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We study the modular symmetry in four-dimensional low-energy effective field theory, which is
derived from type IIB magnetized D-brane models and type IIA intersecting D-brane models. We
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by D-brane instanton effects. Anomalies are also investigated and such an analysis on anomalies
suggests corrections in effective field theory.
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1. Introduction

T-duality in string theory relates a theory with the compact space size R to another theory with
the size 1/R. Thus, T-duality is a quite non-trivial symmetry in string theory. Indeed, one type of
superstring theory is related to a different type of superstring theory by T-duality. (For a review, see
Ref. [1].)

T-duality also has a remnant in four-dimensional (4D) low-energy effective field theory derived
from superstring theory. In particular, 4D low-energy effective field theory of heterotic string theory
with a certain compactification is invariant under the modular transformation of the moduli τ ,

τ → aτ + b

cτ + d
, (1)

with ad − bc = 1 and a, b, c, d ∈ Z, at least at the perturbative level. This is a symmetry inside
a 4D effective field theory, but not between two theories. We refer to this symmetry inside one
effective field theory as the modular symmetry in order to distinguish it from the T-duality between
two theories.

The modular symmetry plays an important role in studies on 4D low-energy effective field theory
of heterotic string theory. For example, moduli stabilization and supersymmetry breaking were
studied with the assumption that non-perturbative effects are also modular invariant [2,3]. Moreover,
anomalies of this symmetry were analyzed [4,5]. The anomaly structure in heterotic string theory has
a definite structure.1 Their phenomenological applications were also studied (see, e.g., Refs. [7,8]).
In addition, the modular invariant potential of the modulus was studied for cosmic inflation [9]. Thus,
the modular symmetry in 4D low-energy effective field theory is important from several viewpoints:
theoretical, particle physics, and cosmology.

1 See also Ref. [6].

© The Author(s) 2017. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Funded by SCOAP3



PTEP 2017, 023B02 T. Kobayashi et al.

In this paper, we study the modular symmetry in 4D low-energy effective field theory derived
from type II superstring theory. In particular, we consider the 4D low-energy effective field theory
derived from type IIB magnetized D-brane models and type IIA intersecting D-brane models. Their
4D low-energy effective field theories have been studied before (for a review, see Refs. [10,11]).
We study the modular symmetry at perturbative level in their low-energy effective field theories.
The T-duality of Yukawa couplings between magnetized D-brane models and intersecting D-brane
models was studied in Ref. [12]. This is very useful for our purpose. We extend such analysis to
show modular transformation of 4D low-energy effective field theory including three-point and
higher-order couplings. Also, their anomalies are examined and the anomaly structure could provide
non-trivial information like those in heterotic string theory. Furthermore, we discuss non-perturbative
effects.

The paper is organized as follows. In Sect. 2, we study the modular symmetry ofYukawa couplings
and higher-order couplings at the perturbative level in the 4D low-energy effective field theory derived
from type IIB magnetized D-brane models. In Sect. 3, we study supergravity theory derived from
type IIA intersecting D-brane models. In particular, we investigate the anomaly structure of the
modular symmetry. In Sect. 4, we study the modular symmetry of non-perturbative terms induced
by D-brane instanton effects. Section 5 provides the conclusions.

2. Modular symmetry

Here, we study the modular symmetry in the 4D low-energy effective field theory derived from
type IIB magnetized D-brane models.

2.1. Magnetized D-brane models

We start with magnetized D9-brane models in type IIB theory. We compactify six-dimensional (6D)
space to the 6D torus, e.g. three 2-tori. The metric of the rth 2-torus for r = 1, 2, 3 is written by

g = R2
r

(
1 Re τr

Re τr |τr|2
)

(2)

on the real basis (xr , yr), where τr denotes the complex structure modulus. We denote the volume of
the rth 2-torus by Ar = R2

r Im τr . We use the complex coordinate zr = xr + τryr .

