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We observed unusual lasing characteristics, such as double thresholds and blue-shift of
lasing peak, in a resonance-controlled ZnO random laser. From the analysis of lasing
threshold carrier density, we found that the lasing at 1st and 2nd thresholds possibly
arises from different mechanisms; the lasing at 1st threshold involves exciton recom-
bination, whereas the lasing at 2nd threshold is caused by electron-hole plasma recom-
bination, which is the typical origin of conventional random lasers. These phenomena
are very similar to the transition from polariton lasing to photon lasing observed in
a well-defined cavity laser. © 2017 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4974334]

Zinc oxide (ZnO) has been one of the attractive materials because of its excellent high emis-
sion efficiency, high electrical conductivity, high binding energy, transparency in the visible region,
and wide emission range, which has been utilized for various applications, such as light emitting
devices, solar cells, transistors, and photocatalysts. So far, as gain materials, many studies on UV
ZnO lasers have also been reported in various micro-/nano-cavity structures, such as random struc-
tures,1–13 Fabry-Perot cavities,14–17 whispering-gallery-mode resonators.18–21 Although, in most of
these ZnO lasers, the gain from electron-hole plasma (EHP) recombination under high excitation
intensity condition has typically been reported as the origin of the stimulated emission (photon las-
ing),12,13 the lasing originated by excitonic recombination, so-called polariton/exciton lasers, has also
been demonstrated in well-designed cavity structures at room temperature.21–23

Random lasers (RLs) based on photon localization due to multiple light scattering have been
reported in various materials. In particular, because ZnO has the above-mentioned advantages and
high gain, there are numerous studies on RLs so far.1–13 In typical random structures, because localized
modes are spontaneously formed and its modal control is difficult due to the multiple light scattering,
the lasing peak wavelengths depend mainly on the property of gain materials and their thresholds are
determined by the mean scattering property of the structure. Furthermore, the features of the RL (e.g.,
multimode lasing and high thresholds) make it difficult to realize strong interactions between cavity
modes and gain materials and observe cavity-related phenomena,21–24 like observed in well-designed
resonators, as mentioned above.

afuji@es.hokudai.ac.jp
bH. Fujiwara and T. Nakamura contributed equally to this work.
cnakamura@el.gunma-u.ac.jp

2378-0967/2017/2(3)/036101/8 2, 036101-1 © Author(s) 2017

 

 

 

 

 

 

http://dx.doi.org/10.1063/1.4974334
http://dx.doi.org/10.1063/1.4974334
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1063/1.4974334
mailto:fuji@es.hokudai.ac.jp
mailto:nakamura@el.gunma-u.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4974334&domain=pdf&date_stamp=2017-01-25


036101-2 Niyuki et al. APL Photonics 2, 036101 (2017)

On the contrary, we have proposed a new RL device consisting of size-monodispersive scat-
terers and intentionally introducing scatterer free sites, which exhibit unique properties realizing
quasi-single-mode, low threshold, and lasing wavelength control, due to the resonance of individual
scatterers.25–27 Note that, hereafter, the intentionally introduced scatterer free site and the new RL
devices are referred to as “defect site” and “resonance-controlled RLs.” Because our proposed RLs
can realize low-threshold and single-mode random lasing, which are quite distinct from conventional
RLs, the photophysical phenomena related to ZnO excitons that are difficult to observe in conventional
RLs could also be induced even in random structures, due to the improvement of photon localization
by the use of resonant scatterers. In fact, in our previous study,13 measuring the temperature depen-
dence of the resonance-controlled RL properties, we found that the lasing origin was quite different
from conventional RLs and suggested the possibility that the resonance-controlled RLs were related
to exciton lasing, like well-designed microcavities,21–23 whereas the origin of conventional ZnO RLs
was caused by EHP recombination.13,26

In this study, we observe the peculiar features (double threshold behavior, blue peak shift, and
peak width change) of single-mode lasing in the resonance-controlled ZnO RL. These features are
similar to the polariton lasers and have been never before reported in conventional RLs. From the
carrier density analysis, we find that the lasing at 1st and 2nd thresholds is dominated by different
mechanisms and suggest the possibility that the lasing at 1st threshold involves excitonic recombi-
nation because the carrier density is almost corresponding to or less than the Mott transition density,
whereas the 2nd threshold lasing is caused by usual EHP recombination that is the typical origin of
conventional RLs.

