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1 Introduction

The moduli generically appear in superstring theory with compactification and their vacuum
expectation values correspond to the size and shape of the compact space. The moduli fields
hence can offer characteristic features in superstring theory on the six-dimensional compact
space, and they can play important roles in particle phenomenology and cosmology of the
four-dimensional low-energy effective field theory.

The moduli have perturbatively flat potential and their imaginary parts, axions, posses
the shift symmetries. The moduli, in particular axions, hence are good candidates for the
inflaton field driving the cosmological inflation. A well-known example includes the natural
inflation [1] where the non-perturbative effects break the shift symmetry into the discrete
one and induce the non-flat potential for the axion. A notable requirement for the successful
natural inflation model is the super-Planckian axion decay constant, i.e. f ∼ 5Mp (Mp

denotes the reduced Planck scale Mp = 2.4 × 1018 GeV) while a typical decay constant in
superstring theory is sub-Planckian, f . Mp [2]. The possibilities for realizing a super-
Planckian decay constant hence have been explored such as the studies on the alignment
mechanism [3] and the one-loop effects [4, 5]. Another interesting axion inflation scenario in
superstring theory is the axion monodromy inflation [6–9].1

These axion inflation models in the string theory discussed in the literature typically
involve the super-Planckian inflaton amplitudes and a potentially large tensor-to-scalar ratio
r is featured for the large field excursion ∆φ as [12]

∆φ

Mp
≃ O(1)×

( r

0.01

)1/2
. (1.1)

On the contrary, in this paper, we study the small field axion inflation where the field
excursion of the axion inflaton is small compared with Mp.

2 The tensor-to-scalar ratio can
be consequently small and, in our string axion models with a sub-Planckian axion decay
constant, the reheating temperature can be as low as GeV.

For the illustrative purpose, we study in details the concrete axion inflation model which
was recently derived within the framework of type IIB superstring theory [17]. It is the exten-
sion of the work [18] to the compactification with generic fluxes, and the inflation potential
consists of the mixture of polynomial functions and sinusoidal functions of the axion.3

1See also refs. [10, 11].
2See, e.g. refs. [13–16].
3See also refs. [19, 20].
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The paper is organized as follows. In section 2, we study the inflation dynamics for our
axion inflation scenarios with a sub-Planckian axion decay constant and demonstrate that
the axion inflation energy scale can be quite low compared to the conventional axion inflation
scenarios with a super-Planckian axion decay constant. In section 3 we study the reheating
temperature in our model and discuss the thermal history after the inflation, followed by the
conclusion in section 4.

2 Axion inflation with a small axion decay constant

We, in this section, present the axion inflation model based on type IIB superstring the-
ory [17]. In particular, we consider the inflation model with a sub-Planckian axion decay con-
stant which can lead to a small tensor-to-scalar ratio r. We give the quantitative discussions

for our axion inflation scenarios in terms of the slow-roll parameters ǫ ≡ 1
2

(

Vφ

V

)2
, η ≡

Vφφ

V in

view of the Planck constraints [21, 22]

Pξ =

(

H2

2π|φ̇|

)2

=
V

24π2ǫ
= 2.20± 0.10× 10−9, (2.1)

ns = 1 + 2η − 6ǫ = 0.9655± 0.0062, (2.2)

r = 16ǫ < 0.12. (2.3)

2.1 Axion inflation potential in type IIB string theory

Recently, within the framework of type IIB superstring theory, the following form of axion
potential was derived [17],

V (φ) = Λ1φ
2 + Λ2φ sin

(

φ

f

)

+ Λ3

(

1− cos

(

φ

f

))

, (2.4)

where Λ1,2,3 are constant, and f is the axion decay constant.
We consider the flux compactification of type IIB superstring theory. We can, in general,

stabilize all of the complex structure moduli and the dilaton by choosing proper 3-form
fluxes [23, 24]. We here choose the 3-form fluxes such that only one of the complex structure
moduli, Φ, does not appear in the tree-level superpotential, while the other complex structure
moduli as well as the dilaton are stabilized by the 3-form fluxes.4 However, the geometrical
corrections induce the superpotential,

W = w0 + (c+ c′Φ)e−Φ/f , (2.5)

where w0, c, c
′ are constants determined by fluxes and vacuum expectation values of other

moduli. The Kahler potential of Φ also receives the correction,

∆K =
(

k + k′Re(Φ)
)

cos(Im(Φ)/f)e−Re(Φ)/f , (2.6)

in addition to the tree-level Kähler potential K = − ln i
∫

M
Ω ∧ Ω̄ with the holomorphic

three-form Ω of the CY manifold M, where k and k′ are constants determined by fluxes
and other moduli vacuum expectation values. We assume that the real part of Φ, Re(Φ), is

4We also assume that all of the Kähler moduli are stabilized by non-perturbative effects [25] and a proper
uplifting scenario is available such as [26–29].

