4 Critical elements of LCA: an overview 

In the LCA community there is a general consensus that, despite the efforts that have already 

been made, some elements of LCA, e.g. related to methodological choices, still need to be further 

defined, harmonised or improved to ensure the reliability and effectiveness of LCA in supporting 

strategic decisions and environmental communication both in business and policy-making 

contexts (Guinée et al., 2011; Hellweg and Milà i Canals, 2014; Nemecek et al., 2016; Notarnicola 

et al., 2016; Reap et al., 2008).  

As far as food products are concerned, several authors have highlighted the need of broadening 

the system boundaries including all the phases of the supply chain, from cradle to grave 

(Nemecek et al., 2016; Sala et al., 2017). Indeed, despite the fact that agricultural production is 

generally the main environmental concern of the food supply chain, other stages can represent an 

                                                 
2 Internet website ec.europa.eu/environment/eussd/smgp/policy_footprint.htm 
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important share of the environmental burden and their contribution depends on the type of food 

(Pernollet et al., 2017). In addition, Nemecek et al. (2016) highlighted that, when assessing the 

environmental impact of a diet, consumer behaviour can strongly affect the results. In particular 

food waste generation, the mode of preparing food, the amount of food cooked and food storage 

modalities and time can largely influence the environmental performances of food.  

The choice of the functional unit is another critical element of LCA applied to food products, 

since it importantly influences the results (Salou et al., 2016). The use of mass or volume 

functional units is a common practice in LCA (van der Werf and Salou, 2015), however some 

scientists claims for functional units which take into consideration the functionalities and the 

value of food. Particularly, Heller et al. (2013) suggested that, although food has several 

functions, nutrition should be considered the main one, therefore the functional unit should be 

nutritionally based. Sonesson et al. (2017) proposed a functional based on the digestible intake of 

nine amino-acids, whereas van der Werf and Salou (2015) supported the use of an economic 

functional unit, particularly for environmental communication through labels.  

The generation of food loss and waste, namely the food that a certain point of the supply chain is 

diverted from human consumption, is a considerable environmental concern particularly due to 

the environmental impacts associated with food over-production (Nemecek et al., 2016). Its 

environmental burden, however, is often omitted in LCA of food products, leading to an 

underestimation of their impacts (Bernstad et al., 2016). Furthermore, a shared approach to 

account for food loss and waste generation and management in LCA is currently missing 

(Bernstad et al., 2016; Laurent et al., 2014). The accounting of food loss and waste is important 

not only when assessing the environmental performance of food, but also when considering 

innovative solutions to reduce packaging in which the risk is to offset the benefits associated with 

packaging reduction by an increase of food loss and waste (Nemecek et al., 2016). 

LCA is characterised by noteworthy uncertainty and variability. Uncertainty is related to a limited 

knowledge of scenarios, parameters and models. Variability, instead, describes the differences 

between different processes or products and interests the spatial, the temporal and the 

technological dimensions (Huijbregts, 1998). Dealing with such uncertainty and variability is one 

of the hard challenges that LCA practitioners are called to face.  

In particular, being able to capture the variability among different production systems is of the 

utmost importance in the agricultural field (Notarnicola et al., 2016). Indeed, a large part of the 

environmental impacts of agricultural production is associated with direct field emissions. These 

emissions are generally estimated through models defined to be used at a larger scale, such as the 

European Environment Agency (2013) and the IPCC (2006) guidelines, and therefore are not 
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always enough detailed to capture the differences among production systems (Cederberg et al., 

2013).  

Further improvements are needed also as far as the LCIA is concerned. Agricultural production 

is responsible of impacts on soil fertility, hydrology, structure and biodiversity. However, these 

impact are generally omitted in LCA and a shared approach to account for them does not 

currently exist (Notarnicola et al., 2016). In addition, currently used  LCIA methods show some 

shortcomings. Impact categories referred to phenomena relevant at the regional scale, e.g. water 

use, are often based on general characterisation models that do not take into consideration the 

characteristics of the specific area where they happen, with the risk of limiting their 

meaningfulness (Hellweg and Milà i Canals, 2014). Therefore, spatially differentiated 

characterisation models need to be adopted within the LCA field.  

Another critical element highlighted by Notarnicola et al. (2016) is the inconsistency between LCI 

modelling and LCIA that currently characterise, for example, the impacts on eutrophication and 

toxicity. Indeed, often the LCI includes emissions in the environment that happen after a partial 

degradation of the substance. Since LCIA models account for emissions, there is the potential 

risk to omit part of the environmental impact that takes place before the degradation of the 

substances. 

Finally, some scientists call for broader perspectives of LCA, which on one side include the social 

and the economic sustainability assessment and, on the other, encompass not only the product 

dimension but also the productive sector and the economy level (Guinée et al., 2011; Reap et al., 

2008).  
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2. Outline of the thesis and research questions 

The present thesis includes the results of the research activities carried out between January 2014 

and December 2016 at Institute of Agricultural and Environmental Chemistry of Università 

Cattolica del Sacro Cuore in Piacenza and at Institute for Environment and Sustainability (IES) 

of Joint Research Centre (JRC) in Ispra. 

 

The overall aim of the present thesis is to contribute to the ongoing debate on the harmonisation 

of the approaches to carry out a LCA of agro-food products and to find ways to improve and 

overcome the critical elements that currently characterise the application of LCA in the agro-food 

sector.  

 

Particularly, Chapter 3 aims to provide an overview of secondary datasets modelling arable crops 

production in order to support LCA practitioners in the choice of datasets and in the 

interpretation of the results, and, to certain extent, to provide indications to database developers 

on how to improve datasets modelling. It is based on the paper “Systematic analysis of secondary 

Life Cycle Inventories for modelling agricultural production: a case study for arable crops”, 

accepted for publication by Journal of Cleaner production and currently in press. It consists in an 

analysis of the modelling approaches and underlying assumptions of twelve secondary datasets 

modelling four arable crops and belonging to three databases (ecoinvent®, AGRIBALYSE® and 

Agri-footprint®). The analysis highlighted important differences among the modelling 

approaches adopted within the databases and, therefore, recommendations are drawn from the 

datasets comparison, supporting the selection of the datasets coherently with the goal and scope 

of a study and interpretation of results. 

 

The contents of Chapter 4, based on the paper “Modelling of food loss within life cycle 

assessment: From current practice towards a systematisation”, published Journal of Cleaner 

Production, aim to contribute to the definition of a systematic approach to include food loss and 

waste in LCA, which is currently missing. The commonly adopted practices to account for food 

loss and waste in LCA studies have been analysed and some considerations and 

recommendations for LCA practitioners have been derived accordingly.  
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In Chapter 5, based on the paper “Influence of personal behaviour on the greenhouse gas 

emissions of three balanced dietary patterns”, submitted for publication to the Journal of Cleaner 

production and currently under review, the GHG emissions of three balanced dietary patterns for 

an Italian man have been analysed. The study highlighted the importance of considering the 

consumption phase including its variability, particularly when comparing the environmental 

burdens of different dietary patterns and the central role of consumers in defining the overall 

GHG emissions generated by the diets. Moreover, it demonstrated that particularly careless 

choices can offset the lower GHG emissions associated with the consumption of vegetable-

origin food.  

 

Finally, the conclusions of the present thesis and potential future research proposals are reported 

in Chapter 6.  

2.1 Research questions 

In light of the considerable pressure exerted by the food system on the environment, the present 

thesis originated from the need of the scientific community and policy makers of having a robust 

and reliable tool to assess its environmental burdens.  

The overall aim of the thesis is to contribute to the ongoing debate on the harmonisation of the 

approaches in LCA and, particularly, the thesis faces the following three research questions.  

 

A. To which extent can methodological choices and modelling approaches influence the 

LCA results? 

B. Which are the potentialities for improving the harmonisation of modelling approaches in 

LCA applied to the agro-food sector in order to foster its reliability and robustness? 

C. Which is the influence of the consumption phase – often omitted in LCA on dietary 

patterns – on the GHG of dietary patterns? 

 

Questions A is discussed in the Chapters 3, 4 and 5 from different perspectives, namely the 

choice of secondary datasets, the modelling of food loss and waste and the assessment of the 

environmental burden of different dietary patterns. Chapters 3 and 4 deal with Question A. 

Chapter 5, instead, regards Question C.   
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3. Analysis of secondary datasets modelling agricultural 

production 

Based on:  

Corrado S., Castellani V., Zampori L., Sala S.. Systematic analysis of secondary Life Cycle 

Inventories for modelling agricultural production: a case study for arable crops. Journal of 

Cleaner Production, in press.  

 

Abstract 

Analysis of agricultural production with life cycle based methodologies is data demanding. To 

build comprehensive life cycle inventories, secondary datasets are commonly used when primary 

data are not available. However, different inventory data and modelling approaches are used to 

populate secondary datasets, leading to different results.  

The present study analyses the features of twelve secondary datasets to support datasets selection 

and proper interpretation of results. We assess twelve datasets for arable crop production in 

France, as modelled in three databases often used in the LCA field (Agrifootprint, Ecoinvent and 

Agribalyse). First, we compared system boundaries and general assumptions. Second, we focused 

on foreground systems comparing, inventory data, data sources and modelling approaches. Third, 

we performed a contribution analysis of impact assessment results to identify modelling choices 

that contribute most to differences in the results. Nine relevant elements were identified and 

assessed: definition of system boundaries and modelling of agricultural practices, characteristics 

of inventory data, agricultural operations, fertiliser application and fate, plant protection products 

application and fate, heavy metals inputs to the agricultural system and fate, irrigation 

assumptions, land use and transformation. The datasets differ greatly with respect to these 

elements. Hence, recommendations are drawn from the dataset comparison, supporting the 

selection of the datasets coherently with the goal and scope of a study and interpretation of 

results. 

 

Keywords 

Life Cycle Assessment; life cycle inventory, agriculture, arable crops, databases.  
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1. Introduction  

The assessment of the environmental profiles of food supply chain is increasingly needed in the 

context of sustainable production and consumption initiatives. The aim is to identify drivers of 

environmental impacts associated with food production and possible improvements thereof. Life 

Cycle Assessment (LCA) is a reference methodology for supply-chain impact assessment (ISO, 

2006a). However, when the subject of the study is a manufactured product (e.g. a food product), 

data on agricultural stages of basic ingredients (e.g. wheat) are often not collected directly, relying 

instead on “secondary data” (Williams et al., 2009). This approach helps streamline estimation of 

the product’s environmental profile (Teixeira, 2015), reducing the resources required to collect 

data and allowing an LCA to be performed when the necessary life cycle inventory data are not 

available from primary sources.  

The choice of the secondary dataset to be used is considered one of the challenges for a robust 

LCA study (Notarnicola et al., 2016) and can influence the results of the LCA study (e.g. 

Peereboom et al., 1998, found out a variation of impact results from 10% to 100% when 

different datasets were used in a case study on PVC). Indeed, different modelling assumptions in 

datasets aiming to represent the same product system can lead to different results, affecting the 

reliability of the LCA study (Williams et al., 2009). LCA practitioners are, therefore, 

recommended to choose datasets carefully according to the goal and scope of their studies (Fazio 

et al., 2015). 

Several authors have already analysed secondary data from different points of view: (i) developing 

criteria for assessing data quality (e.g. Garraín et al., 2015; Grabowski et al., 2015); (ii) estimating 

influence of dataset quality on life cycle impact assessment (LCIA) results (Peereboom et al., 

1998); (iii) proposing approaches based on a descriptive and statistical analysis to assess reliability 

of secondary data used in LCA (Teixera et al., 2015) (iv) adopting meta-analysis to estimate 

average values of environmental impacts (e.g. Achten and Van Acker, 2015). However, a 

systematic analysis of secondary dataset aiming at identifying commonalities and differences in 

the underpinning modelling approach has not been performed so far, to authors’ knowledge. 

Hence, the present study provides an analysis of secondary datasets of arable crop production, 

based on the approach adopted by Peereboom et al. (1998) with some adaptations for the 

agricultural context. It aims to understand commonalities and differences in datasets of arable 

crop cultivation and the extent to which the differences may affect LCIA results.  

We identified and analysed the elements in the different datasets which may influence the most 

the LCA results, as well as the strengths and weaknesses of the modelling approaches adopted. 

Results of the present study could help LCA practitioners choosing secondary datasets 
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consistently with the goal and scope of their study and carrying out a proper interpretation of the 

results. Furthermore, the results may inform dataset developers about the need for potential 

improvements to, for example, modelling approaches and underlying assumptions on which 

datasets were built. 

The article is organised as follows: first, a review of system boundaries and underlying 

assumptions adopted in secondary datasets for arable crops within three databases is presented. 

Second, a summary of the approaches adopted to model the foreground system, is 

complemented by highlighting similarities and differences among the approaches. Next, the 

influence that modelling approaches can have on LCIA is illustrated. Finally, combining these 

elements conclusions about relevant elements of datasets are provided. 

2. Materials and methods 

The present study is focused on analysis of secondary datasets for arable crop production as 

modelled in three of the most commonly used LCA databases: AGRIBALYSE® v 1.2 (Colomb 

et al., 2015), Agri-footprint® v 1.0 (Blonk Agri-footprint BV, 2014a) and ecoinvent® v 3.1 

(Weidema et al., 2013).  

Four arable crops for which the cultivation in France was included in all three databases were 

selected for analysis: wheat, barley, rapeseed and pea (Table 1). As AGRIBALYSE includes both 

spring pea and winter pea, the average of the two was considered in the analysis.  

Table 1: Databases assessed in the study., FR = France, U= unit process, Alloc def= ecoinvent default allocation 

Database Dataset 

AGRIBALYSE v 1.2  Soft wheat grain, conventional, national average, at farm gate/FR U 
Barley, conventional, malting quality, national average, at farm gate/FR S 
Rapeseed, conventional, 9% moisture, national average, at farm gate/FR U 
Winter pea, conventional, 15% moisture, at farm gate/FR U 
Spring pea, conventional, 15% moisture, at farm gate/FR U 

Agri-footprint v 1.0  Wheat grain, at farm/FR  
Barley grain, at farm/FR  
Rapeseed, at farm/FR  
Pea, at farm/FR  

ecoinvent v 3.1  Wheat grain {FR} | wheat production | Alloc Def, U  
Barley grain {FR}| barley production | Alloc Def, U 
Rape seed {FR}| production | Alloc Def, U 
Protein pea {FR}| production | Alloc Def, U 

 

The selection of the country of production and the crops was based on the highest number of 

available comparable datasets. As ecoinvent includes not only attributional datasets but 

consequential datasets and datasets based on the so-called “cut-off system model” approach, 

whose underlying philosophy is that primary production of materials is always allocated to the 

primary user of a material (ecoinvent, 2016), differences in the LCIA results of these three 
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modelling approaches were screened. As few differences were found (supplementary material, 

Figures S6-S9) and inclusion of consequential and “cut-off” datasets would have rendered the 

comparison too complex, due to the use of different modelling approaches, only ecoinvent’s 

attributional datasets (the default) were analysed. 

Datasets were analysed based on information reported in dataset documentation, data provided 

in the databases as implemented in the software SimaPro v 8.0.5 and certain other relevant 

publications (Frischknecht and Rebitzer, 2005; Nemecek et al., 2014).  

We considered a generic representation of an agricultural production system and distinguished 

foreground and background systems when analysing datasets (Figure 1). System boundaries and 

underlying assumptions of each dataset were compared referring to this diagram.  

 

 

Figure 1. Representation of agricultural production systems. Adapted from Hayashi et al. (2006). 

The foreground system was examined by describing the assumptions adopted to model it, 

highlighting similarities and differences among datasets per hectare of cultivated land. For wheat 

and barley, all impacts of cropping were allocated to the grain (none to the straw) to allow results 

to be compared.  

LCIA was conducted for the three datasets using the ILCD Midpoint v 1.06 characterisation 

method (EC-JRC, 2012) as implemented in the software SimaPro v. 8.0.5, used for calculations 

and analysis. We assessed the potential impacts of 1 kg of product at the farm gate using ILCD v 

1.06 (EC-JRC, 2012). As for the foreground system analysis, the effect of allocation of the 

potential impacts between co-products was removed from the inventories. Furthermore, since 
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Agri-footprint includes datasets modelling the same product with different allocation approaches, 

a screening of the effect of allocation on LCIA was performed.  

We performed three types of analysis:  

 comparison of system boundaries and underlying assumptions  

 analysis of how the foreground system is modelled, focusing on agricultural operations, 

fertiliser application and nutrient fate; plant protection product (PPP) application and 

fate; heavy metal (HM) input, mass balance and fate; irrigation; land occupation and 

transformation 

 comparison of LCIA results of the foreground system, including the relative 

contribution of the background system. 

When comparing inventory data, uncertainty data provided within the datasets were taken into 

account, and differences among data were considered statistically significant when 95% 

confidence intervals did not overlap. 

The 95% confidence intervals were estimated using Monte-Carlo simulation with 500 replicates. 

3. Results  

One substantial difference among the datasets is the source of activity data from which the 

inventories were developed. AGRIBALYSE and Agri-footprint data were derived from average 

information for the French context, collected respectively using questionnaires distributed to 

technical institutes and from available statistics or other specific data (e.g. the literature). In 

contrast, ecoinvent datasets were built from data collected for a single French region, Barrois, in 

the GL-Pro project (Nemecek and Baumgartner, 2006).  

Database providers checked the quality of activity data. For AGRIBALYSE and Agri-footprint, 

the quality check was performed by experts not directly involved in defining the inventory data, 

and quality was analysed at two levels: plausibility of activity data and presence of data gaps or 

errors in the LCIA and LCA results (Blonk Agri-footprint BV, 2014a; Koch and Salou, 2013). 

Ecoinvent, datasets, instead, were independently reviewed before integration in the ecoinvent 

database. Data quality was assessed based on the pedigree-matrix approach (Frischknecht and 

Rebitzer, 2005, Weidema et al., 2013), which, by qualitatively assessing data quality indicators, is 

applicable when only a single mean value for activity data is available (Frischknecht and 

Jungbluth, 2007). The pedigree matrix considers information about the quality of each primary 

input and output datum in terms of reliability, completeness, temporal correlation, geographical 

correlation and further technological correlation. The scores obtained with the pedigree matrix in 

ecoinvent are reported also in AGRIBALYSE, when datasets from ecoinvent are used. 

Uncertainty in activity and inventory data cannot be avoided due to variability and stochastic 
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errors in activity data, appropriateness of input and output flows, model uncertainty and the 

exclusion of important flows (Frischknecht and Jungbluth, 2007). Therefore, a basic uncertainty 

is reported in ecoinvent for “unit process” datasets.  

In AGRIBALYSE, barley production is reported only as a “system process” with no information 

about uncertainty. In Agri-footprint, uncertainty is estimated only for certain categories of 

background data, mainly according to expert knowledge (Blonk Agrifootprint BV, 2014a).  

The lack of information about uncertainty partially influenced analysis of each dataset’s 

foreground. 

 

3.1 Analysis of system boundaries and underlying assumptions 

System boundaries and the main underlying assumptions adopted to model arable crop 

production differ somewhat among the three databases (Figure 2, Table 2.).  

 

Figure 2: System boundaries of the datasets considered in the study. White boxes represent processes included in inventories, 
whereas grey ones represent processes not included in inventories. 

 

It is evident that, within a given database, the same modelling approach is adopted for the arable 

crops analysed. Furthermore, databases have several similarities in how they model agricultural 

systems, probably because they were developed with knowledge of one another. In particular, 

AGRIBALYSE background data were taken from ecoinvent v 2.2, which explains some 

similarities between the two databases. However, differences among the databases were observed. 

Concerning system boundaries, production and maintenance of infrastructure and machines are 

excluded from Agri-footprint datasets because they generally represent a negligible contribution 

to the LCA results, and seed and pesticide production are excluded due to a lack of data at the 

time when the database was released (grey boxes in Figure 2), (Blonk Agri-footprint BV, 2014a) 

whereas they are included in AGRIBALYSE and ecoinvent. Concerning modelling assumptions, 

the main differences are related to allocation of co-products and allocation of emissions from 

nutrient input (with reference to crop rotation). The way in which co-products (grain and straw) 
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are allocated (or not) can influence results of the LCIA phase (supplementary material, Figures 

S10 and S11). 

 

Table 2:. Underlying assumptions and modelling approaches adopted to build the datasets analysed, as described in their 
documentation. 

