“§') HOKKAIDO UNIVERSITY
Y X7
Title An Online Self-Constructive Normalized Gaussian Network with Localized Forgetting
Author(s) Backhus, Jana; Takigawa, Ichigaku; Imai, Hideyuki; Kudo, Mineichi; Sugimoto, Masanori
Citation IEIC!E transactions on fundamentals of electronics communications and computer sciences, E100A(3), 865-876
https://doi.org/10.1587/transfun.E100.A.865
Issue Date 2017-03
Doc URL http://hdl.handle.net/2115/65552
Rights copyright©2017 IEICE
Type article
File Information €100-a_3_865.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

IEICE TRANS. FUNDAMENTALS, VOL.E100-A, NO.3 MARCH 2017

865

[PAPER

An Online Self-Constructive Normalized Gaussian Network with

Localized Forgetting

Jana BACKHUS'®, Ichigaku TAKIGAWA ™", Nonmembers, Hideyuki IMAI', Mineichi KUDO",

SUMMARY In this paper, we introduce a self-constructive Normalized
Gaussian Network (NGnet) for online learning tasks. In online tasks, data
samples are received sequentially, and domain knowledge is often limited.
Then, we need to employ learning methods to the NGnet that possess robust
performance and dynamically select an accurate model size. We revise a
previously proposed localized forgetting approach for the NGnet and adapt
some unit manipulation mechanisms to it for dynamic model selection.
The mechanisms are improved for more robustness in negative interference
prone environments, and a new merge manipulation is considered to deal
with model redundancies. The effectiveness of the proposed method is
compared with the previous localized forgetting approach and an established
learning method for the NGnet. Several experiments are conducted for
a function approximation and chaotic time series forecasting task. The
proposed approach possesses robust and favorable performance in different
learning situations over all testbeds.

key words: Normalized Gaussian Networks, dynamic model selection,
online learning, chaotic time series forecasting

1. Introduction

In applications where data samples are received sequentially,
incremental learning schemes have to be applied to train neu-
ral networks. In truly sequential learning schemes [16], only
one data sample is observed at any time and directly dis-
carded after learning. So, no prior knowledge is available on
the number of training data or the data distribution. Further-
more, training data are often not independent and identically
distributed (i.i.d.) in real world applications. This is a prob-
lem when network models are updated in favor of newly
arriving training data. If the data distribution is not i.i.d.,
then networks are prone to forget already learned informa-
tion. This phenomenon is called negative or in severe cases
catastrophic interference when it is not wanted.

Normalized Gaussian networks (NGnet) are feed-
forward three layer networks that are related to Radial Basis
Function (RBF) neural networks. They have localized learn-
ing behavior by partitioning the input space with local units.
Only a few units are updated for a newly received data sam-
ple. Local model networks are often applied to sequential
learning schemes, because their model structure eases the
effects of negative interference. NGnets differ from RBF
networks in the normalization of the Gaussian activation

Manuscript received September 30, 2016.

"The authors are with Department of Computer Science and In-
formation Technology, Graduate School of Information Science and
Technology, Hokkaido University, Sapporo-shi, 060-0814 Japan.

TJST PRESTO, Kawaguchi-shi, 332-0012 Japan.
a) E-mail: jana@main.ist.hokudai.ac.jp
DOI: 10.1587/transfun.E100.A.865

and Masanori SUGIMOTO', Members

function. The normalization switches the traditional roles
of weights and activities in the hidden layer, and NGnets
therefore exhibit better generalization properties [1].

When NGnets are applied to online learning tasks, two
major points have to be considered. The learning perfor-
mance of the NGnet should be robust even in cases where
the data distribution is not i.i.d., and since an accurate model
size selection at initialization is difficult, the network model
should be adapted dynamically. In this paper, we propose an
NGnet with localized forgetting that applies self-constructive
dynamic model selection for the first time. Our contributions
include:

* Revising a previously proposed localized forgetting ap-
proach [2].

* Applying dynamic model selection self-constructively.

* Improving model selection in regard to negative inter-
ference.

¢ Dealing with model redundancies by merging units.

The dynamic model selection is applied self-constructively
to avoid the necessity of a model initialization and therefore
ease application to online learning tasks.

The effectiveness of the proposed method is demon-
strated for two experiments: a function approximation task,
applying both i.i.d. and non i.i.d. data distributions, and a
chaotic time series forecasting task. In regard to the revi-
sion of the localized forgetting approach in [2], we compare
our proposed method to it, discuss the differences in learn-
ing performance, and show that the application of dynamic
model selection results in improved learning performance.
Also, we compare the proposed method with an established
learning method [15] for the NGnet that applies dynamic
model selection and show that ours is more robust in differ-
ent learning environments, especially for non i.i.d. learning
tasks. This improved robustness makes our proposed method
suitable for online learning tasks.

The rest of the paper is divided as follows: Section 2
explains some basic definitions for the NGnet while the pro-
posed method is explained in Sect. 3 and evaluated in Sect. 4.
A conclusion is drawn in Sect. 5.

2. Normalized Gaussian Network and Online EM
2.1 Normalized Gaussian Network

The Normalized Gaussian network (NGnet) is a universal

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers

866

function approximator that was first proposed by Moody and
Darken [12]. It transforms an N-dimensional input vector x
to a D-dimensional output vector y with

M
y =) Ni(Wix. (1)
i=1
M
N:(x) = Gi(x)/) Gj(x) 6
j=1
Gi(x) = 2m) N2z 7%

1 3)
exp [—z(x - u,-)'Ei_l(x - u,-)])

The model softly partitions the input space into M local units
with the normalized Gaussian functions N;. W; = (W;, b;)
isa D X (N + 1)-dimensional linear regression matrix with
X" = (x’, 1) where prime (") denotes a transpose.

2.2 Online EM Algorithm

A stochastic interpretation was first proposed for the NGnet
by Xu et al. [19]. The unknown model parameters are
estimated by maximum likelihood estimation based on the
log-likelihood of the observed in- and output data (x, y).
Here, the Expectation-Maximization (EM) algorithm is ap-
plied for parameter estimation. An offline approach has been
proposed by Xu et al. [19] that was later adopted to an online
EM algorithm by Sato and Ishii [15].

The stochastic model is defined by the following prob-
ability distribution for a complete event (x, y,7) [19]

. _DiN _p Iy 1
P(x,y,il0) = Qr)" 2 o;7|Z 2 M X
1

20_2(!/ - Wi%)*|,

1
exp —E(X -) E (=) -
4

where 0 = {u;, %, 02, Wili = 1,..., M} is the set of model
parameters that have to be estimated. For the online EM, the
parameters are updated with the following E- and M-step.

2.2.1 E (Estimation) Step:

Given the current estimator 6(¢ — 1), the posterior probability
P;(t) = P(i|x(2), y(t), 0(¢t — 1)) evaluates how likely the i-th
unit generates the current observation (x (), y(¢)):

Pi(1) = P(ilx(0), y (1), 6(r = 1))

Pa®), y(®,il0¢-1))
M PGe(@), y(1), j16(= 1))

2.2.2 M (Maximization) Step:

The model parameters 8 are updated with

i) = €xP; (/K1Y (1), (6)

IEICE TRANS. FUNDAMENTALS, VOL.E100-A, NO.3 MARCH 2017

=71 = [N (/€100 = w017, N

Wi(t) = Qy') (O[CEE) (D17, (8)
2o LY PYi) = Tr(W;(OEEy)i (0))] 9
7i(t) = DAY, (0) O

The parameter updates (6)—(9) include symbols {-);(t)
that denote weighted sums of accumulated observations
(x(2), y(¢)) until the current time step ¢.