– 2 –
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heavy, and integrating out Re(Φ) leads to the above scalar potential eq. (2.4) for the axion
φ = Im(Φ). Such a situation is realized by the scenario where Φ is stabilized at the minimum
satisfying ∂ΦK = 0 where K is the φ-independent Kähler potential given at the tree-level.5

We further assume that the Kähler moduli T i (i = 1, 2, · · · , h1,1) with the hodge number
h1,1 are stabilized at the minimum realized by the LARGE Volume Scenario (LVS) [31]
where the Kähler potential is described by K = −2 ln(V +∆V) with the volume of “Swiss-
Cheese” CY manifold V and loop-correction ∆V , whereas the superpotential is the sum of
contributions from the flux-induced superpotential Wflux and non-perturbatively generated
superpotential, Wnon ≃

∑

iAie
−aiT

i
with the constants Ai and ai. Although the energy

density of scalar potential changes during and after the inflation, the superpotential can
be regarded as the constant in the inflationary era, i.e., W ≃ w0 where w0 involves both
Wflux and Wnon. This is because the first term in the superpotential (2.5) can be taken
parametrically larger than the second term in eq. (2.5) which induces the inflaton potential.
It is then possible that the stabilization of Kähler moduli is achieved at the scale above the
inflation scale through the LVS mechanism, since the mass scale of lightest Kähler modulus
(volume modulus) w0

V3/2 can be larger than the Hubble scale for the mild volume of CY

manifold V ∼ 102 in string units. As discussed in refs. [17, 18], the backreaction from the
Kähler moduli are also suppressed, since the energy scale of scalar potential determined by
the LVS is larger than that of inflaton potential.

Note that the superpotential as well as the Kähler potential includes the linear term,
exponential term and their products. This is the origin of the mixture between polynomial
functions and sinusoidal functions in the scalar potential. See, for details, ref. [17]. The
natural scale for the decay constant would be of order f ∼ 1/2π, even though one can expect
a wider range depending on the vacuum expectation values of the real parts of moduli cor-
responding to the sizes of cycles. For concreteness, in the following discussions, we mainly
consider the range6

0.01 ≤ f ≤ 1.0. (2.7)

Note that we focus on a small axion decay constant which does not exceed the Planck scale,
while a large axion decay constant has usually been explored in the previous literature on
the axion inflation scenarios [17]. The magnitudes and ratios of Λ1,2,3 can vary depending on
the flux magnitudes and vacuum expectation values of moduli [17], and we here treat Λ1,2,3

as free parameters to make our discussions as general as possible.
This potential consists of a mixture of polynomial functions and sinusoidal functions.

It reduces to the simple φ2 chaotic inflation when Λ2 = Λ3 = 0, which is in a tight tension
with the observations due to a large r [21]. For the non-vanishing Λ2 and Λ3, the potential
consists of many bumps and plateaus, as shown in figure 1, as well as several local minima.
The form of the potential eq. (2.4) heavily depends on the oscillation parameter f which
determines the width size of the flat plateau regime. A small f leads to a high frequency
potential with a small interval between each plateau, and our main focus is on a smaller
value of f making each flat plateau closer to each other. The potential is shown in figure 1
for f = 0.1 and f = 0.01, where, for concreteness, we chose Λ2/Λ3 = 1,Λ1/Λ3 = 7.3 for
f = 0.1 and Λ2/Λ3 = 1,Λ1/Λ3 = 97 for f = 0.01. The inflation can occur on a flat plateau
and we, in the following, study the inflation dynamics for our axion inflation scenarios with
a sub-Planckian inflaton field excursion.

5Recently, the authors of ref. [30] pointed out that the light complex structure moduli appear in the explicit
Calabi-Yau (CY) manifolds.

6Throughout this paper, we use the units where the reduced Planck scale Mp = 2.4× 1018 GeV = 1.
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f = 0.01.

