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Abstract — This paper investigates the problem of resource 

allocation for Device-to-Device (D2D) Communication in a Third 

Generation Partnership Project (3GPP) Long Term Evolution 

Advanced (LTE-A) network. The users in the network can operate 

either in a traditional cellular mode communicating with each other 

via the eNB, or in D2D mode communicating with each other without 

traversing the eNB. In the considered model, the D2D users and 

cellular users share the same radio resources. Particularly, each 

resource block (RB) within the available bandwidth can be occupied 

by one cellular and several D2D users. Hence, the problem of 

interference management is crucial for effective performance of such 

a network. The two-fold aim of the proposed algorithm is to i) 

mitigate the interference between cellular and D2D users and ii) 

improve the overall user-perceived quality of service (QoS). To 

control the interference, for each user we define a certain target 

interference level, and constrain the interference from the other users 

to stay below this level. The corresponding optimization problem 

maximizes the QoS of the users by minimizing the size of the buffers 

of user equipments (UEs). Performance of the algorithm has been 

evaluated using the OPNET-based simulations. The algorithm shows 

improved performance in terms of mean packet end-to-end delay and 

loss for UEs when compared to other relevant schemes. 

Index Terms — Device-to-Device Communication, Interference 

Management, LTE-A, Resource Allocation.  

I. INTRODUCTION 

2D communication has been proposed to increase 
spectral efficiency of cellular networks by allowing direct 

communication between two mobile users (called D2D 

users) without traversing the Base Station (BS) or core 

network [1]. D2D communication is also considered to be a 

new technological component for a 3GPP LTE-A system, 

aiming to reduce energy consumption, improve network 

utilization, and decrease end-to-end latency of cellular users 

[2]. In an underlay D2D model, the D2D users can reuse the 

licensed cellular spectrum and communicate directly with each 

other (while remaining controlled by the BS). Note that both 

the cellular and D2D users share the same radio resources, and 

therefore it is essential to control the interference caused by 

cellular users to D2D users, and vice versa [1]. Therefore, the 

problem of interference management is crucial for effective 

performance of such a network.  

Many effective solutions have been proposed to combat this 

challenging problem and improve the overall performance of 

D2D-enabled cellular networks (see, e.g., [3] – [12]). Some of 

these solutions (e.g., [3] – [5]) aim to increase the cellular 

spectrum efficiency by exploiting spatial diversity. Spectrum 

efficiency improvement is achieved either by reducing the 

interference (as in [3]) or by avoiding the interference ([4], 

[5]) among cellular and D2D users. The algorithm proposed in 

[3] uses a graph-based approach which accounts for the 

interference and capacity of a cellular network with underlay 

D2D communication. In the graph, each link (D2D or cellular) 

is represented by a graph vertex. The potential interference 

between the two links is represented by the edge connecting 

two vertices. Simulation results show that a graph-based 

approach performs close to the throughput-optimal resource 

allocation. In [4], instead of controlling, the interference is 

avoided by defining the so-called interference limited areas. 

These areas are formed according to the amount of tolerable 

interference and minimum signal-to-interference and noise 

(SINR) requirements for successful transmission. Different 

users (cellular or D2D) from the same interference area use 

different resources. Simulation results show a significant 

performance improvement achieved by this scheme (compared 

to the algorithms proposed previously). In [5], an iterative 

combinatorial auction game is proposed to allocate the 

spectrum resources and avoid intra-cell interference. In this 

game, the spectrum resources are regarded as the bidders, 

whereas the D2D links represent the goods. Based on the 

formulated game, the authors propose a non-monotonic 

descending price auction algorithm that converges in a finite 

number of iterations and shows improvement in sum-rate. 

The methods presented in [6] – [8] focus on maintaining the 

certain QoS and/or power constraints of the users. Resource 

allocation method in [6] guarantees the QoS requirements of 

cellular/D2D users, formulated in terms of the total network 

throughput. Here a resource allocation problem is divided into 

three separate subproblems: (i) admission control, (ii) power 

control, (iii) maximum-weight bipartite matching. The authors 

benchmark performance of a proposed algorithm against 

performance of the previously proposed techniques, and show 

that the proposed resource allocation approach provides up to 

70% throughput gain. In [7], a resource allocation problem is 

formulated as the system throughput maximization with 

minimum data rate constraints. A solution is obtained using 

the particle swarm optimization [12]. Simulation results show 

15% throughput gain over the orthogonal resource sharing 

scheme, where the achievable gain varies with the distance of 
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D2D users. In [8], the problem of maximizing the mean sum-

rate of a system is formulated as a stochastic optimization 

problem. A solution of the problem is found using the 

stochastic subgradient method. This solution is used to design 

a sub-channel opportunistic scheduling algorithm that takes 

into account the channel state information (CSI) of 

D2D/cellular links, as well as the QoS requirements of each 

D2D user. The numerical results show that the mean sum-rate 

can be improved by up to 500%, and this gain increases when 

the average distance between a pair of D2D users reduces. 

The algorithms [9] – [11] are designated to enhance the 

power efficiency, spectrum utility and fairness. The algorithm 

proposed in [9] aims to minimize the total transmission power 

of the users, subject to link data rate, interference, channel 

allocation and power assignment constraints. Because of the 

complexity of a formulated problem, it is divided into three 

subproblems: mode selection, channel allocation and power 

assignment. To improve the efficiency of resource allocation, 

the authors present a polynomial-time heuristic algorithm that 

jointly solves these subproblems, and show that a proposed 

technique can achieve over 57% power savings, compared to 

several baseline methods. In [10], the user spectrum utility is 

increased through D2D/cellular mode selection and power 

allocation. The spectrum utility is defined as a combination of 

users’ data rates, power expenditure and bandwidth. The 

authors first derive an optimal transmission power for the 

above mentioned modes, and then use evolutionary game [13] 

for D2D/cellular mode selection. Each user performs mode 

selection individually and independently. The BS collects 

users’ mode selection decisions and broadcasts this 

information to all users (assisting in future mode selections). 