A weighted sum is incrementally updated at each time
step ¢ with respect to the posterior probability P;(z).

i@ =A@ = 1) + Pi(0) fr, (10)

where f = f(x, y) and f; = f(x(¢), y(¢)) are used with ab-
breviations. A time-dependent discount factor A(¢) has been
introduced to (10). It plays an important role in discarding
the effect of old learning results that were employed to an
earlier inaccurate estimator. The factor has to be chosen
so that 4 — 1 when t — oo to fulfill the Robbins-Monro
condition for convergence of stochastic approximations [9].

In the online EM [15], {f»;(t) has been defined as
a weighted mean by employing a normalization coefficient
n@) =1+ A@)/n(t - 1)"!. The weighted mean is calcu-
lated as follows:

€@ =A=n@)f i =D +n@0Pi(0)f;. (11)

In the following, we will however omit the normalization by
employing a weighted sum (10) as defined in [2].

3. Self-Constructive Normalized Gaussian Network
with Localized Forgetting

In this paper, we introduce an improvement for a parameter
estimation method with localized forgetting and then discuss
the application of dynamic model selection to an NGnet with
localized forgetting for the first time.

3.1 Parameter Update with Localized Forgetting

Previously, Celaya and Agostini have proposed a parameter
update with localized forgetting [2] to improve learning ro-
bustness. The weighted sum (10) employs a discount factor
A(t) to forget old learning results over time. The time-
dependent discount is a problem when data are not i.i.d., and
learning is prone to negative interference. In [2], forgetting
is based on weights so that only as much old information is
forgotten as new information is received for a uniti. For this,
(10) has been changed to

1- ()P

) = AOVPO Y (-
i@ =A@ VL Hie-1) + =0

fi- (12)
This update method is preferable because of its stable learn-
ing performance. We consider it however bad practice that
the update with new information f; in (12) is dependent
on discount A(z). A(t) controls forgetting and has been
originally introduced to speed up convergence [14]. The

BACKHUS et al.: AN ONLINE SELF-CONSTRUCTIVE NORMALIZED GAUSSIAN NETWORK WITH LOCALIZED FORGETTING

constraint for A(¢) is (0 < A(t) < 1) [15], where A(¢) = 1
is a special case with no forgetting of old learning results.
Yet, the update factor % becomes undefined over all
t when A(¢) = 1, and the NGnet is then unable to learn.

We propose a modified localized forgetting approach by
reconsidering its derivation from (10) with additional aspects
that have not been considered previously. For our derivation,
(10) is rewritten to

€@ = AP () it = 1) + QPi(D) fr, (13)

where a new forgetting factor A(P;(¢)) and update factor
Q(P;(t)) have to be determined by considering the following
conditions. For a full update, P;(¢) = 1 and (13) should re-
duce to the same as (10), given by A(1) = A(¢) and Q(1) = 1.
For the NGnet, the units divide the input space between each
other according to their representation ability of a current
sample (x(¢), y(¢)). A full update therefore only happens at
a same time step ¢ for a weighted sum (f),, that accumu-
lates information over all units M, or when a unit represents
the data sample to 100% which rarely happens. Addition-
ally, an update with value f; should be consistent for a shared
weighted sum { f);,;(¢—1) by uniti and j when updated once
with weight (P;(t) + P;(t)) or twice with weights P;(¢) and
P;(t) atatime step ¢. For a single update with (P; (¢) +P; (1)),
we get

CDixj (@) = APi(0) + Pi(0)Lf iyt = 1)

(14)
+Q(Pi(1) + Pi(1)) fi.

If {f Divj(— 1) is updated twice with P;(r) and P;(z), then

€ Diej (@) = AP (OIS Diej (= 1) + QPi(0)) f1, (15)
€ Virj @ + 1) = AP Divj (1) + QP (1)) f1.(16)

We insert (15) into (16) and get

CfDivj @+ 1) = APOIAPi OIS Divj (= 1)
+(A(P; ()P (1) + Q(P;(1))) fr-
(17) is however one step ahead of time and ignores the
fact that units divide a current data sample (x(¢), y(¢)) be-
tween each other at a time step #. Furthermore, the update
Q(P; (1)) f; is already partially forgotten by A(P;(t)) which
should be prevented for updates on the same 7. Then, (17)
reduces to

€ Vinj @ =APOIAP)] Divj (1 = 1)
+ (Q(Pi (1)) + Q(Pj(1))) f1.-

Finally, we get two functional equations from (14) and (17)

a7)

(18)

A(Pi(1) + Pj(1)) = A(P; (1)) A(P;(1)), 19)
Q(P; (1) + Pj(1)) = Q(P; (1)) + Q(P;(1)). (20)

For (19), the solution is well known to be of the form
A(P;()) = ¢ where ¢ is determined by using A(1) =
A@1). So, A(P;(1)) = ()P ¥ is derived while Q(P;(¢)) =
P; () is the solution for the update factor. The new stepwise

867

update for the weighted sum is obtained as

i@ = AT OLENi(t = 1) + Pi(t) fr. (21)

The new approach complies with all considered dependen-
cies and adds new information f; independent from A(z). It
is then able to update its parameters over all 0 < A(¢) < 1.

3.2 Model Selection

The selection of an accurate model size is another impor-
tant problem when applying neural networks. Especially for
online learning tasks, it is difficult to choose a good model
size because domain knowledge is limited. Furthermore,
choosing an accurate model size by hand necessitates ex-
tensive trial-and-error studies. An alternative is dynamic
adaptation of the network model during learning. Dynamic
model adaptation avoids the need to set a static model size
in advance and can be achieved with some methods to in-
crease or reduce model complexity. Also, the model can be
built from scratch during learning by applying these methods
self-constructively. Several works for RBF networks have
proposed self-constructive unit adaptation, Platt’s Resource
Allocating Network (RAN) [13] as well as its extensions
(RANEKEF [8], MRAN [11]) and the GGAP-RBF network
that has been proposed by Huang et al. [6].

3.2.1 Unit Manipulation Mechanisms

Some unit manipulation mechanisms have been introduced
for the NGnet [15] and are adapted to use with our local-
ized forgetting approach. The adapted unit manipulation
mechanisms include a produce, delete and split mechanism.
However, the delete mechanism needs to be revised to be
applicable to the local forgetting NGnet. In addition, the
manipulation decision of split is changed to improve robust-
ness against negative interference, and a merge mechanism
is added to reduce redundancy of units and further improve
model compactness.

(1) Produce

P(x(t), y(t)|6(¢—1)) is a probability that indicates how prop-
erly the current model parameters (¢t — 1) can estimate the
newly received data sample (x(¢), y(¢)). When the probabil-
ity is smaller than a certain threshold Tp,o4yce, @ NEW unit
is created according to the produce mechanism in [15].

(2) Delete

A weighted sum (1);(#) indicates how much the i-th unit
has been in charge of the observed data until the current time
step . When the delete mechanism has been first proposed
n [15], {1);(¢) was assumed to be a weighted mean scaled
between zero and one by a normalizer (¢) = (1+A(t)/n(t -
1))~!. The normalizer 5 (¢) replaces the normalizer 1/T used
in the offline EM-algorithm, where T is the total number of
samples, which is unknown in the online EM-algorithm.