Figure 1. The axion inflation potentials with a sub-Planckian axion decay constant f = 0.1(left)
and f = 0.01(right) for the small field inflation (the field excursion ∆φ < 1 during the inflation).

2.2 Small field axion inflation

The inflation can occur when an axion inflaton field slowly rolls over a flat plateau region in
our axion potential. We shall demonstrate that the small field inflation can be realized for a
small axion decay constant f when an enough number of e-folds are induced for a sufficiently
flat potential. The first derivative of the potential is written by

Vφ =

(

2Λ1 +
Λ2

f
cos

(

φ

f

))

φ+

(

Λ2 +
Λ3

f

)

sin

(

φ

f

)

. (2.8)

For our potential to become flat enough for a sufficient number of e-folds, we require (Vφ)
2 ≪

V 2, which is satisfied for φ ∼ 1 and f ≪ 1 (as well as cos(φ/f), sin(φ/f) ∼ O(1)) when

Λ1f ∼ Λ2 ∼ Λ3, (2.9)

with proper signs of cos(φ/f) and sin(φ/f). Another condition Vφφ ≪ V can also be satisfied
in the same parameter region. The consequent small inflaton field variation results in a small
tensor-to-scalar ratio r as estimated in the following.

For the inflaton variation ∆φ around |Vφ| ≈ 0 and |Vφφ| ≈ 0, the second derivative can
be estimated as

Vφφ ∼ Vφφφ∆φ ∼

(

−
Λ3

f3
sin

(

φ

f

)

−
Λ2

f3
cos

(

φ

f

))

∆φ. (2.10)

Note, for a small f , the terms with f−3 can be dominant in the third derivative Vφφφ. For
V ∼ Λ1φ

2 ∼ Λ3/f , with the relation (2.9) and φ = O(1), we estimate

η ∼
∆φ

f2
. (2.11)

Demanding η ≪ 1 results in ∆φ ≪ f2, which leads to r ≪ 0.01×f4 from eq. (1.1). Explicitly,
we can write

r ∼ 10−6 × f4 ×
( η

0.01

)2
. (2.12)

In addition, we can estimate η ∼ 10−2 because r = 16ǫ ≪ 0.01 and 2η ≈ ns − 1 ≈ −0.03.
With this approximation, we estimate r ∼ 10−6 × f4 and tensor-to-scalar ratio r can be
suppressed greatly as f becomes small.
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Figure 2. Inflaton trajectories.

Figure 2 shows examples of inflaton trajectories. For the illustrative purpose, the initial
values of the inflaton field are chosen such that a big enough e-folding number is realized at
the second and tenth plateaus, respectively, for f = 0.1 and 0.01. The inflaton rolls down
through lower plateaus to finally reach the global minimum φ = 0. The e-folding numbers,
which are obtained from the other plateaus, are negligible for these examples. We concentrate
on such parameter regions for concreteness where the total number of e-folds originates from
a single plateau in the following discussions. We then aim to illustrate the characteristic
features of our small field axion inflation scenarios which can be applicable for a wider range
of the parameters.

For f = 0.1, figure 3 shows how the inflaton field evolves as a function of the number
of e-folds (counted from the end of inflation), and the corresponding tensor-to-scalar ratio r
and ns are shown. In figure 3, we consider the scenario where a sufficient number of e-folds
are induced while the inflaton axion rolls over the second lowest plateau in the potential
shown in figure 1. As reference values to indicate the energy scale of inflation, the Hubble
parameter and the potential energy at N = 55 in this example are Hinf(N = 55) = 2.2×10−9

and V
1/4
inf (N = 55) = 6.1× 10−5. The inflation on another plateau also can lead to a similar

result, so that it can induce an enough number of e-folds from a single plateau with a small
tensor-to-scalar ratio.

The same story applies for a smaller f = 0.01 as shown in figure 4 (the scenario where a
sufficient number of e-folds are induced on the tenth lowest plateau in figure 1) corresponding

to V
1/4
inf (N = 55) = 4.0× 10−6 and Hinf(N = 55) = 9.0× 10−12.

For completeness, we also show the potential for f = 1.0 in figure 5 and the evolution

of φ along with (ns, r) in figure 6 which corresponds to V
1/4
inf (N = 55) = 9.0 × 10−4 and

Hinf(N = 55) = 4.7×10−7. The inflaton field excursion during the inflation is sub-Planckian
∆φ < 1 (we hence call it the small field inflation), even though the amplitude itself can be
larger than the Planck scale.