Numerical results show that, via the proposed technique, a 

spectrum utility can be improved when compared to solely 

cellular mode and D2D mode, respectively. Resource 

allocation method proposed in [11] is based on sequential 

second price auction. Here each LTE RB is put on auction, 

and the D2D pairs should bid for the RBs that they want to 

occupy. In this way, each D2D pair makes its bidding. The 

bidding values are represented by a function of the achievable 

throughput of a bidding D2D pair on the auctioned RB. 

Simulation results show that the achievable throughput of a 

proposed auction is at least 80%, a fairness index is around 0.8 

and a system sum-rate efficiency is higher than 85% of the 

optimal resource allocation strategy. 

As follows from the brief literature review provided above, 

D2D communication can indeed significantly improve the 

network performance in terms of spectrum efficiency, QoS, 

power reduction, etc. However, there are still some challenges 

that have not been addressed by previous research: 

- First of all, the majority of presented techniques do not 

deal with the issues of D2D/cellular mode selection, 

spectrum assignment and interference management in a 

joint fashion, but rather by splitting the original 

problem into smaller subproblems (see, e.g., [9]), or by 

separating the time scales of these subproblems ([10]). 

Hence, although the complexity of such methods is less 

than the complexity of joint resource allocation, their 

efficiency in terms of maximizing some certain 

optimality criteria is clearly downscaled. 

- Secondly, most of the existing resource allocation 

techniques focus on improving the physical (PHY) 

layer network performance, measured in terms of 

SINR, PHY-layer throughput, power and spectrum 

efficiency. Such higher-layer service quality 

parameters, as packet delay or loss, have not been 

considered. Hence, the ability of these methods to 

improve the QoS for end-to-end user applications is 

questionable.  

- Finally, most of the available studies are based on 

numerical or self-developed simulators. Such types of 

evaluation are suitable for studying the potential gains, 

but are still far from reality due to simplified 

assumptions. Hence, a performance evaluation using 

the existing network simulators, such as NS3 [14], 

OPNET [15], Omnet++ [16] or experimental results are 

necessary to reveal the actual performance of D2D 

communications in cellular networks. 

To tackle the above challenges, an alternative resource 

allocation approach for D2D communication underlaying 

LTE-A network is proposed in this paper. Here the focus is on 

improving the QoS of the users, measured in terms of buffer 

sizes of UEs. A buffer size is chosen as an optimization target 

because it is directly related to such higher-layer service 

performance metrics, as packet end-to-end delay and loss. To 

control the interference between cellular and D2D 

communication, for each user we define certain target 

interference levels, and constrain the interference on each 

wireless channel to remain below these levels. A proposed 

joint mode, spectrum and power allocation is implemented as 

part of LTE packet scheduling (the use of packet scheduling in 

a D2D-enabled network is described in detail in [17]), with all 

necessary calculations performed at the evolved NodeB 

(eNB). The algorithm efficiency (in terms of minimizing delay 

and loss for cellular and D2D users) is evaluated using 

simulations in OPNET environment.  

The rest of the paper is organized as follows. The model of 

a D2D-enabled LTE-A network and a resource allocation 

problem are formulated in Section II. A solution methodology 

and the implementation of a proposed joint mode, spectrum 

and power allocation algorithm are described in Section III. A 

simulative performance analysis of the algorithm is presented 

in Section IV. The paper is finalized in Conclusion. 

II. RESOURCE ALLOCATION PROBLEM 

A. Network Model 

In this paper, the problem of resource allocation for D2D 

communication is investigated for both the uplink (UL) and 

the downlink (DL) directions. Similarly, the discussion 

through the rest of the paper is applicable (if not stated 

otherwise) to either direction. Consider a basic LTE-A 

network which consists of one eNB operating on a fixed 

spectrum band spanning K RBs numbered RB1, …, RBK. Let 

K = {1, …, K} be the set of the all RBs’ indices comprising 
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the available bandwidth. Described network operates on a 

slotted-time basis with the time axis partitioned into equal 

non-overlapping time intervals (slots) of the length Ts, with t 

denoting an integer-valued slot index.  

The eNB serves N wireless users numbered U1, …, UN. Let 

N = {1, …, N} be the set of users’ indices. Note that in LTE 

system, the number of users, as well as the unique users’ 

identification numbers (IDs) can be found from the standard 

random access channel (RACH) procedure, which is used for 

initial access to the network (i.e., for originating, terminating 

or registration call) [18], [19]. It is assumed that each UE can 

operate either in a traditional cellular mode or in D2D mode 

(in which case it communicates on the underlay to cellular 

communication). In this work, the modes (D2D or cellular) of 

the users are selected dynamically based on results of resource 

allocation. Consequently, let us define a binary mode 

allocation variable cn(t), nN, equaling 1 if Un selects to 

operate in cellular mode at slot t, and 0 otherwise.  

Note that in LTE system, the RBs are allocated to the users 

by the eNB using the packet scheduling procedure (described 

in detail in [19]). As part of packet scheduling, each cellular 

user is required to collect and transmit its instantaneous buffer 

status information (bit arrival rate and buffer size in bits) at 

every slot t. In this way, the eNB gets to “know” the exact 

amount of the UL data arrived and enqueued in the buffers of 

UEs. In the DL direction, the size of the DL buffer for each 

cellular user can be readily observed at the eNB at any slot t. 

In the framework described in this paper, both the cellular and 

D2D users adopt the above scheduling procedure. Let us 

further define a binary RB allocation variable b
k
n(t), nN, 

kK, equalling 1 if Un is allocated with RBk at slot t, and 0 

otherwise. It is assumed that each RB is allocated to at most 

one cellular user, whereas the number of D2D users operating 

on the same RBs is unlimited. Hence, 

. ,1)()( K
N
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n
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nn
 (1) 

Recall that both the single carrier frequency division 

multiple access (SC-FDMA) and orthogonal frequency 

division multiple access (OFDMA), applied in the UL and DL 

of LTE system, grant the orthogonality of resource allocation 

to different cellular users located within one cell (i.e., when no 

frequency reuse is considered) [18]. In other words, the 

transmissions of cellular users can be distorted only by the 

D2D users operating on the same RB(s), whereas the 

transmissions of D2D users may be affected by both the 

cellular and D2D users. Let G
k
nm denote the channel gain 

coefficient between the transmitter-receiver pair Un and Um 

operating on RBk, for any n, mN, kK. Note, that in LTE 

the instantaneous values of G
k
nm for the UL and DL directions 

can be obtained from the CSI through the use of special 

reference signals (RSs) [20]. This information is known by the 

eNB and the users.  