The experimental setup and sample preparation are the same as that used in our previous
study.25–27 We used quasi-mono-dispersive ZnO nanoparticles (NPs) as scatterers and gain mate-
rials, which were fabricated from commercially available ZnO NPs with a mean diameter of 100 nm
by using a laser-induced melting method.28 After the fabrication, spherical ZnO NPs with a diameter
of ∼212 nm were obtained, which were almost mono-dispersive and spherical, in contrast to the
commercially available poly-dispersive ZnO NPs with irregular shapes. Dispersing these ZnO NPs
and green fluorescent polystyrene particles with a diameter of 900 nm as point defects in water, the
solution was casted on a cover glass and dried. Similarly, as reference, poly-dispersive ZnO NP films
were also prepared. Then, the sample fixed on a microscope stage was excited by a Q-switched pulsed
laser (wavelength 355 nm, repetition rate 1 kHz, pulse duration 300 ps, spot size ∼65 µm) and mea-
sured the emission spectra from around a defect site. The location of defect site was confirmed from
a green fluorescence image of polystyrene particles. Emission from the sample passing through a
pinhole (about 1 µm on the sample plane) was detected using a spectroscope equipped with a cooled
CCD camera. We repeatedly measured the excitation dependence of emission spectra at different
defect sites.

Figures 1(a) and 1(c) show a SEM image, an emission image, and emission spectra of conven-
tional random lasing in a poly-dispersive ZnO NP film. The emission image shows almost uniform
distribution in the excitation spot, regardless of the defect sites. In the emission spectra, multiple
sharp peaks superposed on a collapsed broad emission spectrum along with the red-shift of these
peaks are observed around 387 nm (conventional RLs). In our previous study,13,26 we revealed that
the conventional RLs were caused by the gain due to EHP recombination, and the lasing wavelength
was determined by this gain property of ZnO, not by the optical property of random structure. Thus,
the red-shift of the lasing peaks reflects the excitation intensity dependence of the ZnO gain peak.

In the mono-dispersive spherical ZnO NP film (Figs. 1(b) and 1(d)), we observe random lasing
with single lasing peak induced in a narrowed area as shown in the emission image (resonance-
controlled RLs).25 The single lasing peak appears around the wavelength of 380 nm. This peak
position is clearly different from the maximum of the spontaneous emission spectrum. With increasing
the excitation intensity, the lasing peak wavelength shifts toward a shorter wavelength side (inset of
Fig. 1(d)). Furthermore, the threshold of the resonance-controlled RL (several MW/cm2) is one
order of magnitude lower than that of the conventional RL (several tens MW/cm2). Thus, we can
understand that the lasing characteristics of the resonance-controlled RL are determined by the
resonant properties of proposed random structure (i.e., spherical resonant scatterers used), not only
the ZnO gain properties.25
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FIG. 1. SEM images of (a) poly-dispersive and (b) mono-dispersive ZnO NPs. The insets in (a) and (b) show emission images
of UV random lasing from each ZnO NP film. Arrow indicates the position of the defect site. Lasing emission spectra with
different excitation intensities of (c) conventional and (d) resonance-controlled RLs are shown. The inset in (d) shows the
enlarged view of the emission spectra around 382 nm.