In our approach, (1);(¢) is however an unscaled

868

weighted sum and cannot be used directly as a reference. We
introduce therefore a local unit update counter as a normal-
izer to overcome this problem. To take each unit’s received
discount into account, we define the update counter ct.("p date)
similarly to n(¢) stated above, but here each unit i manages
its own counter locally. The update counter is incremented
by one at every time step where the unit’s update is numer-
ically important. In other words, when the update weight
P;(t) > 107'°, the update counter is incremented by

C;update) -1+ /l(t)Pl-(;)CEupdate). (22)

A unit i is deleted if (1);(t)/c"“P*“'”" < Tpeiere, where
Tpelete is a delete threshold.

(3) Split

The output variance of a unit 7, o'l.2 (#), represents the accu-
mulated squared error between the unit’s predictions and the
real outputs. High variance values are related to the unit
being in charge of a too large partition of the input space,
and splitting such units can improve learning performance.
Our split decision compares 0'l.2 (¢) with the output variances
of the other units using a local evaluation where only output
variances of some nearest neighbors are considered. When
the unit’s output variance is considerably bigger than the
biggest variance of its neighbors, the unit is split according
to the split mechanism in [15].

(4) Merge

A merge manipulation is introduced to reduce redundancies
in the network model. Redundancy refers to two network
units approximating a similar partition of the input-output-
space. For finding possible merge candidates, the grade
of overlap between units has to be evaluated. The overlap
is calculated here with the Bhattacharyya coefficient (BC)
for that a closed form solution exits for two multivariate
Gaussian distributions G (i1, Z1) and G (w2, o) [5].

1 e
dp(G1,G2) == - (1 —) T (w1 — pa)

8
1 = (23)
+ = -log ——,
2 VIZ| - 2]
BC (G, G) = exp (=dp(Gy, G2)). (24

Here, dp is the Bhattacharyya distance and £ = (X1 +X,)/2.
The Bhattacharyya coefficient has the advantage that merge
can be applied online based on currently available informa-
tion of each unit, which is for example not possible for the
merge mechanism in [18].

For a similarity S(i, j) between two units i and j,
we have to calculate the overlap of the units’s input and
output distributions. We denote the input distribution of
a unit i as Gﬁ"p “(ui,Z;) and the output distribution as

G (W%, 021). The similarity S(, /) is calculated by

S(l,]) — BC(Gﬁnlmt, G;nput) . BC(G;mtput’ G;utput).
(25)

IEICE TRANS. FUNDAMENTALS, VOL.E100-A, NO.3 MARCH 2017

If S(, j) > Tmerge for a threshold Taserge, then the units are
possible merge candidates. The flow of the merge mecha-
nism is described in the following:

1. Calculate the similarity S(i, j) for all pairs {i, j}.

2. Choose the pair {i;;ax, jmax} With maximal similarity.
3. If S(imax> Jmax) > Trerge then merge units, go to 1.
4. Otherwise, stop routine.

The merge mechanism becomes computationally heavy with
increasing model complexity M. Furthermore, merge can-
didates are not found frequently, and it is sufficient to ap-
ply merge in intervals of a few hundred time steps. Yet,
the calculation of the output BC depends on input x for
the output center W;X%. Calculating similarities with cur-
rent input x(#) is inappropriate when performed in intervals.
A possible alternative would be to use the weighted sum
(()?)}lf () = ({x); (), {1»; (1)), however preliminary experi-
ments have shown that this approach is overestimating the
similarity between output distributions.

We revise the overlap calculation to avoid the inclusion
of x in the output center for the BC calculation. A multivari-
ate theorem for Gaussian distributions can be used to conduct
an affine transformation of the output distribution. Here, we
want to transform the output distribution y ~ N(W;X, o?1)
so that input x is not included in the center. For con-
venience, we consider the transformation of the transpose
y ' ~N (X’Wi’, o-t.zl) instead. After affine transformation, the
output distribution becomes W, ~ N(W/, o2 [{ &X');()]™1),
and input x is excluded from the center. But Wi’ is an
(N +1) x D-dimensional matrix, and the left term of (23) be-
comes a D X D-dimensional matrix dependent on the output
dimension D. Therefore, we update (23) to

1
dp(G1,G2) = o Tr (1 = 1) =7 (1 = o))
12|

+= - log ———,
2 VIZ1] - 2]
(26)

where Tr is the trace of the matrix.

Finally, we have to merge units i and j when S(i, j) >
Threrge- Again, we consider the units’ Gaussian distribu-
tions for the input and output space and merge the centers
and covariances of input and output distributions in the same
matter. New centers f,, and covariances X,.,, are calcu-
lated by

Hnew = WiH; + wWjlj, 27
{6/}
Znew = Z Wi (Zk + (Mg = Hnew) (Hr — ﬂnew),) , (28)
k
= o ioni ; ,
where wi = (OO OR are functioning as weights with

1) (¢) representing the importance of unit i and j during
training until current time step ¢, calculated with (21).

BACKHUS et al.: AN ONLINE SELF-CONSTRUCTIVE NORMALIZED GAUSSIAN NETWORK WITH LOCALIZED FORGETTING

3.2.2 Self-Constructive Model Adaptation

In online learning schemes, domain knowledge is limited and
an accurate model initialization before training is often dif-
ficult. Therefore, we build the network model dynamically
and self-constructively during learning. The model is initial-
ized with zero units (M = 0), and an initial unit is produced
upon receiving the first training data sample. Some preset
initialization is necessary for the first unit, where parameters
are set to

M1 = x(1) (29)
o=y (30)
ol =0.1 (31)
Wi = (0, y()). (32)

All other units are then created in relation to the first unit with
the self-constructive model selection algorithm described
below.

1: if M==0 then
2: Produce first unit
3: else

4: Compute Probabilities:
P(x(0), y(0)0(—1)) = XM, P(x(1), y(1),il0(1))
5. if P(x(0), y(@)10(t — 1)) < Tproduce then
6: Produce new unit
7. else
8 Update units
9 Test delete, split, merge
10: end if
11: end if

4. Experiments

We evaluate the effectiveness of our proposed method,
an NGnet with local forgetting (LF) that applies self-
constructive model selection for the first time, and compare it
with two older learning approaches ([2], [15]) for a function
and chaotic time series approximation task.

4.1 Preparations

First of all, we discuss several preparative decision steps that
have been taken before the experiments.

4.1.1 Compared Methods

In our experiments, we want to evaluate our proposed method
in regard to the methods in [2] and [15].

In a first step, we compare our method with [2] to dis-
cuss differences between the newly proposed local forgetting
update approach in Sect.3.1 and the previous one [2]. In
[2], model selection was yet to be considered. Since it is
not applicable without proposing some changes in the delete
manipulation, we do not apply dynamic model selection for

869

this comparison. Instead, we compare the two methods with
a static model size and identical initialization.

In a second step, we compare our method with an NGnet
with global forgetting GF that has been proposed in [15]
and where dynamic model selection has been considered.
Here, we include dynamic model selection for our approach
and compare it with two versions of GF: one is equal to
[15] including a normalization coefficient (GFnorm) in its
update function as in (11), while the other one employs
only a discount factor (GFdisc) as in (10). For GFdisc, we
need a normalizer for the delete mechanisms because of the
same reasons described in Chapter 3.2.1 Paragraph (2). For
global forgetting, the normalizer is equal to a unit life time
counter, because units forget and need to be updated at every
time step. Both global forgetting approaches apply dynamic
model selection self-constructively in all experiments.

4.1.2 Dynamic Model Selection

Threshold parameters have to be set for the four manipulation
mechanisms: produce (Prod.), delete (Del.), split (Spl.) and
merge (Mrg.). We have conducted many preliminary experi-
ments to find accurate parameters for all compared methods,
and the best performing ones were selected separately for
each experiment and method.