Then, at any slot t, the SINR for Un operating on RBk, 

equals [21] 
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where pn(t) is the transmission power (in Watts) allocated to 

Un at slot t. The denominator of (2) is a sum of the following 

two components: i) the additive white Gaussian noise 

(AWGN) power denoted N0 and ii) the interference from the 

other users operating on RBk, given by 
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Because of the condition (1), if Un operates in cellular mode 

(with cn(t) = 1), then the interference in (3) will be created 

only by the D2D user(s) transmitting over RBk. On the 

contrary, the transmissions of Un operating in D2D mode 

(with cn(t) = 0) can be affected by at most one cellular user 

and one or more D2D users operating on RBk. 

In (2) and (3), the power levels of the users should be non-

negative and cannot exceed some predefined limits. Let Pn and 

PeNB be the maximal possible transmission power levels (in 

Watts) of Un and the eNB, respectively. That is, 

N nPtptc nnn  ,)())(1(0  (4a) 

for D2D users. For the users operating in cellular mode, we 

have 

N nPtptc nnn  ,)()(0  (4b) 

for the UL direction 

eNB

n

nn Ptptc 
N

)()(0  (4c) 

for the DL direction. 

B. Problem Statement 

In a D2D model described above, the users operating in 

different modes share the same RBs, which can significantly 

increase the spectrum efficiency of a network. Another 

advantage of the underlay D2D communication is the 

possibility of QoS provisioning for the users within the 

cellular (licensed) spectrum [22]. Consequently, there are two 

main challenges of resource allocation for a D2D-enabled 

cellular network: 

1) The modes, RBs and transmit power levels of the users 

should be allocated effectively to maintain their traffic 

demands and improve their QoS.  

2) The interference between different users operating on 

the same RBs should be kept at the desired level (this 

can be done by controlling the power of individual 

UEs). 

To tackle the first challenge of resource allocation, it is 

necessary to choose an appropriate and easily obtainable 

system parameter to measure the users’ QoS and then optimize 

it during resource allocation. In this regard, most of the 

existing techniques focus only on providing the PHY-layer 

service performance. However, D2D communication can also 

be used to improve such higher-layer QoS metrics as packet 

delay and loss, which is very important for real-time 

applications (e.g., on-line games and multimedia). In LTE 

system, unfortunately, the direct estimation of delay and loss 

is rather complex. For instance, the end-to-end packet delay in 

LTE consists of various components, including transmission 

and queuing delays, propagation and processing delays, the 

UL delay due to scheduling and a delay due to hybrid 
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automatic repeat request (HARQ) [23]. The accurate analysis 

of these delay components requires knowledge of many 

system parameters which may be not available during resource 

allocation.  

It is worth mentioning that in many past works (e.g., [3], 

[5]) the total service rate of the users has been maximized 

during resource allocation. Although the sum rate 

maximization objective is very important from the point of 

view of the network operators, it also has some negative sides:  

- First of all, the sum rate maximization does not allow 

to control the QoS of each end-user (unless some 

delay/buffer size constraints are included in 

formulation); 

- In addition, this objective does not guarantee the 

fairness of resource allocation, because the user with 

higher demand can be allocated less capacity than a 

user with lower demand. 

Based on above considerations, we suggest the size of UEs’ 

buffers as a service performance measure. The main reasons 

behind such choice are the following. First of all, the buffer 

size of UE is directly related to its packet delay and loss. 

Secondly, at any slot t, the buffer size can be easily estimated 

using a well-known Lindley’s equation [23] 

  N


ntrtatqtq nnnn  ,)()()()1(  (5) 

where  


x  = max(0, x); qn(t) is the buffer size (in bits) of Un 

at slot t; an(t) is the bit arrival rate (in bits per slot or bps) of 

Un at slot t; rn(t) is the bit service rate (in bps) of Un at slot t. 

Note that at any slot t, the values of qn(t), an(t) can be 

collected at a corresponding Un. Parameter rn(t) depends on 

the number of RBs and the transmission power allocated to Un 

at slot t. In LTE system, rn(t) can be calculated using the 

modified Shannon expression [24], as follows: 
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In (6), ω is the bandwidth of one RB (ω = 180 kHz); the 

parameter ψ represents the system bandwidth efficiency; the 

function g(∙) determines the SINR efficiency of the 

transmission channel of Un [24]. A more detailed description 

of ψ and g(∙) will be provided in Section III. With buffer size 

as a QoS measure, at each slot t the resources can be allocated 

to minimize the maximal buffer size of the users at the next 

slot t+1. This will help to minimize the possibility of network 

congestion, as well as to decrease delay and loss for the users. 

To meet the second challenge of resource allocation, it is 

enough to specify some target interference level In
tar

 for each 

user Un, and constrain the inference for Un to stay below this 

level
1
. That is,  
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K
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Now, given the conditions (1), (4), (7) and the objective to 

minimize the maximum buffer size of the users in (5), a 

resource allocation problem can be readily formulated. To 

simplify notation, the index t is omitted below and further in 

                                                           
1 Some possible settings of In

tar will be discussed in the next Section. 

the paper. First, let us define the binary N×K-dimensional RB 

allocation matrix and the N-dimensional mode and power 

allocation vectors as 
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The sets of all admissible values that the optimization 

variables b, c and p can take are given by 
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respectively, for the UL direction, and 
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for the DL direction. 

Given the optimization variables defined in (8), the 

feasibility sets (9) - (11) and the target interference constraint 

(7), the resource allocation problem is formulated as 
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In above formulation the service rates of the users are 

expressed explicitly as the functions of b and p. Note that all 

necessary information (the sets N, K and the values of G
k
nm, 

qn, an) is reported to the eNB for all n, mN, kK, using the 

standard control signaling defined in LTE system. Based on 

this information, the eNB solves (12), and then reports the 

optimal components of (b
*
, c

*
, p

*
) to respective users. The 

advantage of such centralized approach is that the processing 

capabilities of the eNB are much better than those of the UEs, 

and therefore the eNB is able to solve the problems much 

faster than if it would be done by user devices. A solution 

methodology for (12) will be presented in the next Section. 