In the resonance-controlled RLs, we occasionally observed peculiar lasing behaviors. Figure 2
shows the excitation intensity dependence of the intensity (upper part), wavelength (lower part, right
axis), and width (lower part, left axis) of the lasing peak in Fig. 1(d). From the results, we found
double threshold behavior, 1st threshold at ∼5 MW/cm2 and 2nd threshold at ∼20 MW/cm2. The
1st threshold value is about 10 times lower than conventional RLs, and the 2nd threshold value
is slightly lower than those of conventional RLs. Above the 1st threshold, the single lasing peak
continuously blue-shifts with increasing excitation intensity between the 1st and 2nd thresholds and
starts to broaden at 10 MW/cm2 (also see solid lines in the inset of Fig. 1(d)). On the contrary, above
the 2nd threshold, lasing spectra remain single peak and the blue-shift stopped. We should note
that the spontaneous emission peak shows a red-shift with increasing excitation intensity due to a
band-gap renormalization effect as similar to conventional ZnO RLs.13 These peculiar characteristics
(double threshold behavior, blue-shift of lasing peak) in the resonance-controlled RLs indicate that
the underlying physical origins of its lasing oscillation are distinct from the conventional RLs.

To confirm the reproducibility, we repeatedly measured the lasing properties at different defect
sites. Figure 3 shows the scatter plots of the lasing peak wavelengths and their thresholds. Circles
indicate the thresholds and lasing wavelengths of the resonance-controlled RLs; especially the data
exhibiting double threshold behaviors were indicated as open circles. To compare the lasing prop-
erties, we also plotted those of conventional RLs as diamonds, in which the center wavelengths
of the multi-mode lasing were plotted. From the results, we can confirm the similar tendency as
shown in Figs. 1 and 2, double threshold, blue-shifted lasing wavelength, and low-threshold com-
pared to the conventional RLs. Furthermore, we also plotted the data measured at defect-free sites
in the resonance-controlled RLs (solid squares in Fig. 3) and found that it exhibited multi-mode
lasing with lasing peak red-shift and higher thresholds, similar to the conventional RLs. These results
indicate that no localized modes resulting in the strong photon confinement were induced at the
defect-free sites as mentioned in our previous studies.25–27,29 We note that a resonance-controlled
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FIG. 2. Excitation intensity dependence of intensity, energy, and width of the lasing peak for the resonance-controlled RL
(Fig. 1(d)). Dashed lines indicate the 1st and 2nd thresholds.

random structure (i.e., a defect polystyrene particle and surrounding ZnO NPs) was occasionally
damaged by the excitation laser irradiation at several tens MW/cm2, due to the strong photon con-
finement, which was close to the 2nd thresholds. This damage may prevent us from observing 2nd
threshold in the resonance-controlled RL, resulting in a small number of the data plots (Fig. 3). We
also note that such sample damage is not the origin of the double threshold behavior, since the repro-
ducibility of double threshold behaviors with increasing and decreasing the excitation intensity was
confirmed.

To understand such unique double threshold behaviors, according to our previous studies,13,26

we calculated the optical gain spectra of bulk ZnO and lasing threshold carrier density. Details on
the calculations can be found in Refs. 13, 14, and 30. The gain spectrum g(ω) calculated by using its

FIG. 3. Scatter plot of lasing peak wavelengths and thresholds. Circles and squares indicate the data at defect and defect-free
sites in resonance-controlled RLs, respectively. Especially, open circles show the data exhibiting double threshold behaviors
(red: 1st thresholds, blue: 2nd thresholds). Diamonds represent the lasing threshold for conventional RLs. Note that because
the center peak wavelengths of conventional multi-mode RLs were plotted, the data have narrower distribution. Lower and
upper dotted lines indicate the Mott density (nMott) and the carrier density where the gain overcomes the loss in bulk ZnO
(ng), respectively.
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FIG. 4. Calculated gain spectra g(ω) of bulk ZnO at various carrier densities (9.6-40 × 1024 m�3). The gain occurs at the
carrier density of 2.1 × 1025 m�3.

physical parameters, not using its structural parameters,

g (ω)=−
2ω
c

Im
[√

1 + χ (ω)
]

, (1)

where c and χ(ω) are the speed of light in vacuum and optical susceptibility. χ(ω) was obtained
by solving the Bethe-Salpeter ladder equation derived from the quantum field theory including the
quantum many-body effects of excited carriers.14,30 The results of calculated spectra are shown in
Fig. 4. From the calculations, the carrier density, where the gain overcomes the losses in the bulk
ZnO, was estimated to be ng ∼ 2.1 × 1025 m�3. This value is clearly larger than the Mott density
(nMott ∼ 1.5 × 1024 m�3),14 which is one of the criteria for distinguishing excited electronic states
between excitonic and EHP states.

