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Abstract. Similarity joins between two collections of item sets have
recently been investigated and have attracted significant attention, es-
pecially for linguistic applications such as those involving spelling error
corrections and data cleaning. In this paper, we propose a new approach
to similarity joins for general item set collections, such as purchase his-
tory data and research keyword data. The main objective of our research
is to efficiently find similar records between two data collections under the
constraints of the number of added and deleted items. Efficient matching
algorithms are urgently needed in similarity joins because of the combina-
torial explosion between two data collections. We developed a matching
algorithm based on Zero-suppressed Binary Decision Diagrams (ZDDs)
to overcome this difficulty and make matching process more efficient.
ZDDs are special types of Binary Decision Diagrams (BDDs), and are
suitable for implicitly handling large-scale combinatorial item set data.
We present, in this paper, the algorithms for similarity joins between
two data collections represented as ZDDs and pruning techniques. We
also present the experimental results obtained by comparing their per-
formance with other systems and the results obtained by using real huge
data collections to demonstrate their efficiency in actual applications.

Keywords: similarity joins, error-tolerant matching, recommendation,
zero-suppressed binary decision diagram

1 Introduction

Similarity joins or error-tolerant matching algorithms between two collections of
item sets have recently been investigated and have attracted significant attention
[1,2,4,6,12-14,17-19] for linguistic applications such as those involving spelling
error corrections, data integration, data cleaning, and detection of similar words.
The aims in these researches are to find similar records between two huge data
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sets based on similarity definitions such as cosine measure, Jaccard similarity,
and edit distance.

Here, we propose a new efficient method of implementing similarity joins
for general item set collections, such as those of purchase history and research
keyword data. The main objective of our research is to efficiently find similar
records between two data collections under the constraints of the number of
added and deleted items. These constraints can be considered to be natural
constraints for general unordered item set collections, and they have a broad
range of possible applications. For example, consider the following item sets:
Dy = {a,b},D1 = {a,c},Ds = {a} and D3 = {a,b,c}, where all of the edit
distances from Dy to Dy, Dy and D3 are one. It is natural, however, to consider
that the distance from Dy to D7 would be longer than that from Dy to Do and
Dy to D3 in real world data such as those in purchase histories rather than those
in linguistic applications.

In this research, the similarity between records is not defined approximately
but “exactly”. Efficient matching algorithms are urgently needed in exact simi-
larity joins because of the combinatorial explosion between two data collections.
To overcome this difficulty and make matching process more efficient, we devel-
oped a matching algorithm based on Zero-suppressed Binary Decision Diagrams
(ZDDs) [7,9,11]. ZDDs are special types of Binary Decision Diagrams (BDDs)
[3] and suitable for implicitly handling large-scale combinatorial item set data.
In our previous work [16], we developed an efficient method of set recommen-
dation using ZDD structures. In our set recommendation, a set of items to be
added or deleted is recommended to the initial item set so that the modified
set is classified to the target class. In this paper, we extend this approach to
establish set similarity joins between two collections of item sets.

The applications of our approach can cover a wide area of real applications
where we need to find similar records between two huge collections of data sets
such as those in :

— Patent searches
To find similar previous patents by other research institutes, organizations,
or countries.

— Data cleaning and duplicate entry detection
To fix errors in databases compared with other databases, or detect duplicate
entries between two databases.

— Similar research
To find similar research papers or research activities in previous decades,
those published by other organizations or countries, or those in different
areas.

— Fraud detection
To find fraudulent data in the database by comparing with previous fraud
cases. In fraud detection, rule based method is one of the most realistic
approaches. However, in fact, we can hardly define the rules explicitly to
detect individual case of fraud. Our approach in this paper enables us to
directly find similar cases to those in previous fraud data.
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— Customer classification
To find loyal or potentially-dependable customers, or to find unacceptable
customers by comparing with those in previous customer databases.

In this paper, we present the experimental results obtained from comparing
the performance of our approach with ordinary matching algorithms and other
similar methods, and also the results from other experiments using real huge
data collections such as those in DBLP research titles and NSF (National Science
Foundation) research abstracts, to demonstrate its efficiency and availability in
real applications.

The rest of the paper is organized as follows: Section 2 discusses some works
related to our research, especially previous researches on similarity joins. Section
3 provides some definitions and describes the implementation of our framework
using ZDD data structures. We present and discuss the results from evaluating
the performance of our approach in Section 4, and applications using real data
such as those from DBLP and NSF in Section 5. We conclude this paper in
Section 6 with a brief summary and some additional comments, and mention
future works.

