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An experimental comparison between KELM and CART for crop 

classification using Landsat-8 OLI data 

The Operational Land Imager (OLI) is the latest instrument in the Landsat series of 

satellite imagery, which officially began normal operations on May 30, 2013. The OLI 

includes two bands that are not on the Thematic Mapper (TM) series of sensors aboard 

Landsat-5 and 7; a cirrus band and a coastal/aerosol band. This paper compares the 

classification and regression tree (CART) and the kernel-based extreme learning machine 

(KELM) for mapping crops in Hokkaido, Japan, using OLI data, except the cirrus band 

and the pan band. The OLI data acquired on July 8, 2013 was used for crop classification 

of beans, beets, grassland, maize, potatoes, and winter wheat. The KELM algorithm 

performed better in this study and achieved overall accuracies of 90.1%. According to the 

Jeffries-Matusita (J-M) distances, the short wavelength infrared band provides the greater 

contribution (the highest value was observed for band 6 in OLI data). 

Keywords: classification and regression tree; kernel-based extreme learning machine; 

Landsat-8; operational land imager.  

 

1. Introduction 

Land-cover classification is one of the most common applications of remote sensing. 

Crop classification maps are useful for estimating yield amount or the acreage of tillable 

land and managing the agricultural field. Satellite data have been tested with variable 

results, both optical (Hartfield et al. 2013; Sarker and Nichol 2011; Sonobe et al. 2014a) 

and SAR data (Laurin et al. 2013; Sonobe et al. 2014bc). Optical remote sensing is also 

one of the most attractive options for obtaining biomass information and forest 

monitoring. The sensors suitable for identifying species or conditions of vegetation are 

Landsat series (Ding et al. 2014; Goodwin and Collett 2014; Hartfield et al. 2013), 

SPOT series (Cockx et al. 2014; Langner et al. 2014; Yuan et al. 2014), and 

ALOS/AVNIR-2 (Sarker and Nichol 2011).  



Classification algorithms are essential for the accuracy of the generated map, which 

shows the crop status. A number of approaches, including statistical and machine 

learning algorithms, have been developed and employed for land cover classification 

within the past 30 years. Machine learning approaches have been widely used in image 

classification over the past two decades (Pal et al. 2013). In earlier studies, the 

classification and regression tree (CART) algorithm was used to identify crops such as 

alfalfa, corn, cotton, grain, melon orchards, and sorghum from Landsat TM image data 

(Hartfield et al. 2013). Recently, a new fast learning neural algorithm for single hidden 

layer feedforward neural networks (SLFNs), named the extreme learning machine 

(ELM), was developed to improve the efficiency of SLFNs. ELM has been successfully 

applied to many real-world applications, such as classification and regression problems 

(Huang et al. 2012).  

The main objectives of this work are to (1) evaluate the potential of Landsat-8 OLI 

images for crop type classification including the Kauth Thomas (KT) transform 

modified for OLI (Baig et al. 2014) and (2) compare the results of CART and KELM 

for the crop type classification. 

 

2. Materials and Methods 

2.1 Study area 

The experimental area of this study was comprised of agricultural fields in the western 

Tokachi plain, Hokkaido, Japan (Figure 1, 142°55′12″ to 143°05′51″E, 42°

52′48″ to 43°02′42″N) at an elevation between 50 and 230 m. The climate of 

the study area is characterized by warm summers and cold winters with an average 



annual temperature of 6°C and annual precipitation of 920 mm.  

The mean size of the fields was 2.16 ha. The dominant crops are beans (Vigna angularis 

and Glycine max), beets (Beta vulgaris), grassland (Phleum pratense or Dactylis 

glomerata), maize (Zea mays), potatoes (Solanum tuberosum), and winter wheat 

(Triticum aestivum). The cultivation calendar for the crops in this study area is 

presented in Table 1. The OLI data acquisition date (July 8, 2013) was included the 

growing season for the six crops, and the data may contribute to the characterization of 

the plant structures. 