 AGRIBALYSE Agri-footprint  Ecoinvent 

Data source  Provided by technical 
institutes (e.g. 
ARVALIS – Institut 
du Végétal) 

Multiple sources (e.g. 
scientific literature, 
official statistics such 
as FAOstat, Eurostat) 

GL-Pro project – Barrois 
region, France (Nemecek and 
Baumgartner, 2006)  

Straw management 
(when applicable) 

Partly removed from 
the field 

Completely removed 
from the field 

Left on the field  

Allocation of co-
products (grain and 
straw)  

Not performed 
because the straw 
market was not well 
organised when the 
datasets were 
developed 

Economic, mass and 
energy allocation  

Not applicable because straw 
is assumed to be left on the 
field 

Nutrients from straw 
left on the field 

Fertilising effects of 
crop residues and 
emissions from the 
residues are allocated 
to the crop that 
generated the residues  

Not applicable  Fertilising effects of crop 
residues are allocated to the 
crop that generated them 
(only for P and K). The 
amount of fertilisers is 
corrected for the amount of 
nutrients in crop residues. A 
description of the allocation 
of the emissions from the 
crop residues is lacking in the 
database report, therefore 
they are probably allocated to 
the crop that generated them.  

Crop 
rotation 
modelling 
 
 

Phosphor
us (P) and 
potassium 
(K) input 
and 
emission 
allocation  

P and K fertiliser 
production and 
emissions due to their 
application are 
allocated to each crop 
proportional to crop 
exports 

Not reported   P and K supplied to the field 
in residues are allocated to 
the crop that generated them 

Nitrogen 
(N) input 
and 
emission 
allocation 

Organic N available 
for the crop to which 
the fertiliser is applied 
is allocated to that 
crop. The remaining 
fraction that increases 
the stock of organic 
matter is allocated to 
all crops in the 
rotation. Mineral N is 
allocated completely to 
the crop to which it is 
applied.  

Not reported Allocation not performed  
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Foreground system 

Fertilisers application 

  NH3, NOx, N2O to atmosphere  
 

NO3
-, PO4

3-, P, HMa to water  

HM to soil  

  P to soil  

      

Seeds use 
 HM to soil 

HM to water  

      

Plant Protection Products (PPPs) 

application 

 Active ingredient (AI)b to soil 

HM to water  

      

Agricultural activities 

 CO2
c, NMVOC, PM, NOx […]d to 

atmosphere  

Cd, Pb, Zn to soil 

Land occupation and land transformation 

Water use 

      

a HM = Heavy metals (cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), chromium 

(Cr) and mercury (Hg)) 

b In all the three datasets AI are assumed to end up entirely in the soil 

c CO2 emissions are due to fuel combustion and land transformation  

d Other atmospheric emissions from combustion are considered within the datasets, only the 

most contributing to the impact categories considered are reported   

e Due to tyre wear 

Figure 3. Relation between field activities and environmental emissions and use of resources deduced from analysis of all 
datasets. Not all activities are considered in all datasets 

  

3.2 Foreground system analysis  

Mean crop yields differed slightly among databases (supplementary material, Figure S1). Only 

Agri-footprint defines 95% confidence intervals of yields. Relations between field activities and 

environmental emissions and use of resources were deduced from analysing the datasets (Figure 

3). 
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3.2.1 Modelling agricultural operations 

The databases modelled agricultural operations for arable crops differently (Table 3). 

Table 3:. Decisions made to model agricultural operations in the three databases  

  AGRIBALYSE Agri-footprint ecoinvent  

Source of data  Operating time and 
fuel consumption: 
technical institutes 

Not reported Use of machinery 
from the GL-Pro 
project (Nemecek and 
Baumgartner, 2006) 

Temporal and geographical 
representativeness 

2005-2009, France Not reported 1991-2014 or 2011-
2014, World average 
(GLO) 

Reference unit for agricultural 
operations  

Hours of work Energy content of 
the fuel consumed 

Area 

Inclusion of emissions to soil due to 
tyre wear  

Yes No Yes 

 

Different reference units for agricultural operations did not allow them to be compared directly; 

however, we estimated databases’ emissions factors (kg pollutant/kg diesel) and found 

differences among them due to differences in the modelling approaches adopted (supplementary 

material, Table S1). According to Koch and Salou (2015), describing agricultural operations as a 

number of hours of work in AGRIBALYSE is more flexible than the approach adopted in 

ecoinvent (operations described as areas) because it takes into account different amounts of time 

required to perform the same process (e.g. tilling different types of soil).  

Temporal representativeness may strongly influence emissions factors of technology-related 

pollutants, such as particulate matter (EMEP/EEA, 2013); if machinery is assumed to be older 

than it really is, emissions of air pollutants due to fuel combustion can be overestimated. 

Foreground emissions due to agricultural operations are related to fuel combustion and tyre wear. 

Fuel combustion includes the compounds emitted in the atmosphere during combustion, 

considered in the three databases: carbon dioxide (CO2), carbon monoxide (CO), particulate 

matter (PM), ammonia (NH3), nitrogen oxides (NOx), methane (CH4), non-methane volatile 

compounds (NMVOC) and sulphur dioxide (SO2). Tyre wear, which emits cadmium (Cd), lead 

(Pb) and zinc (Zn) to the soil, is included only in AGRIBALYSE and ecoinvent. 

 

3.2.2 Modelling fertiliser application and nutrient fate 

Three elements characterise the modelling approach adopted for fertiliser application and 

nutrient fate: (i) amount of nutrients provided to the field, (ii) type of fertilisers used (“fertiliser 

mix”) and (iii) models adopted for nutrient loss to the environment. Data sources for amounts of 

nutrients applied to the soil varied (Table 2.). Specifically, data used for Agrifootprint are derived 

from Feedprint reports (Vellinga et al., 2013), mainly based on personal communications (Blonk 
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Agri-footprint BV, 2014b). Amounts of phosphorus and potassium applied vary, and no nitrogen 

fertiliser is applied to pea in ecoinvent (supplementary material, Figure S2) Different kinds and 

amounts of fertilisers are included in the analysed datasets. AGRIBALYSE allocates fertilisers 

applied within a crop rotation, whereas Agri-footprint and ecoinvent do not appear to do so 

(Table 2).  

Different kinds and amounts of fertilisers are included in the analysed datasets,. The “fertiliser 

mix” used in AGRIBALYSE reflects French statistics on fertiliser use from 2005- 2009 from 

UNIFA (French fertiliser industry association). Data in Agri-footprint come from international 

statistics from the International Fertilizer Industry Association (IFA) for 2012, and those in 

ecoinvent come from the GL-Pro project (Nemecek and Baumgartner, 2006). Fertiliser 

application emits nutrients to the environment in the form of nitrogen, phosphorus and 

potassium compounds and may also emit HMs (Brentrup et al., 2004). Furthermore, application 

of urea and lime generates emissions of CO2 (IPCC, 2006).  

The three databases do not consider emissions of potassium compounds; however, emissions of 

nitrogen and phosphorus compounds are included and estimated using different approaches 

(supplementary material, Table S2).  

Emission factors for NH3 emissions are similar for AGRIBALYSE and ecoinvent and are lower 

than those of Agri-footprint. Emission factors for N2O and NO3
- emissions are similar for all 

databases, except for pea in AGRIBALYSE, for which inexplicable higher emissions were 

observed. NOx emissions differed significantly among the datasets (supplementary material, 

Figure S3). 

NH3 emissions are estimated for AGRIBALYSE and ecoinvent by considering characteristics of 

fertilisers, as indicated respectively by EMEP/EEA (2009) and the Agrammon model 

(Agrammon Group, 2009), which is also based on EMEP/EEA (2009) methodology (Nemecek 

et al., 2014). In contrast, for Agri-footprint, a rougher estimate is made, considering the emission 

factors for NH3 that volatilises after mineral and organic nitrogen fertiliser application reported 

by IPCC (2006). Estimates for Agri-footprint are more conservative than those of 

AGRIBALYSE and ecoinvent (Figure S3a).  

All databases estimate direct and indirect emissions of N2O according to the same method 

(IPCC, 2006). Emissions factors per unit of nitrogen applied are the same for all databases, 

except for pea in AGRIBALYSE, for which the emission factor is 5% higher than the others 

(Figure S3b).  

NOx emissions are considered only in AGRIBALYSE and ecoinvent, each using a different 

modelling approach (respectively EMEP/EEA, 2009 and NOx emissions = 0.21×N2O 

emissions), which leads to higher emissions factors for AGRIBALYSE. However, in both 
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databases, NOx emissions represent only a minor loss of the nitrogen applied to the field, lower 

than 1% (Figure S3c).  

NO3
- emissions are estimated in AGRIBALYSE according to a model specific to France that 

considers information about farming practices (e.g. residue management, use of intermediate 

crops, application of nitrogen fertilisers), crops in the rotation, soil properties and climatic 

conditions (Koch and Salou, 2015). In Agri-footprint, the average emissions factor reported for 

NO3 – emissions by IPCC (2006) is applied, whereas in ecoinvent the SALCA-NO3 model 

(Richner et al., 2014) is used. Anomalous emissions of NO3
- were observed for pea datasets in 

AGRIBALYSE and ecoinvent: NO3
- emissions are higher than the amount of nitrogen applied to 

the field. For the other crops, Agri-footprint had higher NO3
- emissions factors than 

AGRIBALYSE, whereas no significant differences were observed between ecoinvent and 

AGRIBALYSE and ecoinvent and Agri-footprint (Figure S3d).  

Three pathways are considered for phosphorus emissions: (i) leaching to groundwater, (ii) runoff 

and (iii) emission to surface water due to soil erosion.  

AGRIBALYSE and ecoinvent estimate leaching and runoff using the SALCA-P model (Prasuhn, 

2006), validated for Switzerland but not for France, that takes into consideration different 

parameters, such as soil characteristics and type of fertilisers (Nemecek, 2013), whereas Agri-

footprint uses a fixed emissions factor (Blonk Agrifootprint BV, 2014b). AGRIBALYSE and 

ecoinvent include soil erosion as considered by Prasuhn (2006), whereas Agrifootprint does not 

include it due to limited data availability (Blonk Agri-footprint BV, 2014a).  

CO2 emissions from urea and lime application are included in all three databases, which use the 

same emission factors (IPCC, 2006). 

 

3.2.3 Modelling PPP application and environmental fate 

PPP use is modelled according to several data sources (Table 2). PPP application and fate 

modelling have large uncertainties. Indeed, Agri-footprint documentation emphasises using 

default data and suggests that dataset users modify the inventory with primary data whenever 

possible.  

Many PPPs are included in the datasets, even though AGRIBALYSE and ecoinvent lack specific 

production process for some of them, for which they use average PPP production inventories. 

Regarding PPP fate, all databases assume that 100% of PPP end up in agricultural soil after 

application; this is considered a highly controversial assumption when estimating the contribution 

of PPPs to toxicity impacts (Rosenbaum et al., 2015). Another problem is the representativeness 

of the PPPs included in the datasets. PPP use in France is subject to European Union legislation 

requiring that active ingredients be approved before being sold on the market (EU, 2009). 
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However, some active ingredients in the datasets, such as bitertanol (AGRIBALYSE and 

ecoinvent) and metolachlor (Agri-footprint), are no longer authorised in France (EC, 2015) 

(supplementary material, Table S3) and should be excluded from the inventory of any crop 

cultivation in France. 

 

3.2.4 Modelling HM input, mass balance and fate 

HM mass balance is performed in all datasets following the same principle (Freiermuth, 2006). 

HMs emitted to the soil are calculated as the sum of all HMs that enter the agricultural system 

minus the sum of all HMs that leave it.  

Estimates of HM flows to and from the soil are highly uncertain. In fact, some datasets for crop 

production estimate that more HMs leave the system than enter it, resulting in a net decrease of 

HMs in the soil. As emphasised by Koch and Salou (2013), these figures should not be 

interpreted as true removal of HMs from the soil, but rather as an effect of uncertainty in input 

and output data.  

Atmospheric deposition and application of mineral and organic fertilisers represents the major 

sources of HM inputs to agricultural soil (Nicholson et al., 2003) and are considered in all 

datasets. In contrast, other HM sources, such as seeds and PPPs, are considered only in 

AGRIBALYSE and ecoinvent. Leaching and exportation in biomass are considered as removal 

mechanisms for HMs in the soil in all datasets, whereas runoff of HMs in eroded soil particles is 

included only in AGRIBALYSE and ecoinvent.  

Among the three databases, different literature data are used to estimate amounts of HMs input 

to and removed from soil. HM removal due to leaching is estimated according to available 

average data, and all three databases use the same values.  

Since specific data for France were not available, data for Switzerland were used in 

AGRIBALYSE (Koch and Salou, 2013). AGRIBALYSE and ecoinvent estimate soil erosion 

using the same equation (i.e. RUSLE); however, estimated soil HM content and amount of soil 

eroded differ (supplementary material, Table S5).  

Another source of emissions of HMs to soil is tyre wear due to agricultural operations (see 

section 3.2.1). 

 

3.2.5 Modelling irrigation 

Irrigation volumes for a given crop vary greatly among the datasets (Figure 4), according to the 

data source: AGRIBALYSE data were collected from technical institutes, Agri-footprint data 

were taken from the “blue water footprint” of Mekonnen and Hoekstra (2010), and ecoinvent 
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data came from the literature (Doll and Zhang, 2010), with calculation performed at ETH, 

Zurich.  

Ecoinvent has the highest irrigation volumes for each crop. Furthermore, different elementary 

flows are used to model irrigation: “Water, river” in AGRIBALYSE, “Water, unspecified natural 

origin, FR” in Agri-footprint, and “55% water, river FR 45% Water, well, in ground, FR” in 

ecoinvent. Differences in the types and locations of water sources included in the inventory may 

lead to large differences in predictions of water depletion after characterisation, especially if 

characterisation factors are spatially explicit.  

 

 

Figure 4. Relative  mean water irrigation volumes per hectare of cultivated land and 95% confidence intervals. For each 
arable crop, the maximum irrigation volume is reported as 100% and the others are expressed as percentages of the 

maximum. 

 

3.2.6 Modelling land occupation and transformation 

All databases consider agricultural land occupation as m2*y, taking into account the duration of 

cultivation. Land transformation is modelled according to different approaches (Table 4). 

Ecoinvent assumes zero net land transformation because it considers that no land is transformed 

for arable crops in France (Nemecek et al., 2014). In contrast, AGRIBALYSE and, for wheat and 

rapeseed, Agri-footprint, include land transformation from natural areas, such as pasture and 

forests, or from permanent crops to agricultural land uses. Furthermore, AGRIBALYSE 

considers transformation from “discontinuously built urban” land uses to agricultural land uses. 

Land transformation may emit CO2 due to organic carbon mineralisation. These emissions are 

included only in Agri-footprint, which estimated them using the Direct Land Use Change 

assessment tool, compliant with the PAS 2050-1 and European PEF methods (Blonk 
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Consultants, 2014), assuming that the previous land use was not known. AGRIBALYSE excludes 

GHG emissions from land use change due to lack of data about land occupation over time 

(Koch and Salou, 2013). 

Table 1. Models and sources of data for land transformation  

  AGRIBALYSE Agri-footprint  Ecoinvent 

Model  Frischknecht and 
Niels, 2007 

Direct Land Use Change Assessment 
Tool (Blonk Consultants, 2014) 

Milà i Canals et al., 2012 (see 
Nemecek et al., 2014) 

Source of 
data  

Teruti-Lucas, 2006 Direct land use change assessment 
tool based on data from FAOstat 
(FAO, 2012) 

FAOstat (FAO, 2012) (see 
Nemecek et al., 2014) 

 

3.3 Life cycle impact assessment results 

In general, the choice of the database (and related dataset) used to model a given product can 

lead to different LCIA results (Figures 5 and S4). In some cases (e.g. toxicity-related impact 

categories and water depletion in ecoinvent), uncertainty in results from a given dataset is larger 

than differences in results among the databases. This high degree of uncertainty can affect 

interpretation of results and the ability to achieve the goal of the study. In other cases, results 

differ greatly even when considering the uncertainty and, for some impact categories, i.e. 

acidification and terrestrial eutrophication, this is particularly true when the analysis focuses only 

on the foreground system (Figures 6 and S5). This means that sometimes the contribution of 

background datasets can partly offset the differences between LCIA due to different modelling 

approaches. Figure 5 reports the LCIA for wheat, showing foreground and background 

contributions. LCIAs for the other arable crops are reported in the supplementary material 

(Figure S4). Only the impact categories which had a contribution of the foreground system are 

reported in Figure 5. and Figure 6. The impact categories ionising radiation; mineral, fossil and 

renewable resource depletion; and ozone depletion potential were excluded from the analysis 

because they were influenced only by the background system. The impact of the foreground 

system on land use is reported in Figure 7.  
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Figure 5: Relative mean foreground and background system contributions to LCIA and 95% confidence intervals per kg of 
wheat grain. For each impact category, the largest value is reported as 100% and the others are expressed as percentages of 

the maximum. The following impact categories were considered: acidification (AP), climate change (CC), freshwater 
ecotoxicity (FW ecotox), freshwater eutrophication (FEP), human toxicity-cancer (HT, c), human toxicity- non cancer (HT, 

non-c), marine eutrophication (MEP), particulate matter (PM), photochemical ozone formation (POFP), terrestrial 
eutrophication (TEP), water resource depletion (Water) 

 

Figure 6: Relative mean foreground system contributions to LCIA and 95% confidence intervals per kg of wheat grain. For 
each impact category, the largest value is reported as 100% and the others are expressed as percentages of the maximum. The 

following impact categories were considered: acidification (AP), climate change (CC), freshwater ecotoxicity (FW ecotox), 
freshwater eutrophication (FEP), human toxicity-cancer (HT, c), human toxicity- non cancer (HT, non-c), marine 

eutrophication (MEP), particulate matter (PM), photochemical ozone formation (POFP), terrestrial eutrophication (TEP), 
water resource depletion (Water) 
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Figure 7. Mean potential land use impacts of the foreground system and 95% confidence intervals per kg of arable crop. 

Agri-footprint generally estimated lower contributions from the background system than the 

other databases, which could be explained by its smaller system boundaries for background 

systems than those of AGRIBALYSE and ecoinvent (Figure 2). When considering the effects of 

allocation in Agri-footprint, important differences were observed between datasets with no 

allocation and those with allocation (supplementary material, Figures S10 and S11).  

Concerning the foreground system (Figures 6. and S5), a significant difference in climate change 

impact was observed only for rapeseed, due to Agri-footprint’s inclusion of CO2 emissions from 

land transformation and use of more nitrogen fertilisers, which  increase N2O emissions.  

The main contributions in the foreground system to the impact categories particulate matter, 

photochemical ozone formation, acidification and terrestrial eutrophication were NH3 and NOx 

emissions. In contrast, marine eutrophication was influenced mainly by emissions to water of 

NO3
- and phosphorus compounds, respectively. Agri-footprint predicted significantly higher 

foreground contributions than AGRIBALYSE and ecoinvent to acidification, particulate matter 

and terrestrial eutrophication, mainly due to NH3 emissions. AGRIBALYSE and ecoinvent 

showed no significant differences between acidification, particulate matter and terrestrial 

eutrophication of wheat and rapeseed, but did so for pea, due to significant differences in 

nitrogen fertiliser application and, therefore, NH3 emissions.  

Photochemical ozone formation was caused mainly by NOx emitted by application of nitrogen 

fertilisers and combustion of diesel for agricultural machinery. Agri-footprint datasets for wheat, 

rapeseed and pea had significantly lower photochemical ozone formation because they excluded 

NOx emissions from nitrogen fertiliser application. Agri-footprint and ecoinvent had significantly 

higher marine eutrophication for wheat than AGRIBALYSE, and Agri-footprint had higher 
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marine eutrophication than AGRIBALYSE for rapeseed, due to higher NO3
- emissions per unit 

of nitrogen fertiliser applied to the field.  

Emission of HMs and PPPs were the main contributors to the human-toxicity-related impact 

category in the foreground system. Human toxicity was mainly influenced by HM emissions. As 

in the inventory, negative contributions were predicted due to uncertainty in the modelling rather 

than a positive potential impact on human health (Koch and Salou, 2013). The impact category 

“human toxicity, cancer” (influenced mainly by chromium emissions to water) for wheat was 

higher in ecoinvent than in Agri-footprint, whereas for pea it was highest in Agri-footprint. 

Significant differences in “human toxicity, non-cancer” were also observed for wheat, barley and 

pea. PPP emissions to the soil had a large influence on freshwater ecotoxicity; however, 

characterisation factors for some PPP assumed to be released to the soil were missing in the 

chosen characterisation method (supplementary material, Table S4), which may underestimate 

PPP impacts.  

For irrigation, differences in irrigation volumes and water sources explained significant 

differences in potential water depletion among the databases. Since the ILCD characterisation 

method was spatially explicit, characterisation factors in Agri-footprint and ecoinvent was nearly 

four times as high as that in AGRIBALYSE.  

AGRIBALYSE predicted a negative land use impact because it assumed transformation from 

discontinuously built urban soil to agricultural soil, which resulted in a strong negative 

contribution of the foreground system (Figure 7.). Indeed, the ILCD characterisation method 

associated a highly negative characterisation factor with this transformation. In contrast, Agri-

footprint and ecoinvent predicted a similar average land use impact, although land use and land 

transformation are modelled differently.  