An overview of the selected parameters can be found
in Table 1. We have summarized the two global forgetting
methods as GF when the same parameters have been selected
after extensive testing. For the function approximation task,
we test different learning scenarios that are all marked with
FA in the table. Some split parameters have the form 3x or
10x, which means three or ten times. In those cases, the split
threshold is dynamic and set relative to another value. For
the chaotic experiment, we also apply a dynamic threshold
decision for GFdisc’s split mechanism, because the static
one used in [15] has unstable performance. A unit is then
split when its output variance is ten times bigger than the
average of the other units’ variances.

The produce threshold is set to the same parameter
for all compared methods within an experiment. This is
reasonable because the same produce mechanism is used by

Table 1 Manipulation parameter settings for all experiments.
Parameter Settings
Method
Prod. Del. Spl. Mrg.

FA: Balanced

LF (Prop.) 0.1 0.05 3x 0.7

GF 0.1 0.00001 0.12 -
FA: Imbalanced

LF (Prop.) 0.1 0.0001 3x 09

GF 0.1 0.00001 0.12 -
FA: Dynamic

LF (Prop.) 0.1 0.01 3x 0.7

GFdisc 0.1 0.001 0.1 -
Chaotic

LF (Prop.) 0.00001 0.0001 3x 0.7

GFdisc 0.00001 0.0001 10x -

870

all methods and differences in model selection behavior are
more dependent on the other manipulations. After testing
several values, we set Tp,oquce = 0.1 for the FA experiments
and Tpyoduce = 0.00001 for the chaotic experiment.

4.1.3 Performance Evaluation
For all experiments, we evaluate the learning performance

of the tested methods with the Root Mean Square Error
(RMSE). The RMSE is defined by

St (g — §)?

Ntest

RMSE = (33)
where n;.4; is the number of test data samples.

Additionally, one-tailed permutation tests are con-
ducted for the function approximation task. In the result
tables, we present obtained p-values in the column p-Val to
evaluate the significance of the learning results, comparing
LF with the other tested methods.

4.1.4 Selection of Discount Factor

The discount factor A(¢) that is applied in (21) is scheduled
over time ¢ with

l-a

A)=1- ——,
@ at+b

(34)
depending on the two parameters a and b. a controls how
fast A(t) — 1 and b sets the initial value of 1. An example
of a’s influence is shown in Fig.1. In our experiments,
we apply several values for a and b to evaluate the effect
of different discount schedules on the performance of the
compared methods.

We also conduct experiments without forgetting. Here,
we apply a discount factor A(¢) = 1 which is equal to any
value b and a = 1. Then, LF updates (21) reduce to the same
as GFdisc’s (10) making a fair comparison of their different
model selection approaches possible.

4.2 Function Approximation Task

In the first experiment, we consider a commonly used func-
tion approximation task ([2], [15], [16]). The function has

0.995

0.99

0.985

0.98

Discount

0.975

0.97

0.965

Fig.1 Discount scheduling for b = 30.

IEICE TRANS. FUNDAMENTALS, VOL.E100-A, NO.3 MARCH 2017

the input dimension N = 2, the output dimension D = 1,
and is defined by

g(x1, x2) = max{e 0%, ¢750% | 255Gy (35)

A normally distributed random noise €(z) ~ N(0,0.01) is
added to each function output g(x;(¢), x2(¢)), and y(¢) =
g(x1(1), x2(1)) + €(¢) is obtained as the noisy sample output.

4.2.1 Preparations

We consider three different test cases for the function ap-
proximation task. In the following, we discuss how we have
obtained training and test data for these cases.

(1) Training Data

We use different input data distributions to evaluate the ro-
bustness of the compared methods in a variety of learning
scenarios. When data are not i.i.d., neural networks are
more prone to negative interference and achieving good per-
formance is difficult. Three test cases are considered

e Balanced
e Imbalanced
* Dynamic

For the balanced test case, the training data are i.i.d
over the whole input space (-1 < xi,xp < 1). For the
imbalanced test case, we use non-identically distributed data.
Here, 95% of the data samples are extracted from a sub-
region of the input domain with (0 < xy, x, < 0.25), and the
remaining data are i.i.d in (-1 < xq, xp < 1). For these two
cases, we obtain 10,000 data samples for each test run. For
the dynamic test case, the input data distribution is slowly
changing for x| over time. x;’s sample distribution starts at
the interval [—1, —0.2] and ends at the interval [0.2, 1] after
250,000 training samples. x; is sampled in [—-1, 1] over all ¢.
A similar experiment has been conducted in [2] and [15] to
evaluate learning performance in dynamic environments.

In all test cases, we have obtained training data sets
for 50 test runs, and the same data sets are applied to all
compared methods.

(2) Test Data

Similarly to [2], we have obtained test data from a regular
grid formed of 21 X 21 points in the input domain. These
data are used to evaluate the learning performance of the
compared methods over the whole input space in all three
test cases. Additionally, we have obtained test data in the
last input interval of the dynamic test case. Here, perfor-
mance is evaluated by two test sets, representing the whole
input space (RMSE All) and the last training interval (RMSE
Last) respectively. For the function approximation task, all
presented results are the averages of 50 test runs.

4.2.2 Experiments without Model Selection

In a first step, we compare our proposed method LF (Prop.)

BACKHUS et al.: AN ONLINE SELF-CONSTRUCTIVE NORMALIZED GAUSSIAN NETWORK WITH LOCALIZED FORGETTING

Table 2 Balanced test without model selection.
Init (25) Init (100)
Discount RMSE RMSE
- p-Val - p-Val
LF(Prop.) LF ([2]) LF(Prop.) LF ([2])

b=30

a=0.1 0.0698 0.0699 0.41 0.0541 0.0541 0.36

a=0.01 0.0632 0.0639 0.05 0.0497 0.0497 0.32

a=0.001 0.0592 0.0594 0.33 0.0455 0.0455 0.37
b=150

a=0.1 0.0713 0.0714 0.36 0.0548 0.0549 0.29

a=0.01 0.0694 0.0694 0.20 0.0538 0.0538 0.36

a=0.001 0.0687 0.0688 0.14 0.0534 0.0534 04
b=1000

a=0.1 0.0725 0.0725 0.14 0.0554 0.0554 0.27

a=0.01 0.0723 0.0723 0.11 0.0553 0.0553 0.31

a=0.001 0.0723 0.0723 0.11 0.0553 0.0553 0.32
Discount 1

a=1.0 0.0731 0.2280 0.0 0.0557 02322 0.0

with the former local forgetting method (LF [2]) for the bal-
anced test case. This experiment evaluates the effectiveness
of the newly proposed update function (21) in regard to the
previous one (12). The proposed method’s main purpose is
to eliminate the inability of LF [2] to update its parameters
when the discount factor A(¢) is one over all ¢.

Two different static model sizes are tested. A static
model with 25 units is equal to the size used in [2], and we
add some experiments with 100 units. Performance results
are stated in Table 2 with Init (25) and Init (100) respectively.
In both cases, units are initialized on a grid of the input space.
For the initialization, (x, y) values are obtained according to
the location of a unit on the grid, and the unit’s parameters
are then set according to (29) - (32).