2.1.1. Yukawa couplings
Here, we review the analysis of Yukawa couplings in Ref. [12]. Our setup includes several stacks
of D9-branes with magnetic fluxes. We assume that our setup preserves 4D N = 1 supersymmetry.
Among several D-branes, we consider two stacks of Na and Nb D9-branes, which correspond to
the U (Na) × U (Nb) gauge symmetry. We put magnetic fluxes, Fa

r (= Fa
zr z̄r
) and Fb

r (= Fb
zr z̄r
) on

these D-branes along U (1)a and U (1)b directions of U (Na) = U (1)a × SU (Na) and U (Nb) =
U (1)b× SU (Nb). The magnetic fluxes must be quantized as Fa

r = π i
Im τr

mr
a in the complex basis. For

simplicity, we do not include Wilson lines here [12].
The open strings between these magnetized branes have massless modes. There appear I r

ab zero-
modes on the rth 2-torus, where I r

ab = mr
a−mr

b, and the total number of massless modes is given by
their product, Iab =∏3

r=1 I r
ab. Their zero-mode profiles on the rth 2-torus are written by [12]

ψ j,N (τr , zr) = Nr · eiπNzrIm zr/Im τr · ϑ
[

j
N
0

]
(Nzr , Nτr) (3)

2/13



PTEP 2017, 023B02 T. Kobayashi et al.

for N = I r
ab > 0, where j denotes the zero-mode index for j = 1, . . . , N (mod N ), and Nr is the

normalization factor given by

Nr =
(

2Im τr|N |
A2

r

)1/4

. (4)

The ϑ-function is defined as

ϑ

[
a
b

]
(ν, τ) =

∑
l∈Z

eπ i(a+l)2τ e2π i(a+l)(ν+b). (5)

These zero-modes are also written by another basis,

χ j,N (τr , zr) = Nr√
N
· eiπNzrIm zr/Im τr · ϑ

[
0
j
N

]
(zr , τr/N ), j = 1, . . . , N . (6)

These bases are related as

χ j,N = 1√
N

∑
k

e2π i jk
N ψk ,N . (7)

Note that the zero-mode profiles of bosonic and fermionic modes are the same in supersymmetric
models. For N = I r

ab < 0, the zero-mode profiles are obtained by ψ j,N (τr , zr)
∗.

In addition to the above two stacks of D-branes, we consider another stack of Nc D9-branes. Then,
there appear three types of massless modes, a–b, b–c, and c–a modes. TheirYukawa couplings among
canonically normalized fields can be obtained by overlap integral of wavefunctions,

yijk = Cabc eφ10/2
3∏

r=1

∫
dzrdz̄r ψ

i,I r
ab(zr) · ψ j,I r

ca(zr) ·
(
ψk ,I r

cb(zr)
)∗

, (8)

where Cabc is the moduli-independent coefficient and φ10 denotes the ten-dimensional dilaton. Here,
we set I r

ab + I r
ca = −I r

bc = I r
cb, because of gauge invariance. To be exact, we should replace the

zero-mode indexes i, j, k by ir , jr , kr . However, we denote them as i, j, k to simplify the equations.
Hereafter, we use a similar simplification. In this computation, the following relation of zero-mode
profiles,

ψ i,I r
ab · ψ j,I r

ca = A−1/2
r (2Im τr)

1/4
∣∣∣∣ I r

abI r
ca

I r
bc

∣∣∣∣
1/4

·
∑

m

ψ i+j+I r
abm,I r

cb(z) · ϑ
[ I r

cai−I r
abj+I r

abI r
cam

−I r
abI r

bcI r
ca

0

] (
0, τr

∣∣I r
abI r

bcI r
ca

∣∣), (9)

is very useful. Then, the Yukawa coupling is written by [12]

yijk = Cabc eφ10/2
3∏

r=1

(
2Im τr

Ar
2

)1/4 ∣∣∣∣ I r
1 I r

2

I r
1 + I r

2

∣∣∣∣
1/4

· ϑ
[
δr

ijk

0

] (
0, τr

∣∣I r
abI r

bcI r
ca

∣∣), (10)