2 Related Work

There have been many works about similarity joins [1,2,4,6,17-19] or error
tolerant matching [12-14], which can be considered to be essential operations in
many applications. The objectives in these researches have been to find similar
records based on “exact” matching under various constraints such as cosine
measure, Jaccard similarity and edit distance.

Chaudhuri [4] and Arasu [1] introduced a general operator called SSJoin,
which could be extended to various measures such as edit distance, Jaccard
similarity, Hamming distance. The algorithms PARTENUM and WTENUM im-
plemented with SSJoin are based on a filtering method, i.e., filtering effective
similarity joins based on two ideas for signature generation called partitioning
and enumeration.

Bayardo [2] proposed All-Pairs algorithms, on which irrelevant records could
be filtered out using inverted lists that were dynamically created on the pro-
cess according to constraints. They showed that All-Pairs algorithm was highly
efficient and scalable to huge size of records.

Xiao [18] introduced a filtering approach focused on the number of “mis-
matching” and proposed Ed-Join algorithms. The mismatch-based filtering meth-
ods could reduce the numbers of candidates.

These approaches described above, were based on filtering-based methods to
avoid redundant matching as much as possible. First, by generating the signa-
tures for each data (e.g., string sequence), the candidates of similar pairs could be
generated (filtering phase). Then, to find exactly similar pairs with defined sim-
ilarities, these candidates were verified in a test phase. However, if the database
consisted of sets of relatively short strings, signature based filtering methods
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could be an overhead since these approaches generally generated huge numbers
of candidate pairs.

Feng [6] and Wang [17] proposed another approach rather than filtering meth-
ods, which was a trie based framework called Trie-Join, in which the data set
could be represented as trie structures. Trie structures can share common pre-
fixes for a set of strings. They proposed search procedures on trie structures and
pruning methods for sub-structures of the trie.

In our work, we do not consider filtering methods, but focus on efficient
representational structures and search algorithms to find similar records in two
data collections. Although our approaches and motivation are close to those
in Trie-Join [6,17], Trie-Join assumed sequential patterns as input data and
edit distance as constraints, because they considered language processing as a
promising area of applications. However, our method takes into considerations
general item sets (unordered sets) and the constraints are slightly different from
the edit distance. Our system searches similar pairs under the constraints of the
number of added and deleted items. We consider that our constraints on item
addition and deletion are rather natural and generic for applications of general
item set collections or various applications in bioinformatics [15].

In this research, we adopt Zero-suppressed Binary Decision Diagrams (ZDDs)
[7,9,11] to implement the algorithms efficiently rather than trie structures. ZDDs
are not tree structures but directed acyclic graph (DAG) structures that can
share the same sub-structure.

3 Set Similarity Joins Using ZDDs

This section provides some definitions and examples of our set similarity joins
based on the addition/deletion constraints. We then briefly introduce ZDDs to
handle huge numbers of data sets, and present the algorithm for similarity joins
on ZDD structures.

3.1 Preliminaries
We will provide various definitions and notations as follows.

Definition 1 (item). An item is an atomic entity that represents a character-
istic or feature and is denoted by a lower-case character (a,b,c,...). A set of all
items to be considered is denoted by 3.

Definition 2 (item set and collection of item sets). An item set is a set
of items that represents the characteristics or features of an object (we use D
to represent an item set). A collection of item sets is a set of item sets, and is
represented by S or 7T .

We sometimes call an item set a “record”, and an item set collection a
“database” for simplicity.
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Definition 3 (add/delete-constraints). The upper bounds on the numbers
of items that can be added or deleted for an item set are denoted by NT, N,
respectively.

If we have item set D1 = {a,b,c,d} and N*T = 2, N~ = 2, then item set
Dy ={a,e, f,d} is a modification to D; under the constraints of N* and N~.

Note that we do not consider a data set as an ordered sequence. Although
the edit distance between Dy and D5 in the above example is two (if we consider
the distance of replacement as one), the edit distance between D; and D3 =
{a,d,e, f} is four, while D; and Dj also satisfy the condition N* = 2 and
N~ =2 as well as Dy and D,.