<Figure 1> 

<Table 1> 

2.2. Satellite data 

The Landsat-8 OLI data were observed on July 8, 2013. The data were downloaded 

from EarthExplorer (http://earthexplorer.usgs.gov/) and had been spatially orthorectified 

by USGS. The acquired scene was overlaid to verify successful orthorectification of the 

images. Although the OLI image includes nine bands, the pan band (band 8) and the 

cirrus band (band 9) were not used for classification in this study. The Fast Line-of-

sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) (Matthew et al. 2000) 

algorithm was used to correct the imagery for atmospheric effects. It was reported that 

Multi-date Landsat TM images can improve crop classification (Cohen and Shoshany 

2002) and  the 17 observations were conducted by Landsat-8 OLI from May to August 

2013 for the whole site. However, only one date (July 8) during the growing season was 

used because it was of better quality for classification purposes; the other images were 

covered with cloud making it difficult to distinguish crop files and bare soil due to the 

low plant heights. 



The earlier studies show that the data of the KT transform, also known as the Tasseled-

Cap transform, are effective for improving the accuracy of the crop classification (Crist 

1986; Hartfield et al. 2013). In this study, KT data were generated using the KT 

coefficients for OLI (Baig et al. 2014). 

2.3. GIS data 

Reference data were provided by Tokachi Nosai (located in Obihiro city, Hokkaido. 

Nosai conducts an Agricultural Insurance Scheme, which helps stabilize farmers 

suffering from damage caused by natural disasters and contributes to the growth of 

Japanese agriculture) as a polygon shape file, which included the position of the fields 

and attribute data, such as crop types. Any field below 2.0 ha was deemed too small for 

analysis and removed from the vector maps (Hartfield et al. 2013). The position of the 

center of the fields was calculated and the reflectance values of all bands were extracted 

using these points. The process was applied to avoid selecting training pixels from the 

edge of a field, which would create a mixed signal and affect the accuracy assessment.  

2.4. Separability assessment 

Before classification, J-M distances (Richards 1999) were calculated to compare 

statistical separability among crop types. The J-M distance is a widely used statistical 

separability criterion. It is a parametric criterion, for which the values range between 0 

and 2. For the separability measurement, the normal distribution is usually considered. 

In this case, the J-M separability criterion takes into account the distance between class 

means and the distribution of values from the means. This is achieved by involving the 

covariance matrices of the classes in the separability measurement. This separability 

criterion can be used to pairwise measure the separability between classes, allowing the 

assessment of the quality of the selected class samples in the available feature space 



(Dabboor et al. 2014). As a general rule, if the J-M value is greater than 1.9, separation 

is good. If the J-M is between 1.7 and 1.9, separation is fairly good.  

2.5. Classification 

We used a stratified random sampling approach to select the fields used for training, and 

20% of crop fields were selected at random as training samples (Hartfield et al. 2013). 

The remaining 80% of the fields were used to perform the accuracy assessment. Table 2 

represents the numbers of fields of each crop type. 

<Table 2> 

The CART algorithm was popularized by Breiman et al. (1984). In CART, the Gini 

index is a measure of how often a randomly chosen element from the training data set 

would be incorrectly labeled if it were randomly labeled according to the distribution of 

labels.  

In addition to CART, the KELM (Huang et al. 2012) was used in this study. In ELM 

( Huang et al. 2004), the initial parameters of the hidden layer need not be tuned and 

almost all nonlinear piecewise continuous functions can be used as the hidden neurons. 

Therefore, N for arbitrary distinct samples, {(xi, ti) | xi ∈ Rn, ti ∈ Rm, i=1,…, N} the 

output function in ELM with hidden neurons is 

  ( )  ∑  

 

   

  ( )   ( )   
(1)  

where β={β1, β2,…, βL} is the vector of the output weights between the hidden layer of 

L neurons and the output neuron, and h(x) ={ h1(x), h2(x),…, hL(x)} is the output vector 

of the hidden layer with respect to the input x, which maps the data from the input space 

to the ELM feature space.  



For decreasing the training error and improving the generalization performance of 

neural networks, the training error and the output weights should be minimized at the 

same time; that is, 
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(2)  

The least squares solution of (2) based on Karush-Kuhn-Tucker (KKT) conditions 

(Fletcher 1981) can be written as 
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where H is the hidden layer output matrix, C is the regulation coefficient, and T is the 

expected output matrix of samples. Then, the output function of the ELM learning 

algorithm is 
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If the feature mapping h(x) is unknown and the kernel matrix of ELM based on 

Mercer’s conditions can be defined as follows: 

           (  ) (  )   (     ), 
(5)  

the output function f(x) of the KELM can be written compactly as 

 ( )  [ (    )    (    )] (
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(6)  

where M = HH
T
, and k(x, y) is the kernel function of hidden neurons of SLFNs. Many 

kernel functions satisfy the Mercer condition in existing literature, such as linear kernel, 

polynomial kernel, Gaussian kernel, and exponential kernel. For KELM classification, 

the Radial Basis Function (RBF) kernel was applied and the kernel is as follows: 

 (   )      (  ‖   ‖). 
(7)  



Therefore, the number of kernel parameters (a) and the regularization coefficient should 

be tuned in order to apply the RBF kernel.  