where

δr
ijk =

i

I r
ab
+ j

I r
ca
+ k

I r
bc

.
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Similarly, the Yukawa couplings can be written in the basis χ ,

ylmn = Cabc eφ10/2
3∏

r=1

(
2Im τr

Ar
2

)1/4 ∣∣∣∣ I r
1 I r

2

I r
1 + I r

2

∣∣∣∣
1/4

· |IabIbcIca|−1/2

· ϑ
[

0
δr

ijk

] (
0, τr/

∣∣I r
abI r

bcI r
ca

∣∣). (11)

It would be convenient to use the 4D dilaton,

eφ4 = eφ10

3∏
r=1

(Ar)
−1/2, (12)

and we define Ĩ r = I r/Ar . Then, we can write the Yukawa coupling

yijk = Cabc eφ4/2
3∏

r=1

(2Im τr)
1/4

∣∣∣∣∣ Ĩ r
1 Ĩ r

2

Ĩ r
1 + Ĩ r

2

∣∣∣∣∣
1/4

· ϑ
[
δr

ijk

0

] (
0, τr

∣∣I r
abI r

bcI r
ca

∣∣). (13)

2.1.2. Modular symmetry
Now, let us study the modular transformation of the complex structure moduli τr . Recall that we
use the basis, so that the fields are normalized canonically. Thus, we just investigate the modular
transformation of the Yukawa couplings. The modular transformation (1) is generated by the two
generators, s and t,

s : τ →−1

τ
, t : τ → τ + 1. (14)

The modular function satisfies

f (−1/τ) = τ nf (τ ), (15)

where n is called its modular weight. It is obvious that Im τ is invariant under t. Under s, we have

Im τ → 1

|τ |2 Im τ . (16)

The ϑ-function ϑ
[

a

b

]
(0, τ) is the modular function with the modular weight 1/2.

The ϑ-function part in the Yukawa coupling is transformed under s : τ →−1/τ ,

ϑ

[
δijk

0

]
(0, τ |IabIbcIca|)→ ϑ

[
δijk

0

]
(0,−|IabIbcIca|/τ) . (17)

Furthermore, using the Poisson resummation formula, we find

ϑ

[
δijk

0

]
(0,−|IabIbcIca|/τ) = (−iτ)1/2 |IabIbcIca|−1/2 ϑ

[
0
δijk

]
(0, τ/ |IabIbcIca|) . (18)

Thus, the τ -dependent part in the Yukawa coupling transforms under s as

(Im τ)1/4 ·ϑ
[
δlmn

0

]
(0, τ |IabIbcIca|)→ (Im τ)1/4 · |IabIbcIca|−1/2 ·ϑ

[
0
δlmn

]
(0, τ/ |IabIbcIca|).

(19)
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This is nothing but the τ -dependent part of theYukawa coupling in theχ basis. Therefore, theYukawa
coupling terms in 4D low-energy effective field theory are invariant under modular transformation,
including basis change.

The above results can be extended to the magnetic flux,

Fzz̄ = π i

Im τ

⎛
⎜⎝

ma
na

1na
ma
na

1nb
ma
na

1nc

⎞
⎟⎠, (20)

by replacing Iab as Iab = nbma − namb.

2.1.3. Higher-order couplings
We can study higher-order couplings in a similar way [13]. For example, the four-point coupling can
be obtained by computing the integral of zero-mode profiles,

Cabcdeφ10

3∏
r=1

∫
dzrdz̄r ψ

i,I r
ab(zr) · ψ j,I r

bc(zr) · ψk ,I r
cd (zr) ·

(
ψ l,I r

ad (zr)
)∗

. (21)

We use the relation (9), and then we obtain [13]

yijk l̄ = Ceφ10

3∏
r=1

(
2Im τr

A2
r

) 2
4
∣∣∣∣ I r

abI r
bc

M r

∣∣∣∣
1
4 ·
∣∣∣∣M rI r

cd

I r
ad

∣∣∣∣
1
4

(22)