III. ALGORITHM IMPLEMENTATION 

A. Bandwidth Efficiency and SINR Efficiency 

In real LTE networks, the bandwidth efficiency and the 

SINR efficiency are strictly less than 1 due to numerous 

reasons [24]. The bandwidth efficiency ψ is reduced because 

of the several overheads on link and system levels. Hence, it is 

fully determined by the design and internal settings of a 

system, and does not depend on PHY-layer characteristics of 

the wireless channels. The SINR efficiency is mainly limited 

by the maximum efficiency of a supported modulation and 

coding scheme (MCS) [24]. In LTE, MCS is chosen using 

adaptive modulation and coding (AMC) to maximize the data 

rate by adjusting transmission parameters to the current 

channel conditions. AMC is one of the realizations of dynamic 

link adaptation. In AMC algorithm, the appropriate MCS 

indices for packet transmissions are assigned periodically by 
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the eNB based on instantaneous channel conditions reported 

by the users. The period for MCS allocation is usually equal 

one slot. The higher MCS indices are assigned to the channels 

with good channel quality (to achieve higher transmission 

rate). The lower MCS indices are allocated to the channels 

with poor channel quality to decrease the transmission rate and 

ensure the transmission quality [25], [26].  

The method for MCS selection is expressed as follows. The 

LTE standard allows 15 MCS indices. Note that the SINR in 

wireless channels varies according to instantaneous radio 

channel conditions and power allocations. Depending on 

SINR, the corresponding MCS index is chosen as [26] 
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In (13a), the values γ1 < γ2 < … < γ15 are the SINR 

thresholds for selecting the corresponding MCS index. Table I 

shows the MCS indices k, respective values of SINR 

efficiency ζk, and the SINR thresholds γk. Figure 1 shows the 

SINR efficiency g(SINR) for different values of SINR. In (6), 

we have represented this explicitly as the function 
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B. Solution Methodology 

It is easy to check that the objective in (12) is a non-smooth 

non-convex function of b, c and p. Hence, problem (12) can 

be cast as a non-smooth non-convex mixed non-linear integer 

programming (MINLP) problem, where some of the variables 

(particularly, the components of b and c) can take only binary 

values, whereas the components of vector p are real-valued. It 

has been established in the past (see, e.g., [35]) that the 

MINLP problems involving binary variables (such as (12)) are 

Nondeterministic Polynomial-time (NP) hard, and the decision 

problem for a MINLP is NP complete. The NP-hardness proof 

of (12) is given in Appendix. 

In general, all MINLP problems can be solved using either 

exact (deterministic) or heuristic techniques. A typical exact 

method for solving the MINLP problems is a well-known 

branch-and-bound algorithm [27]. Numerous heuristic 

methods proposed to speed-up the solution process, are local 

branching [28], large neighborhood search [29] and feasibility 

pump [30], to name a few. In any MINLP method, a solution 

process involves solving a continuous relaxation of the 

problem (the problem without integer restrictions) [27]. In our 

case, such relaxation is given by 
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where 
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Note that (14) is equivalent to 
max    minimize q  (15a) 

PpCcBb    
~

  
~

   :subject to ,,  (15b) 
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                  . ,),(max
Npb  naqrqaq nnnnn

 (15d) 

TABLE I. MCS INDICES, ASSOCIATED MODULATION AND CODE RATE, SINR 

EFFICIENCIES AND THRESHOLDS IN LTE STANDARD [25] 

MCS 

indices, 

MCSk 

Modulation 
Code 

Rate 

SINR 

Efficiency, ζk 

SINR 

Thresholds 

(dB), γk 

0 
No 

transmission 
   

1 QPSK 78 0.1523 -3.1 

2 QPSK 120 0.2344 -1.2 

3 QPSK 193 0.3770 1.5 

4 QPSK 308 0.6016 4 

5 QPSK 449 0.8770 6 

6 QPSK 602 1.1758 8.9 

7 16QAM 378 1.4766 12.7 

8 16QAM 490 1.9141 14.9 

9 16QAM 616 2.4063 17.5 

10 64QAM 466 2.7305 20.5 

11 64QAM 567 3.3223 22.5 

12 64QAM 666 3.9023 23.2 

13 64QAM 772 4.5234 24.9 

14 64QAM 873 5.1152 27 

 

Figure 1.  The SINR efficiency g(SINR) for different SINR values [25]. 

Problem (15) is a non-smooth non-convex optimization 

problem. Hence, existing local convex programming methods 

cannot be applied to solve the problem (15) in its current form. 

However, we can construct a sequence of smooth 

approximations 
qĝ , Zq , such that 

ggq
q



ˆlim   

SINR 

 

g(SINR) 
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and solve (15) using a sequential optimization approach as 

follows: 
max

) , , (

 min arg    ) ,, ( q
pcb

***
pcb   (16a) 

PpCcBb    
~

  
~

  :subject to ,,  (16b) 

               N
N K
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 

nIGbbp
nm k
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k
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nm  ,

}\{

 (16c) 
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(16e) 

It is easy to check, that g(x) is equivalent to a sum of the 

shifted and scaled versions of the Heaviside step function H(x) 

[31] given by 

);()()(
15

1

1 k

k

kk γxHζζxg 



 (17a) 



 


otherwise,0

0 if,1
)(

x
xH  (17b) 

where ζ0 = 0. 

Recall that a smooth approximation for a step function H(x) 

is given by a logistic sigmoid function [32] 

qxq
e

xH
21

1
)(ˆ


  

where q > 0, x is in range of real numbers from - ∞ to + ∞. If 

we take H(0) = ½, then a larger q corresponds to a closer 

transition to H(x), i.e. 

).()(ˆlim xHxHq
q




 

Above holds, because for x < 0, we have 

; 0)()(ˆ  ,2  xHxHe q
qx  

for x > 0,  

; 1)()(ˆ  ,02  xHxHe q
qx  

for x = 0,  

. 2/1)()(ˆ  ,12  xHxHe q
qx  

Consequently, an approximation for a shifted Heaviside 

function is represented by a shifted logistic function  

,
1

1
)(ˆ

)(2 kγxqkq
e

γxH


  (18) 

defined for q > 0, and real x in range from - ∞ to + ∞. 