Experimental results are presented in Table 2, with the
best results marked in bold. We have applied different dis-
count schedules for forgetting in the first nine cases, and LF
(Prop.) has achieved better performance in all cases. Yet, the
difference in learning performance is very small and results
often in equal performances with LF [2] after rounding. For
discount factors A(¢) < 1, the numerical difference is small
between the two update methods, although it becomes big-
ger for larger discounts leading to more visible performance
differences for b = 150 and b = 30. Overall, p-values also
show that the superiority of LF (Prop.) cannot be claimed
in most cases. There are however some exceptions for Init
(25). Comparing the results of the two different network
sizes, we have noticed that an increase in model size comes
with an improvement in learning performance. Interestingly,
the bigger network size makes the performance gap between
the two compared methods smaller, and obtained p-values
show less significance between performance differences.

For the results without forgetting (Discount 1) in Ta-
ble 2, LF (Prop.) performs much better than LF [2] for
both network sizes. The p-values also prove the superiority
of our proposal. Here, LF [2] was not able to update its
network parameters, and its performance is the direct result
of the initialization. Therefore, we have achieved the main

871
Table 3 Balanced test without forgetting.
Manipulation Countt
Method RMSE Net. Size aniputation T-ounter
Prod. Del. Spl. Mrg.
Setting 1
LF (Prop.) 0.0538 42.82 49.08 0 1.6 8.86
GFdisc 0.0537 47.78 4452 0 226 O
(p-Val=0.46)
Setting 2
LF (Prop.) 0.0425 39.9 62.9 19.74 2.08 6.34
GFdisc 0.0525 42.16 67.94 2896 2.18 0
(p-Val=0.0)

purpose of the new proposal. Now, updates are possible for
the local forgetting approach, even when the discount equals
one. This complies with the constraint for the discount factor
that has been setto 0 < 4 < 1in [15].

4.2.3 Experiments with Model Selection

In a second step, we compare our proposed method LF
(Prop.) with the global forgetting methods GFrnorm and
GFdisc. In the following, we will mainly refer to LF (Prop.)
as LF for convenience.

(1) Balanced Test without Forgetting

Here, LF and GFdisc are compared with each other for a
balanced test case without forgetting. Experimental results
are presented in Table 3 for two different manipulation pa-
rameter settings. For both settings, we have chosen the same
parameters as stated for FA: Balanced in Table 1 except for
delete. The best performing results are marked in bold in the
table. We have also included information about the number
of manipulation occurrences.

For Setting 1, the delete parameter has been set to
Tpeiete = 0.0001 so that both methods do not delete units.
Comparing the performance of LF and GFdisc, we can see
that they are performing approximately the same. GFdisc
is slightly better, but the high p-value shows that this differ-
ence is not significant. On the other hand, the network size is
smaller for LF so that it performs equally well with a smaller
network size.

For Setting 2, we set Tpejere = 0.01 for GFdisc and
Tpeiete = 0.02 for LF to compare the two methods when
they have similar deletion behavior. The improved learning
performances show that deleting units has a positive effect
for both methods. Yet, while LF improves a lot, GFdisc is
only improving slightly. The difference in learning perfor-
mance is significant, supported by the p-value equaling zero.
This emphasizes the effectiveness of the localized deleting
approach applied to LF.

Finally, we compare the results of LF applying model
selection with the results of LF (Prop.) without model selec-
tion in Table 2. Without model selection, LF has achieved
RMSE = 0.0557 as the best performance. With model se-
lection, LF performs better while having less network com-
plexity for both settings presented in Table 3.

872
Table4 Balanced test with forgetting.
. LF (Prop.) GFnorm GFdisc
Discount
RMSE Size RMSE Size p-Val RMSE Size p-Val
b=30

a=0.1 0.0343 36.26 0.0279 197 0.0 0.0148 441.94 0.0
a=0.01 0.0287 41.9 0.0458 946.62 0.0 0.0472 1054.82 0.0
a=0.001 0.0250 49.6 0.0756 485.5 0.0 0.0827 553.38 0.0
b=150

a=0.1 0.0358 35 0.0390 87.82 0.0 0.0182 134.24 0.0
a=0.01 0.0338 359 0.0376 480.8 0.0 0.0367 963.64 0.01
a=0.001 0.0331 36.52 0.0420 638.96 0.0 0.0429 10374 0.0
b=1000

a=0.1 0.0372 34.1 0.0628 52.24 0.0 0.0293 5586 0.0
a=0.01 0.0368 34.18 0.0511 5584 0.0 0.0256 63.82 0.0
a=0.001 0.0367 34.16 0.0493 56.38 0.0 0.0257 6554 0.0

(2) Balanced Test with Forgetting

For the balanced test case with forgetting, we compare
LF with the two global forgetting approaches GFnorm and
GFdisc. Experimental results are presented in Table 4 with
the best results for each discount schedules marked in bold.

Here, LF is not the overall superior approach but shows
the most robust performance over all discount schedules in
regard to learning performance and network size. Also, it
performs best for discount schedules where the learning be-
havior of the global forgetting methods is unstable. On the
other hand, GFdisc is able to perform best for discount sched-
ules where its learning is stable. This applies for discount
schedules that are near to one from the start (b = 1000) or
reaching one very fast (@ = 0.1). For higher discounts, the
performance of GFdisc steadily decreases and network sizes
increase, resulting in non robust behavior. The learning be-
havior of GFrnorm has the same tendencies as GFdisc’s over
the different discount schedules. Yet, GFnorm is unable to
perform best for any discount schedule.

The permutation tests were conducted comparing LF
with either GFnorm or GFdisc. Regardless of whether the
local or global forgetting method has performed better, the re-
sulting p-values were approximately equal to zero in all cases
proving the significance in the performance differences.

Finally, we compare the results of LF applying model
selection with the results of LF (Prop.) without model
selection in Table 2. Without model selection, LF has
achieved learning performances between RMSE = 0.0725
and RMSE = 0.0455 depending on the network size and
discount schedule. For LF with model selection, the perfor-
mance is ranging between RMSE = 0.0372 and RMSE =
0.0287. So even in the worst performing case, LF performs
still better and possesses smaller network sizes when model
selection is applied. This emphasizes the advantage of ap-
plying dynamic model selection to LF.

(3) Imbalanced Test without Forgetting

For the imbalanced test case without forgetting, experimental
results are presented in Table 5 with best results marked in
bold. Here, LF and GFdisc trained NGnets are compared for

IEICE TRANS. FUNDAMENTALS, VOL.E100-A, NO.3 MARCH 2017

Table 5 Imbalanced test without forgetting.

Manipulation Counter

Method RMSE Net. Size
Prod. Del. Spl. Mrg.
Setting 1
LF (Prop.) 0.0958 71.3 6486 0 1154 6.1
GFdisc 0.0985 67.28 65.84 0 044 0
(p-Val=0.01)
Setting 2
LF (Prop.) 0.1036 65.38 76.94 2032 136 5.84
GFdisc 0.1234 54.16 81.82 29.26 0.6 0
(p-Val=0.0)
Table 6 Imbalanced test with forgetting.
. LF (Prop.) GFnorm GFdisc
Discount

RMSE Size RMSE Size p-Val RMSE Size p-Val

b=30

a=0.1 0.0941 76.42 0.1119 106.24 0.0 0.1080 167.14 0.0
a=0.01 0.0934 79.44 0.1892 113.58 0.0 0.2214 109.24 0.0
a=0.001 0.0919 81.92 0.2855 52.52 0.0 0.3300 49.52 0.0
b=150

a=0.1 0.0950 72.72 0.1163 903 0.0 0.1064 159.22 0.0
a=0.01 0.0951 73.1 0.1495 110.56 0.0 0.1819 139.86 0.0
a=0.001 0.0947 72.66 0.1735 107.56 0.0 0.2026 130.48 0.0
b=1000

a=0.1 0.0949 71.18 0.1460 56.08 0.0 0.0949 93.84 0.48
a=0.01 0.0951 71 0.1294 60.08 0.0 0.1058 113.96 0.0
a=0.001 0.0950 71.06 0.1293 61.1 0.0 0.1076 117.78 0.0

discount A4 = 1. Except for delete, manipulation parameters
are set as stated in Table 1 for FA: Imbalanced. For delete,
two threshold parameter settings are tested. In Setting I,
the threshold is set to Tpejere = 0.0001 so that no units are
deleted, while in Setting 2 we have relaxed the thresholds to
Tpeiete = 0.001 for both methods to show the differences in
performance when deleting occurs.