The threshold carrier density nth (in m�3) was estimated from the excitation intensity and the
following differential equation:

dn(t)
dt
=

P (t) η (T )
~ωplD

−
n (t)
τ (T )

, (2)

where n(t), P(t), ~ωpl, and D denote the time-dependent carrier density, the excited intensity, the
photon energy of the excitation light, and the diameter of ZnO NPs, respectively. In the above
calculation, we assumed that all incident photons are absorbed by ZnO particles at the surface of the
random structure surface because of the larger photon energy of the excitation light than the bandgap
energy of ZnO. In that case, the excited carrier density per unit volume can be given as an incident
photon density (i.e., the excited carrier density) per unit area divided by the diameter (D) of ZnO
particles as shown in Eq. (2). The temperature-dependent parameters η(T ) and τ(T ) represent the
intrinsic carrier lifetime and quantum efficiency of ZnO, which were obtained from Refs. 13 and 31.
Numerically solving Equation (2) assuming a Gaussian pulse waveform,14,30 nth were obtained as
the time-averaged value of n(t) from the experimental Pth values. We note that the nth values give
upper limits because the power losses by the ZnO random structure were not included in the above
procedure and, therefore, the effective carrier densities may become lower inside the structure. From
the calculation, the 1st and 2nd threshold carrier densities of Figs. 1 and 2 were estimated as 2.1
× 1024 and 1.0 × 1025 m�3, respectively. The other nth values are represented by right axis in Fig. 3.

In Fig. 3, we compared nth with calculated results (ng and nMott, horizontal dashed lines). As
shown in the figure, the 1st threshold appeared around nMott, and the 2nd threshold was almost one
order of magnitude larger than nMott. Because, as mentioned above, the estimated nth values are the
upper limit, the 1st lasing was likely to be induced below the Mott density. Therefore, it suggests
the possibility that the origin of lasing oscillation around 1st threshold in the resonance-controlled
RL would be attributed to exciton related emission.26 In addition, Chen et al. have reported coherent
random lasing action, which is originated from localized exciton gain and strong light scattering,
in nanocrystal-embedded ZnO core-shell nanowires at room temperature.32 On the other hand, at
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the 2nd thresholds, the threshold carrier density is much higher than nMott and is close to those of
the conventional RL. This indicates that the lasing origin above 2nd thresholds is considered to be
EHP recombination, as similar to conventional RLs.13,26 Even though the same lasing origin as EHP
recombination, the 2nd threshold value is lower than those of conventional RLs. We also should
note that the nth of 2nd threshold is clearly lower than ng. These may be because of the decrease
in the effective lasing threshold due to the existence of the localized modes at the defect site in
resonance-controlled RLs.

Based on the above analysis of threshold carrier density, we consider the mechanism of the
lasing peak shift and width change in Fig. 2. In the case of excitonic lasing at 1st threshold, the
blue-shift is attributed to the decrease in the refractive index due to the change in the carrier density
with increasing excitation intensity.33,15 The similar blue-shift of individual lasing modes originating
from the refractive index change was reported in a ZnO microcavity laser.33 Further increasing the
excitation intensity, around the 2nd threshold, the peak shift was saturated. This is probably because
the red shift caused by bandgap renormalization with increasing the excitation intensity cancels the
blue-shift.15 The possible mechanism for the increase in the linewidth above 10 MW/cm2 is the
refractive index fluctuations of ZnO and carrier fluctuation with increasing excitation intensity.12,34

The spectral narrowing after the 2nd threshold may be due to the transition to photon lasing with
population inversion.