Based on (18), we can construct a smooth approximation 

for g(x) as 

.
1

)(ˆ)()(ˆ
15

1

15

1
)(2

1
1 

 






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ke

ζζ
γxHζζxg  (19) 

Then, it is rather straightforward to verify that 

).()(ˆlim xgxgq
q




 

In fact, the approximation is rather close, as it follows from 

the example in Figure 2 showing the graphs of g(x) and )(ˆ xgq
 

for q = 5 and q = 10. 

With the approximation given by (19), the problem (16) can 

be solved locally using any standard non-convex optimization 

technique. In this paper, a second-order interior point 

algorithm modified for non-convex problems (as it has been 

done, for instance, in [33]) is applied to solve (16). This 

method has been chosen mainly due to its (relatively) low 

complexity. Its worst-case complexity for finding an ε-scaled 

second order stationary point (where the Hessian matrix is 

positive semidefinite) is O(ε
-3/2

) for a given accuracy 0 ≤ ε ≤ 1 

(see [34] for proof). In our case, an ε global minimizer is 

defined as a feasible solution (bε, cε, pε), such that 

   )),,((min- ) ,, ( max

 , ,
pcbpcb

pcb
FIqf   

where f(bε, cε, pε) is the value of the objective (16a) in a 

feasible point (bε, cε, pε); IF(b, c, p) is the indicator function of 

a feasibility set F, given by 
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Figure 2.  Original function g(x) and its approximations for q = 5 and 10. 

If there is a feasible solution to (16), we are done (and a 

solution to the original problem (12) is found). Otherwise, a 

solution to (16) yields a lower bound for the MINLP problem, 

and we apply some suitable technique to find the optimal/near-

optimal result. Among the various integer programming 

methods, there are only a few that can be used for solving non-

convex problems [35]. Feasibility Pump (FP) heuristic for 

non-convex MINLPs ([35], [36]) is perhaps the most simple 

and most effective for producing more and better solutions in 

a shorter average running time. Its complexity is exponential 

in size of a problem for the problems with non-binary integer 

variables, and polynomial for the problems with binary 

variables [37]. The local convergence property of FP 

algorithm for non-convex problems has been proved in [36]. 

The fundamental idea of FP heuristic is to decompose a 

problem into two parts: integer feasibility and constraint 

feasibility. The former is achieved by rounding (solving a 

convex relaxation to the original problem), the latter - by 

projection (solving a continuous relaxation). Consequently, 

two sequences of points are generated: the first sequence 

SINR 
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 I

ii

 

1 
) ,,( 


pcb , ZI  containing the integral points that may 

violate the non-convex constraints; the second sequence 

 I

ii

 

1 
) ,,( 


pcb  containing the points which are feasible for a 

continuous relaxation to the original problem but might not be 

integral.  

More specifically, with input 
1) ,,( pcb  being a solution to 

(16), the algorithm generates two sequences by solving the 

following problems for i = 1, …, I: 

1 
) ,,() ,,( minarg) ,, ( ii pcbpcbpcb   (20a) 

PpCcBb        :subject to ,,  (20b) 
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where ||∙||1 and ||∙||2 are l1 norm and l2 norm, respectively, 

defined as 
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where 
inini

k
n pcb  , ,  and 

inini

k
n pcb  , ,  are the components of 

i) ,,( pcb  and ,) ,,( ipcb  respectively; | x | denotes the absolute 

value of x. 

A rounding step is carried out by solving the problem (20), 

whereas a projection is the solution to (21). A suggested FP 

algorithm alternates between the rounding and projection steps 

until 
i) ,,( pcb  = 

i) ,,( pcb  (which implies feasibility) or the 

number of iterations i has reached the predefined limit I. A 

workflow of the corresponding FP algorithm is illustrated in 

Figure 3.  

 

Figure 3.  FP algorithm for solving non-convex MINLP. 

The problem (21) is very similar to (16), and therefore it 

can be solved using the same technique described in [33]. 

Problem (20) is convex MINLP which can be solved to 

optimality by at least five different algorithms [27]. These are 

branch-and-bound method [38], generalized Benders 

decomposition [39], outer approximation [40], branch-and-cut 

algorithm [41] and the extended cutting plane technique [42]. 

In general, any of these methods can be applied to solve (20) 

[27]. In this work, a modification of the branch-and-bound 

technique proposed in [38] has been used to solve this 

problem. 

C. Target Interference Levels 

Note that some users may operate on very noisy channels, 

and further reduction of SINR in these channels will be 

disastrous. To indicate such channels, for each user Un 

operating on any RB, we set some target SINR level SINRn
tar

 

(below which the data transmission is considered 

unsatisfactory). Then, at any slot t, we keep the SINR in all 

wireless channels above this target level. That is, 

., ,
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Based on (22), the interfering users are allowed to transmit 

at the level 
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and the target interference In
tar

 can be set equal 

. ,
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The right-hand side of equality (24) depends on the current 

RB and power assignments, b and p, which are unknown at 

the moment of resource allocation (i.e., at slot t). Therefore, 

instead of current values of p and b, we deploy past 

(available) observations of p and b, and set 

N
K
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where 

.,  ,

)(

  ,

)(
11 KN 
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 kn
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In (25b), T is the number of past observations; 
np  and k

nb  

are the time averaged components of a power allocation vector 

and a RB allocation matrix, respectively. The value of T can 

be determined based on the following considerations. First of 

all, T should be long enough to capture the trending levels of 

power and RB allocation. However, because of time-varying 

wireless channel quality, the observation period should not 

exceed the fluctuation periodicity of SINR in time domain. 

According to a recent study [43], the minimum and mean 

SINR fluctuation periods (for fixed users) are equal 7 and 25 

ms, respectively. Consequently, for LTE slot size Ts = 1 ms, 

we can choose any value of T, such that 7 ≤ T ≤ 25. 