4. Discussion 

Analysis of secondary datasets for arable crops highlighted significant differences among the 

LCIA that are influenced by sources of activity data and modelling approaches adopted to 

estimate environmental emissions and use of resources, such as land.  

Generally, different arable crops are modelled in a similar way within a given database, whereas 

greater differences are observed for the same arable crop modelled in different databases. Here 

we provide an overview of main features of the databases analysed and considerations about their 

accuracy. 
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Data characteristics 

Databases differ in their sources of data: AGRIBALYSE and Agri-footprint use average data for 

France, whereas ecoinvent uses data from one French region to represent all of France. In 

AGRIBALYSE and ecoinvent, data uncertainty is assessed for each input from and output to the 

foreground system, except for crop yields, using the pedigree matrix approach. In contrast, 

Agrifootprint estimates uncertainty in crop yields and derives uncertainty in input flows and 

emissions accordingly. For this reason, the range of the 95% confidence interval of LCIA varied 

among impact categories for AGRIBALYSE and ecoinvent but not for Agri-footprint. 

 

System boundary definition 

The choice of system boundaries influences contributions of the background system to results. 

Indeed, Agri-footprint datasets – for which agricultural machinery, infrastructures and PPP and 

seeds production are excluded from system boundaries – had generally lower contribution from 

the background system than the others for nearly all impact categories analysed. System 

boundaries of secondary data should be consistent with the goal and scope of the study and, 

when pertinent, with LCA guidelines, which sometimes have instructions for including or 

excluding specific processes. Indeed, the inclusion of infrastructures, for example, can result to 

be important in light of the impact categories analysed (Frischknecht et al., 2007). Moreover, if 

the aim of the LCA is to assess the environmental burden of a certain product in compliance, for 

example, with the PEF, then, according to the PEF guide (EC, 2016), machinery and 

infrastructure should be included within system boundaries. 

 

Agricultural practice modelling 

Management of an agricultural system includes complex dynamics that should be considered 

when performing a LCA. Indeed, management of agricultural residues and composition of a crop 

rotation can affect field productivity and the inputs required (Cherubini and Ulgiati, 2010; 

Nemecek et al., 2015). The three databases modelled these effects using different approaches 

(Table 2). Furthermore, allocating the impact to co-products and the choice of allocation method 

can influence the LCIA strongly (supplementary material, Figure S10, Figure S11). Although the 

most appropriate way to model agricultural practices remains under debate (e.g. Cherubini and 

Ulgiati, 2010; Nemecek et al., 2015), it is important that LCA practitioners verify that modelling 

of crop rotation and co-product management are consistent with the goal and scope of their 

studies and, if applicable, product category rules. 
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Agricultural operation modelling 

Agricultural operation modelling differs in the number of operations, the number of passes and 

the time-related representativeness. Other elements that influence impacts of agricultural 

operations substantially, such as machine power and soil texture (Lovarelli et al., 2016; Van linden 

and Herman, 2014), are not explicitly considered in the datasets analysed, and Lovarelli et al. 

(2016) found that this can lead to misleading results.  

Use of agricultural machinery causes airborne emissions due to fuel combustion and emissions of 

HMs due to tyre wear (Hjortenkrans et al., 2007), whose emissions are included only in 

AGRIBALYSE and ecoinvent.  

 

Fertiliser application and nutrient fate modelling  

Significant differences were found in the amount of fertilisers applied to the field among the 

datasets. Official statistics on amounts of fertilisers per crop were not available for France; 

therefore, it was not possible to check which database contains the most accurate data.  

Nutrient fate is greatly influenced by site-specific conditions, such as environmental conditions, 

soil type, agricultural management practices and fertiliser type (Brentrup et al., 2000), and spatially 

explicit modelling of emissions from agricultural systems is considered of paramount importance 

(Basset-Mens et al., 2006; Biswas et al., 2008; Cederberg et al., 2013). A spatially-explicit approach 

was partially applied in AGRIBALYSE and ecoinvent but not in Agri-footprint. Agri-footprint 

estimates of NH3 emissions, based on IPCC guidelines (IPCC, 2006), lead to significantly higher 

emissions per unit of nitrogen applied to the field than in AGRIBALYSE and ecoinvent, 

explaining Agri-footprint’s higher acidification and terrestrial eutrophication impacts. In contrast, 

NO3
- emissions factors were equal for all crops except peas.  

Emissions factors for NOx from nitrogen fertiliser application were higher in AGRIBALYSE 

than in ecoinvent and were not considered in Agri-footprint.  

Databases expressed phosphorus compound emissions using different flows, limiting the ability 

to compare inventory data. Scherer and Pfister (2015) found that estimates of emissions of 

phosphorus compounds in ecoinvent were up to one order of magnitude lower than results of 

their model. Phosphorus compound emissions represent the main contribution to freshwater 

eutrophication, which, except for peas, did not significantly differ among the databases, despite 

significant differences in phosphorus fertiliser application.  

 

PPP application and environmental fate modelling 

Estimation of PPP emission and fate is a topic of intense discussion both in the LCA community 

and beyond (Rosenbaum et al., 2015). In the three databases, active ingredients were assumed to 
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end up completely in the soil after application. However, depending on the active ingredient, 

application method, weather and soil conditions, crop characteristics and irrigation, PPP fate can 

change, and using a pre-determined fate factor can lead to extremely high uncertainty 

(Rosenbaum et al., 2015). Moreover, the databases analysed included active ingredients no longer 

authorised in France, of which one (carbendazim) contributes most to the freshwater ecotoxicity 

impact of wheat in Agrifootprint.  

When choosing a dataset, it is therefore recommended to verify that modelling of PPP 

application follows legislation of the country in question.  

Regarding the LCIA, PPP emissions influenced freshwater ecotoxicity and, to a lesser extent, 

human toxicity. However, estimated impacts can be influenced by assumptions about PPP fate 

and the type of PPP used. Some PPP emissions did not have associated characterisation factors 

in the ILCD characterisation method, which may have caused toxicity-related impacts to be 

underestimated. Therefore, since no of the characterisation methods currently available has 

characterisation factors for all the possible emissions of PPPs, LCA practitioners should be aware 

that the combination between characterisation method and dataset can influence the results of 

the toxicity-related impact categories. 

 

Heavy metal inputs and environmental fate modelling 

Mass balance and fate of HMs is affected by several uncertainties and limitations. For example, in 

the datasets analysed, uncertainty in HM inputs to the agricultural system and in fate modelling 

led to misleading negative emissions to the agricultural soil (Koch and Salou, 2013) that resulted 

in negative contributions to human toxicity and freshwater ecotoxicity impacts. Furthermore, the 

choice of characterisation method can influence assessment of impacts on human health greatly 

(Pizzol et al., 2011). 

 

Irrigation modelling 

Databases differed in both irrigation volumes and water flows, with different spatially-explicit 

characterisation factors. Those differences contribute to different LCIA results. Temporal 

variability of irrigation, instead, was not taken into consideration in any of the datasets analysed. 

Indeed, despite Pfister and Bayer (2014) highlighted the importance of taking into consideration 

the temporal variability when assessing the impact on water stress, nowadays databases 

implemented in commonly used LCA softwares do not report temporally-explicit flows. 

Therefore, LCA practitioners are recommended to prefer spatially-explicit water flows to assess 

water resource depletion, whereas LCA databases developers should focus on the inclusion of 

temporal variability of water withdrawals within their datasets. 
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Land transformation modelling 

The three databases model land transformation differently. In Agri-footprint and 

AGRIBALYSE, in which average data are considered, land transformation is reported, but 

different amounts of transformed land are considered. In contrast, ecoinvent excludes net land 

transformation. Transformation from a discontinuously built urban area to an agricultural one 

gives a relevant negative contribution to land use impact in AGRIBALYSE.  

CO2 emissions due to land transformation are considered relevant and are included only in Agri-

footprint. In addition, aspects of land management associated with impacts not yet predicted well 

by LCIA (e.g. biodiversity) are still not represented sufficiently, and differences in land 

management are difficult to assess. 

5. Conclusions 

Datasets from different databases that model the same crop have methodological differences that 

can lead to significantly different LCIA results.  

In the present study nine relevant elements that characterise datasets modelling arable crop 

cultivation were analysed, in order to highlight similarities and differences and investigate the 

extent to which they affect the results.  

The nine elements are: data, system boundary definition, agricultural practice modelling, 

agricultural operation modelling, fertiliser application and nutrient fate modelling, PPP 

application and environmental fate modelling, HM input and environmental fate modelling, 

irrigation modelling and land transformation modelling.  

Results of the present study provide LCA practitioners with elements according to which 

evaluate the characteristics of datasets that they use for modelling (not necessarily belonging to 

the analysed databases), to choose the most appropriate one, depending on the aim and scope of 

the study, and to interpret results. Furthermore, to a certain extent, they can provide information 

to database developers to improve dataset quality. For instance, the exclusion of infrastructures 

and machineries, and PPP and seeds production from system boundaries can significantly 

influence contribution of the background system to nearly all impact categories.  

Activity data from which datasets were built differ greatly because datasets rely on different data 

sources. Since official statistics on arable crop production in France are currently not available for 

most activity data, it was not possible to identify the most accurate datasets; however, a check of 

activity data by a pool of experts may yield a higher level of accuracy.  

Concerning the LCIA, the foreground system contributed more to overall impact for most 

impact categories and nearly all of the datasets analysed. Impacts of the foreground system were 

associated mainly with field emissions, most of which are estimated with models. Since field 
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emissions are influenced largely by site-specific conditions, including site-specific parameters in 

the modelling may lead to more accurate estimates.  

Although the present study examined only 12 datasets modelling arable crops, we consider the 

present work as a basis from which to start analysing and interpreting other datasets of 

agricultural products. Furthermore, as the study highlighted that much of the LCIA is associated 

with estimated emissions, we ask other researchers to explore the pertinence of models used to 

estimate field emissions and to provide more details about the representativeness of and 

uncertainty in the results. 
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Supplementary materials  

Average crop yields  

Figure S1 reports the crop yield assumed in each dataset. 

 

 

Figure S1: Average crop yields with 95% confidence interval. The 95% confidence interval of the yields is defined only in 
Agri-footprint datasets,  not in AGRIBALYSE and Ecoinvent datasets 

 

Agricultural operations  

Table S1 reports the average emissions factors for agricultural machineries expressed in terms of 

mass of pollutant emitted by the combustion of 1 kg of diesel.  

Table S1: Emissions factors expressed in term of mass of pollutant emitted by a unit of mass of diesel (kg/kgdiesel) 

  AGRIBALYSE  Agri-footprint  Ecoinvent 

NH3 2.0E-05 1.0E-05 2.0E-05 

PM < 2.5 um 4.3E-03 1.4E-03 4.7E-03 

CO2 3.1 3.2 3.1 

N2O 1.2E-04 2.6E-05 1.2E-04 

CH4 1.3E-04 1.1E-04 1.3E-04 

CO 5.4E-03 4.9E-03 8.1E-03 

NOx 4.2E-02 3.0E-02 4.5E-02 

NMVOC 2.7E-03 2.8E-03 2.7E-03 

 

Modelling of fertilisers application and nutrients fate  

In Figure S1 the amount of nitrogen, phosphorus and potassium fertilisers applied to the field for 

the arable crops cultivation is reported. 

Table S2 reports the modelling approaches adopted in the three datasets to estimate the nutrients 

fate and Figure S2 represents the resulting emissions of nitrogen compounds expressed as 

percentage of nitrogen applied to the field in each dataset. 

0

1000

2000

3000

4000

5000

6000

7000

8000

Wheat Barley Rapeseed Pea

k
g

/h
a

 

Agribalyse Agrifootprint Ecoinvent



Analysis of secondary datasets modelling agricultural production 

41 

 

 

 

Figure S2: Average fertilisers application and 95% conference intervals per ha of field. The 95% confidence interval 

is not reported in the AGRIBALYSE barley dataset, N refers to nitrogen fertilisers, P to phosphorus fertilizers 

and K to potassium fertilisers. For each nutrient, the highest result among the three datasets is reported as 100% 

and the others are expressed as percentage of the maximum amount. 
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 AGRIBALYSE Agri-footprint Ecoinvent 

Ammonia (NH3) (EMEP/EEA, 2009) 
Tier 2 (for organic fert.); 

EMEP/CORINAIR 
2006 Tier 2 (see (Koch 
and Salou, 2013) (for 

mineral fert.) 

(IPCC, 2006) (Asman, 1992) (for mineral 
fertiliser) 

Nitrogen oxides (NOx) (EMEP/EEA, 2009) 
Tier1 

Not considered Personal communication in 
(Nemecek and Schnetzer, 2011) 

Nitrate (NO3
-) COMIFER 2001 

adjusted (see (Koch and 
Salou, 2013) 

(IPCC, 2006) (all 
the N leached is 
emitted as NO3) 

SALCA-NO3 (Richner et al., 
2014) 

Dinitrogen oxide 
(N2O) (direct + 
indirect emissions) 

(IPCC, 2006) Tier 1 (IPCC, 2006) Tier 
1 

(IPCC, 2006) Tier 1 

Phosphorus (P) 
(leaching) 

SALCA-P (Prasuhn, 
2006) 

0,05 of P in 
fertilisers and 

manure reaches 
freshwater 

SALCA-P (Prasuhn, 2006) 

Phosphorus (P)  
(runoff) 

SALCA-P  (Prasuhn, 
2006) SALCA-P (Prasuhn, 2006) 

Phosphorus (P)  
(erosion) 

SALCA – P (Prasuhn, 
2006) 

Not included due 
to limited data 

availability SALCA-P (Prasuhn, 2006) 

Table S2: Models adopted for nutrients fate 

  

  
 

Figure S1: Average emissions of N compounds and 95% confidence interval, expressed as percentage ratio of the N emitted 

in the environment to the N applied to the field through fertilisers 

Modelling of plant protection products and environmental fate 
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In Table S3 a list of the active ingredient that are included in datasets, whose use was not 

authorised in France anymore, according to European legislation, is reported.  

 

Active ingredient  Database 

Anthraquinone ecoinvent  

Bitertanol AGRIBALYSE, ecoinvent  

Carbendazim  Agri-footprint, ecoinvent  

Choline chloride AGRIBALYSE, ecoinvent  

Cyfluthrin AGRIBALYSE  

Flusilazole ecoinvent  

Ioxynil AGRIBALYSE  

Metolachlor Agri-footprint  

Oxydemeton methyl AGRIBALYSE  

Procymidone ecoinvent  

Trifluralin AGRIBALYSE, ecoinvent  

Vinclozolin Agri-footprint, ecoinvent  

Table S3: Active ingredients included in the analysed datasets whose use is not authorised in France  

In Table S4 are reported the active ingredients emitted in the environment for which a 

characterisation did not exist for any of the impact categories considered.  

  AGRIBALYSE  Agri-footprint  ecoinvent   

Boscalid X  

 Fenpropidin 

 

 X 

Fenpropimorph 

 

 X 

Florasulam X  X 

Fluoxastrobin X  

 Flupyrsulfuron-methyl 

 

 X 

Fluquinconazole X   

Iodosulfuron X   

Iodosulfuron-methyl-sodium 

 

 X 

Mefenpyr-diethyl X  

 Mesosulfuron-methyl (prop) X  X 

Metaldehyde X  X 

Metconazole X  X 

Metosulam 

 

 X 

Picoxystrobin X  X 

Prohexadione-calcium 

 

 X 

Propoxycarbazone-sodium (prop) 

 

 X 

Prothioconazol X  

 Pyraclostrobin (prop) X  X 

Silthiofam   X 

Spiroxamine   X 

Trifloxystrobin   X 

Table S4: List of emitted active ingredients of PPP for which a characterisation factor was not reported for any of the impact 

categories considered. X indicates that the emissions of the specific active ingredient were considered in the dataset 



 

 44   
 

Modelling of soil erosion 

Table S5 reports the references used to model soil erosion in the AGRIBALYSE and ecoinvent 

datasets.  

 

Merosion 

(heavy metals 

emissions through 

erosion) 

= 

Ctot 

(HM content in 

the soil) 
* 

B 

(soil erosion) 
* 

A 

(accumulation 

factor) 
* 

F 

(fraction of soil the 

reaches rivers) 

Value/sources of data 

AGRIBALYSE v1.2 

 

BDAT database 

(RMQS, 2013) 

RUSLE soil loss 

equation (USDA – 

Agricultural Research 

Service, 2005) 

1.86 

(Freiermuth, 2006) 

0.2 

(Freiermuth, 2006) 

ecoinvent v3.1 
 (Keller and A., 

2001) 

 (Oberholzer et al., 

2001) 

 
1.86 

 
0.2 

Table S5: Equation used to estimate the heavy metal and phosphorus emissions due to erosion and sources of data and 
parameters 

 

LCIA 

In this section the LCIA for 1 kg of the analysed arable crops is reported. In each figure, the 

result for land use is not displayed because it is out of scale. Figure S4 represents the LCIA by 

showing the foreground and background contributions, whereas Figure S5 represents only the 

foreground contribution. In both Figure S4 and Figure S5 the 95% confidence interval is 

reported. 
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Figure S4: Average foreground and background systems contributions to LCIA and 95% confidence interval for 1 kg of the 
analysed arable crops. For each impact category, the higher result is reported as 100% and the other are expressed as 

percentage of the maximum amount. The following impact categories were considered: acidification (AP), climate change 
(CC), freshwater ecotoxicity (FW ecotox), freshwater eutrophication (FEP), human toxicity-cancer (HT,c), human toxicity- 
non cancer (HT, non-c), marine eutrophication (MEP), particulate matter (PM), photochemical ozone formation (POFP), 

terrestrial eutrophication (TEP), water resource depletion (Water) 
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Figure S5: Average foreground system contributions to LCIA and 95% confidence interval for 1 kg of the the analysed 
arable crops. For each impact category, the higher result is reported as 100% and the other are expressed as percentage of the 

maximum amount. The following impact categories were considered: acidification (AP), climate change (CC), freshwater 
ecotoxicity (FW ecotox), freshwater eutrophication (FEP), human toxicity-cancer (HT,c), human toxicity- non cancer (HT, 

non-c), marine eutrophication (MEP), particulate matter (PM), photochemical ozone formation (POFP), terrestrial 
eutrophication (TEP),  water resource depletion (Water). 
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Effects of modelling approach on the LCIA 

Figure S6, Figure S7, Figure S8 and Figure S9 report a comparison of average potential impact of 

1 kg of the analysed crop at farm gate as modelled in ecoinvent datasets following three 

modelling approaches: attributional (also called “Alloc def” in ecoinvent database), cut-off system 

model (also called “Alloc rec” in ecoinvent database) and consequential (also called “Conseq” in 

ecoinvent database).  