The above numerical analysis demonstrates that our axion potential with a sub-
Planckian axion decay constant as well as f = 1 can lead to the inflation with a sub-Planckian
inflaton field excursion. One notable feature compared with the conventional axion inflation
scenarios with the Planckian f and inflaton amplitude is a small tensor to scalar ratio r ≪ 1.
As discussed by eq. (2.12), r is suppressed as the fourth power of f . A rough estimation
eq. (2.12) fits with our numerical results by taking η ∼ 10−2 as mentioned above, and we

– 5 –
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Figure 3. The inflaton amplitude as a function of the number of e-folds φ(N) (Left) and (ns, r) for

N = [50, 60] (Right) for f = 0.1, Λ1/Λ3 = 4.9 and Λ2/Λ3 = 0.25 (corresponding to V
1/4
inf

(N = 55) =
6.1× 10−5).
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Figure 4. The inflaton amplitude as a function of the number of e-folds φ(N) (Left) and (ns, r) for

N = [50, 60] (Right) for f = 0.01, Λ1/Λ3 = 97, and Λ2/Λ3 = 1 (corresponding to V
1/4
inf

(N = 55) =
4.0× 10−6).
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Figure 5. The axion inflation potential with f = 1.0 for the small field inflation (the field excursion
∆φ < 1 during the inflation).
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1/4
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(N = 55) =
9.0× 10−4).
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Figure 7. The axion inflation potential with a large axion decay constant for the large field inflation.

estimate the typical parameter values of our axion inflation scenarios as

r ∼ 10−6×f4, V
1/4
inf ∼ 5×10−4×f, Hinf ∼ 10−7×f2, Λ3 ∼ 6×10−14×f5, (2.13)

because of Vinf ∼ Λ3/f . The energy scale of our axion inflation scenarios can be quite low
compared with the conventional axion inflation with the Planckian decay constant, and we
expect the consequent low reheating temperature as discussed in the next section.

Before concluding this section focusing a small f , let us briefly discuss the scenarios for
a larger f & 1 commonly discussed in the literature for comparison. For a Planckian value
of the axion decay constant, the large field inflation can be induced. The typical potentials
are shown in figure 7 for f = 1 and f = 3. Compared with our axion potential with a sub-
Planckian f , the tensor-to-scalar ratio r, along with the other parameters, can become large.
For instance, with f = 3.0 for concreteness, the first term Λ1φ

2 can become dominant in both
the potential (2.4) and the first derivative Vφ when φ ≫ 1 and Λ1 ∼ Λ2 ∼ Λ3. The tensor-to-
scalar-ratio ratio r can be estimated as r ∼ 10/φ2, e.g. r ∼ 0.1 for φ ∼ 10. The representative
examples for a Planckian f are given, for illustration, in figure 7 and table 1 showing the
observables including the inflaton potential energy scale Vinf at the horizon exit N = 55.
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N ns r V
1/4
inf Λ1/Λ3 Λ2/Λ3

f = 1 55 0.95 0.13 8.0× 10−3 5.0 1.0

f = 3 55 0.97 0.011 4.3× 10−3 1.0 4.9

Table 1. The typical parameters for f = 1, 3 for the large field inflation.

f m2
φ Treh

3.0 1.0× 10−11 4.3 PeV

1.0 1.9× 10−13 220 TeV

0.1 1.2× 10−16 860 GeV

0.01 3.4× 10−20 1.9 GeV

Table 2. Typical reheating temperature for the cases f = 3.0, 1.0, 0.1, 0.01 with c = 1.

3 Phenomenology after inflation

We now discuss the phenomenology after the inflation including the reheating temperature
and the dark matter abundance in our small field axion scenarios. The inflaton field is the
axionic part of the complex structure modulus, and, in type IIB superstring theory, the
complex structure moduli appear in one-loop corrections on gauge kinetic functions [32, 33].
The modulus thus couples with the gauge bosons through one-loop effects,

−
1

4g2a
F a
µνF

aµν −
1

4

∆(Φ)

16π2
F a
µνF

aµν , (3.1)

where a = 1, 2, 3 correspond to the gauge groups of the standard model, U(1)Y , SU(2) and
SU(3), respectively, and ∆(Φ) is a function of Φ. Through these couplings, the inflation
decays into the gauge bosons g(a), and its decay width is estimated as [17]

Γφ =
3

∑

a=1

Γ(φ → g(a) + g(a))