0. Initialization: input I; set i := 1; solve (16) to obtain 
i) ,,( pcb ; 

1. If 
i) ,,( pcb  is feasible then goto step 7; 

2. While ( i < I ) do: 

{ 

3.      Rounding: solve (20) to obtain 
i) ,,( pcb ; 

4.      If (
i) ,,( pcb =

i) ,,( pcb ) then goto step 7; 

5.      Projection: solve (21) to obtain 
1) ,,( ipcb ; 

6.      Set i := i + 1; 

} 

7. Output: solution ) ,,( ***
pcb  := 

i) ,,( pcb . 
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IV. PERFORMANCE EVALUATION 

A. Simulation Model 

A simulation model of the network has been implemented 

upon a standard LTE-A platform using the OPNET simulation 

and development package [15]. The model consists of one 

eNBs serving N UEs, randomly positioned in a service area 

with 500 m radius. The eNB operates on a fixed spectrum 

band spanning B = 50 RBs (which is equivalent to 10 MHz). A 

radio model of the network has been developed according to 

ITU-T Recommendation M.1225. The maximal transmission 

power of each eNBs is assumed to be equal PeNB = 46 dBm. 

The maximal transmission power of each UE is Pn = 23 dBm, 

for all nN. The accuracy of a second-order interior point 

algorithm [33] is set to be equal ε = 0.001; the number of 

iterations in FP algorithm is limited to I = 200. The system 

parameters of a network are set in accordance with the 

requirements of LTE specifications [18] (the main simulation 

parameters are listed in Table II). 

TABLE II. SIMULATION PARAMETERS OF THE MODEL 

Parameter Value 

Radio 

Network 

Model: 

Path loss 49log30log40
1010

 fRL , 

where R is the distance (km), f 

is the carrier frequency (Hz) 

Shadow fading Log-normal shadow fading 
with a standard deviation of 

10/12 dB for outdoor/indoor 

users 
Penetration loss The average building 

penetration loss is 12 dB with 

a standard deviation of 8 dB 
Multipath fading Spatial channel model (SCM), 

suburban macro 

UE velocity 0 km/s 
Transmitter/receiver 

antenna gain 

10 dBi (pedestrian), 2 dBi 

(indoor) 
Receiver antenna gain 10 dBi (pedestrian), 2 dBi 

(indoor) 

Receiver noise figure 5 dB 
Thermal noise density –174 dBm/Hz 

Cable/connector/combiner 

losses 

2 dB 

PHY-Layer 
Profile: 

Operation mode Frequency division duplex 
(FDD) 

Cyclic prefix type Normal (7 Symbols per slot) 

Evolved packet core (EPC) 
bearer definitions 

348kbit/s, non-guaranteed 
bear rate (GBR) 

Subcarrier spacing 15kHz 

Admission 

Control 
Parameters: 

PHY DL control channel 

(PDCCH) symbols per 
subframe 

3 

UL loading factor 1 

DL loading factor 1 
Inactive bearer timeout 20 sec 

Buffer 

Status 
Report 

Parameters: 

Periodic timer 5 subframes 

Retransmission timer 2560 subframes 

Layer 1/ 

Layer 2 
Control 

Parameters: 

Reserved size 2 RBs 

Cyclic shifts 6 
Starting resource block 

preserver (RBP) for Format 

1 messages 

0 

Allocation periodicity 5 subframes 

Random 

Access (RA) 

Number of preambles 64 

Preamble format Format 0 (1-subframe long) 

Parameters: Number of RA resources 
per frame 

4 

Preamble retransmission 

limit 

5 subframes 

RA Response Timer 5 subframes 

Contention Resolution 

Timer 

40 subframes 

HARQ 
Parameters: 

Maximal number of 
retransmissions 

3 (UL and DL) 

HARQ retransmission timer 8 subframes (UL and DL) 

Maximal number of HARQ 
processes 

8 per UE (UL and DL) 

 

The user traffic in simulations consists of three most 

frequently used network applications: voice over internet 

protocol (VoIP), video and hypertext transfer protocol 

(HTTP). The number of users of each type is distributed in 

proportion 2:3:5 for voice, video and data users, respectively. 

The voice, video and data services are modelled according to 

[44], as follows:  

- The VoIP applications are simulated using ON-OFF 

model with exponentially distributed ON-OFF periods. 

The mean duration of ON and OFF periods are 0.65s 

and 0.352s, respectively. The VoIP traffic is generated 

by using the G.723.1 (12.2 Kbps) codec with a voice 

payload size 40 bytes and a voice payload interval 30 

ms. 

- Video services are simulated using a high resolution 

video model with a constant frame size equal 6250 

bytes and exponentially distributed frame inter-arrival 

intervals (with mean equal 0.5s).  

- Web users in simulations are HTTP1.1 users generating 

pages or images with exponential page inter-arrival 

intervals (mean equal 60sec). It is assumed that one 

page consists of one object, whereas one image consists 

of five objects. The object size is constant and equal 

1000 bytes. 

The target SINR levels for UEs are determined according to 

their QoS requirements, and are set equal 5, 10 and 15 dB for 

web, video and VoIP users, respectively. The target 

interference level In
tar

 for each Un is calculated using (25), 

based on a specified SINRn
tar

, with T = 10 slots. 

In this work, the performance of a proposed resource 

allocation algorithm (denoted as a queue-based control or 

QBC) is compared with the performance of two most relevant 

schemes proposed previously: 

- The first scheme, a graph-based resource allocation 

(GRA), has already been introduced in Section I. In 

GRA, the RBs are assigned to different cellular and 

D2D users based on interference-awareness (defined as 

a condition that the BS can acquire local awareness on 

the channel gains) of each wireless link. The basic idea 

of GRA is to iteratively gather vertices from the 

clusters of cellular/D2D users into the corresponding 

clusters of the same RB, taking both the interference 

and the channel capacity values into account to 

guarantee that the service rate of each cluster is 

maximized. This iterative RB assignment process 

cycles until all the cellular/D2D clusters are empty. A 
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more detailed description of GRA can be found in [3].  

- In a second scheme, proposed in [9] (also listed in 

Section I), the mode, channel and transmission power 

are assigned to UEs to minimize their total power 

consumption. It is based on the following two 

procedures: i) mode selection that uses a linear search 

to determine transmission modes (D2D or cellular) of 

the users based on their power consumption and ii) 

channel/power assignment to determine the sub-

channels and transmission power allocated to each 

D2D link based on the outcome of mode selection. A 

second procedure is implemented in polynomial time 

by solving the corresponding linear programming (LP) 

problem (using the LP Gurobi optimizer [45]). In the 

following, this scheme is denoted as a joint resource 

allocation (JRA).  