 

Figure S6: Average potential impact of  1 kg of wheat at farm gate as modelled in ecoinvent datasets with different 
approaches. For each impact category, the higher result is reported as 100% and the other are expressed as percentage of the 
maximum amount. The following impact categories were considered: climate change (CC), ozone depletion potential (ODP), 
human toxicity-cancer (HT,c), human toxicity- non cancer (HT, non-c), particulate matter (PM), ionising radiation (IR), 
photochemical ozone formation (POFP), , acidification (AP), terrestrial eutrophication (TEP),  freshwater eutrophication 

(FEP), marine eutrophication (MEP), freshwater ecotoxicity (FW ecotox), water resource depletion (Water), Mineral, fossil 
and ren resource depletion (Res) 

 

Figure S7: Average potential impact of  1 kg of barley  at farm gate as modelled in ecoinvent datasets with different 
approaches. For each impact category, the higher result is reported as 100% and the other are expressed as percentage of the 
maximum amount. The following impact categories were considered: climate change (CC), ozone depletion potential (ODP), 
human toxicity-cancer (HT,c), human toxicity- non cancer (HT, non-c), particulate matter (PM), ionising radiation (IR), 
photochemical ozone formation (POFP), , acidification (AP), terrestrial eutrophication (TEP),  freshwater eutrophication 

(FEP), marine eutrophication (MEP), freshwater ecotoxicity (FW ecotox), water resource depletion (Water), Mineral, fossil 
& ren resource depletion (Res).  
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Figure S8: Average potential impact of  1 kg of  rapeseed at farm gate as modelled in ecoinvent datasets with different 
approaches. For each impact category, the higher result is reported as 100% and the other are expressed as percentage of the 
maximum amount. The following impact categories were considered: climate change (CC), ozone depletion potential (ODP), 
human toxicity-cancer (HT,c), human toxicity- non cancer (HT, non-c), particulate matter (PM), ionising radiation (IR), 
photochemical ozone formation (POFP), , acidification (AP), terrestrial eutrophication (TEP),  freshwater eutrophication 

(FEP), marine eutrophication (MEP), freshwater ecotoxicity (FW ecotox), water resource depletion (Water), Mineral, fossil 
and ren resource depletion (Res) 

 

Figure S2: Average potential impact of 1 kg of wheat at farm gate as modelled in ecoinvent datasets with different 
approaches. For each impact category, the higher result is reported as 100% and the other are expressed as percentage of the 
maximum amount. The following impact categories were considered: climate change (CC), ozone depletion potential (ODP), 
human toxicity-cancer (HT,c), human toxicity- non cancer (HT, non-c), particulate matter (PM), ionising radiation (IR), 
photochemical ozone formation (POFP), , acidification (AP), terrestrial eutrophication (TEP),  freshwater eutrophication 

(FEP), marine eutrophication (MEP), freshwater ecotoxicity (FW ecotox), water resource depletion (Water), Mineral, fossil 
and ren resource depletion (Res) 

Effects of allocation on the LCIA 

Figure S10 and Figure S11 report the LCIA of the average potential impact of 1 kg of wheat and 

barley at the farm gate, considering the effect of allocation of the impact to co-products for the 

Agri-footprint datasets. Particularly, four allocation criteria are reported for Agri-footprint 

datasets: impact allocated entirely to the grains (no alloc) and allocation according to the 

economic value, the energy content and the mass. 
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Figure S10: LCIA of 1 kg of wheat at farm gate. In AGRIBALYSE and ecoinvent the impact is entirely allocated to the 
grains, in Agri-footprint different allocation criteria are considered: economic, energy and mass. Agri-footprint_no alloc refers 
to the datasets considered in the present study, in which the entire impact of cultivation is allocated to grains. For each impact 

category, the higher result is reported as 100% and the other are expressed as percentage of the maximum amount. The 
following impact categories were considered: climate change (CC), ozone depletion potential (ODP), human toxicity-cancer 
(HT,c), human toxicity- non cancer (HT, non-c), particulate matter (PM), ionising radiation (IR), photochemical ozone 

formation (POFP), , acidification (AP), terrestrial eutrophication (TEP),  freshwater eutrophication (FEP), marine 
eutrophication (MEP), freshwater ecotoxicity (FW ecotox), water resource depletion (Water), Mineral, fossil and ren resource 

depletion (Res) 

 

Figure S11: LCIA of 1 kg of barley at farm gate. In AGRIBALYSE and ecoinvent the impact is entirely allocated to the 
grains, in Agri-footprint different allocation criteria are considered: economic, energy and mass. Agri-footprint_no alloc refers 
to the datasets considered in the present study, in which the entire impact of cultivation is allocated to grains. For each impact 

category, the higher result is reported as 100% and the other are expressed as percentage of the maximum amount. The 
following impact categories were considered: climate change (CC), ozone depletion potential (ODP), human toxicity-cancer 
(HT,c), human toxicity- non cancer (HT, non-c), particulate matter (PM), ionising radiation (IR), photochemical ozone 

formation (POFP), , acidification (AP), terrestrial eutrophication (TEP),  freshwater eutrophication (FEP), marine 
eutrophication (MEP), freshwater ecotoxicity (FW ecotox), water resource depletion (Water), Mineral, fossil and ren resource 

depletion (Res) 
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Based on:  

Corrado S., Ardente F., Sala S., Saouter E., 2017. Modelling of food loss within life cycle 

assessment: from current practices towards systematisation. Journal of Cleaner Production, 140, 

847 -859 

 

Abstract 

Food loss is a major concern from both environmental and social point of view. Life Cycle 

Assessment (LCA) has been largely applied to quantify the environmental impact of food and to 

identify pros and cons of different options for optimisation of food systems management, 

including the recovery of potential waste occurring along the supply chain. However, within LCA 

case studies, there is still a general lack of proper accounting of food losses. A discrepancy both 

in food loss definition and in the approaches adopted to model the environmental burden of 

food loss has been observed. These aspects can lead to misleading and, sometimes, contrasting 

results, limiting the reliability of LCA as a decision support tool for assessing food production 

systems. This article aims, firstly, at providing a preliminary analysis on how the modelling of 

food loss has been conducted so far in LCA studies. Secondly, it suggests a definition for food 

loss to be adopted. Finally, the article investigates the consequence of using such definition and it 

proposes potential paths for the development of a common methodological framework to 

increase the robustness and comparability of the LCA studies. It discusses the strengths and 

weaknesses of the different approaches adopted to account for food loss along the food supply 

chain: primary production, transport and storage, food processing, distribution, consumption and 

end of life. It is also proposes to account separately between avoidable, possibly avoidable and 

unavoidable food loss by means of specific indicators. Finally, some recommendations for LCA 

practitioners are provided on how to deal with food loss in LCA studies focused on food 

products. The most relevant recommendations concern: i) the systematic accounting of food loss 

generated along the food supply chain; ii) the modelling of waste treatments according to the 

specific characteristics of food; iii) the sensitivity analysis on the modelling approaches adopted to 

model multi-functionality; and iv) the need of transparency in describing the modelling of food 

loss generation and management. 
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1. Introduction 

The Food and Agriculture Organization of the United Nations (FAO) has estimated that each 

year approximately 1.3 billion tons of edible food are wasted throughout global food supply 

chains (FSCs), corresponding roughly to one-third of all food produced for human consumption 

(FAO, 2011a). Food loss (FL) represents a major concern from both an environmental and social 

point of view. On the one hand, by tackling FL in FSC, there is a great opportunity to reduce 

major environmental burdens related to FL generation and management, especially in developed 

countries; while on the other hand, about 800 million people on the planet are suffering from 

chronic undernourishment (FAO, 2014a). Wasting food means wasting all the inputs consumed 

along the entire food supply chain (energy, natural resources, human labour, etc.) and contributes 

directly to the depletion of some already scarce resources, such as phosphorous used to produce 

fertilisers, land and water. FAO (2013) has estimated that the total water used to produce the 

food currently lost within global food supply chains is equivalent to 3 times the size of the lake of 

Geneva (about 80,000 m3) whereas the land use needed accounts for 1.4 billion of hectare. Food 

produced and not eaten at global level is responsible for the emissions of 3.3 GtCO2eq equal to 

more than 30 times the greenhouse gas emissions associated to domestic final demand in 

Switzerland in 2005 (Jungbluth et al., 2011). Moreover, food production is expected to increase in 

order to satisfy the needs of the raising world population, which may reach 9.5 billion by 2050 

(United Nation - Department of Economic and Social Affairs, 2015). Reducing FL can play an 

important role in addressing this challenge, since - together with closing yield gaps, increasing 

cropping efficiency, and changing diets - it is one of the key actions to increase the availability of 

food for human consumption while reducing the environmental impact per unit of product 

(Foley et al., 2011).  

In the European context, tackling FL is one of the objectives of the European Commission. The 

Roadmap to Resource Efficient Europe (EC, 2011) has identified food production and FL as key 

areas where resource efficiency can be improved. Two interventions are foreseen: setting targets 

for FL reduction for each EU member state and improving industrial symbiosis practices 

recovering waste and by-products (EC, 2014). Furthermore, the recent communication on 

circular economy, a system where the products, materials and resources value is maintained in the 

economy for as long as possible andwaste production is minimised, has identified food waste 

(FW) as one of the priority areas of intervention (EC, 2015; UNEP, 2006). To achieve these 

objectives at international as well as at lower scale of intervention, integrated assessment 

methodologies and a full supply chain perspective are needed. Indeed, it is crucial that the 

envisaged actions for a reduction of FL and its better management are assessed through a life 
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cycle perspective to avoid the shifting of burdens amongst different life cycle stages along the 

supply chain or different environmental compartments (EC-JRC, 2011). Given that FL occurs all 

along the supply chains, Life Cycle Assessment (LCA) represents a valuable tool for assessing: i) 

the environmental burdens associated with FL, ii) the benefits associated with FL reduction as 

well as iii) the preference among the possible recovery options. 

The available scientific literature on LCA and food is rather wide (Arvanitoyannis et al., 2014; 

Chen et al., 2016). Currently, the most remarkable study estimating the impact of FL at global 

level, applying LCA, is a recent report from FAO (2013). In this report FL has been estimated in 

all regions of the world for both developing and developed countries. Within the published LCA 

studies on food, the assessment of FL along the supply chain is often performed partially or 

inconsistently (Cerutti et al., 2014), limiting the effectiveness of LCA as a decision support tool in 

this context. 

In order to contribute to the current debate on FW assessment and accounting, the present 

article has a triple purpose. Firstly, it aims to summarise the terms related to FL currently used to 

address the topic and to enhance their harmonised use in the LCA context. 

The use of shared terminology is, indeed, fundamental to achieve a harmonised approach (FAO, 

2014b; Ostergren et al., 2014;Williams et al., 2015). Secondly, it aims to analyse and classify the 

different approaches observed in the scientific literature to assess the environmental burdens of 

FL, highlighting strengths, criticalities and possible inconsistencies. While conducting this 

analysis, the article discusses some relevant studies in the literature which can be considered as 

“exemplary” of different modelling approaches used by LCA practitioners. Finally, 

recommendations for the harmonization of these approaches within LCA studies have been 

provided, fostering the effectiveness of LCA as a decision support tool to achieve FL reduction. 

 

2. Materials and methods 

A selection of recent scientific articles, reviews and reports was analysed in order to shed light on 

the terminology currently adopted when referring to FL as well as to depict a classification of 

approaches to account for FL. The assessment of FL was performed only from an environmental 

perspective, whereas the economic and the social dimensions of sustainability were not taken into 

consideration. Relevant documents have been identified through search engines (e.g. Scopus and 

Google Scholar) using the key words “food loss”, “food waste”, “food wastage”, “food + LCA”, 

“vegetables + LCA”, “fish + LCA”, “meat + LCA”. Furthermore, the reference list of these 

articles was analysed and additional references considered relevant were included in the survey. In 

particular, 82 articles published in peer review journals, 1 published in conference proceedings 
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and 17 scientific reports have been analysed. All the documents are written in English and 

published starting from 1998. Among these, more than 70% of the documents have been 

published after 2010. The selected documents cover different themes: production of vegetables 

food origins (25 documents), production of meat, dairy and eggs (7 documents), fish production 

(7 documents), the assessment of the environmental burden of dietary choices and meals (10 

documents), waste treatments (5 documents), industrial ecology (14 documents), methodological 

aspects related to the application of LCA (14 documents) and other themes related to the topic 

(18 documents). 

The present work investigated the use of the terms “food loss” and “food waste” and the 

definitions provided. These were compared and, when necessary, combined in order to provide 

some recommendations about their clear application within the LCA. Furthermore, the 

documents were reviewed in order to analyse the approaches adopted to account for FL in LCA 

studies focused on food products. In order to support such analysis, some articles were taken as 

example. However, since the present article is not intended as an extensive literature review, the 

list of mentioned articles should not be considered as exhaustive. 

Accordingly to FAO (2011), five stages of the FSC were considered: (1) primary production, (2) 

transport and storage, (3) food processing, (4) distribution and (5) consumption. Furthermore, 

the end of life of FL generated within all the FSC stages was also considered. Food items were 

classified according to their origin as: (1) fruit and vegetables; (2) meat, dairy and eggs; and (3) 

fish. “Primary production” includes the agricultural stage for fruit and vegetables, breeding, 

aquaculture or fishing for animals and animal products and, when pertinent in case of fishing, it 

includes also first processing on fishing boat (Vazquez-Rowe et al., 2012). “Transport and 

storage” includes the activities between the primary production and the processing of the food. 

“Processing” includes a variety of options and treatments according to the food output. The 

“distribution” stage refers to both wholesale and retail distribution and it involves transport and 

storage activities. “Consumption” represents the last stage of the FSC and it includes household 

consumption or consumption in restaurants or canteens. Finally, the analysis covers the “end of 

life” stage. This includes the treatments performed in dedicated plants for the disposal or 

recovery of the waste derived from FL generated along the FSC. The recovery of FL in industrial 

ecology (IE) applications, in which FL are used as raw materials in downstream production 

processes, was discussed as an alternative to waste treatment for FL. As results of the analysis 

performed, some recommendations for LCA practitioners were derived to foster the systematic 

inclusion of FL within their studies. 
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3. Results 

The establishment of a possible common framework to account for FL in LCA should consider, 

among others, relevant elements, as: i) the definitions to be used; ii) accounting of FL in LCA; 

and iii) the modelling of FL recovery processes. An overview of these elements is presented in 

the following sections. 

 

3.1. Definition of food loss and food waste: characterisation and contextualisation for 

LCA applications 

Different definitions FL and FW are reported in the scientific literature limiting the comparability 

of studies and the integration of their results into a common strategy for reducing FL (FAO, 

2014b; Ostergren et al., 2014; Williams et al., 2015). Parfitt et al. (2010) and Papargyropoulou et 

al. (2014) agreed that three main definitions of FW could be found in the literature at the time of 

their studies. Firstly FAO (1981) defined FW as the wholesome edible material intended for 

human consumption, arising at any point of the FSC that is discarded, lost, degraded or 

consumed by pests. Stuart (2009) included to the cited FAO definition the fraction of edible food 

that is intentionally fed to animals and the by-products of food transformation that are diverted 

away from human consumption. Smil (2004) added to the aforementioned definition of FW the 

over-nutrition, intended as the gap among energetic consumption and human needs. WRAP 

(2008) proposed a further distinction among avoidable, possibly avoidable and unavoidable FW 

with the aim of analyzing FW at households in the United Kingdom.  

FAO was a pioneer in proposing to harmonise the definitions and the terms related to FL and 

FW within the Global initiative on food loss and waste reduction (FAO, 2011b) through a 

Definitional framework of food loss (FAO, 2014b). This document was intended to improve data 

collection, data comparability, evidence-based regulatory and policy decisions for FL prevention 

and reduction. According to FAO (2014b), FL is “the amount of food intended for human 

consumption that, for any reason is not destined to its main purpose”. A considerable effort 

towards an harmonised definition of FW was also made by the Fusions project that aimed to 

improve resource efficiency of Europe by reducing FW (Ostergren et al., 2014). According to 

Ostergren et al. (2014) FW is food produced to be addressed to humans that is disposed or 

recovered, excluding the fractions that are fed to animals and sent to bio based material 

production or biochemical processing. 

Within LCA studies, FL definition has been rarely reported, apart from studies where the focus 

was specifically on FL (e.g. Eberle and Fels, 2015; Heller and Keoleian, 2014).  
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It is suggested to adopt the FAO (2014b) as basis for LCA studies. However, this definition was 

conceived to be generic enough to be applied to a broad range of contexts, not only within the 

LCA field. Therefore, it is necessary to analyse additional aspects of FL in order to move towards 

a systematized use of this definition within LCA and to avoid problems of interpretation. These 

additional aspects are hereunder discussed. 

 

3.1.1. Differences among “food loss” and “food waste” 

FL may occur at each stage of the FSC. The non-food parts of food plants (straw, leaves, roots, 

branches, etc.) and animals (bones, horns, etc.) are not included in the FL definition. In a LCA 

context, these parts can be, for example, considered as farming residues and left on the field or 

processed by established waste treatments (i.e. aerobic or anaerobic digestion, landfill, etc.) (FAO, 

2014b). The terms FL and FW have been used to reference different kind of losses generated 

along the FSC (Parfitt et al., 2010). FL is used to describe the losses that occur in the production, 

post-harvest, processing and distribution stages of the FSC. Main drivers of FL generation, 

depending where in the world FL is generated, could be: i) poor storage infrastructure and 

logistics; ii) lack of technology; iii) insufficient skills, weak knowledge and management capacity 

of FSC actors; iv) no access to markets; and v) bad weather conditions. FW, instead, describes 

the losses that take place at retail and consumers stages, mainly due to: i) marketing 

consideration; ii) economic forces; iii) regulatory measures (“best before” or expiration date); iv) 

poor stock management; and v) consumer attitudes (FAO, 2011a; Parfitt et al., 2010). In the 

framework proposed by FAO, all kinds of food that is lost along the FSC are named “food loss”, 

considering FW as part of FL (Fig. 1). To improve consistency, it is suggested to LCA 

practitioners to be compliant with the differentiation adopted by FAO (2014b), as reported in 

Fig. 1. 

 

 

Fig. 1: Correspondence between the FSC stages and the definitions of “food loss”, “food waste” and “food wastage” according 
to (FAO, 2013) and (FAO, 2014b) 

3.1.2. “Avoidable”, “unavoidable” and “possibly avoidable” food loss 

Many food products have parts which are not edible (e.g. egg shell, some fruits skin, animal 

bones). These correspond to what is called “unavoidable FL”. In contrast, “avoidable FL” is the 
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amount of food thrown away because it is no longer wanted or has been allowed to go past its 

“best before” or “expiration” date (Papargyropoulou et al., 2014). The distinction between 

avoidable and unavoidable FL is not always sharp and the subjectivity in food use as well as 

cultural specificity may play an important role in setting the boundaries. In some countries, for 

example, animal hide can be eaten while in others it is a by-product used in the leather industry or 

just considered as waste (The Daily Meal, 2015). Therefore, the definition of what is considered 

edible and what is not in the specific context is essential in LCA studies trying to account for 

impacts within the food supply chains. A further distinction between avoidable and unavoidable 

FL has been proposed in the report “Household food and drink waste in the UK” (WRAP, 

2009). The concept of “possibly avoidable” FL is put forward as the amount of food that some 

people eat and others do not, or food that can be eaten when it is prepared in some particular 

ways. Although the distinction was initially thought only for FL at household level, this can also 

be applied to food processing in which an edible part of food is discarded due to specific process 

characteristics. For example, the production of olive oil generates pomace (Fantozzi et al., 2015), 

a possibly avoidable loss that would have not been generated if the olives were consumed fresh. 

Hence, possibly avoidable FL is within the scope of the present work. It is recommended to 

make the distinction among ‘avoidable’, ‘not avoidable’ and ‘possibly avoidable’ FL in LCA 

studies, especially when results are used to analyse decisions about a decrease in FL and FW. 

Indeed, the reduction of the three kinds of losses should be obtained by different kind of 

interventions. The ‘avoidable’ FL, for example can be reduced by increasing consumer awareness, 

whereas the decrease of ‘possibly avoidable’ FL for a given product can be realised by improving 

the efficiency of the transformation process and gastronomical habits. Furthermore, this 

classification is crucial when analysing FW prevention scenarios (Bernstad and Canovas, 2015). 

Different components of FL are summarized in Fig. 2. 

 

3.1.3. “Prevented” food loss 

Within the European Waste Framework Directive (EU, 2008), waste prevention is the most 

preferable option for waste management. In LCA studies, very few examples included an 

assessment of the impacts and benefits of waste prevention (e.g. Gentil et al., 2011; Nessi et al., 

2012). Cleary (2010) proposed a model to include waste prevention in the LCA of municipal solid 

waste management systems, but there is still no consolidated approach to include waste 

prevention in LCA studies on products. A possible way to account for FL prevention at a 

product level could be to compare different scenarios for FL prevention with a baseline (see e.g. 

Nessi et al., 2012). However, the inclusion of waste prevention in LCA is still at an embryonic 

phase and it implies the adoption of a different approach compared to “generated” FL. 
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Furthermore, FL prevention was not considered as part of the FL definition, therefore, it was out 

of the scope of the present analysis. 

 

 

Fig. 2: Representation of different types of FL applied, as example, to an apple. Each food category will have a different 
split. Splits may also change based on local cultural and/ or consumer habits 

 

3.1.4. “Over-eaten” food 

Smil (2004) reported that in high-income countries part of the food produced in excess is 

consumed beyond human needs. If not combined with a proper physical activity, it can lead to 

obesity, already known as an important social and health concern. Over nutrition, i.e. food eaten 

beyond nutritional needs, is a rather controversial subject and FAO (2014b) decided not to retain 

this possibility in its accounting. No methodological consolidated approach currently exists to 

include over nutrition in LCA applications. As for waste prevention, over-nutrition was 

considered outside of definition of FL and therefore out of scope of the present study. 

 

3.1.5. “Qualitative” food loss 

Qualitative FL consists in a decrease of food attributes such as nutritional value, economic value, 

food safety and consumers' appreciation. According to (FAO, 2014b), “qualitative FL” should be 

considered when accounting for the total FL. From a LCA perspective, the quality of the food 

can be related to the function of the system analysed and to the choice of the functional unit. 

However, not all the food attributes can be measured objectively and there is a vivid discussion 

for the choice of the most appropriate functional unit for food products (e.g. Sonesson et al., 
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2015). For these reasons the assessment of qualitative FL was excluded from the present analysis. 

However, it is highlighted that some qualitative aspects of food can be relevant in the LCA for 

the definition of the functional unit or in the modelling of co-products (e.g. via system 

expansion). 