=
3

∑

a=1

Na
G

128π

(

∂φ(∆(Φ))g2a
16π2d

)2 m3
φ

M2
p

(3.2)

≃ 5.8× 10−5c2
( mφ

1013GeV

)3
GeV,

where
∑3

a=1N
a
G = 12, d = O(

√

KΦΦ̄) = O(1), g2a ≃ 0.53, and for concreteness, we assumed
the form ∆(Φ) = cΦ. When such a decay into the gauge bosons is the dominant decay
channel, the reheating temperature can be estimated as

Treh =

(

π2g∗
90

)−1/4
√

ΓφMp ≃ 6.4× 106c
( mφ

1013 GeV

)3/2
GeV, (3.3)

where the effective degrees of freedom g∗ = 106.75. Table 2 lists the reheating temperature
along with the inflaton mass for the concrete examples of f = 3.0, 1.0, 0.1, 0.01 illustrated
in the last section. A smaller f corresponds to a smaller inflation energy scale, which hence

– 8 –



J
C
A
P
1
0
(
2
0
1
6
)
0
1
3

leads to a smaller Treh. The order of magnitude for the inflaton mass can be estimated as
follows. For f ≪ 1 with the relation (2.9), the dominant term of second derivative, Vφφ, at
φ = 0 is evaluated by Vφφ ∼ Λ3/f

2, i.e. m2
φ ∼ Λ3/f

2. Then, using eq. (2.13), we can estimate
the inflation mass by

m2
φ ∼ 5× 10−14 × f3. (3.4)

The complex structure moduli may appear in Yukawa couplings and higher dimen-
sional couplings of matter fields within the framework of type IIB superstring theory (see
for concrete computations, e.g. ref. [34, 35]). The inflaton hence can also decay into the
matter fields, and, when such a decay channel dominates, the reheating temperature can be
estimated as [17]

Treh ≃ 8.8× 107(∂ΦYijk)
( mφ

1013GeV

)3/2
GeV, (3.5)

where ∂ΦYijk denotes the first derivative of moduli-dependent Yukawa couplings Yijk. Treh

estimated assuming the dominant decay via the Yukawa couplings is hence comparable or
smaller than that estimated assuming the dominant decay into the gauge bosons.

Our models hence lead to the low reheating temperature (as low as GeV). Such a low
reheating temperature has important effects on the thermal history following the inflation.
Dark matter relic abundance for instance could be affected significantly. For example, if the
reheating temperature is smaller than the freeze-out temperature of dark matter, Treh < Tf ,
the dark matter yield can be estimated by considering the non-thermal abundance from the
inflaton decay

ndm

s
≃

ninf

s
Brdm ≃

ρ

mφs
≃

3Treh

4mφ
Brdm ≃ 1.5× 10−12

( c

10

)( mφ

108 GeV

)1/2
(

Brdm
10−4

)

, (3.6)

where ndm(ninf) is the number density of dark matter (inflaton), s is the entropy density of
the Universe, and Brdm is the inflaton decay branching ratio to dark matter. The current
dark matter abundance reads

Ωdmh
2 ≃ mdm

ndm

s

s0
ρcr

≃ 0.04
( c

10

)( mdm

100GeV

)( mφ

108 GeV

)1/2
(

Brdm
10−4

)

, (3.7)

where h denotes the dimensionless Hubble parameter and the ratio of critical density to the
current entropy densities of the Universe is given by ρcr/s0 ≃ 3.6h2 × 10−9.

Our low energy scale axion inflation scenarios hence can be distinguished from the
conventional large field axion inflation scenarios with a high reheating temperature Treh > Tf

where the dark matter abundance can be estimated as the thermal relic abundance. Another
notable feature in our axion inflation scenarios with a small decay constant is the suppressed
thermal production of the unwanted relics such as the gravitinos due to the low reheating
temperature [36, 37]. In general, supersymmetric models have the gravitino problem, and
the low-energy effective field theory derived from superstring theory has the moduli problem.
The non-thermally produced gravitinos from the moduli decay could be still a problem, and
a light moduli, which does not contribute to supersymmetry breaking, can help in diluting
the relic abundance of unwanted particles [38]. The baryogenesis at a low temperature can
be also a concern, and the low-energy scale Affleck-Dine mechanism can be a possibility in
our scenarios to realize the desired baryon asymmetry of the Universe [39, 40].