∑
m∈ZI r

ab+I r
bc

ϑ

[ I r
bci−I r

abj+I r
abI r

bcm
I r
abI r

bcM r

0

] (
0, τrI r

abI r
bcM r) · ϑ

[ I r
cd l−I r

ad k+I r
cd I r

ad r
I r
cd I r

ad M r

0

] (
0, τrI r

cdI r
adM r) ,

where M r = I r
ab + I r

bc and i + j + k + I r
abm+ (I r

ab + I r
bc)n = 
+ kIadr with a certain integer n.

Similarly, we can compute generic n-point couplings [13], whose τ dependence as well as φ4

dependence appears in the form

e(n−2)φ4/2
n−2∏
i=1

3∏
r=1

(Im τr)
1/4 · ϑ

[
δr

i
0

] (
0, τrα

r
i

)
(23)

for proper values of δr
i and αr

i , because we use the relation (9). Note that the ϑ-function multiplied
by Im τ−1/4 is invariant under modular transformation. Thus, 4D low-energy effective field theory
is invariant at the perturbative level under modular transformation of the complex structure moduli,
up to a change of field basis.

Similarly, we can study the orientifold and orbifold compactifications. For example, the zero-mode
profiles on the Z2 orbifold can be written by linear combinations of zero-mode profiles on the torus
[14],

ψ j,N (z)orbifold = 1√
2

(
ψ j,N (z)+ ψN−j,N (z)

)
. (24)

Thus, the Yukawa couplings on the orbifold, as well as higher-order couplings, can be written by
linear combinations of Yukawa couplings on the torus [14]. Then, the Yukawa couplings on the
orbifold are also modular invariant in the same way as those on the torus. Furthermore, the modular
symmetry in magnetized D5- and D7-brane models can be studied in a similar way.
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3. Supergravity and anomaly

In this section, we study modular symmetry within the framework of string-derived supergravity and
investigate its anomaly.

3.1. Intersecting D-brane models

In the previous section, we studied modular symmetry in 4D low-energy effective field theory of
magnetized D-brane models for canonically normalized fields. Here, we study type IIA intersecting
D-brane models, which are T-dual to magnetized D-brane models. In intersecting D-brane models,
the Kähler metric of matter fields was computed [10,15–18]. In this section, we study the modular
symmetry from the viewpoint of supergravity derived from intersecting D-brane models. In particular,
we study intersecting D6-brane models, where two sets of D6-branes, e.g. D6a and D6b, intersect
each other at an angle πθ r

ab on the rth 2-torus.
First, we write the supergravity fields in type IIB theory as

Re S = e−φ10

3∏
r=1

Ar , Re Tr = e−φ10Ar , Ur = iτr , (25)

where the imaginary parts of S and Tr correspond to certain axion fields. Their Kähler potential is
written by

K = − ln(S + S̄)−
3∑

r=1

ln(Tr + T̄r)−
3∑

r=1

ln(Ur + Ūr). (26)

We take the T-dual along the xr direction on each 2-torus from magnetized D9-branes to intersecting
D6-branes. Then, we replace

Tr ←→ Ur . (27)

We have seen that low-energy effective field theory of canonically normalized fields is modular
symmetric for τr in type IIB magnetized D-brane models. Thus, the low-energy effective field theory
of type IIA intersecting D-brane models must have symmetry under the modular transformation