 

3.2. Accounting of food loss in LCA 

The generation of FL can be considered as an “inherent” component of the FSC. Indeed, over-

production is a current practice since producers have to cope with adverse weather conditions or 

with fluctuant market demand. Up to 30% overproduction contributes to guarantee food 

security, however the current level of food overproduction in high-income countries is far more 

higher, threatening in fact global food security (Papargyropoulou et al., 2014). FL happens in all 

life cycle stages and varies greatly according to different elements, e.g. the type of food, the 

specific socio-cultural and economic contexts, the technological availability, the geographical 

location etc (FAO, 2011a). Table 1 reports a summary of the main FL that can occur within the 

FSC. The table can be used by LCA practitioners in the identification of the most important FL 

according to the specific context of their study. 

The generation of FL within the FSC influences the potential impact of a food product for two 

reasons: the increase of food production in order to deliver the same amount of food and the 

generation of an additional environmental burden due to FL treatments (FAO, 2013). Different 

elements characterise the inclusion of FL in LCA and can lead to the adoption of 

inhomogeneous methodological approaches among LCA studies. In the next sections possible 

approaches to account for FL occurring at the different stages of the FSC are presented. The 

modelling of FL recovery processes will be discussed separately (section 3.3) since this 

transversally affects different stages of the FSC. 

 

3.2.1. Food loss at the primary production stage 

In conventional open-field agriculture, a part of marketable (intended over production to cope 

with market fluctuation) and non-marketable food (e.g. not fitting marketing standards) can be 

left on the field (Strid and Eriksson, 2014) or incorporated into the soil (e.g. Romero-Gamez et 

al., 2014). This practice is not common for crops cultivated into greenhouses, in which the excess 

of food has to be removed from the soil (Battistel, 2014; Cellura et al., 2012).  
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Table 1: Possible FL per FSC stage. Built from (FAO, 2013; Parfitt et al., 2010) and complemented with other 
information in literature 

  Crops Animals and animal products 

Primary 

production  

- Not-harvested edible products 
- Edible products left in the field 
- Edible product harvested but not sold 
- Rotten fruit or vegetables 
- Product damaged by machines 

- Dead animals during breeding 
- Milk lost due to animal diseases 
- Discarded fishes 

Transport 

and storage 

- Spilled product 
- Product damaged due to bad handling 
- Product damaged by machineries 
- Product store at a wrong temperature 

- Food lost during transport to 
slaughterhouse 

- Food lost due to bad storage 

Processing - Process FL (e.g. inefficiencies, 
contaminations…) 

- Possibly avoidable FL 
- Unavoidable FL (e.g. skins, seeds, etc.) 
- Food damaged by inappropriate 

packaging 

 

- Process FL (e.g. inefficiencies, 
contaminations, etc.) 

- Possibly avoidable FL 
- Unavoidable process FL (e.g. bones, 

leather, etc) 
- Food damaged due to inappropriate 

packaging 

Distribution - Food damaged due to lack of cooling, 
storage facilities, 

- Expired food 
- Unsold food 
- Rejected food after quality controls 

As for Crops 

Consumption  - Food damaged due to the lack of storage 
facilities 

- Due not eaten due to the preparation of 
excess of food 

- Food not eaten due to passed expiration 
date 

- Food not eaten due to inappropriate 
packaging size (more food than the quantity 
wanted) 

- Food not eaten due to low consumers’ 
appreciation 

- Unavoidable FL (e.g. fruit kernels, bones 
etc.) 

As for Crops 

 

It was observed that in some LCA studies on agricultural products the environmental burden of 

discarded rotten fruit and vegetables was charged to the functional unit, referring to the net yield 

(e.g. Mogensen et al., 2015) or to the marketable yield (e.g. Romero- Gamez et al., 2014). Over-

production was discussed just in a few studies (e.g. Romero-Gamez et al., 2014; Strid and 

Eriksson, 2014). As highlighted by Lal (2008) crop residues can contribute to cycle nutrients and 

enhance the soil quality. These elements can be relevant from a LCA perspective, in terms, for 

example, of additional inputs that has to be provided to the field. However, only few evidence of 

this accounting in LCA studies was found. For example, Cerutti et al. (2014) confirmed in their 

literature review on LCA applied to the fruit sector that FL at the agricultural stage was not 

addressed in the papers they analysed. Blengini and Busto (2009) reported that benefits associated 

with the incorporation of agricultural residues into the soil were indirectly taken into account 
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since the crop under study was cultivated on a soil with better properties. A reduction of the 

input of nutrients to be provided to the soil due to residues left on the field, instead, was 

considered in the datasets referred to European agricultural production systems of the database 

Ecoinvent (Nemecek and Schnetzer, 2011a). Furthermore in the databases Ecoinvent and 

Agrifootprint the emissions due to crop residues decompositionwas assessed (Blonk Agri-

footprint BV, 2014; Nemecek and Schnetzer, 2011b). Alternative destinations for FL at the 

primary production stage can be the composting or the anaerobic digestion, especially for FL 

generated into greenhouses (Cellura et al., 2012). This will be discussed in detail in section 3.3.2. 

Concerning the manufacturing of meat and livestock-derived products, no evidence was found 

on the inclusion of FL at the primary stage in LCA. However, the amount of this FL can 

potentially become significant. FL could be associated with animal's mortality and diseases and 

refuse of animals' products due to quality standards. The world organisation for animal health 

estimated that mortality and morbidity due to animal diseases caused the loss of at least 20% of 

livestock and livestock-derived production globally (World Organisation for Animal Health, 

2015). Therefore, the exclusion of animal loss from the breeding system could lead to an 

underestimation of its environmental burden. In case of fisheries in open sea, by-catch may 

represent a significant cause of FL. By-catch is catch that is either unused or unmanaged and it is 

therefore discarded after sorting. It includes fishes that are fit for human consumption and could 

be sold, but also fishes that, for regulatory or economic reasons, are not sold (Davies et al., 2009). 

Different options exist to account for by-catch, affecting the comparability of data (Davies et al., 

2009; FAO, 2013). Furthermore, the amount of discard is dependent from the context, namely: 

the season, the type of fishing method, the target species and the fisherman behaviour (Hornborg 

et al., 2012). These aspects make it difficult to obtain detailed data (Vazquez-Rowe et al., 2012). 

Discarded by-catch fish is an important environmental concern for fisheries since, together with 

the overfishing of a target specie, represents a threat for the equilibrium of aquatic ecosystems 

(Davies et al., 2009; Emanuelsson et al., 2014; Eyjolfsdottir et al., 2003). So far, different LCA 

studies have included the by-catch (e.g. Almeida et al., 2014; Ziegler et al., 2003). Besides, 

commonly used life cycle impact assessment methods are not addressing comprehensively the 

impact on the environment of fishing activities. Hence, LCA practitioners have developed some 

specific indicators to account for the impacts of discards during fishing. An example of an 

indicator is the amount of discarded by-catch (Davies et al., 2009). However, this indicator can 

underestimate the real impact on the marine biotic resources. For example, juveniles, often 

discarded after being by-caught, have a small mass but may have a large ecological relevance. 

Other indicators have been developed to capture the complexity of this aspect, taking into 

account specific geographical and temporal aspects (e.g. Emanuelsson et al., 2014. Hornborg et 
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al., 2013). Table 2 provides a description of these indicators, including a description of their 

strengths and weaknesses. 

Table 2: Indicators used to account for the impact of discards in LCA studies on fisheries 

Indicator Description Strengths Weakness 

Total Discard (TD) Ratio between the 

mass of the 

discarded fishes 

and the functional 

unit  

Gives a general idea of 

the amount of 

discarded fish 

 

 

Mass is not representative of the 

ecological value of discarded fishes. 

Juveniles or rare species, for 

example, could represent a small 

contribution in term of mass but 

play a fundamental role in the 

function of the ecosystem. (Davies 

et al., 2009) 

Primary Production 

Required (PPR) of 

discards  

Fraction of 

carbon, used by 

photosynthesis to 

produce a 

kilogram of 

biomass in the 

population of a 

species at a certain 

tropic level, 

associated with 

the discarded fish, 

Representative of the 

amount of nutrients 

wasted 

In highly eutrophic ecosystems it 

could be not very significant 

(Emanuelsson et al., 2009). 

Furthermore it does not account for 

the ecological value of the discards 

due to its trophic level (the lower is 

the trophic level, the lower is the 

PPR, but the higher may be the 

ecological value) (Hornborg et al., 

2013) 

Threatened fish 

species in discards 

(VEC)  

Amount of 

threatened fish 

species in discards  

Proxy of the impact on 

the ecosystem  

Difficult to have primary 

information on the composition of 

discards (Emanuelsson et al., 2009) 

 

3.2.2. Food loss at transport and storage stage 

In the analysed LCA studies, there was no evidence of accounting for FL during transport of 

food from the production place to the storage and during storage. However, FAO (2011a) 

reported that this contribution can potentially be relevant - especially in developing countries - 

and that it depends from the food categories. For example, FL during postharvest handling and 

storage of roots and tubers in South and Southeast Asia was estimated to be 19% of the food 

produced. FL of meat in the same FSC stage and in the same geographical area, instead, was 

estimated to be equal to 0.3% (FAO, 2011a). Consequently, the exclusion of FL at the transport 

and storage stage, in some contexts, could lead to an underestimation of the environmental 

burden of food products. 

 

3.2.3. Food loss at the food processing stage 

The processing stage can potentially generate three kinds of FL, mainly due to: (1) inefficiencies 

of the processing stage or overproduction (avoidable FL); (2) specific production processes of 

the commodity (possibly avoidable FL); (3) parts discarded because not edible (unavoidable FL). 

Avoidable FL was explicitly reported only in a few studies. Koroneos et al. (2005), for example, 
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reported beer losses during bottling and Kim et al. (2013) accounted for food loss at each stage 

of the FSC of cheese. Possibly avoidable and unavoidable FL, instead, were reported in a higher 

amount of studies in which they implied a relevant reduction of the output compared to the raw 

ingredient used (e.g. Coltro et al., 2006; Manfredi and Vignali, 2014; Rajaeifar et al., 2014; Röös et 

al., 2011). These kinds of losses are strictly related with the type of food and the type of 

processing and are less dependent from the efficiency of the process. Depending on the process, 

the amount of losses can be relevant and the modelling approach adopted to account for the 

environmental burden can considerably influence the LCA results, as highlighted in section 3.3. 

Indeed, according to the specific process, different destinations can be planned for FL at the 

processing stage: FL may undergo a recovery in another industrial process or may be treated as a 

waste with the potential recovery of resources or energy. A common recovery option for process 

losses is animal feeding (e.g. Grönroos et al., 2006; Jensen and Arlbjørn, 2014; Koroneos et al., 

2005). Other possible destinations are fertilisation (e.g. Coltro et al., 2006) or other industrial 

ecology (IE) applications (e.g. Nucci et al., 2014). FL can be also recovered in downstream with 

human feeding purposes (e.g. Svanes and Aronsson, 2013). In some cases, FL at the processing 

stage is disposed without any recovery (e.g. Gonzalez-García et al., 2013). 

 

3.2.4. Food loss at distribution stage 

FL at the distribution stage can be generated both at the wholesale, due to handling and 

rejections after quality controls, and at the retail, due to unsold products (Strid and Eriksson, 

2014). As for previous stages of the FSC, FAO (2011) highlighted that the type of food and the 

country where it is distributed have a relevant influence on the amount of FL generated. A large 

number of the analysed LCA case studies adopted an approach from cradle to gate, therefore FL 

generated in the distribution stage was not considered (e.g. Cordella et al., 2008; Fantozzi et al., 

2015; Humbert et al., 2009; Röös et al., 2011). Others, instead, accounted for FL at the 

distribution stage: primary data (e.g. Svanes and Aronsson, 2013), specific assumptions (e.g. 

Andersson et al., 1998) and national statistics (e.g. Meier and Christen, 2013) were the sources of 

data used for the amount of FL at distribution. Adopting a cradle to grave perspective allows 

LCA practitioners to have a complete overview of possible consequences of choice taken within 

the FSC. In this stage of the FSC, FL was generally assumed to be managed as waste and, 

consequently, to be sent to waste management treatments (e.g. De Menna et al., 2014; Jensen and 

Arlbjørn, 2014). 
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3.2.5. Food loss at the consumption stage 

FL at consumption stage is a major environmental issue in industrialised countries whereas is 

relatively limited in developing ones (FAO, 2013). Vanham et al. (2015), for example, showed 

that in Europe the quantity of food wasted is directly correlated with the total expenditure of the 

household: rich countries waste more food (e.g. UK with 190 kg/cap/year) while poorer 

countries waste less (e.g. Romania with 55 kg/cap/year). Besides, FL generation at consumption 

is also influenced by cultural aspects, due to e.g. different preparations and different eating habits 

of consumers (Parfitt et al., 2010). Among analysed studies, some LCA focused on diets and 

meals considered the generation of FL at the consumption stage (e.g. Davis and Sonesson, 2008; 

Meier and Christen, 2013). Sometimes FL is estimated as difference between per capita 

agricultural supply data and consumption data of actual intake level (e.g. Hallström et al., 2015). 

However, this approach does not distinguish among the contribution of the different FSC stages. 

Studies focused on single food products, instead, seldom considered the consumption stage 

within the system boundaries (e.g. Andersson et al., 1998; Jensen and Arlbjørn, 2014). Data for 

waste generation in the LCA studies analysed were mainly derived from national data (e.g. Meier 

and Christen, 2013; Schmidt Rivera et al., 2014; Svanes and Aronsson, 2013). WRAP reports 

were frequently cited (WRAP, 2013, 2009). Although they reported FW generation per category 

of food commodity in the UK, data therein were also used in studies that considered 

consumption elsewhere (e.g. Svanes and Aronsson, 2013). Other sources of data were national 

statistics (e.g. Meier et al., 2014) or assumptions, when specific local data were not available (e.g. 

De Menna et al., 2014). At EU level, a recent study (Vanham et al., 2015) has accounted for both 

total and avoidable waste per country - based on data of some representative countries - as well 

as the water and nitrogen footprint associated with the consumer FW. It could be an interesting 

source of data for LCA practitioners to account for FL. At this stage of the FSC, FL are generally 

managed as organic waste, collected separately or with municipal solid waste according to the 

specific waste management systems. Analogously to other previously considered stages, FL at the 

consumption stage can be addressed to different processes, such as composting or incineration 

(e.g. Berlin, 2002). 

 

3.3. Modelling of food loss recovery in LCA 

FL generated at different stages of the FSC can be processed for different purposes, depending 

on the type of loss and the context. FL can be recovered in other production processes, generally 

defined as IE applications, or it can be disposed or recovered through waste treatment 

technologies (e.g. composting, incineration, anaerobic digestion or landfilling) (FUSIONS EU 

Project, 2015). From a LCA perspective, the modelling of IE applications can be considered 
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analogous to the modelling of waste treatments. Indeed, both these systems treat FL and produce 

useful outputs. FL represents therefore a co-product of the system and this has to be modelled 

with the common approaches dealing with multi-functionality, namely system expansion and 

substitution, and allocation (Pelletier et al., 2015). 

Fig. 3 illustrate a summary of the approaches adopted in the analysed studies. 

 

3.3.1. Recovery of food loss in industrial ecology applications 

IE is a set of principles, tools, and perspectives derived from ecology and adapted to industrial 

systems (Lowenthal and Kastenberg, 1998). The principles of IE are applied to design or redesign 

industrial systems to create more efficient interactions both within industrial systems and 

between industrial systems and natural systems (Leigh and Li, 2015). IE applications are generally 

based on the interrelationships of firms that exchange a variety of materials - including residues 

and waste - and energy flows to feed different production processes (Ardente et al., 2009; 

Niutanen and Korhonen, 2003).  

 

 

Fig. 3: Approaches adopted in the analysed studies to model the treatments of the FL. The graph refers to both industrial 
ecology applications and waste treatments. 

 

The quantification and characterisation of FL and FW along the FSC have been proved to be 

crucial for the identification of potential new IE applications (Mirabella et al., 2014). Moreover, 

Svanes and Aronsson (2013) illustrated that IE applications can be used to recover FL into 

innovative food productions, e.g. baby food. In this case, recovered materials do not represent 
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anymore a FL since destined to human consumption. However, the benefits of FL recovery 

should not be undermined by the environmental impact caused by IE production processes 

(Mirabella et al., 2014). To such purpose, LCA can be applied with different aims, for example to 

(Mattila et al., 2012): assess the benefits of realising IE applications (e.g. Chiusano et al., 2015; 

San Martin et al., 2016; Simboli et al., 2015); assess existing IE applications to improve them (e.g. 

Contreras et al., 2009); communicate to third party the performance of IE systems (e.g. Schau 

and Fet, 2008); compare IE applications with traditional industrial processes (e.g. Duchin, 2005; 

Iribarren et al., 2010). Several LCA practitioners analysed the recovery of FL in different 

industrial sectors, mainly: animal feeding (e.g. Cordella et al., 2008; Koroneos et al., 2005; San 

Martin et al., 2016); cosmetics production (Nucci et al., 2014; Secchi et al., 2016); fertilisation (e.g. 

Fantozzi et al., 2015; Notarnicola et al., 2011; Salomone and Ioppolo, 2012). Examples of IE 

applications are however very wide, including that some authors discussed some applications 

without specifically mentioning these as IE (e.g. Secchi et al., 2016). As mentioned in section 3.3., 

critical aspects concerning the modelling of FL in IE applications are: i) the definition of the 

system boundaries; and ii) the modelling of multi-functionality. The definition of the system 

boundaries is crucial to assess what is included or excluded from the LCA. This is particularly the 

case of assessment of IE applications, since two or more industrial subjects, generally very 

different in processes and characteristics, are involved. In turn, these industrial subjects could 

have other byproducts utilised by other industries, in a complex network that have to be 

truncated at a certain point. According to Mattila et al. (2012) supply chain impacts are usually 

excluded from the analysis of IE, hence introducing the risk of transferring impacts from the 

studied system to elsewhere in the supply chain. On the other hand, the enlargement of the 

system boundaries implies higher uncertainties, data availability and data quality issues. For 

example, this is the case of industrial symbiosis application in which a system of two or more 

entities exchanges energy and materials for the mutual benefit (Chertow, 2000). Few examples of 

LCA applied to industrial symbiosis systems have been discussed in the literature (e.g. Eckelman 

and Chertow, 2009.; Mattila et al., 2010; Sokka et al., 2011) but none specifically focused on food 

industries has been identified in our analysis. Applications of hybrid and Input-Output LCA have 

been proposed as worth of note to capture the complexity of industrial symbiosis systems 

(Mattila et al., 2012, 2010). The application of system expansion to solve multi-functionality 

problems implies the selection of a “reference case” for the substitution, in which emission 

credits are given from the substitution of alternative production processes than those in the IE 

application (Mattila et al., 2012). Criteria for substitution are not always univocal, meaning that 

different approaches can be applied for the same case-study. For example, apple residues can be 

used for different IE applications, such as fuel production, pectin extraction, cattle feed, 
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biotransformation and sources of fibres (Mirabella et al., 2014). Substitution criteria should be 

carefully investigated and discussed considering all the possible applications. However, the 

description of the approach used for the substitution is sometimes not sufficiently detailed or 

lacking (Mattila et al., 2012; Pelletier et al., 2015). The selection of a not representative “reference 

case” for the substitution implies the risk of overestimating the benefits of byproduct exchange 

(Mattila et al., 2012). Moreover, substitution could be improperly applied to lower ‘artificially’ the 

impacts of the studied product. On the other hand, it is recognised that the application of system 

expansion implies some advantages, as being this able to assess indirect land use changes due to 

some avoided agricultural production (Schmidt et al., 2015).  

The allocation of impacts among co-products can be performed according to different 

approaches: physical allocation (e.g. Gonzalez-García et al., 2013; Rajaeifar et al., 2014), economic 

allocation (e.g. Ayer et al., 2007; Hospido et al., 2003), or impact allocated entirely to the 

functional unit (e.g. Mila i Canals et al., 2006). The allocation procedures can have a relevant 

influence on the results of the study (Cederberg and Stadig, 2003). Despite the ISO 14040 (ISO, 

2006a) hierarchy suggests the selection of physical criteria as the preferred option for allocation, 

economic allocation is often applied to LCA, especially for those related to the agro-food sector 

where a large quantity of low-value by-products are generated (Ardente and Cellura, 2012). For 

example, cow slaughtering produces meat and animal by-products (e.g. innards, fat, skin), the 

latter normally utilised in IE applications for various productions. By applying physical allocation 

(e.g. with criteria as mass or energy content) these by-products could have a high impact. On the 

contrary, the application of economic allocation would imply byproducts to have a low share of 

the impacts due to their limited economic value. Recently the FAO (2016) suggested to perform 

economic allocation to partition the environmental burden between meat and animal by-

products. In this sense, the application of economic values to allocate impacts has been 

recognised as a driving force for the promotion of new IE applications for the recovery of FL 

(Weinzettel et al., 2012). On the other hands economic allocation is affected by limitations, 

mainly that it produces results that reflect existing market relationships that can potentially 

change (via price ratios) rather than the physical relationships (Pelletier et al., 2015) and that 

economic values are affected by a multitude of factors not strictly related to the effective 

emission of the studied system (Ardente and Cellura, 2012). 