Optimal parameters for flexibility control were determined through a grid search in the 

bivariate parameter space. The parameter space was discretized along 2
x
, where x = 10 

to 20 for the regularization coefficient, and x = 16 to 30 for the number of kernel 

parameters. Both parameters were determined using the k-fold cross-validation 

technique. The grid search was used to minimize the misclassification error rate. K-fold 

cross-validation was also used to assess classifier performance (Puertas et al. 2013). 

This technique repeatedly generates training and test data sets from a reference sample 

with known land cover class membership. It is used for model validation and consists of 

partitioning the data into k equally-sized subsets (here, k = 10). A classifier is trained on 

all except one of these subsets and evaluated on the excluded subset. Accuracy 

measures are averaged over all test datasets. KELM was applied using MATLAB and 

Statistics Toolbox Release 2014b (The MathWorks, Inc., Natick, Massachusetts, United 

States) and the source code was downloaded from 

http://www.ntu.edu.sg/home/egbhuang/index.html. CART was applied using R version 

3.0.0 (RCoreTeam 2013) and ‘rpart’ package (Therneau et al. 2013).  

We conducted classifications using the following three different datasets: (1) 

reflectance data, (2) KT data, and (3) reflectance + KT data. 

The classification maps based on the three datasets and two algorithms were evaluated 

in terms of their overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy 

(UA). Furthermore, measures of quantity disagreement (QD) and allocation 

disagreement (AD) (Pontius and Millones 2011) were used for evaluation. Although the 

kappa statistic (Cohen 1960) had been used as an accuracy measure, it has fundamental 

conceptual flaws, such as being undefined even for simple cases, or having no useful 



interpretation (Pontius and Millones 2011). Therefore, QD and AD are widely used as 

alternative measures of the kappa statistic (Baker et al. 2013; Farewell et al. 2013; 

Varshney et al. 2012). QD is defined as the difference between the reference data and 

the classified data based upon a mismatch of class proportions. AD can be considered as 

the difference between the classified data and the reference data due to incorrect spatial 

allocations of fields in the classification.  

In order to compare the accuracy of classification methods, McNemar’s test (McNemar 

1947) or Z-test (Congalton and Green 2008) were used. McNemar’s test takes into 

account the use of no independent samples by focusing on how each point was either 

correctly or incorrectly classified in the two classifications being compared. A chi-

squared value of 3.84 indicates a significantly different OA between the two methods at 

the 95% significance level. The value of Z-score is an approximation of the standard 

normal deviate of 1.96 for the 95% two-sided confidence level. Since the purpose is to 

reveal the best algorithm for crop type classification in this study, the Z-test was 

performed for a pairwise comparison of the proposed methods. 

3. Results and Discussion 

3.1. Separability assessments 

The J-M separability measurements were computed for all obtained data (the training 

data and the test data) for all possible pairs of crop types (Figure 2). The short 

wavelength infrared bands, especially band 6, were useful. Moreover, band 5, greenness 

and wetness, may be effective for the separation between beans and potatoes, which is 

low for band 6. Values for the pairs of beans-beets, beans-wheat, beets-potatoes, 

grassland-wheat, and potatoes-wheat were over 1.7; whereas, values were lower than 

1.0 for beans-grassland and beans-maize. 



<Figure 2> 

3.2. Classification model by CART 

Figure 3 shows the classification model by CART after pruning. In cases where only the 

reflectance data were used (Figure 3(a)), wheat fields were only identified by the low 

reflectance of band 6, which may be due to the high separability measurements. For 

wheat, the separability measurements were over 1.7 except for the pair with maize; 

however, the measurement of band 6 for maize-wheat was the highest value among the 

reflectance and KT data. For classification, band 6 was used in four nodes, bands 3 and 

5 were used in two nodes, and bands 1, 2, and 4 were not used for classification. In 

cases where only the KT data were used (Figure 3(b)), brightness was used in eight 

nodes and wetness was used in five nodes, while greenness and haziness were not used 

for classification. In cases where the reflectance of the bands and the KT data were used 

(Figure 3(c)), band 6 was used in five nodes. 