In addition to the inflaton axion we have been discussing so far, there can be other axion
fields sourcing the isocurvature perturbations which give the tight bounds on the inflation
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parameters. For example, the isocurvature perturbations due to the QCD axion requires

Hinf < 0.87× 107GeV

(

fa
1011GeV

)0.408

, (3.8)

where fa is the QCD axion decay constant (different from f), to be consistent with the present
observations [41]. Such a low scale inflation can be realized in our model with a sub-Planckian
decay constant f . For instance, the models with f = 0.1 and 0.01 can lead to Hinf ∼ 109GeV
and 107GeV, respectively, while the model with f = 1.0 leads to Hinf ∼ 1012GeV. It would
be interesting to increase fa, although there is an upper bound fa . 1012 to avoid the over-
abundant axion while its precise upper bounds depend on the model details such as the initial
displacement angles and the possible entropy dilution [38, 42, 43].

We so far limited our discussions to the case f & 0.01 as expected in the framework of
type IIB superstring theory [17]. We could in principle study an even lower f , and compute
the reheating temperature with eqs. (3.4) and (3.3). However, lower f can, depending on c,
lead to the reheating temperature of order MeV or below, and f ∼ O(0.01) would be the
lower parameter range of our interest for the successful Big-Bang nucleosynthesis (BBN).

4 Conclusion

We have studied the axion inflation model proposed recently within the framework of type
IIB superstring theory with a particular emphasis on the sub-Planckian axion decay constant,
0.01 . f . 1.0. The axion potential with such a sub-Planckian decay constant possesses many
flat plateaus and the small field inflation can be realized with a sufficient number of e-folds.

A notable feature of our scenario with a small decay constant f is the low inflation energy
scale Vinf ∝ f4 (eq. (2.13)). The implications of the consequent low reheating temperature
in our string axion inflation scenarios were discussed including the dark matter abundance,
gravitino/moduli problem and the isocurvature fluctuations of the QCD axion. More detailed
studies would be of great interest where we combine concrete mechanism for the moduli
stabilization/uplifting, fix the mass scale of light moduli, choose a candidate for dark matter,
and embed the QCD axion in superstring theory. We leave such detailed studies through the
concrete models and their generalization for our future work.

We have studied one concrete potential which is derived from superstring theory. The
shift symmetry of axion is violated by quantum effects inducing the axion potential. Such
an axion potential consists of the mixture of polynomial functions and sinusoidal functions
with the periodicity φ ∼ φ + 2π/f , represented as V (φm, cos(φ/f), sin(φ/f)). For a small
decay constant f ≪ 1, such a potential can have many bumps and plateaus with the size of
the flat regime f/(2π), and the small field inflation can be realized on one of the plateaus.

We expect our concrete examples discussed in our paper can capture the generic features
for a wider class of axion inflation consisting of the sinusoidal and polynomial terms with a
sub-Planckian axion decay constant. For instance, let us assume that the sinusoidal parts
are dominant in some derivatives of the potential. We then would find V (n+1) ∼ V (n)/f with
n ≥ n0 for a certain value n0, where V (n) denotes the n-th derivative (V (n+1) ∼ V (n)/f can
well happen for a higher derivative of the potential including the sinusoidal terms because
a polynomial term vanishes at a sufficiently large n). Analogous to eq. (2.11), we can then
make a similar Ansatz, η ∼ ∆φf−p. Here, p would depend on the form of the potential, e.g.
n0, while p = 2 in our model presented in this paper. This would lead to r ∼ 10−6 × f2p

when the tensor-to-scalar ratio is small r < O(10−2) and we can estimate 2η ≈ ns−1 ≈ 0.03.
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In such a model analogous to ours discussed in this paper, the inflation energy scale and
Hubble parameter could have the power law dependence on f and hence become rapidly
small as f becomes small. As a consequence, the reheating temperature would become small
too although its precise value depends on the detailed reheating processes such as couplings
between the inflaton and light modes. We would also be able to put the tight lower bound
on f from the BBN so that Treh > O(1)MeV. Confirming such a generalization of our study
is beyond the scope of current work, and we plan to present the analysis extending our
studies here for a wider class of axion inflation models which can be explicitly derived from
superstring theory in our future work.
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[32] D. Lüst and S. Stieberger, Gauge threshold corrections in intersecting brane world models,
Fortsch. Phys. 55 (2007) 427 [hep-th/0302221] [INSPIRE].
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