Tr → arTr − ibr

icrTr + dr
, ar , br , cr , dr ∈ Z, ardr − brcr = 1, (28)

both in a canonically normalized field basis and in a supergravity basis.
We take the T-dual of the Yukawa coupling (13) of the magnetized D9-brane models, and then we

can write the Yukawa coupling of intersecting D-brane models:

yijk = Cabc eφ4/2
3∏

r=1

(2Re Tr)
1/4

∣∣∣∣∣ Ĩ r
1 Ĩ r

2

Ĩ r
1 + Ĩ r

2

∣∣∣∣∣
1/4

· ϑ
[
δr

ijk

0

] (
0, Tr

∣∣I r
abI r

bcI r
ca

∣∣), (29)

where

eφ4 = (Re U1U2U3)
1/2

Re S
. (30)
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Within the framework of supergravity, physical Yukawa couplings are written by

yijk = (KabKbcKca)
−1/2 eK/2Wijk , (31)

where Wijk denotes the holomorphic Yukawa coupling in the superpotential, i.e.,

W = Wijkijk + · · · , (32)

K is the Kähler potential, and Kab, Kbc, Kca are the Kähler metrics of the a–b, b–c, c–a sectors,
respectively. Then, the relation (31) requires that

KabKbcKca ∝
∏

r

(Tr + T̄r)
−3/2. (33)

The Kähler metric of matter fields has been computed [10,15–18]. The Kähler metric of the a–b
sector would be written as

Kab =
∏

r

(Tr + T̄r)
ν(θ r

ab). (34)

For example, in Refs. [16–18], the ansatz

ν(θ r
ab) = −

1

2
± 1

2
sign(Iab)θ

r
ab (35)

was discussed by comparing the holomorphic and physical gauge couplings and threshold
corrections. They satisfy the above relation (33) when

sign(Iab)θ
r
ab + sign(Ibc)θ

r
bc + sign(Ica)θ

r
ca = 0. (36)

Similarly, the n-point couplings in magnetized D-brane models include the τ -dependent factor (23).
Then, its T-dual intersecting D-brane models include (2Re Tr)

n−2/4. This requires that the product
of the Kähler metric satisfies

Ka1a2Ka2a3 · · ·Kana1 =
∏

r

(Tr + T̄r)
−n/2. (37)

This relation is also satisfied by Eq. (35) when

sign(Ia1a2)θ
r
a1a2
+ sign(Ia2a3)θ

r
a2a3
+ · · · + sign(Iana1)θ

r
ana1
= 0. (38)

We can take the T-dual of type IIA intersecting D-brane models along the yr direction,

type IIB model X ⇐⇒
T-dual along xr

type IIA model ⇐⇒
T-dual along yr

type IIB model Y, (39)

and then obtain type IIB magnetized D-brane models, which are different from the one discussed
in the previous section. The relation between these two type IIB models was studied in Ref. [12],
in particular the Yukawa couplings. Our results in the previous section can be understood as two
different theories through double T-duality such as Ref. [12], but in any rate we are interested in the
modular symmetry in one 4D low-energy effective field theory, as mentioned in Sect. 1.

7/13
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3.2. Anomaly

In the previous section, the modular symmetry in the supergravity basis was studied. The chiral
multipletab in the a–b sector has the Kähler metric (34). Thus, the chiral multiplet,ab, transforms
as

ab → (icrTr + dr)
−ν(θ r

ab)ab (40)

under the modular transformation (28). That is, the matter field has the modular weight ν(θ r
ab) under

the modular transformation of the rth 2-torus.
Such a modular transformation may be anomalous. The supergravity Lagrangian includes the

following couplings:(
1

2
Re f λ̄γ μλ− 1

2
Kij̄ψ̄jγ

μψi

)
1

2
V Kähler
μ +

(
1

2
Kij̄ψ̄jγ

μψl(−i�ikl∂μψk)+ h.c.
)

, (41)

where λ denotes the gaugino, Kii is the Kähler metric of i with the bosonic and fermionic
components, φi and ψi,

�ijk = ∂

∂φi ln Kjk , V Kähler
μ = −i

(
∂K

∂φi
∂μφi − ∂K

∂φ̄j
∂μφ̄j

)
. (42)

These couplings induce the anomaly of modular symmetry. Its anomaly coefficient of mixed
anomaly with the SU (Na) gauge group is written by [4]