<Figures 3> 

 

3.3. Parameter tuning of KELM Classifiers 

For the application of KELM, the number of hidden nodes was tuned using the training 

data and the k-fold cross-validation technique. In cases where only the reflectance data 

were used, a higher accuracy was observed when the number of kernel parameters was 

2
27

, the regularization coefficient was 2
14

 and thus, this value was adopted for KELM 

classification. In cases that used the KT data, a higher accuracy was observed when the 

number of kernel parameters was 2
27

 and the regularization coefficient was 2
15

 and thus, 

this value was adopted for KELM classification. In cases using the reflectance of the 

bands and the KT data, a higher accuracy was observed when the number of kernel 



parameters was 2
28

 and the regularization coefficient was 2
13

 and thus, this value was 

adopted for KELM classification. 

3.4. Accuracy Validation 

Table 3 presents the corresponding confusion matrices of classifications and Table 4 

presents the Z-test results. For KELM, the classification result of dataset (1) was 

superior to the other combinations; however, the differences of the accuracy results are 

not confirmed at the 95% significance level. For CART, no differences were found 

between the results of dataset (1) and those of dataset (3); although the classification 

results of dataset (2) were inferior to those of (1) and (3). As a result, there is no 

advantage of adding KT data in this case. 

<Table 3> 

<Table 4> 

Although the separabilities for beans-grassland and beans-maize were lower, all PA and 

UA were over 0.725 for KELM. Almost all PAs and UAs of KELM were superior to 

those of CART. The 31 maize fields were misclassified as beans and the 36 bean fields 

were misclassified as maize fields in CART, while the 12 maize fields were 

misclassified as beans and the 39 bean fields were misclassified as maize fields in 

KELM. Therefore, CART is superior to KELM in the PA for maize. Regarding OA, AD, 

and QD, the results of KELM were superior to those of CART. We used the Z-test to 

compare the accuracy of the classification methods because the same samples and the 

same assessment points were used for each classification. The difference between 

CART and KELM was meaningful (p<.05) since the Z-score was 5.75. In the 

classification using KELM, there were 195 misclassified fields, consisting of 26 bean 

fields (8.1% of total beans fields in the test data), 19 beet fields (7.0%), 52 grasslands 

(20.2%), 55 maize fields (27.5%), 20 potato fields (10.1%), and 23 winter wheat fields 



(3.2%). The KELM classifier particularly confused maize fields with bean fields (39 

fields). The J-M distance between them ranged from 0.285 to 0.726, and the separability 

was very low. Multi-temporal images can improve crop classification because they 

contain information on among-crop variation in growth patterns (Cohen and Shoshany 

2002; Hartfield et al. 2013). In future studies, the potential of multi-temporal OLI 

images analyzed for crop type classification will be tested. However, applying KELM, 

the crop type map at the high rate of 90% was generated from only one set of OLI data. 

Although the conditions such as study area and crop type in this study differ from those 

in Hartfield et al. (2013), the OA was close to theirs, indicating 92% accuracy using 

multi-temporal Landsat TM data (6 scenes). 

In this study, band 6 made a significant contribution to the good results. The 

reflectance at shortwave infrared is sensitive to non-structural carbohydrates (NSC) of 

the leaf (Asner and Martin 2015), and a positive correlation is observed between leaf N 

and total shortwave reflectance (Bartlett et al. 2011). As a result, the additional use of 

shortwave infrared data contributed to the estimation of photosynthetic pigments, water, 

nitrogen, cellulose, lignin, phenols, and leaf mass per area (LMA), which accurately 

estimated the canopy traits (Asner et al. 2011). Furthermore, the maximum rates of 

carboxylation (Vcmax) and electron transport (Jmax) are estimated using two narrow 

bands at shortwave infrared (unpublished); thus, band 6 data may be related to the leaf 

photosynthetic traits. On the observation date, the differences between the 

photosynthetic rates of the six species were ambiguous because the potato growth was 

inhibited by chemicals for easy harvesting, and the growing seasons of beets, beans and 

maize were in the middle period but their structures were different, while the growing 

seasons of wheat and potato were close to the end. Thus, band 6 revealed the differences 

related to photosynthesis among the six species.  



 

4. Conclusions 

To generate a classification map, only one image from Landsat-8 OLI was used since all 

images except the data acquired on July 8 were covered with clouds and could not be 

used for analysis, even though the 17 observations conducted by Landsat-8 OLI from 

May to August 2013 covered the whole site. 