 

3.3.2. Treatment of food loss in waste plants 

Several articles accurately analysed the environmental performance of different options for the 

waste treatment (e.g. Laurent et al., 2014a; Bernstad and la Cour Jansen, 2011). In some articles 

with the focus on food, instead, it was observed a low detail provided for the modelling of FL 
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and FW recovery and/or disposal (e.g. Gonzalez-García et al., 2014; Meier and Christen, 2013). 

This can be explained by the prejudice that the end-of-life stage is of relatively low relevance 

compared to the environmental impacts generated along the FSC. However Manfredi et al. 

(2015) suggested that decisions, choices and assumptions related to the waste treatment (e.g. the 

decision context and the choice of the impact assessment indicators) can exert an important 

influence on the results of the LCA.  

FL occurring at the different stages of the FSC can be treated by incineration, composting, 

anaerobic digestion and landfill. According to the ILCD Handbook for LCA (EC-JRC, 2010) 

waste are part of the ‘technosphere’ and, therefore, they should not be considered as elementary 

flows leaving the analysed product system. This means that the system boundaries of the studied 

system should include the waste treatment, accounting all the processes until elementary flows 

cross the system boundaries as emissions to the ecosphere. However, not all LCA practitioners 

followed these recommendations. Some authors did not account for the environmental burden 

of FL management treatments either because they excluded them from the system boundaries 

(e.g. Ardente et al., 2006; Gonzalez-García et al., 2014) or because they considered FL 

management treatments as a negligible source of emissions (e.g. Saarinen et al., 2012). Other 

studies accounted for the environmental burdens of waste treatments, however they adopted 

different modelling approaches. For example, Svanes and Aronsson (2013) referred to IPCC to 

account for emissions of methane from the landfilling of banana FL, whereas Jensen and 

Arlbjørn (2014) referred to a combination of information derived from different sources to 

model the incineration of uneaten food. A high detail in the characterisation of the waste it is also 

necessary for a precise modelling of the waste treatments. Waste composition may greatly 

influence the performance of the waste plant regarding, for example, the quality and quantity of 

nutrients recovered through anaerobic digestion or the amount of energy recovered by the 

incinerators (Bernstad and la Cour Jansen, 2012). The use of generic or unspecified data for the 

modelling of waste treatments can lead to misleading results. For example, Gruber et al. (2014) 

modelled the incineration of unconsumed with data concerning the incineration of mixed 

municipal solid waste. Successively Gruber et al. (2014) concluded that incineration was 

preferable than composting, concerning the eutrophication, acidification and primary energy 

demand impact categories. However, this result is in contrast to other specific studies, as in 

Arafat et al. (2015), which reported that incineration was not the best environmental option for 

FW management. Conclusions by Gruber et al. (2014) could be affected by the assumption 

concerning the modelling of waste with not representative data. As for IE applications, the 

modelling of FL treated in waste plants implies multi-functionality problems to be solved through 

allocation or system expansion. Laurent et al. (2014) highlighted a general confusion about this 
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distinction and found several inconsistencies among LCA studies on waste management systems. 

This applies also to LCA of food products, which did not model the multifunctionalities 

consistently with the overall modelling approach (i.e. attributional or consequential). It has been 

also observed that the modelling approach adopted for the waste treatment is not always 

explicitly reported (e.g. in Fantozzi et al., 2015). Moreover the present analysis of the literature 

did not identify any application of allocation criteria to the modelling of FL, with the exception 

of the environmental burdens of the waste treatment entirely allocated to the functional (e.g. 

Svanes and Aronsson, 2013). On the other hand, system expansion was the modelling option 

most commonly observed in the literature. These applications accounted the impacts of waste 

treatments together with credits due to the avoided production of certain substituted 

commodities. For example, energy outputs from incineration or anaerobic digestion plants were 

credited as energy from fossil fuels (e.g. Davis and Sonesson, 2008; De Menna et al., 2014); 

nutrients from anaerobic digestion or composting were credited as fertilisers from conventional 

production plant (e.g. De Menna et al., 2014; Salomone and Ioppolo, 2012). However, the 

reasons for the avoided production and the detail of credited impacts are sometimes lacking or 

not sufficiently discussed (e.g. how credits are assigned for avoided production associated with 

the use of by-products as fertilisers). More importantly, assumptions related to the system 

expansion can largely affect the LCA results. Indeed, secondary datasets modelling the same 

products can lead to highly different environmental burdens (Peereboom et al.,1998). On the 

other hand, it is recognised that in some cases it is difficult or even impossible to provide a 

detailed analysis of the substituted system, since it is not known in advance where and how waste 

will be treated. This is recognised as a limit of the system expansion approach. 

4. Discussion 

The analysis of the relevant literature on the inclusion of FL and FW within the LCA studies 

highlighted some shortcomings, which can potentially affect the LCA results. Indeed, Manfredi et 

al. (2015) reported that the lack of homogeneity among key factors and assumptions can justify 

differences among LCA results, rather than differences among the environmental performance of 

waste treatments. In order to strengthen the use of LCA for the assessment of initiatives aimed at 

FL minimisation and sustainable management, it is necessary to have a shared framework on how 

to account for FL.  

Based on the analysis of the relevant literature, some recommendations for LCA practitioners 

were derived to open the way towards a harmonisation of the approaches to account for FL in 

LCA.  
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A first general recommendation is to use a transparent reporting of the key assumptions for the 

modelling. Indeed, the lack of a clear description generally represented a limit for the studies 

analysed, nevertheless of their robustness. This recommendation can be seen as general enough 

to be applied to all type of LCA studies and to all phases. However, according to the present 

analysis this is particularly critical for the modelling of FL and for the correct interpretation of 

results. The lack of transparency, in fact, negatively affects the reproducibility and comparability 

of the presented results.  

Moreover, it is suggested to LCA practitioners to consider aspects related to FL within all the 

FSC, starting from the preliminary phases of the LCA study, e.g. already during the definition of 

the system boundaries and the product system to be analysed. Also this can be seen as a general 

LCA recommendation, since cut-offs should be avoided or, at least, clearly motivated. However, 

a general tendency of LCA practitioners to underestimate the potential burdens of FL was 

observed. The discussion of FL aspects in the LCA and the explicit accounting of FL generated 

at each stage of the FSC would allow a more transparent picture of the impact of the analysed 

product.  

The environmental burden of FL generation and management, especially in the primary 

production stage, can only partially be considered through the analysis of the commonly 

considered impact categories. Indeed, elements such as the enhancement of soil quality due to 

residues left on the field and by-catch during fishing are only partially captured by “traditional” 

impact categories. Therefore, LCA practitioners are recommended to identify and select 

indicators and impact categories that can be important according to the specific context, also 

trying to go beyond common LCA categories.  

The distinction between avoidable, possibly avoidable and unavoidable FL can help in defining a 

comprehensive overview of all the FL that happen within the FSC and can be useful to support 

actions aimed at FL reduction and prevention. LCA practitioners are therefore recommended to 

systematically account in their LCA studies on food, three additional indicators as:  

 

1) 𝐴𝑣𝑜𝑖𝑑𝑎𝑏𝑙𝑒 𝐹𝐿 = ∑ 𝐴𝑣𝑜𝑖𝑑𝑎𝑏𝑙𝑒 𝐹𝐿𝑖𝑖  (with ‘i’ lifecycle stage) 

2) 𝑈𝑛𝑎𝑣𝑜𝑖𝑑𝑎𝑏𝑙𝑒 𝐹𝐿 = ∑ 𝑈𝑛𝑎𝑣𝑜𝑖𝑑𝑎𝑏𝑙𝑒 𝐹𝐿𝑖𝑖  (with ‘i’ lifecycle stage) 

3) 𝑇𝑜𝑡𝑎𝑙 𝐹𝐿 = 𝐴𝑣𝑜𝑖𝑑𝑎𝑏𝑙𝑒 𝐹𝐿 + 𝑈𝑛𝑎𝑣𝑜𝑖𝑑𝑎𝑏𝑙𝑒 𝐹𝐿 

 

It is suggested to report transparently the amount of each indicator, the sources of data and the 

related assumptions. These indicators do not represent per se an index of the potential impact of 

FL generated along the supply chain. However, since LCA aims to provide exhaustive 

information on impacts along the life cycle, this information could be crucial for decision-makers 
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in taking informed choices to optimise FSC and finding sustainable solutions to “feed the 

planet”. In order to calculate the aforementioned indicators, it is essential to clearly define which 

part of food has to be considered edible, according to the specific context. It is suggested that 

LCA practitioners specify the amount of edible food and indicate whether it is included or not in 

the functional unit. Indeed, a certain amount of some kind of food, such as melon, bananas, or 

cheese with crust, can include a large inedible fraction that will become unavoidable FL or 

possibly avoidable FL in the processing or consumption stage. The information on the edible 

parts can be particularly relevant for comparative studies among different kinds of food, or 

among different studies of the same food product but with different characteristics.  

A cradle to grave approach should always be preferred since studies limited to the company gate 

can miss some important aspects (e.g. choice of packaging), which can influence the FL 

generation and their consequent impacts in the following FSC stages. Despite the destination of 

FL, LCA practitioners are recommended to set the system boundaries in such a way that 

emissions from FL treatments are accounted within the environmental burden of the functional 

unit.  

Multi-functionalities should be modelled coherently with the specific decision context 

(attributional or consequential). If primary data on the waste destinations are not available, the 

most representative data should be considered, according to the specific geographical and 

technological context. Moreover, impacts of the waste treatment plants generally refer to 

processes where heterogeneous waste is treated. As discussed for the modelling of the waste 

management treatments by Bernstad and la Cour Jansen (2012) and Laurent et al. (2014), the 

characteristics of FW can importantly influence the performance of the waste treatment in terms 

of potential nutrients or energy recovery and in terms of environmental emissions and are 

sources of uncertainty in LCA results (Mendoza Beltran et al., 2016). Consequently, LCA 

practitioners are recommended to check the representativeness of secondary inventory data used 

to model the treatment of FL and to model waste treatments coherently with the characteristics 

of the specific FL they are considering. This can be particularly relevant, for example, when using 

average data about incineration or anaerobic digestion. If the waste treatment delivers more co-

products, the way in which multi-functionality is dealt should be transparently described 

(allocation or system expansion). In particular, when allocation is applied, practitioners should 

clearly state i) the allocation criteria and ii) the allocation factors; when the system expansion is 

applied, practitioners should report i) the substitution criteria, ii) the amount of product 

substituted, and iii) the accurate description of the product system substituted (e.g. sources of 

data). This recommendation can be seen as very general, since applicable to all LCA applications. 

However, it was observed that this is particularly crucial for food products, since these generally 
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have a large number of outputs, including FL. Since the modelling of multi-functionality has a 

relevant influence on the results and a single criteria is generally not representative of all the 

complex characteristics of the co-products (Ardente and Cellura, 2012), it is suggested to LCA 

practitioners to perform a detailed analysis of the representativeness of the adopted substitution 

criteria. Although ISO standards (ISO, 2006a, 2006b) on LCA recommend the sensitivity analysis 

of allocation procedures, it was observed that this was generally missing for studies on food. 

Therefore, it is suggested that LCA practitioners should consider in their study at least a 

“pessimistic” scenario for the sensitivity analysis of the FL modelling. In this scenario the 

burdens of the waste treatments could be entirely allocated to the functional unit, without 

accounting for any potential credits due to substituted coproduct. A final recommendation on the 

waste treatment modelling is, whenever possible, to model multi-functional processes with 

commonly agreed procedures, as for example, procedures adopted by the large majority of 

studies in the literature, or as recommended by product category rules, as those recommended by 

the EU Product Environmental Footprint (EC, 2013). This would largely improve the 

comparability among several studies about the same product.  

All the recommendations here illustrated have been summarized in Table 3. This table firstly 

introduces the critical methodological aspects observed in the present analysis, i.e. aspects that 

can generate mistakes or problems of interpretation and comparability of the results. For each 

identified critical aspect the rationale for it being critical is clarified. Successively, for each critical 

aspect, some recommendations for LCA practitioners and the reasons why those 

recommendations are considered important to move towards the definition of a common 

framework to account for FL in LCA are listed. 

As final remark, it is highlighted that over-eating aspects were not considered in the present study 

due to lack of inclusion in LCA studies. However, over-eating can represent a hotspot from an 

economic and social point of view. Therefore, it is suggested to further explore this aspect, 

especially in studies dealing with the evaluation of the economic and social sustainability of food 

systems. 
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Table 3: Summary of the critical aspects observed in the present study and of potential recommendations for LCA practitioners to handle them (* GS = goal and scope definition; I = inventory or 
data collection; M = modelling approach; R = reporting) 

LCA stage* Critical aspects  Rationale for criticality Recommendation(s) Strengths of recommendation(s) 

GS, R 
Systematic exclusion of 
FL from LCA 

Partial assessment of the 
environmental burden of food 

Include FL in LCA studies 
Comprehensive analysis of the product 
system analysed 

GS, I, R 
Exclusion of some FL 
generated within the FSC 

- Possible exclusion of relevant 
losses 

- Limited knowledge of the 
relevance of FL generated at 
different FSC stages 

Introduce in the LCA framework three  
indicators for each stage of the FSC 
including: “avoidable FL” , 
“unavoidable FL” and “total FL” 

- Comprehensive analysis of the product 
system 

- Possible to perform a detailed contribution 
analysis (interesting e.g. when LCA is used as 
a decision support tool for food production 
strategies) 

 
 

GS, R 
 
 

“Traditional” impact 
categories capture only 
partially the effects of FL 
generation and 
management overall in 
primary stage production 

Possible exclusion of relevant 
environmental impact of FL  

Choose impact categories according to 
the specific context 

Comprehensive analysis of the potential 
environmental consequences of FL 
generation and management 

GS, R 
Definition of edible part 
of food is strictly context 
–specific 

The distinction of edible and 
inedible part of food is at the 
basis of the distinction among 
the different categories of FL 

Clearly define which parts of food are 
considered inedible in the specific study 

Allows possible comparison among product 
systems delivering the same function 

GS, R 
Approach from cradle to 
gate 

Possible exclusion of 
correlations between the 
generation of FL and the 
products design (e.g. choice of 
packaging) 

Prefer a cradle to grave approach 

- Holistic analysis of the product system 
analysed 

- Wider knowledge of the FL generation 
dynamics 

GS, R 
Exclusion of waste 
treatment from the 
system boundary 

Exclusion of potentially 
relevant burdens 

Include waste treatments within system 
boundaries 

Holistic analysis of the product system 
analysed 
 

I, R 
Use of secondary data to 
model waste treatments 

Different characteristics of the 
waste can influence relevantly 

Check the representativeness of the data 
used to model the waste treatment 

Avoidance of having misleading results 
related to improper waste modelling 
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LCA stage* Critical aspects  Rationale for criticality Recommendation(s) Strengths of recommendation(s) 

the performance of the waste 
treatment 

M, R 

Unclear description of 
the allocation procedure 
adopted to model FL and 
outputs of waste 
treatments 

- Limited reproducibility of the 
study (ISO requirement) 

- Allocation procedures can have 
a strong influence on LCA 
results 

- Report clearly allocation procedures. 
Particularly, in case of allocation: 

 Allocation criteria 

 Allocations factors 
In case of system expansion: 

 Substitution criteria 

 Amount of product substituted 

 Accurate description of the product 
system substituted 

- Assess the representativeness of the 
substitution criteria 

- Sensitivity analysis (including also the 
”pessimistic scenario” without any 
credits from the waste treatments) 

- Improved transparency of the study and 
reproducibility of the results 

- Better understanding of the influence of 
modelling choices on the results of  the study 
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5. Conclusions 

The clear definition and transparent accounting and the modelling of FL within LCA are essential 

for a comprehensive and detailed assessment of the environmental burden associated with the 

production of food products. This clarification is crucial especially when results of LCA studies 

are used to define policies and initiatives aiming at reducing the environmental impact of the 

agro-food system and, finally, aiming at achieving a sustainable supply of food. 

According to the present analysis, so far FL has not been defined nor included systematically in 

LCA studies. When included, different approaches have been adopted, leading to potentially 

misleading consideration or non-comparable results. Therefore, in order to reinforce the 

reliability of LCA as a decision support tool, there is the need to develop a common modelling 

framework to account for FL within LCA. The analysis of the relevant literature was firstly 

intended to identify some shortcomings in the modelling of FL and to draw some 

recommendations to foster the systematic inclusion of FL generation and management within the 

boundaries of LCA studies and to move towards a common approach to account for FL. LCA 

practitioners are recommended to account for all the FL generated along the FSC stages. Other 

recommendations include: the definition of what is considered edible for the studied product, the 

inclusion of the waste treatments within the system boundaries and their modelling to be 

coherent with the specific composition of waste. It is highly recommended to perform a 

sensitivity analysis of the different approaches to model multi-functionalities derived from waste 

treatment, since these approaches can have a relevant influence on the LCA results. Moreover, a 

transparent description and discussion of the FL generated along the food FSC and of the related 

modelling approaches adopted is recommended, especially for the modelling of multi-

functionalities. A systematic assessment of FL and FW is crucial also in light of identifying and 

applying IE principles and improving resource efficiency among different production chains and 

life cycle stages. 
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5. Greenhouse gas emissions of three balanced dietary patterns 

Based on: 

Corrado S., Lamastra L., Luzzani G., Trevisan M.. Influence of personal behaviour on the 

greenhouse gas emissions of three balanced dietary patterns. Submitted for publication to the 

Journal of Cleaner Production  

 

Abstract  

In light of the considerable pressure exerted by food production on the environment, the 

assessment of the environmental burdens of dietary choices has recently gained interest among 

the scientific community. Several studies based on life cycle thinking approach agreed that a 

transition from an omnivorous to either a vegan or vegetarian diets would reduce the 

environmental impact associated with food consumption. The majority of the these studies set 

the system boundaries up to the retail, excluding the consumption phase and generally do not 

account for uncertainties. The aim of the present study was to assess the greenhouse gas 

emissions generated by three balanced dietary patterns (omnivorous, vegetarian and vegan), 

defined on the basis of nutritional recommendations for an average Italian man, including the 

consumption stage. It took into consideration the uncertainties associated with three elements, 

namely the greenhouse gas emissions due to the production of the food items, the emissions 

associated with cooking and the food wasted by consumers. The results of the study highlighted 

that, despite the higher share of greenhouse gas emissions of the supply chain stages prior to 

consumption, cooking and food waste generation, have an important influence of the total 

greenhouse gas emissions of the diet, which can offset the lower greenhouse gas emissions due to 

the choice of vegetable-origin foods. Therefore this study remarks the importance of adopting a 

cradle to grave perspective when assessing the environmental burden of dietary patterns and 

emphasises the central role of consumers in the definition of low GHG-emitting dietary patterns. 

 

Keywords 

GHG emissions; dietary patterns; consumption; cooking; food waste. 
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1.  Introduction 

Accounting for about 30% of the total greenhouse gas (GHG) emissions at the global level 

(Garnett, 2011), the entire food chain represents a considerable contribution to the global 

warming. Several institutions and researchers, indeed, have recognised that moving towards a less 

GHG-emitting food production and consumption system is of the utmost importance to 

preserve the capability of the Earth to produce food for the future generations (EC, 2011; 

Pachauri et al., 2015; Reisch et al., 2013). The analysis of the environmental burden of food 

production and consumption through life cycle assessment (LCA) - a methodology that addresses 

the environmental aspects and the potential environmental impacts of a product or service, 

throughout their life cycle (ISO, 2006) - has been rapidly raising interest in the last years. In 

particular, the growing availability of data on the environmental performance of single food items 

has allowed to adopt a wider perspective, assessing and comparing the impacts of a combination 

of foods consumed within a meal or a diet (Nemecek et al., 2016).  

Modelling consumers’ behaviour is a complex task due to the huge number of variables that 

characterises it, such as the type of food, the mode of preparation and the amount of food 

cooked (Nemecek et al., 2016).  