Ar
a = −C2(Ga)+

∑
matter,b

T (Ra)(1+ 2ν(θ r
ab)), (43)

where C2(Ga) is the quadratic Casimir and T (Ra) is the Dynkin index of the representation Ra.
For simplicity, we consider the intersecting D-brane models on the torus. In this case, we can
write

Ar
a = −Na + 1

2

∑
b

NbIab(1+ 2ν(θ r
ab)). (44)

This anomaly can be canceled in two ways [4,5]. One is moduli-dependent threshold corrections
and the other is the generalized Green–Schwarz mechanism. The latter would lead to mixing of
moduli, e.g. in the Kähler potential. In order to see this, we first review briefly anomalous U (1) and
the Green–Schwarz mechanism in the next subsection [10,11,19].

3.2.1. Anomalous U (1)
First, let us consider the D6b-branes wrapping the 3-cycle [�b], whose wrapping numbers are (nr

b, mr
b)

along (xr , yr). We introduce the basis of 3-cycles, [α0] and [αk ] with k = 1, 2, 3, such that [α0] is
along (1, 0) for all of (xr , yr), while [αk ] is along (1, 0) only for r = k and (0, 1) for the others. We
also introduce their duals [βk ] such that [αi] · [βk ] = δik . These D6-branes correspond to the U (Nb)

gauge group, and its gauge kinetic function fb is written by

fb = q0
bS − qr

bUr , (45)
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where

q0
b = [�b] · [β0] = n1

bn2
bn3

b, qi
b = [�b] · [β i] = ni

bmj
bmk

b, (46)

where i 
= j 
= k 
= i.
Now, we study the U (1)a − SU (Nb)

2 mixed anomaly. Its anomaly coefficient can be written by

NaIab = q0
bQ0

a +
∑

i

qi
bQi

a, (47)

where

Q0
b = [�b] · [α0], Qi

b = [�b] · [αi]. (48)

This anomaly can be canceled by a shift of moduli,

S → S + Q0
a�a, Ur − Qr

a�a, (49)

in the gauge kinetic function fb under the U (1) transformation,

Va → Va +�a + �̄a. (50)

This means that the Kähler potential is not invariant, but the following Kähler potential is invariant:

K = − ln(S + S̄ − Q0
aVv)−

∑
r

ln(Ur + Ūr − Qr
aVa)−

∑
i

ln(Tr + T̄r). (51)

The Green–Schwarz mechanism is the same in the toroidal, orientifold, and orbifold compactifi-
cations.

3.2.2. Anomaly cancelation of modular symmetry
As mentioned above, the modular anomaly can be canceled in two ways [4,5]. One is moduli-
dependent threshold corrections and the other is the generalized Green–Schwarz mechanism. In
general, the gauge kinetic function has one-loop threshold corrections due to massive modes as

f (one-loop)
a = fa +

∑
i

�a(Tr), (52)

where the first term on the right-hand side corresponds to Eq. (45). The threshold corrections are
computed explicitly [17,18,20,21], and their typical form is

�a(Tr) = b̃

4π2 ln[η(iTr)], (53)

where b̃ is beta-function coefficient due to massive modes, and η(iT ) is the Dedekind eta function,
which has the modular weight 1/2. This threshold correction can partially cancel the anomaly. The
other part of the anomaly can be canceled by the generalized Green–Schwarz mechanism, where we
impose the transformation

S → 1

8π2

∑
r

δr
GS ln(icrTr + dr), Ui → −1

8π2

∑
r

δ
r,i
GS ln(icrTr + dr), (54)
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under the modular transformation (28). That is, the generalized Green–Schwarz mechanism could
cancel the anomaly proportional to

q0
aδ

r
GS +

∑
i

qi
aδ

r,i
GS. (55)

By comparison with the total anomaly as well as the U (1) anomaly, a plausible ansatz would be