Other schemes considered in this performance evaluation 

study are the rate based control (RBC) and a sum queue 

minimization (SQM). Both of these schemes use the network 

model and assumptions of QBC, but have different 

optimization objectives. In particular, the objective of RBC is 

to maximize the total service rate of the users. The network 

resources (mode, bandwidth and power) are allocated by 

solving the following optimization problem: 


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n
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The objective of SQM is to minimize the sum buffer size of 

UEs. To allocate the network resources, the algorithm solves 

the following problem: 
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Note, that (27) is equivalent to 
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                  .),(max

nnnnn aqrqaq  pb  (28d) 

From (28), the difference between RBC and SQM is rather 

straightforward. In RBC, the network resources are allocated 

to the users based on potential interference they may create on 

the allocated RBs. In SQM, not only the potential interference, 

but also the individual traffic demands and buffer sizes of UEs 

are taken into account. Note that the objective used in RBC is 

very important from the point of view of service providers (it 

maximizes the total network revenue and utilization), but may 

result in a rather unfair resource allocation. A methodology for 

solving (27) and (28) is the same as that used for solving (12). 

All of the schemes in this comparative performance evaluation 

are simulated with identical internal and external settings. 

B. Simulation Results 

First, we observe the complexity of different algorithms in 

simulations. Figures 4 and 5 demonstrate the average number 

of iterations necessary for convergence and the average 

solution time, respectively, with N varying from 10 to 150 

users. In GRA, the number of iterations and the solution time 

shown in Figures 4 and 5, correspond to the number of RB 

assignment cycles necessary to empty all of the clusters. In 

JRA, the number of iterations and the solution time are 

determined from the LP algorithm used as part of the 

channel/power assignment procedure. Results show that QBC, 

RBC and SQM have a relatively low complexity (less than 70 

iterations with a solution time below 100 μs for the network 

with N = 150 users). These results verify that the deployed FP 

heuristic is rather effective in producing fast solutions. The 

complexities of JRA and GRA are also not very high (in both 

algorithms, the reported worst-time complexity is 

polynomial). 

 
Figure 4.  Average number of iterations in different algorithms for N varying 

from 10 to 150 users. 

 
Figure 5.  Average solution time in different algorithms for N varying from 

10 to 150 users. 

Next, we observe the performance of different schemes in 

terms of mean packet end-to-end delay, loss and SINR for the 

users operating in cellular and D2D modes. The graphs in 

Figures 6 - 10 present simulation results for N varying from 10 

to 150 users. It follows from these graphs that the mean packet 

delay and loss for D2D users are less than those for cellular 
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users in all schemes, which is simply explained by the fact that 

the D2D users communicate with each other, and the delay 

and loss associated with transmissions between the eNB and 

corresponding UEs are nulled.  

Results also show that JRA has the worst performance in 

terms of mean packet end-to-end delay and loss in the 

network. This is because this scheme was originally 

designated to facilitate green communication (by minimizing 

the total transmission power of the users), and therefore the 

achieved delay/loss performance for UEs is not satisfactory. 

All the other algorithms either maximize the total network 

throughput (GRA and RBC) or minimize the total/maximum 

buffer size (SQM and QBC). Hence, their delay/loss outcome 

is more satisfactory. The minimal delay and loss are attained 

by QBC and SQM (with a slightly better performance of 

QBC) since both of these schemes take into account the buffer 

status information. In terms of mean SINR, all algorithms 

show rather similar performance (Figure 10). This is explained 

by the actions that all of the schemes take towards the 

interference protection for the users operating in cellular or 

D2D mode (although the means of such protection used by 

different schemes are disparate). 

 
Figure 6.  Mean packet end-to-end delay for the users operating in cellular 

mode with N varying from 10 to 150 users. 

 
Figure 7.  Mean packet end-to-end delay for the users operating in D2D 

mode with N varying from 10 to 150 users. 

 
Figure 8.  Mean packet loss for the users operating in cellular mode with N 

varying from 10 to 150 users. 

 
Figure 9.  Mean packet loss for the users operating in D2D mode with N 

varying from 10 to 150 users. 

 
Figure 10.  Mean SINR for the users operating in either mode with N varying 

from 10 to 150 users. 

CONCLUSION  

In this paper, the D2D/cellular mode selection, resource 

allocation and interference management scheme for a D2D-

enabled LTE-A network has been presented. The aim of the 

proposed algorithm is to improve the user-perceived QoS 

(counted in terms of buffer size of UEs). To control the 

interference between cellular and D2D communication, the 

interference for each user is constrained to stay below a 
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certain target interference level. The algorithm efficiency has 

been evaluated using the OPNET-based simulations. The 

algorithm has shown improved performance in terms of mean 

packet end-to-end delay and loss for both the D2D and cellular 

users when compared to other relevant schemes. 

APPENDIX 

To prove that (12) is NP-hard, we first show that the 

problem 
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is NP-hard. 

Lemma 1. Problem (A.1) is NP-hard. 

Proof: In order to prove that (A.1) is NP-hard, it is enough 

to show that its corresponding decision problem
2

 is NP-

complete [46]. Note, that the decision version of (A.1) is NP-

complete if 

1) (A.1) is in NP, and 

2) there is an NP-complete problem Π, such that Π is 

polynomial time reducible
3
 to (A.1). 

The fact that (A.1) is contained in NP is easy to verify. 

Suppose that the instance of (A.1) has a feasible solution (b
*
, 

c
*
, p

*
) with  

  .),( max 
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
pb

N
nnn

n
raq   

The binary encoding size of (b
*
, c

*
, p

*
) is N×(K+2) (since b

*
 is 

a binary matrix with N×K entries, c
*
 and p

*
 are the binary 

vectors with N entries each). Hence, we can check in 

polynomial time that (b
*
, c

*
, p

*
) is a feasible solution by 

checking all the constraints and the objective function value. 