Of the two algorithms, CART and KELM, that were applied, the accuracy results of 

KELM were superior. This approach should be applicable to generate land cover/use 

classification maps, particularly for agricultural fields. The KELM classifier was able to 

generate the crop classification map of the monitored study area with an OA of 90.1%. 

Some missions operate some satellite constellations and are capable of field based, 

regional or global scale agricultural monitoring on a frequent revisit cycle. The 

approach described in this paper will be applied by on-boarding the sensor, which can 

observe shortwave infrared regions. 
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Table 1. Cultivation calendar for the crops in this study area. 

Table 2. Crop type and number of fields.  

Table 3. Accuracy results for CART and KELM. 

Table 4. Z-test results. 

Figure 1. The study area. 

Figure 2. J-M distances for OLI data. The thick lines show that the J-M distance values 

are greater than 1.7, in at least one band, and the dotted lines represent below 1.0 in 

every band. Bands 1 to 7 are the reflectance for OLI data and bands 8 to 13 are the KT 

data (brightness, greenness, wetness, haziness, fifth and sixth). 

Figure 3. Decision tree by CART using the training data. The tree keeps splitting the 

branch using (a) the reflectance (%) of the bands, (b) the KT data, and (c) the 

reflectance of the bands and the KT data. 

  



Table 1. Cultivation calendar for the crops in this study area. 

 

  

Beet

Corn

Winter wheat

Beans Azuki

Soy

Potato

September October November December 

plantation/transplanting ripeness/harvesting

April May June July August



 

Table 2. Crop type and number of fields.  

Crop type 
No. of fields 

Training data Test data 

Beans 80 320 

Beets 68 272 

Grassland 65 257 

Maize 50 200 

Potatoes 50 199 

Wheat 180 726 

 

 

  



Table 3. Accuracy results for CART and KELM. 

Data Reflectance KT data 
Reflectance  

+ KT data 

                    Algorithm 

Class  
CART KELM CART KELM CART KELM 

Producer’s accuracy 

      
Beans 0.753  0.919  0.781  0.916  0.916  0.919  

Beets 0.926  0.930  0.868  0.934  0.926  0.923  

Grassland 0.704  0.798  0.751  0.790  0.716  0.794  

Maize 0.745  0.725  0.510  0.725  0.610  0.720  

Potatoes 0.899  0.899  0.834  0.899  0.905  0.894  

Wheat 0.908  0.968  0.909  0.966  0.908  0.961  

User’s accuracy 

      
Beans 0.715  0.788  0.639  0.788  0.701  0.776  

Beets 0.834  0.907  0.764  0.910  0.834  0.903  

Grassland 0.823  0.949  0.828  0.931  0.939  0.944  

Maize 0.608  0.780  0.590  0.784  0.667  0.778  

Potatoes 0.873  0.873  0.917  0.869  0.857  0.873  

Wheat 0.991  0.983  0.961  0.982  0.991  0.980  

       
Overall accuracy 0.841  0.901  0.814  0.899  0.856  0.896  

Allocation 

disagreement 
10.892  6.535  13.121  6.738  7.345  6.839  

Quantity disagreement 4.965  3.343  5.471  3.343  7.042  3.546  

 

  



Table 4. Z-test results. 

classification 
(1) (2) (3) 

CART KELM CART KELM CART KELM 

(1) 
CART x 5.75  2.49  5.53  1.31  5.21  

KELM   x 8.25  0.22  4.44  0.54  

(2) 
CART     x 8.03  3.80  7.70  

KELM     

 

x 4.22  0.32  

(3) 
CART 

    

x 3.90  

KELM           x 

 

  



 

Figure 1. The study area. 

  

Shimizu town

Memuro town

Otofuke town

Obihiro city



 

Figure 2. J-M distances for OLI data. Bands 1 to 7 are the reflectance for OLI data and bands 8 

to 13 are the KT data (brightness, greenness, wetness, haziness, fifth and sixth). (a) 

Curves with J-M distances values are greater than 1.7 in at least one band, (b) curves 

with J-M distances values are less than 1.0 in every band.  
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Figure 3. Decision tree by CART using the training data. The tree keeps splitting the branch 

using (a) the reflectance (%) of the bands, (b) the KT data, and (c) the reflectance of the 

bands and the KT data. 

 

(a) Reflectance (b) Kauth Thomas data

(c) Reflectance + Kauth Thomas data