As an example, suppose we have two collections of item sets, S and 7 :

S= {{a7b}7{a7c}7{c}} (1)
T = {{a,d},{a,b,c},{b}} ()
The similarity joins of 7 for S under the condition of N = N~ = 1 would con-
sist of the following six pairs : {{a, b}, {a,d}}, {{a,c},{a,d}}, {{a,b},{a,b,c}},
{{a, ¢}, {a,b,c}}, {{a, b}, {b}}, {{c},{b}}.
If the conditions of addition and deletion are N* = 1 and N~ = 0, only the
pair of {{a,b},{b}} satisfies the condition. If N* = 0 and N~ = 1, two pairs
{{a,b},{a,b,c}} and {{a,c}, {a,b,c}} satisty the condition.

3.2 Zero-Suppressed Binary Decision Diagrams

This subsection reviews ZDDs, which are a variant of Binary Decision Diagrams
[3,7] (BDDs). BDDs are well-known and widely used for efficiently manipulating
large-scale Boolean function data. A BDD is a directed graph representation of
the Boolean function. The reduction rules in a BDD consist of a “node deletion
rule” (delete all redundant nodes with two edges that point to the same node)
and a “node sharing rule” (share all equivalent sub-graphs).

Zero-suppressed BDDs (ZDDs) [7,9,11] are special types of BDDs that are
suitable for implicitly handling large-scale combinatorial item set data. The re-
duction rules for ZDDs are slightly different from those for BDDs and are out-
lined in Fig. 1.

— Share equivalent nodes as well as ordinary BDDs ((1) in Fig. 1).
— Delete all nodes whose 1-edge directly points to the 0-terminal node, and
jump through to the 0-edge’s destination ((2) in Fig. 1).

ZDDs are especially much more effective than BDDs for representing “sparse”
combinations such as purchase history data. For instance, sets of combinations
selecting 10 out of 1000 items can be represented by ZDDs up to 100 times more
compactly than those by using ordinary BDDs.

Fig. 1 has an example of reduced ZDDs for S in 3.1. Note that the non-
existence of a node on each path means that the item is negated in the ZDD
representation. For example, {c}, which is a model of S, can be represented
by the heavy line path in ZDD representation. S can be rewritten in a sum of
product representations as ab + ac + ¢ within the ZDD context.



6 Y. Shirai et al.

0,

1 o/ 1
i
|4
1
i
1

07

| <

o! |1o §1o," 10
ﬁ | ﬁ ﬁ

Binary Decision Tree ZDD Reduction Rules ZDD Representation

Fig. 1. Reduced Binary Decision Tree with ZDDs

3.3 ZDD based Similarity Joins

In our approach, two collections of item sets in text format are transformed into
ZDD structures via the ZDD package [10]. The input data of our system are
two ZDD structures and the constraints description. This subsection presents
the method for calculating similarity joins for two collections of item sets, i.e.,
for two ZDD structures.

Algorithm 1 outlines the search algorithm on ZDD structures. Fig. 2 has a
simple example of set similarity joins using ZDD based on Algorithm 1, where
the objective is to find similar item sets between S (diagram at left) and 7
(diagram at right) under the constraints of N* = N~ = 1. The search step
begins to work from top node a on S (search_zdd(n) in the algorithm).

Each square box on the edge indicates the search results, which is a list of a
pair: the current count of addition and deletion, and the corresponding path on
7. For example, box (1) on § is attached to the edge which indicates the negation
of a. +0-1:2 in box (1) indicates that the current count is “no additional item
(+0) and that one item has been deleted (-1)” for edge 2 on 7. In the same
manner, +0-0:1 in box (1) indicates that the current count is “no additional or
deleted items” for edge 1 on 7. The update_candidate in the algorithm adds new
candidates to the current candidates, ny.cand and ng.cand. The reduce function
reduces the candidate set and checks the constraints.

Similarly, box (2) is created based on the results for box (1). We need the
result for box (3) as well as the result for box (2) to create the box (4). The
search process in our algorithm only proceeds if all parents of the node have
already finished their processes. After box (3) is calculated, the calculation of
box (4) starts based on the results for box (2) and (3).