δi
GS =

∑
b

Q0
b(ν(θ

(i)
ab )+ c), δ

i,r
GS =

∑
b

Qr
b(ν(θ

(i)
ab )+ c), (56)

where c is constant. In this case, the coefficient b̃ may be obtained,

b̃ = Na − 1

2

∑
b

NbIab(1− 2c), (57)

to cancel the modular anomaly. Indeed, the threshold correction,

�a = Na

4π2 ln[η(iTi)], (58)

was discussed in Refs. [17,18].
The transformation (54) implies that the Kähler potential is not invariant under the modular

transformation. The Kähler potential must be modified as

K = − ln(S+ S̄−
∑

i

δi
GS

8π2 (Ti+ T̄i))−
∑

j

ln(Uj+ Ūj−
∑

i

δ
i,j
GS

8π2 (Ti+ T̄i))−
∑

i

ln(Ti+ T̄i). (59)

That is, the moduli mix, and instead of S and U i, the linear combinations

S + S̄ −
∑

i

δi
GS

8π2 (Ti + T̄i), Uj + Ūj −
∑

i

δ
i,j
GS

8π2 (Ti + T̄i), (60)

must appear in 4D low-energy effective field theory. Similar linear combinations were discussed in
Ref. [18], although the linear combinations in Ref. [18] include a mixture of all the moduli.2

Here, we return to the type IIB model studied in Sect. 2. Similar to the above, we may need to
replace

S + S̄ → S + S̄ −
∑

i

δi
GS

8π2 (Ui + Ūi), Tj + T̄j → Tj + T̄j −
∑

i

δ
i,j
GS

8π2 (Ui + Ūi), (61)

in 4D low-energy effective field theory. For example, the 4D dilaton factor in the Yukawa coupling
would be modified as

eφ4 → 1

2

(∏
i Tj + T̄j −∑i

δ
i,j
GS

8π2 (Ui + Ūi)

)1/2

S + S̄ −∑i
δi

GS
8π2 (Ui + Ūi)

. (62)

2 The sigma model anomaly concerning Ui is also discussed in Ref. [18].
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4. D-brane instanton effects

In Sect. 2, we studied the modular symmetry of perturbative terms in the Lagrangian. In this section,
we study terms due to non-perturbative effects, in particular terms induced by D-brane instanton
effects. First, we study an illustrative example, and then we will discuss generic aspects.

4.1. Example

In this subsection, we study a Majorana mass term induced by an E5-brane in type IIB magnetized
orientifold models with O9-planes compactified on a Z2 × Z ′2 torus. In these models, the non-
perturbative corrections to the superpotential are written as [22,23]3

�W =
∫

dα1 · · · dαne−Sinte−S . (63)

In Eq. (63), αi denotes a fermionic zero-mode of the E5-brane and S denotes the classical action of
the E5-brane. Sint denotes interaction terms including fermionic zero-modes as

Sint ∼ yi1...in,j1...jmα
i1 · · ·αinj1 · · ·jm , (64)

where yi1...in,j1...jm is an (n+m)-point coupling andj is the chiral superfield of the models. Then, we
can obtain a Majorana mass term if there are two fermionic zero-modes and three-point couplings
like yijkα

iβ jk . The Majorana mass is generated as

M 2
s

∫
d2αd2βeyijkα

iβ jk = M 2
s εijεklyikmyjlnmn. (65)

In this subsection, we concentrate on the rth two-dimensional torus with two D-branes wrapping
the whole compact space for simplicity. We put the magnetic fluxes Im τ

π i Fa
r = 2 on one D-brane and

Im τ
π i Fb

r = −2 on the other D-brane. For simplicity, all Wilson lines are set to zero in this subsection
too. Then, there are three chiral fermions between these two branes. These modes are given by the
linear combinations of the wave functions on the covering torus ψ i,

ψ i(z, z̄) =
(

4 · 2Im τ

A2

)1/4

eiπ4zIm z/Im τϑ

[
i/4
0

]
(4z, 4τ), (66)

where i ∈ {0, 1, 2, 3}. The three zero-modes on the orbifold are given by Eq. (24) [14]. That is, two
of them, 0 and 2, correspond to ψ0 and ψ2, respectively, while 1 is given by