This gives us a certificate that the instance of (A.1) is a “yes”-

instance (i.e., a decision problem of asking whether a given 

input (b
*
, c

*
, p

*
) is feasible, holds an answer “yes”), and 

therefore (A.1) is in NP.  

We now show that some other NP-complete problem Π can 

be “formulated” as (A.1) with a polynomial reduction. In 

particularly, we reduce the satisfiability (SAT) problem [47] to 

(A.1). Note that the NP-completeness of SAT has been proved 

in Cook’s Theorem [47]. Suppose we are given an instance of 

SAT with the input being a set of N+K clauses
4
 {C1, …, CN+K} 

involving N(K+2) Boolean variables x1, …, xN(K+2). Each 

clause contains conjunction (  ), disjunction (  ) and 

                                                           
2 A decision problem is a question which can be answered “yes” or “no”, 

depending on the values of some input, which is called an instance of the 

problem [46]. 
3 In complexity theory, a polynomial time reduction of a problem Π to a 

problem Π’ is a polynomial time computable function f with the property that 

x ∈ Π if and only if f(x) ∈ Π’. We say that Π is polynomial time reducible to 
Π’ if there exists a polynomial time reduction from Π to Π’. If we have a way 

of reducing instances of Π into instances of Π’, then solving Π’ is 
theoretically at least as difficult as solving Π [46]. 

4 In Boolean algebra, a clause is a logical expression which contains one or 

more literals. A literal is either a variable (then called positive literal) or the 
negation of a variable (then called negative literal) [46]. 

negation (  ) operators. Given the SAT formula φ = 

KNCCC   ... 21
, the question posed is whether there exists 

an assignment of truth values to the variables, such that all 

clauses are satisfiable.  

In the following, we construct a problem based on a SAT 

instance. For each Boolean variable xi, let there be a 

corresponding optimization variable in (A.1), such that 

. ,  ,  ,  , )1()1( KN   knxpxcxb nKNnnNKnnkN
k
n

 

The possible values of xi are true and false; these will be 

encoded as 1 and 0, respectively, for each component of (b, c, 

p). We denote by C
+

j and C
−

j, j = 1, …, NK, the index sets of 

positive and negative literals in a clause Cj, respectively. For 

each clause Cj, j = 1, …, N+K, let gj be a constraint contained 

in either (A.1b) or (A.1c). Note that the Boolean conjunction 

and disjunction in SAT instance correspond to the 

multiplication and addition, respectively, in arithmetic 

expressions. Consequently, the clauses C1, …, CK 

corresponding to the constraints g1, …, gK in (A.1b) are given 

by  

. ,)1( K
N
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The clauses CK+1, …, CK+N corresponding to the constraints 

gK+1, …, gK+N in (A.1c) are described by 
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Now, we add the following constraint to the instance of 

(A.1): 

. ..., ,1   ,1)1( KNjxx
jj Ci

i

Ci

i 
 

 (A.2) 

It is easy to check that (A.1) can be set up in polynomial time 

given the instance of SAT. First, we prove that a “yes”-

instance of SAT yields a “yes”-instance of (A.1). Let x
*
1, …, 

x
*

N(K+2) be a truth assignment that evaluates to true in the SAT 

formula φ. In a clause Cj, these must be at least one true 

variable in C
+

j or at least one false variable in C
−

j. Setting x
*
i = 

1 for each true variable and x
*
i = 0 for each false variable will 

satisfy the constraint (A.2). Thus, a feasible SAT instance 

yields a feasible instance of (A.1), which completes the proof. 

We next prove that a “yes”-instance of (A.1) brings in a 

“yes”-instance of SAT. Let (b
*
, c

*
, p

*
) be a feasible instance of 

(A.1). In a constraint gj, at least one variable in C
+

j must be 

equal to 1, or at least one variable in C
−

j must be equal to 0 to 

satisfy (A.2). Setting each literal xi to true in the SAT formula 

φ if the corresponding variable equals 1 in (b
*
, c

*
, p

*
), and 

setting xi to false otherwise, we ensure that each clause 

evaluates to true since at least one literal in C
+

j will be true or 

at least one literal in C
−

j will be false, which completes the 

proof. 

Now, since each feasible instance of SAT yields a feasible 

instance of (A.1), and vice versa, it follows that (A.1) has a 

feasible solution if and only if the given instance of SAT is 

satisfiable.                                                                       □ 

Lemma 2. Problem (12) is NP-hard. 

Proof: Lemma 2 can be proved similar to Lemma 1. To 

show that (12) is NP-hard, we have to verify that 

1) (12) is in NP, and 
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2) there is an NP-complete problem Π, such that Π is 

polynomial time reducible to (12). 

The fact that (12) is contained in NP can be proved as 

follows. Suppose that the instance of (12) has a feasible 

solution (b
*
, c

*
, p

*
) with  

  .),( max 



pb

N
nnn

n
raq   

Note, that the components pn of the N-dimensional vector p
*
 

are the rational numbers, and therefore they can be represented 

as  

NZ  nn

n

n
np 




 ,  ,  

where Z and N are the set of integers and natural numbers, 

respectively; αn and βn do not have a common divisor other 

than 1. Hence, the encoding length of pn equals [46] 

   )1(log)1|(|log1: 22  nnnp   (A.3) 

where x  denotes the binary encoding size of x;  x  and 

|| x are the ceiling and the absolute value of x, respectively. 

Then, the binary encoding length of a rational N-dimensional 

vector p is given by 

. : 

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N

p
n

npN  (A.4) 

Based on (A.4), the encoding size of (b
*
, c

*
, p

*
) is 



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N

**** pcb
n

npKN )2(:   

(since b
*
 is a binary matrix with N×K entries, c

*
 is a binary 

vector which consist of N components). Consequently, we can 

check in polynomial time that (b
*
, c

*
, p

*
) is a feasible solution 

(by checking all the constraints and the objective function 

value), which gives us a certificate that the instance of (12) is 

a “yes”-instance. Hence, (12) is contained in NP. 

To prove that there exists an NP-complete problem Π, 

which is polynomial time reducible to (12), note that (12) is a 

generalization of an NP-complete problem (A.1). Therefore, 

(A.1) can be reduced to (12) in polynomial time.               □  
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