For box (6) which means the addition of d in S, all the counts in boxes (4) and
(5) must add 1 to the addition of items, because no item sets in 7 have d as their
element. As a result, none of the counts in boxes (4) and (5) satisfy constraints
N If no elements in the box satisfy the condition N or N, searching along
that path is terminated. Hence, box (6) becomes ¢.
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Algorithm 1 Search Algorithm on ZDD structures
no is a top node of the ZDD S;
ng.cand = {{+0 —0:0}};
search_zdd(no);

function SEARCH_zDD(n)
if all of other ancestors of node n have not been processed then return
end if
if n is a terminal node then return cand; // output candidates
else
n1 = n.edgei.dest; // n1 : destination of 1 edge of node n
ng = n.edgeg.dest; // no : destination of 0 edge of node n
n1.cand = update_candidate(n.edger, n.cand, ni.cand);
no.cand = update_candidate(n.edgeg, n.cand, ng.cand);
// update candidates for edge 1 and 0
ni.cand = reduce(ny.cand);
ng.cand = reduce(ng.cand);
// reduction of the candidate set and check the constraints
if mi.cand is not NULL then return search_zdd(ni);
end if
if mg.cand is not NULL then return search_zdd(no);
end if
end if
end function

Although there are no solutions under the constraints for the example in Fig.
2, another example in Fig. 3 can obtain two sets of results, where the square
box labeled +0-1:2-4-5-6-7 indicates one item has been deleted from path
2-4-5-6-7 (i.e., {a, c,d}). We can hence, obtain the final result, {a, ¢, d} —{c} =
{a,d}. We can similarly obtain {b, ¢, d, e} (addition of e to {b, ¢, d}) from the label
of +1-0:1-3-5-6-7.

4 Performance Evaluation

4.1 Comparison on Sorted Text Search

We first evaluate the efficiency of our approach based on ZDDs, using artificial
data. The problem we provided to evaluate performance in this experiment con-
sists of 170 items in total (]X] = 170), and each record randomly contains five
items. We prepare two data sets as S which contain one million data and 10 mil-
lion data respectively, and four data sets as 7 with sizes from 1000—1000000. We
compare three types of programs for set similarity joins for two given data sets,
i.e.,, “(1) Text-Linear” : between two sorted text data sets, “(2) ZDD-Linear”:
between ZDD and a sorted text data set, “(3) ZDD-ZDD” : between two ZDDs
presented in this paper.

All the systems were implemented in C++, and the experiments were run on
a SUSE Linux Enterprise Server 11 with 32 Intel Xeon CPUs (2.66 GHz) and
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S={{a,b.c.d e}, {bc d e} (ummmm—n T={{a e} (b e} {ce}}
{a,c.de} {abdet} Ny N

Fig. 2. Example of set-similarity joins using ZDD (1)

1.024 TB RAM. Table 4 compares the execution times. None of the execution
times include the time for preparatory data processing, i.e., data sorting or ZDD
construction.

As we can see from the table, the execution times for (1) Text-Linear and
(2) ZDD-Linear increase linearly for the size of search data, while (3) ZDD-
ZDD method can suppress the increase in execution time. We could conclude
from these results that our algorithms based on two ZDD structures worked
efficiently than linear searches (1) and (2).

4.2 Comparison with Trie-Join

As we previously described, Trie-Join [6,17] is a similar approach to our system.
It, however, only treats totally ordered sequences. Although it is difficult to make
precise comparisons with our systems, the experimental results in this subsection
provide some indications about their efficiency.

The data sets used in the experiments were as follows :

[19%))

— Item sets are generated by the alphabet (“a” to “z” in Trie-Join, and “x01”
to “x26” in the ZDD-based method) in alphabetical (or numerical) order.

— The length (number of items) of each record is 10. However, if duplicate
items occur in the records, we suppress them since the ZDD approach does
not distinguish the plural occurrence of items.

Table 1 lists the sample data we used in this experiment.
There are three variations of data sets, each of which consists of 100000,
500000, and 1000000 data records. The results from execution by Trie-Join* and

4 We used the Trie-Join program on :
http://dbgroup.cs.tsinghua.edu.cn/wangjn/codes/triejoin.tar.gz
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S={{abcde} mmmmmm T={{acd}{bcd}}

{a,d}, {b,c,d,e}} N =L N~ =1

Fig. 3. Example of set-similarity joins using ZDD (2)

Table 1. Sample Data Used in Trie-Join and ZDD-based Method

| Trie-Join input | ZDD-based method input ‘
aegklorstw x01 x05 x07 x11 x12 x15 x18 x19 x20 x23
bcegjmtvxy x02 x03 x05 x07 x10 x13 x20 x22 x24 x25
filmrsux x06 x09 x12 x13 x18 x19 x21 x24

dijkmqrt x04 x09 x10 x11 x13 x17 x18 x20

aeinprst x01 x05 x09 x14 x16 x18 x19 x20

kqrvwy x11 x17 x18 x22 x23 x25

aefghlqvx x01 x05 x06 x07 x08 x12 x17 x22 x24
acgknoruxy x01 x03 x07 x11 x14 x15 x18 x21 x24 x25

our ZDD-based method are summarized in Table 2. Fig. 5 also compares perfor-
mance of two systems for some selected results in Table 2 where the horizontal
axis plots the number of results and the vertical axis plots the execution times
(sec).