LF shows superior performance for both tested param-
eter settings with high significance as proved by the low
p-values. In Serting 1, updates and deletions are the same for
both methods so that LF’s favorable performance is related
to the new split and merge approach. In Setting 2, some units
have been deleted. This has led to a decrease in learning per-
formance for both methods, but the decrease is visible lower
for LF. The negative effect of delete is here smaller, likely
because of the localized deleting approach applied to LF.

(4) Imbalanced Test with Forgetting

For the imbalanced test case with forgetting, the experimen-
tal results are presented in Table 6. Again, several discount
schedules are applied and the best result for each schedule is
marked in bold. Because of the imbalanced data distribution,
this testbed is more prone to negative interference.

The results show favorable performance for our method
LF in almost all cases with high significance proven by p-
values equaling zero. There is one exception for the discount
schedule (a = 0.1, b = 1000), where LF and GFdisc have ap-
proximately the same learning performance. While there is
no significant difference between the performances, the net-

BACKHUS et al.: AN ONLINE SELF-CONSTRUCTIVE NORMALIZED GAUSSIAN NETWORK WITH LOCALIZED FORGETTING

Table 7 Dynamic input distribution.
Discount/ RMSE RMSE Net. Manipulation Counter
Method All Last Size Prod. Del. Spl. Mr.
=1

LF(Prop.) 0.0284 0.0123 169.08 11594 16.94 81.14 12.06
GFdisc 0.0344 0.0160 99.06 97.4 0 0.66 0
(p-Val=0.0)

A1 =10.999

LF(Prop.) 0.0323 0.0112 195.84 141.98 19.28 84.68 12.54
GFdisc 0.6872 0.0077 213.42 1118 906.24 0.66 0
(p-Val=0.0)

0.8

0.7 LF

06 ——GFdisc

0.5

RMSE

0.4
03
0.2
0.1

10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
= 110000
120000
130000
~ 140000
150000
160000
170000
180000
190000
200000
210000
220000
230000
240000
250000

3
@
@2
T
°

Fig.2 Dynamic distribution without forgetting.

work size of LF is almost 25% smaller and therefore prefer-
able. Additionally, LF' shows a high stability in learning
performance and network sizes over all discount schedules.
On the other hand, the learning performances and network
sizes of GFnorm and GFdisc are strongly varying. These re-
sults emphasize the robustness of LF in negative interference
prone testbeds. LF is therefore favorable compared with the
global forgetting methods.

(5) Dynamic Test without Forgetting

For the dynamic test case without forgetting, we train the
compared methods with A(¢) = 1 over all . Figure 2 presents
the evolution of the learning performance during training
over the whole input distribution [—1, 1] for GFdisc and LF.
GFdisc has better learning performance over a large part of
training, but eventually looses out to LF in the last quarter.
The final performance results are presented in Table 7, and
LF possesses better approximation capabilities not only for
the whole function (RMSE All) but also for the last interval
[0.2, 1] (RMSE Last). The favorable performance of LF is
also supported by the p-value equaling zero.

(6) Dynamic Test with Forgetting

In the dynamic test case with forgetting, a static discount
A(t) = 0.999 is applied over the whole training time. This is
equal to a discount schedule with @ = 0 and b = 1000. We
compare LF only with GFdisc for this testbed, since GFnorm
was the least competitive for the other two test cases.

InFig. 3, ahuge performance difference is visible for the
running error of LF and GFdisc. At the second time quarter,
GFdisc seems to be successfully learning and even performs

873

1.4

1.2

0.8

RMSE

0.6

LF
04

= GFdisc

0.2

10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
110000
120000
¥ 130000
140000
150000
160000
170000
180000
190000
200000
210000
220000
230000
240000
250000

=
3
o
T
°

Fig.3 Dynamic distribution with forgetting.

shortly better than LF. However, its performance decreases
again. On the other hand, LF is able to steadily improve
its approximation. The final performance results in Table 7
also show that LF is performing much better over the whole
function. Interestingly, GFdisc performs better for the last
training interval RMSE Last, but is unable to perform well
over the whole function. Reasons for the bad performance
of GFdisc are global forgetting and likely the high number
of unit productions and deletions. LF also experiences a
performance decrease in comparison with the non-forgetting
case but is still able to perform similarly well. These results
emphasize again the robustness of LF.

The delete thresholds of both methods are equal to the
ones in the dynamic without forgetting case, so it is interest-
ing to compare the deletion behavior. For LF, the number
of unit deletions is only slightly increasing for the forgetting
case, having a stable deletion behavior. On the other hand,
while GFdisc has not deleted any units before, the number of
deletions increased when discount was applied. This shows
the high impact of forgetting on the unit manipulations in
GFdisc and is likely one reason for its learning instabili-
ties. LF is therefore preferable for online learning tasks,
especially when data distributions are not i.i.d.

4.3 Chaotic Time Series Approximation Task

In the second experiment, we apply the NGnet to a chaotic
time series approximation task to examine the learning per-
formances for a realistic and difficult problem. The Lorenz
attractor [10] is applied as testbed and is defined by

X =a(y - x),
y=bx—-y-—xz (36)
=Xy —cz.

For the commonly used parameters a = 10, b = 28, ¢ = §/3,
the attractor has chaotic behavior. Trajectories from the at-
tractor are obtained by fourth order Runge-Kutta integration
with integration time step #; = 0.001. The vector notation
of the attractor is X = F(X) where X = (x,y,z)’ and F
denotes the vector field. Additionally, some noise can be
added to each observation with