The choice of the dietary patterns, e.g. omnivorous, vegetarian, vegan or other “healthy” diets, is 

the most investigated variable. The literature reviews realised by Hallström et al. (2015) and 

Heller et al. (2013) highlighted that the majority of the studies agreed that a transition from an 

omnivorous to a vegetarian or vegan diet can be beneficial for the environment in terms of GHG 

emissions and land use reduction, thanks to the lower impact of vegetable-origin foods compared 

to animal-origin ones. Another variable analysed is the environmental burden associated with the 

choice of seasonal or non-seasonal fruits and vegetables. Despite the lack of a shared definition 

of “seasonal food”, it was generally intended as the food produced in the same country where it 

is consumed and, in some cases, grown in open field (Foster et al., 2014; Röös and Karlsson, 

2013). Choosing seasonal fruit and vegetables was found to reduce the carbon footprint of 

consumptions patterns (Hospido et al., 2009; Röös and Karlsson, 2013; Stoessel et al., 2012), 

except for raspberries consumed in the UK (Foster et al., 2014). However, Röös and Karlsson 

(2013) and Hospido et al. (2009) highlighted that the consumption of only local fruit and 

vegetables could be economically not feasible and it would imply a substantial change in 

consumers’ consumption habits. Webb et al. (2013), instead, compared a wider range of food 

items, including animal-origin ones, produced in the United Kingdom or imported from other 

countries. They found higher differences for foods for which the primary stage accounted for a 

small part of the total impact, however imported food could result to have a lower environmental 
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burden than local one if it was produced in countries where the productivity is far higher than in 

United kingdom. Furthermore, they highlighted that prioritising the impact on global warming 

may lead to an increase of other impacting burdens. Gruber et al. (2016) explored the effects of 

consumers’ behaviour in relation to food waste generation and found that it influenced by 10 to 

45% the environmental performance of food products. Therefore, they underlined the need to 

develop a common methodology to model systematically consumers’ behaviour in LCA studies. 

Dolci et al. (2016) compared the amount of waste and the potential impacts of loose distribution 

of pasta, breakfast cereals and rice. They found that choosing to buy loose cereal breakfast or rice 

rather than packed ones could reduce the amount of waste produced and the environmental 

burdens of food, whereas contrasting effects can be obtained for pasta. Yoshikawa et al. (2016) 

analysed the potentiality of reduction of GHG emissions thanks to changes in personal 

behaviours and highlighted that the consumption of local food, the seasonal production of fruit 

and vegetables, the reduction of the use of fertilisers and of food packaging can lead to a 

reduction of the GHG emissions associated with food consumption.  

Despite the vast increasing interest within the scientific community on the environmental burden 

of different dietary patterns and food choices, still different modelling challenges need to be 

faced in order to reach robust and comprehensive considerations (Nemecek et al., 2016; 

Notarnicola et al., 2017a; Sala et al., 2017). Several studies focused on the assessment of the 

environmental burden of dietary patterns excluded the consumption phase from their system 

boundaries (Hallström et al., 2015; Heller et al., 2013). However, although agricultural production 

generally is the main contribution to the environmental impact of dietary patterns (Pernollet et 

al., 2017), there is a general agreement that consumers’ behaviour con represent an important 

contribution when assessing the environmental burden of diets (Gruber et al., 2016; Heller et al., 

2013; Nemecek et al., 2016; Notarnicola et al., 2017a). Furthermore, the uncertainty that 

characterises the environmental impact of dietary scenarios is generally omitted, lwith the risk of 

incurring in misleading conclusions  (Hallström et al., 2015; Henriksson et al., 2015).  

The present study is an attempt to go beyond the two aforementioned shortcomings in the 

analysis of the environmental impact of dietary patterns. It aims to assess the GHG emissions of 

three average balanced dietary patterns (omnivorous, vegetarian and vegan) of an Italian man, 

taking into consideration the variability associated with the GHG emissions of single food items, 

the GHG emissions associated with cooking and the food waste generation. The results of the 

study can provide useful indications for decisions-makers and for environmental communicators 

about effective strategies to reduce the GHG of dietary patterns from a holistic perspective.  
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2. Materials and methods 

The GHG emissions of three balanced dietary patterns for an Italian man were assessed: 

omnivorous, vegetarian and vegan. For each of them, the combined effects of three variables that 

characterise food purchase and consumption were considered: i) the consumers’ attention for the 

GHG emissions of food products ii) the amount of energy used for cooking and iii) the amount 

of food wasted at the consumption phase. Their variability was modelled as explained in the 

following sections. 

The average GHG emissions, the standard deviation and the 95% confidence interval of each 

dietary pattern was estimated with the software Simapro v 8.0.5 through a 1000-run Monte Carlo 

analysis. Furthermore a pairwise comparison was done in order to analyse the differences in 

GHG emissions of the dietary patterns. 

 

2.1 Dietary patterns definition 

For the purpose of this study, we have identified three different dietary pattern (omnivorous, 

vegetarian and vegan menu, Table 1) which are defined according to the reference amount 

assumption of energy and nutrient, recommended for Italian population by Italian Society of 

Human Nutrition (SINU, 2014a). All the dietary patterns are referred to an average Italian man, 

aged between 18 and 59, 170 cm in height, with a low physical activity level (SINU, 2014a). The 

average daily energy, proteins, fats, carbohydrates, iron and vitamin B12 intakes were calculated 

for each menu, considering the nutrients content of food items reported by the European 

Institute of Oncology (2016) or, in few cases, when data were available for the specific food item, 

other publications, consulted also for the GHG emissions (see section 2.2. All the dietary 

patterns are compliant with the recommended nutrients and energy daily intake (LARN) released 

by the Italian Society of Human Nutrition (SINU, 2014a) for all the nutrients considered except 

for vitamin B12, lacking in the vegetarian and vegan diets, and the carbohydrates intake of the 

vegan diet, slightly higher than the recommendations (Table 2). 

 

Omnivorous dietary pattern 

The omnivorous menu was at first determined according to nutrient and energy recommended 

intake (SINU, 2014a), and in second step by following food frequency described by the 

omnivorous food pyramid (Unità di Ricerca di Scienza dell’Alimentazione e Nutrizione Umana, 

2005). The omnivorous menu included animal origin food consumption (such as meat, milk, 

cheese). 
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Vegetarian dietary pattern 

The vegetarian menu was defined in accordance to energy and nutrient intake recommended by 

SINU addendum to LARN (SINU, 2014b). Because of the lack of a scientifically recognised 

vegetarian or vegan pyramid for Italian diet, the food frequency of vegetarian dietary pattern was 

adapted to omnivorous food pyramid recommendations. Meat and fish were substituted with 

non-animal protein food, such as eggs, cheese and legumes. 

Vegan dietary pattern 

Even the vegan menu was defined in accordance to energy and nutrient intake reported by SINU 

(2014b). As aforementioned, even in this case the omnivorous food pyramid was taken into 

account in order to define food frequency: legumes and vegetable milk substituted animal origin 

food. Biscuits were not included because data on GHG emissions was lacking for vegan biscuits.  

In order to guarantee the recommended carbohydrates intake, bread servings were increased with 

respect to those recommended by omnivorous food pyramid, the same was for legumes whose 

serving were increased in order to guarantee the right protein intake. 

Table 1: Weight and number of foods portions considered for the three dietary patterns 

 
 

Weekly number of portions 

  
Portions weight 

(g) 

Omnivorous 
pyramid 

recommendations 
Omnivorous Vegetarian Vegan 

Bread  50 ≤16 16 16 23 

Biscuits 20 ≤7 7 7 0 

Pasta 80 
≤8 (pasta+rice) 

4 4 5 

Rice  80 3 3 3 

Potatoes 200 ≤2 2 3 3 

Fruits 150 ≤21 21 21 21 

Vegetables 80(fresh)/200(cooked) ≤14 14 14 14 

Butter/margarine 10 ≤5 5 5 5 

Extra-virgin olive oil 10 ≤20 20 20 20 

Milk 125 
≤14 (milk+yogurt) 

4 4 21* 

Yogurt 125 3 3 0 

Fresh cheese 100(fresh)/50(ripened) ≤4 4 4 0 

Meat 100 ≤5 4** 0 0 

Fish 150 ≥2 3 0 0 

Eggs  60 ≤2 2 2 0 

Legumes 150 ≤2 2 7 9 

Cured meat 50 ≤3 3 0 0 

Meat substitutes 180 n.d. 0 4 6 

Sugar 5 ≤21 21 21 21 

*Intended as vegetable drink 
** 1 beef meat, 1 pork meat, 2 poultry meat 
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Table 2: Recommendations of the Italian Society of Human Health and Nutrition (SINU) on daily the energy and 
nutrients intake for a man aged between 18 and 59, 170 cm high, PAL  (physical activity level)=145 and nutrients 

provided by the three analysed menus. For energy and proteins intake,  for which SINU didn’t define a range, minimum and 
maximum values were assumed respectively 20% lower and higher of the reference value.  

 
  

Energy 
(kcal/d) 

Proteins 
(g/d) 

Fats 
(%of kcal) 

Carbohydrates 
(%of kcal) 

Iron 
(mg/d) 

VitaminB12 
(μg/d) 

R
e
fe

re
n

c
e Average 2350 63 

  
10.0 2.4 

Min  1880 50.4 20% 45% 8.0 1.9 

Max  2820* 75.6 35% 60% ** ** 

        

P
ro

vi
d

e
d

 

b
y
 t

h
e
 

m
e
n

u
s 

Omnivorous diet 2131 73.8 26.2% 48.5% 9.6 4.9 

Vegetarian diet 2133 68.2 23.6% 51.8% 14.1 1.4 

Vegan diet 1949 69.8 23.0% 63.0% 17.8 0.0 

 

2.2. Greenhouse gas emissions of single food items 

A database containing the average GHG emissions and the standard deviation of different foods 

consumed in Italy was developed. For each food item or group of foods, a sample of GHG 

emissions were collected from peer-reviewed articles and environmental product declarations 

(EPDs). The research was performed through the search engines Scopus (www.scopus.com) and 

the EPD database (www.environdec.com), using the keywords “LCA” and “name of specific 

food”. Only studies in which the system boundaries were clearly defined were taken into 

consideration. In order to reflect the average GHG emissions of food actually consumed in Italy, 

the selection of the studies was based on available trade statistics related to each food item or 

food category. A detailed description of other selection criteria per each food or group of foods 

is reported in the next sections. All the GHG emissions were converted to a common functional 

unit, equal to the a kilogram of edible food. When not specified by the study itself, the average 

edible fractions of food items were taken from the database developed by the European Institute 

of Oncology (2016). The system boundaries were uniformed to the point of consumption. When 

the transport from the production to the distribution sites and from the distribution to the 

consumption sites and data on domestic conservation were excluded from the system 

boundaries, these stages were modelled respectively according to the Product Environmental 

Footprint (PEF) guidelines on default data to be used to model distribution and storage (EC, 

2015) and the product category rules for product environmental footprint (PEFCR) for specific 

products (EC, 2013). The cooking phase was modelled as described in section 2.4. The 

management of food waste and waste from packaging was excluded from the assessment because 

different modelling approaches, e.g. attributional and consequential, lead to important differences 
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among the results (see Chapter 4). After having made uniform the system boundaries, the sample 

mean and the standard deviation of the GHG emissions associated with each food item or food 

group were calculated. It was assumed that the GHG emissions of each food item or category of 

foods were normally distributed. 

 

2.2.1. Cereal –based food 

This category of food includes bread, pasta, rice and biscuits. Bread, pasta and biscuits are all 

wheat-based products. About 40% of the wheat used to produce them is imported, mainly from 

Canada and USA (International Trade Centre, 2015; ISTAT, 2011), however it is generally 

transformed in Italy. Therefore, we considered only studies on bread, pasta and biscuits produced 

in Italy, which, if it was the case, took into consideration the importation of wheat. As far as rice 

is concerned, Italy is a net exporter of rice, however the import of specific varieties of rice from 

Asian countries has recently importantly increased (Dow AgroSciences, 2011; International Trade 

Centre, 2015). Therefore, the production of rice from Asian countries was included in the 

database. 

 

2.2.2. Milk, dairy products and dairy substitutes 

About 25% of the milk consumed and transformed in Italy is imported, mainly from Germany 

and France (CLAL, 2016). Therefore the average GHG emissions of study referred to milk and 

dairy products produced in Italy, Germany and France were considered. Few data were available 

for the emissions dairy substitutes such as vegetal drinks and margarine, therefore all the studies 

on this kind of products were considered. 

 

2.2.3 Meat and fish 

Italy is a net importer of beef and pork meat from other European countries (Basile, 2012; Vigna 

et al., 2013), whereas is almost self-sufficient as far as poultry meat production is concerned 

(OEC, 2016). Therefore studies on beef and pork meat production within Europe were 

considered.  

For poultry meat production, instead, both studies related to Italian and French production were 

considered. Indeed, Lesschen et al. (2011) found that the GHG emission of 1 kilogram poultry 

produced in France was similar to the emissions generated by the same amount of poultry 

produced in Italy.  

For cured meat the same GHG emissions of pork meat were considered due to a lack of data. 

Italy is a net importer of fish and fish products, both from European and extra-European 

countries (ISMEA, 2015). The GHG emissions associated to an average kilogram of different 
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fish species at the regional distribution centre estimated by Clune and colleagues (2016) were 

considered for the present study. 

2.2.4. Fruit and vegetables 

The food category fruit and vegetables included a large number of food items. Due to the large 

variability that characterised this category, only the GHG of the fruits and vegetables mostly 

consumed by Italian citizens according to the Italian National Food Consumption Survey 

INRAN-SCAI (Leclercq et al., 2009) were considered. Among the vegetables, fruiting and leaf 

vegetables represented about 80% of the consumption and were considered in the present study. 

Accounting for 75% of the fruit consumption, stone, pome and citrus fruits resulted to be the 

most consumed fruits by Italian people and were, therefore, considered in the present study. 

Furthermore, the use of greenhouses and the transport of imported fruit and vegetables can have 

an important influence on GHG emissions of food (Stoessel et al., 2012). Therefore, fruit and 

vegetables were divided in two categories: i) seasonal and produced in the Mediterranean area 

without the use of greenhouses and ii) imported or produced within greenhouses. According to 

trade statistics (Peperkamp and Schotel, 2015), it was then assumed that fruits and vegetables 

consumed daily belonged respectively by 88% and 91% to the category i) and the by 12% and 9% 

to the category ii). 

 

2.2.5. Pulses 

More than 70% of the pulses consumed in Italy are imported, mainly from extra-European 

countries (Peperkamp and Salazar, 2015). Therefore the GHG emissions associated with pulses 

production were calculated as mean of different kind of pulses with different origins. Only data 

on fresh pulses were taken into consideration, whereas dried and canned ones were excluded. 

 

2.2.6. Other foods: extra-virgin olive oil, eggs and potatoes 

Italy is a net exporter of olive oil and eggs (International Egg Commission, 2013; International 

Olive Council, 2015), therefore only the emissions of olive oil and eggs produced in Italy were 

considered in the present study.  

Potatoes consumed in Europe are mainly produced within the European boundaries, with some 

countries, namely France, the Netherlands and Germany being the main potatoes producers. 

Therefore, studies on potatoes produced in Europe were included in the GHG database (De 

Cicco and Jeanty, 2016). 

 

2.3 Modelling personal attention for the GHG emissions of food products 
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Different GHG emissions can be associated with the same food product, due to different 

managing approaches adopted within the supply chain stages prior to consumption, such as 

origin of ingredients and production process. In order to account for this variability within each 

food group, it was assumed that the emissions of each were distributed normally, as described in 

the previous section. 

 

2.4 Modelling of the cooking phase 

Two possible sources of heat were considered for the domestic cooking phase: a gas cooker and 

an induction burner. The amount of heat needed to boil the water and cook was estimated 

according to the equations reported by Fusi et al. (2016). Different cooking times and functioning 

powers were considered according to the food item (Table 3). The GHG emissions were 

estimated considering respectively the GHG emission factors 2.59 kgCO2eq/m3 for the 

extraction and combustion of natural gas burned in the gas cooker (JRC, 2016, assuming a 

complete oxidation of the fuel) and 1.98*10-4 kg CO2eq/KJ for the electrical energy used for the 

induction burner (JRC, 2016, Italian energy mix). For each food items, the GHG emissions from 

the cooking stage were assumed to be uniformly distributed, ranging between the ones of a gas 

cooker with 56% efficiency (EC, 2014), and the ones of an induction burner with 92% efficiency 

(SoleinRete, 2016).   

Table 3: Assumptions on the modelling of the cooking phase 

 
Pasta Rice Eggs 

Meat
-

Tofu 

Vegetabl
es 

Milk Fish 
Potato

es 
Legumes 

Water (kg) 1.6 0.6 - - 0.4 0.25 - 1 1 

Amount of food* (kg) 0.16 0.16 0.11 0.3 0.4 0.25 0.3 0.3 0.3 

ΔT (°C) 85 85 85 - - 66 - 85 85 

Cooking time (after 
water boiling) (s) 

600 960 5 420 600 0 1200 1200 3000 

Functioning power of 
gas cooker (kW) 

3 3 2 3 3 2 3 3 2 

Min emission 
(kgCO2eq/kgfood) 

0.59 0.37 0.25 0.09 0.19 0.03 0.26 0.41 0.58 

Max emission 
(kgCO2eq/kgfood) 

1.12 0.86 0.47 0.25 0.53 0.06 0.71 0.97 1.44 

* It was considered that averagely two portions are cooked simultaneously 

2.5 Modelling food waste generation 

The amount of food waste generated at consumers level was assumed to be distributed normally 

(Vanham et al., 2015). The statistical normal distribution values (mean and standard deviation) on 

food waste generation in Europe estimated by Vanham et al. (2015) per food category were 

considered in the present study. The environmental burden of unavoidable waste - the part of 

food that cannot be eaten - was allocated to the edible fraction of food because it is considered to 
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be a specific property of the single food item. The GHG emissions associated with avoidable 

food waste were calculated multiplying the amount of food wasted by the GHG associated with 

the edible fraction of food, assuming that the all the food was wasted after being cooked. 

 

2.6 Analysis of the GHG emissions 

The GHG emissions were calculated with the software Simapro V 8.0.5. The results were 

calculated on a daily basis, dividing by 7 the average GHG associated with the weekly balanced 

menus. A 1000-run Monte Carlo analysis was performed to assess the combined effects of the 

analysed variables related to personal behaviour. It allowed to estimate the standard deviation and 

the 95% confidence intervals for the mean for each dietary pattern. Furthermore, through Monte 

Carlo simulations, pairwise comparisons were performed and differences were considered 

significant when at least 95% of the Monte Carlo runs were favourable for a dietary pattern. 

3. Results and discussion  

In Table 4 the calculated average GHG emissions per food item or food group and the standard 

deviations are reported. Totally 194 values on GHG emissions were collected. 

Table 4: GHG emissions per food item, referred to a kilogram of edible food at consumption point, excluding the cooking 
phase and the disposal of packaging 

  GWP (kg CO2eq/kg edible food) 
GWP values Sources of data 

  Mean  Standard deviation  

Bread 0.97 0.24 6 

(Barilla, 2012; Espinoza-
Orias et al., 2011; Jensen 

and Arlbjørn, 2014; Kulak 
et al., 2015; Notarnicola et 

al., 2017b) 

Biscuits  1.61 0.31 16 

(Barilla, 2016a, 2016b, 
2016c, 2015a, 2015b, 2013a, 

2013b, 2013c, 2013d, 
2013e, 2013f, 2013g, 2013h, 

2013i, 2013j, 2013k) 

Pasta  1.49 0.58 9 
(Barilla, 2014; Cerere, 2014; 
De Cecco, 2014; Mulino e 
pastificio Sgambaro, 2016) 

Rice 2.72 0.40 30 
(Alam et al., 2016; Arunrat 
et al., 2016; Blengini and 

Busto, 2009) 

Milk (cow) 1.55 0.26 31 
(Battini et al., 2014; Fantin 

et al., 2012; Granarolo, 
2015a, 2012; Serra, 2013) 

Drink of vegetal 
origin (soy and 
rice) 

0.91 0.25 3 
(Granarolo, 2016; Head et 

al., 2011) 

Yogurt 2.76 0.22 5 
(Granarolo, 2015b, 2015c, 

2015d, 2015e) 

Fresh cheese 9.79 1.54 2 (Granarolo, 2014, 2013a) 
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Ripened cheese 10.32 1.83 3 

(Corrado et al., 2015; 
González-García et al., 

2013; van Middelaar et al., 
2011) 

Fruit (locally 
produced) 

0.34 0.04 9 

(Alaphilippe et al., 2016; 
Assomela, 2015; Cerutti et 

al., 2013; Pergola et al., 
2013) 

Fruit 
(greenhouse or 
imported) 

1.88 0.74 5 

(Cellura et al., 2012; Roibás 
et al., 2015; Svanes and 
Aronsson, 2013; Zeus, 

2011) 
 

Vegetables 
(locally 
produced) 

0.47 0.24 6 

(Foteinis and 
Chatzisymeon, 2016; 
Hospido et al., 2009; 

Martínez-Blanco et al., 
2011; Theurl et al., 2014) 

Vegetables 
(greenhouse or 
imported) 

1.11 0.83 8 

(Cellura et al., 2012; Fusi et 
al., 2016a; Martínez-Blanco 
et al., 2011; Torrellas et al., 

2012) 

Meat substitutes  3.37 0.69 3 
(Breedveld et al., 2014; 

Head et al., 2011) 

Beef meat  26.02 6.78 
1 (average of 

European 
values) 

(Clune et al., 2016) 

Pork meat  5.60 1.51 
1(average of 
European 

values) 
(Clune et al., 2016) 

Poultry meat 4.31 1.41 6 

(de Vries and de Boer, 
2010; González-García et 
al., 2014; Lesschen et al., 

2011; Prudêncio da Silva et 
al., 2014) 

Fish 4.45 3.62 
 1(average 

value) 
(Clune et al., 2016)  

Ham (assumed 
equal to pork 
meat) 

5.60 1.51 
1(average of 
European 

values) 
(Clune et al., 2016) 

Butter 8.16 1.27 2 (Nilsson et al., 2010) 

Margarine 1.69 
 

1 (Nilsson et al., 2010) 

Olive oil 2.87 1.93 10 

(Assoproli Bari, 2014; De 
Cecco, 2012; Iraldo et al., 

2014; Monini, 2014; Pattara 
et al., 2016; Rinaldi et al., 

2014) 

Eggs  3.07 
 

1 (Granarolo, 2013b) 

Potatoes 0.36 0.11 9 

(González et al., 2011; 
Koch and Salou, 2015; 

Röös et al., 2010; Williams 
et al., 2010) 

Pulses 0.70 0.42 14 

(Abeliotis et al., 2013; 
González et al., 2011; 

Prudêncio da Silva et al., 
2014; Romero-Gámez et al., 

2012) 
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Sugar 0,73 0,05 6 
(Pryor et al., 2017; Renouf 

et al., 2008) 

 

3.1. GHG emissions of the analysed dietary patterns 

The GHG emissions of the analysed dietary patterns and the contribution of the analysed 

variables characterising human behaviour are reported in Table 5. The supply chain stages “prior 

to consumption” included the primary agricultural production, food transformation, transports 

and conservation of food that was assumed to be actually eaten. “Cooking” represented the 

emissions associated with the cooking phase of food that was assumed to be eaten, whereas 

“waste” included the GHG emissions due to the agricultural production, food transformation, 

transport, conservation and cooking of food assumed to be wasted. 