As can be seen in the table, we concluded that our system could achieve
the same or better performance than Trie-Join for large scale problems. For ex-
ample, in Table 2, the execution time with Trie-Join is 436.6 (sec) to generate
approximately 149 million results for 1000000 records and edit distance = 2. On
the other hand, the execution time with the ZDD-based method for 1,000,000
records and Nt = N~ = 2 is 1039.0 (58.5 + 980.5) (sec) to generate approx-
imately 809 million results which is over 5 times as much as the case of edit
distance = 2 on Trie-Join (the set of 149 million results by Trie-Join is a proper
subset of 809 million results by our ZDD-based method).
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(1) Text-Linear (2) ZDD-Linear (3) ZzDD-zDD
<+~
<+~
A A
]
Data Set Size Search Data Condition Execution Time (sec) Num. of Visit Nodes
& Set Size " () Text Linear | (2) ZDD-Linear | (3)ZDD-zDD | _ ZDD-Linear ZDD-ZDD
1,000,000 1000| add=1 | delete=1 374 B 23 10,657,783 781,112
1,000,000 10,000| add=1 | delete=1 406.6 30.8 6.5 106,268,058 1,363,943
1,000,000 100,000/ add=1 | delete=1 4055.9 310.2 20.1 1,055,439,664 1,987,588
1,000,000 1,000,000| add=1 | delete=1 - 3124.0 98.9 10,537,412,252 2,616,617
10,000,000 1,000| add=1 | delete=1 406.7 7.7 77 23,353,846 3,175,805
10,000,000 10,000{ add=1 | delete=1 4061.5 79.6 24.9 236,444,648 7,425,564
10,000,000 100,000f add=1 | delete=1 39989.3 793.8 81.6 2,369,599,985 13,450,436
10,000,000 1,000,000| add=1 | delete=1 - 7953.7 331.4 23,732,345,100 19,627,528
Data Set Size = 1,000,000 Data Set Size = 10,000,000
4500 45000
__ 4000 2 40000
é 3500 // § 35000 /
g 3000 / E 30000 //
= 2500 = 25000
E 1000 / —o—Text-Linear 'S Jooon / —o—Text-Linear
a 1500 / . a 15000 /
@ 1000 7/ 200-200 8 10000 / —4—20D-20D
w 500 w 5000
o ./ r——k 0 ./:
1000 10000 100000 1000000 1000 10000 100000 1000000
size of search dataset size of search dataset

Fig. 4. Performance Evaluation

Since these two systems assumed different constraints, we could not conclude
quantitative discussions preciously. Our system, however, could achieve at least
potential ability comparable with Trie-Join for the problems of similarity joining
with ordered sets.

5 Applications

This section presents some application results with real data sets that concern
research topics. We used the data sets from DBLP and NSF data collections.

5.1 DBLP Research Titles

This experiment took into account the paper titles in a DBLP xml data set®
whose tags include “article” and “inproceedings”. The total size of records in
this experiment is 863580.

We extracted the “publish year” and the “title” from the data set, and clas-
sified them into three collections according to the publish year, i.e., data set 1
(-1997 : 158706 records), data set 2 (1998 — 2007 : 348882 records), and data
set 3 (2008- : 355992 records). In this experiment, we excluded words, each of

® http://dblp.uni-trier.de/xml
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Table 2. Comparison of ZDD-based method and Trie-Join

ZDD-based Method

Size of DB1| Size of DB2| Search Condition Num. of Results| Exec.Time(sec)
ZDD Setting| Search

add < 1,delete < 0 16,624 T.8](Z1-1)

add < 0,delete < 1 16,664 1.6](21-2)

add < 1,delcte < 1 244,675 1.8|(21-3)

add < 2,dolete < 0 68,530 3.1](Z1-4)