Y (1) = X(1) +£(), (37

IEICE TRANS. FUNDAMENTALS, VOL.E100-A, NO.3 MARCH 2017

874
Table 8 Chaotic time series testbed with b = 150.
. b=150 b=1000

Discount/
Data Noise LF (Prop.) GFdisc LF (Prop.) GFdisc

RMSE1l RMSE2 Size CD RMSE1 RMSE2 Size CD RMSE1 RMSE2 Size CD RMSEl RMSE2 Size CD
a=0.1
SD=0.0 0.1676 0.1892 159 1.86 0.1922 0.2298 319 1.63 0.1739 0.1915 148 1.87 0.1410 0.1797 155 1.70
SD=0.1 0.1679 0.1894 159 1.86 0.1696 0.2111 328 1.39 0.1750 0.1927 149 1.86 0.1407 0.1794 150 1.87
SD=0.2 0.1713 0.1921 159 1.85 0.1530 0.1760 307 1.70 0.1766 0.1936 150 1.81 0.1446 0.1738 158 1.83
SD=0.3 0.1844 0.1974 155 1.80 0.2003 0.2139 323 1.78 0.1851 0.1975 154 1.81 0.1671 0.1857 159 1.89
a=0.01
SD=0.0 0.1671 0.1890 157 1.88 0.5779 0.6212 421 1.13 0.1737 0.1914 148 1.87 0.1885 0.2113 166 1.65
SD=0.1 0.1678 0.1887 156 1.86 0.5511 0.5580 408 0.34 0.1748 0.1926 149 1.86 0.2017 0.2379 170 1.65
SD=0.2 0.1697 0.1910 159 1.85 0.6094 0.6480 425 0.81 0.1765 0.1935 150 1.81 0.1603 0.1909 171 1.82
SD=0.3 0.1824 0.1956 155 1.80 0.6758 0.6848 442 1.25 0.1849 0.1973 154 1.81 0.1857 0.1997 184 0.00
a=0.001
SD=0.0 0.1666 0.1888 157 1.86 0.7612 0.8457 388 1.13 0.1737 0.1913 148 1.87 0.1797 0.2059 169 1.57
SD=0.1 0.1672 0.1884 156 1.87 0.7746 0.8036 385 0.19 0.1748 0.1926 149 1.86 0.1942 02114 173 1.61
SD=0.2 0.1692 0.1905 160 1.86 0.8037 0.8328 383 0.00 0.1765 0.1935 150 1.82 0.1634 0.1897 170 1.80
SD=0.3 0.1818 0.1951 155 1.80 0.8262 0.8468 415 0.60 0.1849 0.1973 154 1.81 0.1867 0.2030 186 0.00

where the noise £(¢) is a white Gaussian noise with zero states. Then, CDs are calculated for each trajectory and

mean and some standard deviation SD.

Commonly, a time delay embedding method is used for
the application of chaotic time series. According to Takens’
theorem [17], the chaotic dynamics can be reconstructed
from one dimension, e.g. dimension x. A next state x(¢ + P)
is then defined by the following delay coordinate

x(t+P)={x(@),x(t—At),...,x(t—(d—-1)Ar)}, (38)

where d is an embedding dimension and At is an embedding
delay. The reconstruction of the chaotic dynamics is depen-
dent on an appropriate choice of d and Ar. For the Lorenz
attractor, Ar = 0.15 and d = 3 are sufficient to reconstruct
the chaotic dynamics [7]. P is the number of prediction steps
ahead and is setto P = 1.

4.3.1 Preparations

(1) Training and Test Data

We train the NGnets with 10,000 data samples sequentially
obtained from one trajectory of the attractor with sample time
step s = 0.01. Short-term prediction accuracy is evaluated
by two test sets. One is noiseless (RMSET) and the other test
set added white Gaussian noise with SD = 0.2 (RMSE?2).
For both test sets, 10,000 data samples are randomly obtained
from several different trajectories.

(2) Correlation Dimension (CD)

Additionally, we evaluate the long-term characteristics [3] of
the trained NGnet models by obtaining recursively predicted
trajectories with 30,000 samples. Recursive means here that
the NGnets use their own predicted outputs as the input for
the next prediction step. The correlation dimension (CD)
[4] is a measure to evaluate the properties of a chaotic time
series. CDs are used to evaluate the long-term characteristics
of the trained models. For each trained model, we obtain
three recursively predicted trajectories from different initial

their average is presented in the test results. The CD of
the real Lorenz attractor is CDoyiginar = 2.05 £ 0.01 [4],
while for the embedding delay method it is approximately
CDEmpbeddea = 2.021 [7]. If a calculated CD is similar to
the real CD, then the trained model was able to imitate the
chaotic characteristics of the Lorenz attractor. We consider
CD values over 1.8 as good long-term characteristics.

4.3.2 Experimental Results

The effectiveness of the proposed method LF is compared
with GFdisc for several discount schedules with b = 150 and
b = 1000 in Table 8. Presented results are obtained from
test runs with different grades of noise added to the training
data, denoted by the noise standard deviation SD. The re-
sults show that LF has robust short-term performances and
long-term characteristics in all test cases. Especially, LF
shows very good long-term characteristics with no CD be-
low 1.80. There are a few cases where GFdisc has better
short-term performance or long-term characteristics mainly
for b = 1000, but it misses the robustness shown by LF.
Also, better short-term prediction is not necessarily an indi-
cator for good long-term characteristics. For some cases, LF
has better long-term characteristics even when short-term
performance is worse than GFdisc’s. This phenomenon has
also been noted in [3]. Similarly to the first experiment,
GFdisc again has difficulties to show stable performance for
any discount schedule except (a = 0.1, b = 1000). It per-
forms especially bad for two out of three discount schedules
with b = 150. Also, GFdisc shows no robustness for its
long-term characteristics with only five CD values over 1.8.
Overall, LF is performing robust in all test cases and its
overall performance is clearly better than GFdisc.

In Fig. 4(a)-4(d), we show some examples for how dif-
ferent CD values relate to the long-term characteristics.
30,000 data points are presented in all four figures, but
Fig. 4(d) seems sparse because the recursive prediction al-

BACKHUS et al.: AN ONLINE SELF-CONSTRUCTIVE NORMALIZED GAUSSIAN NETWORK WITH LOCALIZED FORGETTING

(c)CD =1.13

(d)CD =0.19

Fig.4 Real attractor (a) compared with recursive predictions (b)—(d).

ways returns to the same points. Fig. 4(c) looks more like the
real attractor but still has some holes. Fig. 4(b) has a compact
point distribution in space similar to the real attractor. All
learned models have difficulties to represent the inner edges
accurately resulting in the difference to the real CD.

The results of the second experiment support the results
of the first experiment. LF mostly performs better, and shows
much more robustness over a large range of different learning
situations. It is therefore the preferable method to apply to
online learning tasks especially when domain knowledge is
limited and negative interference likely a problem.

5. Conclusion

In this paper, we have proposed an online self-constructive
NGnet with localized forgetting. Our major contributions
are a modification of a previously proposed localized forget-
ting method and the application of dynamic model selection
to it for the first time. In addition, several improvements
are made for the dynamic model selection to achieve better
robustness of the NGnet in negative interference prone envi-
ronments and for handling redundancies in the model. The
proposed method has been evaluated by two testbeds, a func-
tion approximation task and a chaotic time series forecasting
task. For the function approximation task, i.i.d. and non i.i.d.
data distributions have been tested to show the robustness of
the proposed method when prone to negative interference.
We have compared our method with a previously proposed
localized forgetting method to discuss differences and advan-
tages of applying dynamic model selection. Then, we have
compared it with an established method for the NGnet em-
ploying global forgetting and dynamic model selection, and
results show that our method is able to employ overall robust

875

learning behavior while the global approach’s performance
is highly dependent on the given learning environment.

Possible future work includes the development of an
automatic parameter selection method to further ease the
model adaptation of NGnets in online learning tasks, which
is especially helpful when domain knowledge is limited.

References

[1] G.Bugmann, “Normalized Gaussian radial basis function networks,”
Neurocomputing, vol.20, no.1-3, pp.97-110, Aug. 1998.

[2] E. Celaya and A. Agostini, “On-line EM with weight-based forget-
ting,” Neural Comput., vol.27, no.5, pp.1142-1157, May 2015.

[3] M.R.Cowper, B. Mulgrew, and C.P. Unsworth, “Nonlinear prediction
of chaotic signals using a normalised radial basis function network,”
Signal Process., vol.82, no.5, pp.775-789, May 2002.

[4] P. Grassberger and I. Procaccia, “Characterization of strange attrac-
tors,” Phys. Rev. Lett., vol.50, no.5, pp.346-349, Jan. 1983.

[5] C. Hennig, “Methods for merging Gaussian mixture components,”
Advances in Data Analysis and Classification, vol.4, no.1, pp.3-34,
2010.