On the other hand, we consider another possible mechanism as follows. We confirmed contin-
uous blue-shift of single lasing peak and change in its spectral width with increasing the excitation
intensity, without the appearance of other multi-mode lasing peaks from the results in Figs. 1(d)
and 2. Furthermore, the analysis of threshold carrier density in Fig. 3 reveals the transition of las-
ing origin from the exciton related emission to the EHP recombination. These phenomena suggest
the possibility that polariton lasing occurs in the resonance-controlled RL that has typically been
observed in well-designed microcavity structures.23,24 This is because typical polariton lasers show
similar features,24 such as double threshold behavior (transition from polariton to photon lasers),
change in spectral width, and spectral blue-shift. In fact, the tendency of spectral width changes
and spectral blue-shift with increasing the excitation intensity in Fig. 1 is almost corresponding to
the polariton lasing in well-defined cavities. If polariton lasing is induced in resonance-controlled
RLs, the spectral broadening with the excitation intensity above 10 MW/cm2 and blue-shift can be
attributed to polariton-polariton (exciton) interaction. In polariton condensate at high density, phase
diffusion occurs due to self-interaction, resulting in a loss of coherence.35,36 The narrowing after
the 2nd threshold also can be explained by the transition to photon lasing with population inver-
sion, as mentioned above. Because not only blue-shift, these peculiar behaviors (double thresholds,
continuous blue-shift of single lasing peak, and spectral width change) were observed simultane-
ously, we consider that the polariton lasing due to the strong coupling between single localized
mode and ZnO excitons induced in the resonance-controlled random structure would be one of the
strong candidates for explaining these observed phenomena. However, because it is impossible to
measure characteristics of cavity mode dispersion (angle-resolved reflectance or emission spectra)
from the resonance-controlled RL due to the multiple light scattering, it is hard to verify the exis-
tence of microcavity exciton-polariton. Further investigation is necessary to reveal whether it is a
polariton lasing or not, for example, by measuring the dependence of resonance-controlled ran-
dom lasing on the frequency detuning between the exciton and localized mode by changing the
temperature.

There is another possibility for the peculiar behaviors of the present resonance-controlled RL,
the transition from the stimulated emission of exciton scattering at the 1st threshold to the population
inversion of EHP recombination at the 2nd threshold. Because the transition from exciton-scattering
to EHP recombination usually accompanies discontinuous photoluminescence peak red-shifts,37,38 a
red-shift of stimulated emission peak is expected to occur. However, in the present case, the lasing
peak continuously shifts to a blue-side. Furthermore, distinct double threshold behaviors that we
observed have never been reported due to the transition. Thus, such a transition mechanism can be
safely excluded as the origin of the peculiar lasing behaviors.

We observed double threshold behaviors and continuous blue-shift of single lasing peaks in
our proposed resonance-controlled RLs, which have never before observed in conventional RLs.
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From the results, we found that the 1st threshold carrier density was comparable to the Mott density
(1.5 × 1024 m�3), whereas the lasing at 2nd threshold carrier density was close to the density of 2.1
× 1025 m�3, where the gain occurs in bulk ZnO. Therefore, it could be considered that the lasing
mechanism of the 1st and 2nd lasing would change with increasing the excitation intensity, in which
the lasing at 1st threshold was related to the exciton recombination and the lasing at 2nd threshold
was induced by the population inversion accompanied by EHP recombination. Because the observed
peculiar features such as double threshold, blue-shift, and width change of single lasing peaks were
surprisingly similar to the features of polariton or exciton lasers in well-designed semiconductor
microcavity lasers,23,24 we may expect the transition of the lasing mechanism from a polariton/exciton
laser to a photon laser24 in the resonance-controlled random structure. Thus, we believe that our
results will provide important tools for revealing physical phenomena behind the randomness and
the present study may open the possibility that unique phenomena having observed in well-designed
microcavities would also be demonstrated even in our random structures, still keeping its merit of
easy and low-cost fabrications.
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