100,000 100,000[add < 0,delete < 2 68,775 5.4 2.5|(21-5)
add < 2,delete < 1 1,203,882 11.1|(21-6)

add < 1,delete < 2 1,295,137 10.7|(21-7)

add < 2,delete < 2 8,713,274 37.2|(Z1-8)

add < 1,delete < 0 401,823 12.6](Z2-1)

add < 0O,delete < 1 405,813 10.2](Z2-2)

add < 1,delete < 1 5,022,847 31.5|(22-3)

add < 2,delete < 0 1,649,671 19.2|(22-4)

500,000 500,000[add < 0,delete < 2 1,681,117 27.9[ " 16.4|(22-5)
add < 2,delote < 1 31,163,352 84.4|(Z2-6)

add < 1,delcte < 2 31,554,584 86.1|(22-7)

add < 2,delete < 2 210,967,890 368.7| (Z2-8)

add < I,delete < 0 1,532,292 27.6|(Z3-1)

add < 0,dolete < 1 1,563,436 23.1|(Z3-2)

add < 1,delete < 1 22,695,485 67.7](Z3-3)

add < 2,delete < 0 6,312,234 10.0](Z3-4)

1,000,000|  1,000,000[add < 0,delete < 2 6,524,292 58.5[ 36.2|(23-5)
add < 2,delete < 1 119,123,804 210.6|(Z3-6)

add < 1,delete < 2 121,636,513 208.0](Z3-7)

add < 2,delcte < 2 809,214,292 980.5|(Z3-8)

Trie-Join
Size of DB1| Size of DB2| Search Condition Num. of Results| Exec.Time(sec)

100,000 100,000]edit distance=1 78,315 1.1](T1-1)
edit distance=2 1,746,849 19.8](T1-2)

500,000 500,000]edit distance=1 1,827,303 8.2](T2-1)
edit distance=2 40,789,678 159.1{(T2-2)

1,000,000]  1,000,000cdit distance=1 6,701,562 23.1](T3-1)
edit distance=2 149,904,112 436.6|(T3-2)

whose frequency in all databases was less than 10. The size of X' is 23224 (i.e.,
23224 words in total).

The experimental results are summarized in Table 3, where we can see the
results for similarity joins between data sets 1 and 2, and between data sets 2
and 3. For example, 6-a (published in 1981) and 6-b (published in 2004) are
extracted as similar research papers by different authors. Since both 6-a and
6-b involve the recognition of maximal planar graphs, these two research are
intimately related with each other. On the other hand, the main theme in the
paper of 1-a is the computational complexity of real sequences, while the theme
in 1-b is the descriptive complexity for binary sequences. In this case, there seems
to be no deep relationship among these two researches.

In fact, although we can recognize that other characteristics (e.g., research
abstract) for research papers should be included if the results are practically
in use, similar research activities between decades can be detected by using set
similarity joins for item collections.
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Fig. 5. Performance Comparison with ZDD-based Method and Trie-Join

5.2 NSF Research Abstracts

We applied our system to the NSF data collection as another experiment, which
consists of NSF Research Award Abstracts from 1990 to 2003. There are 129000
entries (title, period, budget, abstract, area key, ...) in the database, and the
bag-of-word data for the total records. The data set is disclosed in the UCI
Machine Learning Repository®.

We divided the data into “before 1996” and “after 1996” in this experiment,
and we focused on entries whose abstracts include the word “computer”. We
created data sets, each of which consists of words in the title and the abstract.
In this experiment, the size of X' is 3444 (i.e., 3444 words in total).

Part of the experimental results are listed in Table 4, where NT = 3 and
N~ = 3, which shows that relevant research activities are detected as well as
those from the DBLP experiments.

For example, 1-a (1992) is a project for studying basic techniques for parallel
algorithms, while 1-b (1999) is a workshop where more practical applications of
parallel computing such as fluid dynamics are discussed. In this experiment, we
can conclude that similar research projects can be detected as well as the case
of DBLP application.

6 Conclusion

In this paper, we described a new approach to similarity joins for general item
set collections under the constraints of the number of added and deleted items.
8 NSF Research Award Abstracts in UCI Machine Learning Repository

http://archive.ics.uci.edu/ml/datasets/NSF+Research+Award+Abstracts+1990-
2003
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Table 3. Experimental Results for DBLP database

Experiments for articles on DBLP (1) (— 1997 : 1998 — 2007)

[Num.[Year] Title

[ 1-a [1987[On The Complexity of Computable Real Sequences.