Table 5: GHG emissions of the analysed dietary patterns (mean ± standard deviation) 

 

Total GHG emissions Prior to production Cooking Waste 

Omnivorous 3.24 ± 0.34 2.64 ± 0,29 0.27 ± 0.03 0.36 ± 0.06 

Vegetarian 2.81 ± 0.21 2.08 ± 0.15 0.37 ± 0.04 0.33 ± 0.09 

Vegan 2.67± 0.25 1.88 ± 0.19 0.44 ± 0.05 0.34 ± 0.10 

 

The production stage resulted by far to be the main contribution in all the dietary patterns, 

ranging between 70% and 81% of the total emissions and the remaining GHG emissions were 

associated with cooking and food waste generation.  

The pairwise comparisons among the dietary patterns (Figure 1) highlighted that no significant 

differences were found among the GHG emissions associated with the three analysed dietary 

patterns. Furthermore, as far as the nutritional values of the different dietary patterns is 

concerned, it has to be underlined that the supply of vitamin B12 was below the recommended 

intake in the vegetarian and vegan menu. This is a largely acknowledged limit of this kind of 

dietary patterns and the assumption of supplements or fortified foods is generally recommended 

(Sobiecki et al., 2016). Due to a lack of data, the GHG emissions of the supplements were not 

included in the present study and further in-depth analysis would be useful in order to make 

broader considerations. 
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Figure 1: Results of the pairwise comparison between the total GHG emissions of the three dietary patterns done through the 
Monte Carlo analysis 

3.2. Contributions of different types of food 

According to the food pyramid recommendations, the food items were categorised as follows: 

fruit and vegetables, starch-based foods (bread, biscuits, pasta, rice, potatoes), dairy and 

substitutes (milk, cheese, yogurt/vegetal drinks), protein-based foods (meat, cured meat, fish, 

eggs, legumes, meat substitutes), fats (butter, margarine, oil) and sweets (sugar). The share of 

macro-nutrients (proteins, fats and carbohydrates) provided by each food category are reported 

in Table 6. 

Table 6: Amount of macro-nutrients (g/d) supplied by the each food category (OMN = omnivorous diet, VEGET 
=vegetarian diet; VEGAN = vegan diet) 

  Proteins (g/d) Fats (g/d) Carbohydrates (g/d) 

  OMN VEGET VEGAN OMN VEGET VEGAN OMN VEGET VEGAN 

Fruit and 
vegetables 

7 7 7 2 2 2 52 52 52 

Starch-
based 
foods  

22 23 24 2 2 2 179 184 192 

Dairy and 
substitutes 

13 13 6 12 12 5 7 7 24 

Protein-
based  

31 25 33 12 6 6 5 17 23 

Fats  0 0 0 35 35 34 0 0 0 

Sweets 0 0 0 0 0 0 16 16 16 

 

3.2.1. Contribution to GHG emissions of supply chain stages prior to consumption 

The share of GHG emissions due to the supply chain stages prior to consumption were the main 

contribution in all the dietary patterns and were significantly lower for the vegan and vegetarian 

diets than for the omnivorous diet (Figure 2). Indeed, as demonstrated in previous studies (De 
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Laurentiis et al., 2016), producing meat performs in most cases less efficiently than cultivating 

vegetable-origin foods. The differences among the omnivorous and the vegetarian diets were 

explained by the differences among the share of GHG emissions of protein-based foods (Figure 

3a). Indeed, the consumption of meat increased the amount of GHG emissions associated with 

them. The omnivorous diet, instead, differentiated from the vegan diet mainly for the GHG of 

dairy and substitutes products and, to a lesser extent, for the difference in the protein-based 

foods. However it has to be considered that dairy substitutes have a lower nutrient concentration 

than dairy products and supplied about half of the proteins and fats provided by the dairy 

products consumed in the omnivorous diet (Supplementary material). Therefore, in order to 

satisfy the recommended intake of proteins within the vegan diet, an higher amount of non-

animal protein-based foods is needed in comparison to the omnivorous diet. This explains the 

relatively low differences associated with the GHG of the protein-based foods within the 

omnivorous and the vegan diets. The contribution of the other food categories, namely starch 

based foods, fruit and vegetables and fats, were approximately the same in all the dietary patterns 

analysed. 

 

Figure 2: Results of the pairwise comparison between the GHG emissions associated with the supply chain stages prior to 
consumption of the three dietary patterns done through the Monte Carlo analysis 

3.3. Contribution of food cooking 

The contribution of cooking varied significantly among the dietary patterns and the higher share 

was associated with the vegan diet, whereas the lower with the omnivorous. Explaining about 

45% of the GHG emissions for the vegan diet, cooking pulses was by far the highest 

contribution, due to the longer cooking times and the larger amount of food to be eaten to fulfil 

the nutritional requirements for proteins than other dietary patterns (Figure 3b). Therefore, 

adopting a low GHG emitting cooking system can result to be more beneficial when a vegan or a 
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vegetarian diets are adopted rather than an omnivorous one. The gas cooker was found to cause 

less GHG emissions than the induction burner, when electric energy is generated from the 

average Italian energy mix. However, the choice of the induction burner could turn to be less 

GHG-emitting whether electric energy is produced from a renewable source, such as the solar 

photovoltaic. 

 

3.4. Contribution of food waste 

Considering all the food categories, food waste accounted for about 15% of the total emissions 

of the dietary patterns analysed. The pairwise comparison between the GHG emissions 

associated with wasted food highlighted no significant differences among different dietary 

patterns. Fruit and vegetables represented the main share of the GHG emissions for the three 

dietary patterns considered (Figure 3c). Indeed, despite the lower GHG emissions generated for 

the production and consumption of fruit and vegetables than for the other foods, higher amount 

of fruit and vegetables are generally wasted. They were followed in all the dietary patterns by 

starch-based and protein based foods, respectively due to high level of waste and high GHG 

emissions associated with the farm stage. The share of GHG emissions of wasted dairy products 

and substitutes were relatively low due the facts that small amount of dairy products are generally 

wasted and that few GHG emissions are caused by cooking. 

 

3.5. Take home messages deriving from the present research 

In agreement with other previous researches, the present study highlighted that, when a cradle to 

the point of distribution approach is adopted, vegan and vegetarian diets generated less GHG 

emissions than an omnivorous one, thanks to lower emissions associated with the primary 

production of vegetable-origin compared with animal-origin foods. However, when domestic 

preparation and consumption of foods were taken into consideration, the differences among the 

three dietary patterns resulted to be not significant. Therefore, a plant-based dietary pattern is 

generally less GHG emitting than an omnivorous one. However, it can be argued that particularly 

careless cooking and food waste generation, can compensate the lower GHG emissions 

associated with the choice of vegetable-origin foods.  

Moreover, the above mentioned results highlighted the importance of adopting a cradle-to-grave 

approach in order to reach comprehensive results, when assessing and estimating the GHG 

emissions of different dietary patterns. Indeed, although the supply chain stages prior to 

consumption were the main contributions to the GHG of the diets, the domestic stages, namely 

cooking and food waste generation, had a relevant influence on the GHG emission of dietary 

patterns that depended on the type of foods that were consumed. For example, cooking, a phase 
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generally neglected when comparing the environmental burden of different diets (Benis and 

Ferrão, 2017; Hallström et al., 2015), resulted to be an hotspot for pulses.  

As already demonstrated by other researches (Ghvanidze et al., 2016; Polizzi di Sorrentino et al., 

2016), the present study confirmed the central role of consumers in the transition towards less 

GHG emitting food system. It is, therefore, important to make them aware that their choices 

have a relevant influence on the GHG emissions of their diets not only regarding the selection of 

foods but also as far as other personal choices and behaviour are concerned. 
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Figure 3: Share of  GHG emissions associated with the supply chain stages and different food categories 

 

3.6. Limitations and further developments 

The assessment of GHG of different dietary patterns is based on GHG emissions of food items 

taken from published studies, which, as highlighted in Chapters 3 and 4, may be calculated with 

different methodological approaches and be not directly comparable.  

Furthermore, we acknowledge that the present study has several limitations due to the extreme 

complexity of the modelled reality and the lack of data. A brief description of such shortages is 

hereunder reported in order to foster their exploration in future researches on the topic. The 

GHG of food items were representative of only a small part of the enormous number of foods 

that a person can potentially buy and consume in Italy. Furthermore, only three elements 

characterising personal behaviour were considered, whereas there is a large number of elements 

that can influence the GHG emissions, such as the purchase frequency and distance and the 

countless possible alternative combinations of foods that fulfil nutrients requirements. Finally, 

considering only an impact category, namely the potential impact on global warming, is not 

sufficient to describe the full range of the environmental impact associated with a food system 

(Nemecek et al., 2016). 

4.  Conclusions 

The present analysis of the effects of personal behaviour on the GHG associated with three 

dietary patterns highlighted that, despite the predominance of the upstream supply chain stages, 

the at-home dietary behaviour of food can represent an important contribution. It indeed offsets 

the significant differences between the GHG emissions of the primary stages of the supply chain 

between the dietary patterns. Moreover, the results of the present study confirmed the important 

role of consumers in the transition towards a less GHG emitting food system. Increasing their 
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awareness on the environmental burden associated with different kinds of food is therefore of 

the utmost importance. 

Due to the complexity of the system analysed, and the lack of data, the study showed some 

limitations, such as the limited number food items for which average GHG emissions were 

estimated, a narrow number of variables characterising personal behaviour and the assessment of 

the potential impact only on global warming. However, it is one of the first attempts to assess the 

combined effects that the personal choices and behaviour can have on the environmental 

performance of different dietary patterns and we think that it introduces an interesting broad 

view of the topic, that is often faced from a more restricted perspective. Indeed, when analysing 

the impact of dietary patterns, the focus is generally put on the primary phase, whereas the effects 

of personal choices and behaviour are often omitted. Furthermore, we believe that the present 

study offers valuable hints for decision-makers and environmental communicators in order to 

address people towards low GHG-emitting food consumption patterns. 
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6. Conclusions and research outlook 

6.1 General conclusive remarks   

In light of the increasing world population and of the current paradoxical distribution of 

resources and food throughout the planet, guaranteeing the access to a proper amount of food of 

adequate quality is one of the main challenge that the world is called to face. Overlooking 

environmental elements is not possible in facing this challenge because food production and 

agricultural productivity strongly influence and, at the same time, are influenced by the 

environmental conditions. Therefore, the optimisation of resources and the minimisation of the 

environmental impacts are two of the pillars on which strategies for food production should be 

based.  

Life cycle thinking and LCA have a central role in assessing and supporting the reduction of the 

environmental burdens and the optimal use of resources within the food system. Being based on 

an holistic approach, they avoid the shifting of the environmental burdens between different 

impact categories or environmental compartments. However, the application of LCA in the agro-

food sector shows some critical methodological elements and a lack of homogeneity in the 

approaches that can limit its effectiveness and reliability.  

 

The general aim of the present thesis is to contribute to the current debate within the LCA 

community on the harmonisation and improvement of the approaches for LCA of agro-food 

products, in response to the need to consolidate the use of LCA in business and research 

contexts and take full advance of its potentialities.  

Each chapter focuses on different critical elements, namely the choice of secondary datasets 

modelling arable crops, the systematic inclusion and accounting of food loss and waste and the 

modelling of variable elements in food consumption patterns, and proposes some considerations 

and recommendations to deal with them.  

 

In general terms, the present thesis highlights that methodological and modelling flaws of LCA 

of agro-food products need to be managed and overcome both through a proper modelling of 

the product system, compliant with the goal and scope of the study and through a cautious 

interpretation of the results by LCA practitioners.  
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Finding a balance between the standardisation of the approaches to conduct a LCA and the 

numerous purposes for which a LCA can be performed is nothing but straightforward. However, 

the definition of an harmonised approach to deal with some element of LCA applied to agro-

food products is highly desirable to foster the reliability and usefulness of LCA above all in some 

contexts, such as, by way of example, environmental communication or support to strategic 

decisions. Indeed, differences in the modelling approaches or in methodological choices can 

bring to important differences in LCA results and, sometimes, to contrasting conclusions, 

increasing the confusion among non-expert persons while reducing the reliability of the LCA 

tool.  

 

The choice of secondary datasets for arable crop production, as highlighted in Chapter 3, can be 

a critical element of LCA. Indeed, the differences in the modelling approaches on which 

secondary datasets are built can influence significantly the LCA results. These differences are not 

always straightforwardly recognisable, if not through a detailed contribution analysis. Indeed, the 

analysis of datasets for arable crops production demonstrated that, for some impact categories, 

the results can be non-significantly different, despite the important differences among modelling 

approaches. This implies that the differences among the LCIs are smoothened when coming to 

the LCIA stage.  

The modelling of the average agricultural production of a certain crop is characterised by a large 

number of uncertainties, associated with primary activity data and with the environmental fate 

models used to estimated emissions of fertilisers and PPPs. If differences among secondary 

datasets can, therefore, be considered “physiological” and a complete harmonisation among the 

datasets modelling approaches is improbable, it is also true that LCA practitioners are rarely 

aware about the reasons behind these differences.  

Hence, secondary datasets modelling crop production can be object of potential improvements. 

On one hand, there is the need to have a more precise and accessible information on the 

uncertainties characterising LCI data. It would guarantee a greater awareness of LCA 

practitioners in the choice of secondary datasets, according to the goal and scope of their studies. 

Currently, indeed, this kind of information is not always available or it is hardly accessible (e.g. 

extensive description of the sources of data within the database reports without a specific 

assessment which allow comparability). On the other hand, the development and application of 

more specific environmental fate models for fertilisers and PPPs instead of generic ones, would 

lead to a more accurate assessment of the potential environmental impact of a product. This last 

element is of particular importance when modelling agricultural production because a 

considerable share of the environmental burden is generally associated with estimated emissions.  
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Modelling and accounting for food loss and waste generation is another critical element of LCA 

of agro-food products. Indeed – despite the generation of food loss and waste represents a 

considerable inefficiency of our food system and an important source of environmental impacts 

– Chapter 4 demonstrated that often available LCA applications neglected the contribution of 

food loss and waste and show methodological flaws in the modelling of their generation and 

treatment and in the interpretation of the results.  

On one hand the omission of the environmental burdens of food loss and waste can lead to an 

under-estimation of the environmental burden of the functional unit. On the other hand, an 

improper modelling of credits reachable thanks to recovery of material or energy during waste 

treatment can lead to an over-estimation of the environmental benefits, hiding de facto, the 

higher advantages achievable through food loss and waste prevention strategies.  

Developing a shared framework for the systematic assessment of the environmental burdens of 

food loss and waste in LCA of food products would foster the application of LCA in supporting 

the reduction of food loss and waste challenge and to increase circular economy practices, at the 

core of European Commission’s environmental policies.  

Chapter 4 puts forward some basic principles on which such framework can be developed. 

This framework should include a shared definition of the terms food loss and waste, a distinction 

among avoidable and unavoidable food loss and waste, considerations of the most relevant 

impact categories to account for the potential impacts of food loss and waste and considerations 

on how to model food loss and waste and treatment.  

 

Chapter 5 focused on the use of LCA to support the assessment and the comparison of the 

environmental performance of different dietary patterns. It included the consumption stage,, still 

little investigated and assessed in LCA, when comparing different dietary patterns.  

The results of Chapter 5 put forward two relevant points to reach a comprehensive assessment of 

the environmental burdens of dietary patterns and identify solutions for their reduction.  

The first interests LCA practitioners and highlights the importance of considering the 

consumption phase - which represents a considerable share of the environmental burden of the 

diet - taking into consideration its wide range of variability.  

The second point concerns the communication on the reduction of the environmental burdens 

of the diets. The results of Chapter 5 pointed out the central role of consumers in determining 

the GHG emissions of a dietary patterns, not only as far as the preference of vegetable-origin 

foods is concerned, but also regarding the cooking modalities and the food waste generation. 
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Hence, there is the need to adopt a comprehensive perspective in sensitising consumers on the 

combined effects that the consumption stage can have on the GHG emissions of their diets. 

 

6.2 Research outlook 

The present thesis analyses and proposes some considerations on some critical elements that 

characterise the application of LCA to agro-food supply chains.  

It does not deal with all the potential criticalities identified within scientific literature and listed in 

the introductive section, which would need further investigations.  

As far as the topics faced in the present thesis are concerned, hereunder some suggestions for 

future research are reported, on the basis of the current experience.  

 Definition and application of site-specific environmental fate models for fertilisers and 

pesticides to be used in the definition of secondary datasets modelling arable crops 

cultivation. 

 Testing the applicability of recommendations and principles reported in Chapter 4 for the 

definition of a common framework for food loss and waste accounting in LCA, including 

the realisation of case-studies. 

 Analysis on the possible approaches to account for the environmental burdens and 

benefits of food loss and waste prevention practices and industrial ecology applications.  

 Foster the assessment of the environmental impacts associated with food consumption 

taking into consideration their wide range of variability.  



 

111 
 

List of publications  

Published 
  
Corrado S., Ardente F., Sala S., Saouter E., 2017. Modelling of food loss within life cycle 

assessment: from current practices towards systematisation. Journal of Cleaner Production, 
140, 847 -859 

 
Corrado S., Castellani V., Zampori L., Sala S.. Systematic analysis of secondary Life Cycle 

Inventories for modelling agricultural production: a case study for arable crops. Journal of 
Cleaner Production, in press 

 
Submitted  
 
Corrado S., Lamastra L., Luzzani G., Trevisan M.. Influence of personal behaviour on the 

greenhouse gas emissions of three balanced dietary patterns. Submitted for publication to 
the Journal of Cleaner Production  

 
Abstracts for scientific conferences 
 
Corrado S., Lamastra L., Luzzani G., Trevisan M., 2016. Influence of Personal Consumption 

Behaviour on the Greenhouse Gas Emissions Caused by different Dietary Patterns. 10th 

International Conference on Life Cycle Assessment of Food 2016. Dublin,19th -21st October 
2016. 

 
Corrado S., Trevisan M., 2016. Assessment of the Potential Improvement of Cheese 

Environmental Performance Achievable through the Use of an Innovative Real-time Milk 
Classification Service. 10th International Conference on Life Cycle Assessment of Food 
2016. Dublin, 19th -21st October 2016. 

 
Corrado S., Castellani V., Zampori L., Sala S., 2015. Wheat of today and tomorrow: an 

assessment of current life cycle inventories. EXPO 2015 Conference - LCA for feeding the 
planet and energy for life. Stresa, 6th-7th October 2015. 

 
Corrado S., Ardente F., Sala S., Saouter E., 2015. How food wastage is addressed in LCA. Poster 

at LCA for feeding the planet and energy for life. EXPO 2015 Conference - LCA for feeding 
the planet and energy for life. Stresa, 6th-7th October 2015. 

 
Corrado S., Stroppa A., Piva G., Trevisan M., 2015. Environmental assessment of a varied 

productive reality: the case of Grana Padano Protection Consortium. SETAC Europe 25th 
Annual Meeting. Barcelona, 3rd-7th May 2015. 