[6] G.-B.Huang, P. Saratchandran, and N. Sundararajan, “A generalized
growing and pruning RBF (GGAP-RBF) neural network for function
approximation,” IEEE Trans. Neural Netw., vol.16, no.1, pp.57-67,
Jan. 2005.

[7] S.Ishii and M.-A. Sato, “Reconstruction of chaotic dynamics by on-
line EM algorithm,” Neural Networks, vol.14, no.9, pp.1239-1256,
Nov. 2001.

[8] V. Kadirkamanathan and M. Niranjan, “A function estimation ap-
proach to sequential learning with neural networks,” Neural Comput.,
vol.5, no.6, pp.954-975, Nov. 1993.

[9] H.J. Kushner and G.G. Yin, Stochastic Approximation Algorithms
and Applications, Springer Verlag, New York, 1997.

[10] E.N. Lorenz, “Deterministic non-periodic flow,” J. Atmos. Sci.,
vol.20, no.2, pp.130-141, March 1963.

[11] Y. Lu, N. Sundararajan, and P. Saratchandran, “A sequential learning
scheme for function approximation using minimal radial basis func-
tion neural networks,” Neural Comput., vol.9, no.2, pp.461-478,
Feb. 1997.

[12] J. Moody and C.J. Darken, “Fast learning in networks of locally-
tuned processing units,” Neural Comput., vol.1, no.2, pp.281-294,
June 1989.

[13] J. Platt, “A resource-allocating network for function interpolation,”
Neural Comput., vol.3, no.2, pp.213-225, June 1991.

[14] M. Sato, “Convergence of on-line EM algorithm,” Proc. International
Conference on Neural Information Processing, vol.1, pp.476-481,
2000.

[15] M. Sato and S. Ishii, “On-line EM algorithm for the normalized
Gaussian network,” Neural Comput., vol.12, no.2, pp.407-432, Feb.
2000.

[16] S.Schaal and C.G. Atkeson, “Constructive incremental learning from
only local information,” Neural Comput., vol.10, no.8, pp.2047-
2084, Nov. 1998.

[17] F. Takens, “On the numerical determination of the dimension of an
attractor,” in Dynamical Systems and Bifurcations, Lecture Notes in
Mathematics, vol.1125, pp.99-106, Springer-Verlag, Berlin, 1985.

[18] N.Ueda, R. Nakano, Z. Ghahramani, and G.E. Hinton, “SMEM algo-
rithm for mixture models,” Neural Comput., vol.12, no.9, pp.2109—
2128, 2000.

[19] L.Xu, M. Jordan and G.E. Hinton, “An alternative model for mixtures
of experts,” in Advances in Neural Information Processing Systems
7, ed. J.D. Cowan, G. Tesauro and J. Alspector, pp.633-640, MIT
Press, Cambridge MA, 1995.

http://dx.doi.org/10.1016/s0925-2312(98)00027-7
http://dx.doi.org/10.1016/s0925-2312(98)00027-7
http://dx.doi.org/10.1162/neco_a_00723
http://dx.doi.org/10.1162/neco_a_00723
http://dx.doi.org/10.1016/s0165-1684(02)00155-x
http://dx.doi.org/10.1016/s0165-1684(02)00155-x
http://dx.doi.org/10.1016/s0165-1684(02)00155-x
http://dx.doi.org/10.1103/physrevlett.50.346
http://dx.doi.org/10.1103/physrevlett.50.346
http://dx.doi.org/10.1007/s11634-010-0058-3
http://dx.doi.org/10.1007/s11634-010-0058-3
http://dx.doi.org/10.1007/s11634-010-0058-3
http://dx.doi.org/10.1109/tnn.2004.836241
http://dx.doi.org/10.1109/tnn.2004.836241
http://dx.doi.org/10.1109/tnn.2004.836241
http://dx.doi.org/10.1109/tnn.2004.836241
http://dx.doi.org/10.1016/s0893-6080(01)00094-6
http://dx.doi.org/10.1016/s0893-6080(01)00094-6
http://dx.doi.org/10.1016/s0893-6080(01)00094-6
http://dx.doi.org/10.1162/neco.1993.5.6.954
http://dx.doi.org/10.1162/neco.1993.5.6.954
http://dx.doi.org/10.1162/neco.1993.5.6.954
http://dx.doi.org/10.1007/978-1-4899-2696-8
http://dx.doi.org/10.1007/978-1-4899-2696-8
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
http://dx.doi.org/10.1162/neco.1997.9.2.461
http://dx.doi.org/10.1162/neco.1997.9.2.461
http://dx.doi.org/10.1162/neco.1997.9.2.461
http://dx.doi.org/10.1162/neco.1997.9.2.461
http://dx.doi.org/10.1162/neco.1989.1.2.281
http://dx.doi.org/10.1162/neco.1989.1.2.281
http://dx.doi.org/10.1162/neco.1989.1.2.281
http://dx.doi.org/10.1162/neco.1991.3.2.213
http://dx.doi.org/10.1162/neco.1991.3.2.213
http://dx.doi.org/10.1162/089976600300015853
http://dx.doi.org/10.1162/089976600300015853
http://dx.doi.org/10.1162/089976600300015853
http://dx.doi.org/10.1162/089976698300016963
http://dx.doi.org/10.1162/089976698300016963
http://dx.doi.org/10.1162/089976698300016963
http://dx.doi.org/10.1007/bfb0075637
http://dx.doi.org/10.1007/bfb0075637
http://dx.doi.org/10.1007/bfb0075637
http://dx.doi.org/10.1162/089976600300015088
http://dx.doi.org/10.1162/089976600300015088
http://dx.doi.org/10.1162/089976600300015088

876

Jana Backhus received her Master of In-
formation Science and Technology in the field
of Computer Science at the Graduate School of
Information Science and Technology, Hokkaido
University in 2014, and is currently working tor-
wards the Ph.D. degree at the same institution.

Ichigaku Takigawa received his D.E. from
Hokkaido University in 2004 and is currently
an Associate Professor at the Department of
Computer Science and Information Technology,
Graduate School of Information Science and
Technology, Hokkaido University. His research
interests include machine learning and data min-
ing.

Hideyuki Imai received the D.E. from
Hokkaido University in 1999. He is currently
an Professor at the Department of Computer
Science and Information Technology, Graduate
School of Information Science and Technology,
Hokkaido University. His research interests in-
clude statistical inference.

Mineichi Kudo received his Dr. Eng. de-
gree in Information Engineering from Hokkaido
University in 1988. Starting as an instructor at
Hokkaido University in 1988, he is a professor
since 2001. In 2001, he received the twenty-
seventh annual pattern recognition society award
together with professor Jack Sklansky. He was
elected as a fellow of the International Associ-
ation for Pattern Recognition on December 10,
2008. His current research interests include de-
sign of pattern recognition systems, image pro-
cessing, data mining and computational learning theory. He is a member of
the Pattern Recognition Society and the IEEE.

Masanori Sugimoto received the B.E.,
M.E., and D.E. degrees from the University
of Tokyo, Tokyo, Japan, in 1990, 1992 and
1995, respectively. He is currently a Professor
in the Graduate School of Information Science
and Technology, Hokkaido University, Sapporo,
Japan. His research interests include acoustic
engineering, signal processing, artificial intel-
ligence, and human-computer interaction tech-
nologies for designing smart systems and envi-
ronments.

IEICE TRANS. FUNDAMENTALS, VOL.E100-A, NO.3 MARCH 2017