[ 1-b [2001[Descriptive complexity of computable sequences

[ 2-a [1982[Approximations for the waiting time distribution of the M/G/c queue.
[ 2-b |2004|Mean Waiting Time Approximations in the G/G/1 Queue.

3-a
3-b
4-a [1993|An Affinity-Based Dynamic Load Balancing Protocol for Distributed Transaction
Processing Systems.

4-b [2006 |Dynamic Load Balancing Protocol for Locally Distributed Systems.

1979|On the connectivity of cayley graphs.
2005|Parameters of connectivity in (a, b)-linear graphs.

5 1989 |Efficient monotone circuits for threshold functions.

5-b [2006[M0n0t0ne circuits for monotone weighted threshold functions.
6-a [1981[The reconstruction of maximal planar graphs. I. Recognition.
6-b [2004[A simple recognition of maximal planar graphs.

a

Experiments for articles on DBLP (2) (1998 — 2007 : 2008 —)
[Num.|Year| Title

1-a
1-b
2-a
2-b
3-a [2006|A remote laboratory for electrical engineering education.

} %2005%1{-Ccntcr problems with minimum coverage.

[ 2-a [2006]

[2-b [2008]

} 3-b %ZOll%Dcvcloping a remote laboratory for engineering education.
l [2006]

[[4-b_[2008]

l [2005]

[5-b_[2009]

l [2006]

[[6-b_[2008]

2008 |Asymmetric k-center with minimum coverage.

2006 |On complexity of multistage stochastic programs.
2008|On Stability of Multistage Stochastic Programs.

4-a
4-b
5-a
5-b
6-a
6-b

2006]Arboricity and tree-packing in locally finite graphs.
2008|Locally finite graphs and embeddings.

2005 | Transforming semantics by abstract interpretation.
2009|Abstract interpretation of resolution-based semantics.

2006 [PolicyUpdater: a system for dynamic access control.
2008| A privacy-aware access control system.

We introduced a matching algorithm based on Zero-suppressed Binary De-
cision Diagrams (ZDDs), which are special types of Binary Decision Diagrams
(BDDs). ZDDs can represent huge databases efficiently, especially for sparse
data collections. We developed efficient algorithms and pruning techniques for
two ZDD structures.

We presented some experimental results from evaluating performance with
other methods including Trie-Join, which is well known as an efficient imple-
mentation for similarity joins, although it is based on slightly different problem
setting. As a result, our approach could achieve comparable results with Trie-
Join for the problems we presented in this paper.

We also showed experimental results with actual huge data collections such
as those from DBLP research titles and NSF research abstracts to demonstrate
the availability in real applications.

Future works include extending our results in several directions such as :

— We intend to investigate various pruning techniques or filtering techniques
exploited in other systems [1,2,6,17] to adopt them in our system. Some
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Table 4. Experimental Results for NSF database

[Num. |Year| Title and Abstract

1-a [1992| Design of Parallel Algorithms

— support for postdoctoral associate,

— experimental computer science

— developed for idealized parallel computers on real parallel computers,
— load balancing techniques

1-b [1999] WORKSHOP: Parallel CFD’99 International Conference

— computational fluid dynamics research on parallel computers,
— parallel software system,

— case studies from fluid dynamics,

— early experiences on teraflops-class computers

2-a [1993| Constructing, Maintaining, and Searching Geometric Structures
— construction and maintenance of geometric structures,

— efficiently searching in such structures,

— computational geometry unsolved problems,

— dynamic maintenance of geometric structures,

— computer graphics and computer vision,

— sequential and parallel computation models

2-b [1999| Towards Simpler Algorithms in Computational Geometry

— design and analysis of algorithms for large amounts of geometric data,

— efficient algorithms for fundamental problems in computational geometry,

— computer graphics and computer vision,

— geometric optimization,

— construction of basic geometric structures,

— randomization, approximation, and techniques for correcting pessimistic
worst-case analyses

3-a [1991| Undergraduate Computer Integrated Design Laboratory

— establishment of an undergraduate computer integrated design laboratory,
— development of a unified education program,

— computer graphic simulation that gives insight into complex phenomena

3-b [1998| The Development of a Communication Networks Laboratory at Queens College

— computer communication networks laboratory,

— design and implementation of the Token Ring and Ethernet Local Area Net-
works,

— undergraduate laboratory and an associated laboratory manual

pruning techniques [6, 17], such as length pruning and single branch pruning
would also be especially helpful in our system.