1√
2
(ψ1 + ψ3). (67)

In addition, an E5-brane with no magnetic flux induces two zero-modes between the E-brane and
the D-branes. These zero-modes are given by

αj(z, z̄) =
(

2 · 2Im τ

A2

)1/4

eiπ2zIm z/Im τϑ

[
j/2
0

]
(2z, 2τ), (68)

βk(z, z̄) =
(
−2 · 2|Im τ̄ |

A2

)1/4

eiπ2z̄Im z̄/Im τ̄ ϑ

[
k/2
0

]
(2z̄,−2τ̄ ). (69)

3 For explicit computations on intersecting D-brane orbifold models, see e.g. Ref. [24].
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Then, Yukawa couplings are written by

yijk =
(

4|Im τ̄ |
A2

) 1
2

3∑
m=0

ϑ

[
2j−2k+4m

16
0

]
(0,−16τ̄ )

∫
T 2

dzdz̄

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
4·2Im τ

A2

) 1
4
ϑ

[
i
4

0

]
(4z, 4τ)ϑ

[
j+k+2m

4

0

]
(−4z̄,−4τ̄ ) i = 0, 2,

1√
2

(
4·2Im τ

A2

) 1
4

(
ϑ

[
1
4

0

]
(4z, 4τ)+ ϑ

[
3
4

0

]
(4z, 4τ)

)
ϑ

[
j+k+2m

4

0

]
(−4z̄,−4τ̄ ) i = 1.

(70)

Complete three-point couplings are products of three-point couplings of those on each two-
dimensional torus and ten-dimensinal string coupling. The Majorana mass term is written as Eq. (65).
This Majorana mass term is invariant under the modular transformation of the complex structure
moduli since its dependence on complex structure moduli is determined by that of perturbative three-
point couplings and it is invariant under the modular transformation. The modular symmetry is not
violated by the non-perturbative effects in this case.

4.2. Generic discussion

The example in the previous subsection shows the modular symmetry of non-perturbative terms
induced by D-brane instanton effects for the complex structure moduli in type IIB magnetized
D-brane models. Moreover, this example suggests a generic aspect. The D-brane instantons induce
the non-perturbative terms such as

Ce−Vol(E5)

(∏
i

y(ni)(τ )

)
1 · · ·m, (71)

where C is a moduli-independent coefficient.4 Here, Vol(E5) denotes the volume of the D-brane
instanton in the compact space, and it depends only on Ar , but not τ . Furthermore, y(n) denotes
the couplings among zero-modes and 4D fields i, and these are computed in the same way as the
perturbative couplings shown in Sect. 2. The τ dependence appears only through these couplings
y(n). Therefore, terms induced by D-brane instanton effects are also modular symmetric.

In this section, we have not taken into account the moduli mixing so far. However, the discussion
in Sect. 3 would lead to modification such as Eq. (61).

5. Conclusion

We have studied the 4D low-energy effective field theory, which is derived from type IIB magnetized
D-brane models and type IIA intersecting D-brane models. We have studied the modular symmetric
behavior of perturbative terms. Also, such analysis has been extended to non-perturbative terms

4 More precisely, the coefficient C may include a functional determinant of the Dirac operator as well as a
bosonic Laplacian operator produced by the integration of massive modes [22,25]. However, these coefficients
are canceled if the SUSY is not broken. Even if the SUSY is broken, eigenvalues of the Dirac operator and
Laplacian operator depend only on Ar , but they are independent of the complex structures [12]. Thus our
conclusion would not be affected by this coefficient.
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induced by D-brane instanton effects. We have also investigated the anomaly of the modular sym-
metry. Its cancelation would require moduli mixing correction terms in low-energy effective field
theory. Thus, the modular symmetry is important in understanding the 4D low-energy effective field
theory of superstring theory.
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