— We need to classify items to various classes such as editable, essential, and
requisite items, and we need to define transformation costs to replace these
items. These extensions would make the results quite effective for real use.

— We intend to investigate more enhanced algorithms using ZDDs such as
valuable ordering in ZDD construction or pruning techniques. In fact, it is
well known that the valuable ordering in ZDDs is sensitive to performance
in some cases.

— Sequence BDD [5, 8] offers considerable promise as a basic computation
framework instead of ZDD in dealing with string similarity problems. Se-
quence BDD shares the same common sub-sequence as DAG structures, and
can provide compact representations for manipulating sets of strings. We
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are now investigating the algorithms for sequential similarity joins using the
sequence BDD framework.

References

1. A. Arasu, V. Ganti, R. Kaushik : Efficient Exact Set-Similarity Joins, In Proc. of
32nd International Conference on Very Large Data Bases (VLDB 2006), 2006

2. R. J. Bayardo, Y. Ma, R. Srikant : Scaling Up All Pairs Similarity Search, In Proc.
of 16th international conference on World Wide Web, 2007

3. R. E. Bryant : Graph-based algorithms for Boolean function manipulation, IEEE
Transactions on Computers, Vol. 35 Issue 8, 1986

4. S. Chaudhuri, V. Ganti, R. Kaushik : A Primitive Operator for Similarity Joins
in Data Cleaning, In Proc. of 22nd International Conference on Data Engineering
(ICDE ’06), 2006

5. S. Denzumi, R. Yoshinaka, S. Minato, H. Arimura : Efficient Algorithms on Sequence
Binary Decision Diagrams for Manipulating Sets of Strings, Hokkaido University,
TCS Technical Reports, TCS-TR-A-11-53, 2011

6. J. Feng, J. Wang, G. Li : Trie-join: a trie-based method for efficient string similarity
joins, The VLDB Journal 21:437.461, 2012

7. D. E. Knuth : The Art of Computer Programming, Vol. 4, No.1, Bitwise Tricks &
Techniques, pp.117-126, Addison-Wesley, 2009

8. E. Loekito, J. Bailey, J. Pei : A Binary decision diagram based approach for mining
frequent subsequences, Knowledge and Information Systems, 24(2), 2010

9. S. Minato : Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,
In Proc. of 30th ACM/IEEE Design Automation Conference (DAC’93), 1993.

10. S. Minato : VSOP (Valued-Sum-of-Products) Calculator for Knowledge Processing
Based on Zero-Suppressed BDDs, Federation over the Web, LNAI 3847, 2006.

11. S. Minato : Implicit Manipulation of Polynomials Using Zero-Suppressed BDDs,
In Proc. of IEEE The European Design and Test Conference, 1995.

12. M. Neuhaus, H. Bunke : An Error-tolerant Approximate Matching Algorithm for
Attributed Planar Graphs and its Application to Fingerprint Classification, In Proc.
of Joint IAPR International Workshops, SSPR 2004 and SPR 2004, 2004

13. K. Oflazer : Error-tolerant Finite-state Recognition with Applications to Morpho-
logical Analysis and Spelling Correction, Computational Linguistics, 22(1), 1996

14. K. Oflazer : Error-tolerant Tree Matching, In Proc. of 16th conference on Compu-
tational Linguistics (COLING ’96), 1996

15. K. Shimizu, K. Tsuda : SlideSort: All Pairs Similarity Search for Short Reads,
Bioinformatics, 27(4), 2011.

16. Y. Shirai, K. Tsuruma, Y. Sakurai, S. Oyama, S. Minato : Incremental Set Rec-
ommendation Based on Class Differences, In Proc. of 16th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, LNAI 7301, 2012

17. J. Wang, J. Feng, G. Li : Trie-Join: Efficient Trie-based String Similarity Joins
with EditDistance Constraints, In Proc. of the VLDB Endowment, 3(1-2), 2010

18. C. Xiao, W. Wang, X. Lin : Ed-join: an efficient algorithm for similarity joins with
edit distance constraints, In Proc. of VLDB Endowment, 1(1), 2008

19. C. Xiao, W. Wang, X. Lin, J. X. Yu : Efficient Similarity Joins for Near Duplicate
Detection, In Proc. of 17th International Conference on World Wide Web, 2008



