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We study superconducting instability from orbital nematic fluctuations in a minimal model consisting of the
dy, and d,, orbitals, and choose model parameters which capture the typical Fermi surface geometry observed
in iron-based superconductors. We solve the Eliashberg equations down to low temperatures with keeping the
renormalization function and a full momentum dependence of the pairing gap. When superconductivity occurs
in the tetragonal phase, we find that the pairing gap exhibits a weak momentum dependence over the Fermi
surfaces. The superconducting instability occurs also inside the nematic phase. When the d,, orbital is occupied
more than the d,. orbital in the nematic phase, a larger (smaller) gap is realized on the Fermi-surface parts where
the d,, (d,.) orbital component is dominant, leading to a substantial momentum dependence of the pairing gap
on the hole Fermi surfaces. On the other hand, the momentum dependence of the gap is weak on the electron
Fermi surfaces. We also find that while the leading instability is the so-called s, -wave symmetry, the second
leading one is d,2_,2-wave symmetry. In particular, these two states are nearly degenerate in the tetragonal phase,
whereas such quasidegeneracy is lifted in the nematic phase and the d,._»-wave symmetry changes to highly

anisotropic s-wave symmetry.

DOI: 10.1103/PhysRevB.94.214505

I. INTRODUCTION

The mechanism of high-7, superconductivity is one of
major interests in condensed matter physics. In particular,
iron-based superconductors (FeSCs) attract great interest [1].
The typical phase diagram of FeSCs [2] contains four phases:
normal metallic phase, superconductivity (SC), spin-density-
wave (SDW), and nematic phase [3]. Because of the proximity
to the SDW phase, it is widely discussed that SC can be
mediated by spin fluctuations [4—6]. On the other hand, FeSCs
are characterized by multibands and thus SC mediated by
orbital fluctuations is also discussed as another mechanism
of SC [7,8].

How about a role of the nematic phase for SC? Since SC
occurs closer to the nematic than the SDW phase, it is easily
expected that nematic fluctuations also play an important role
to drive SC. While the nematic instability is accompanied by a
structural phase transition from a tetragonal to an orthorhombic
phase, the nematic phase is believed to be driven by electronic
degrees of freedom, not by lattice degrees. Considering that the
nematic phase is associated with breaking of the orientational
symmetry and keeping the translational symmetry unbroken,
strong nematic fluctuations are expected to occur around zero
momentum near the nematic transition. In fact, such strong
nematic fluctuations were directly observed by electronic Ra-
man spectroscopy [9]. A possible SC from nematic fluctuations
is therefore distinguished from the spin [4—6] and orbital [7,8]
fluctuation mechanisms because the latter two mechanisms
are concerned with fluctuations of a large momentum transfer
characterized typically by Fermi surface (FS) nesting.

The origin of the nematic phase is under debate [10]. There
are three possible nematic orders: charge [11-13], spin [14],
and orbital [15,16] nematicity. The latter two possibilities,
namely spin [17,18] and orbital [19-22] nematic order, are
mainly discussed. Since there is a linear coupling between
spin and orbital nematic orders, one order necessarily leads to
the other [10]. It is therefore not easy to distinguish between
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these two orders in experiments. Theoretically it turned out
that the spin nematic phase is subject to a severely restricted
property near the SDW phase [23], which may serve to identify
the origin of the nematic order.

We focus on the orbital nematic scenario in this paper.
Orbital nematic fluctuations lead to the so-called s, -wave
symmetry in the sense that it is s-wave and the gap has the
same sign on all FSs [24]. In the weak coupling limit without
quasiparticle renormalization in the Eliashberg theory [25],
the transition temperature became unrealistically high and
moreover the superconducting instability was restricted along
the orbital nematic phase. These features were in sharp contrast
to the typical phase diagram of FeSCs [2]. Such drawbacks
were overcome by taking quasiparticle renormalizations into
account [26]. The resulting onset temperature was decreased
substantially down to a temperature comparable to experi-
ments, suggesting that orbital nematic fluctuations can be
a new mechanism driving high-7, SC. Furthermore, orbital
nematic fluctuations were found to drive strong coupling
SC[26]. The pairing gap was, however, assumed to be constant
on each FS and thus the structure of the gap, which is the
fundamental property of SC, has not been clarified.

In this paper we study the momentum dependence of the
pairing gap due to orbital nematic fluctuations by employing a
minimal two-band model. We solve the Eliashberg equations
down to low temperatures with keeping the renormalization
function. We find that the momentum dependence of SC
is very weak in the tetragonal phase, whereas it becomes
substantial on the hole FSs when SC occurs inside the
nematic phase. These momentum dependencies are understood
in terms of multiorbital natures of SC. We also find that
dy>_2-wave pairing is nearly degenerate to s -wave pairing
when SC occurs from the tetragonal phase, whereas such
quasidegeneracy is lifted when SC occurs inside the nematic
phase.

In Sec. II we describe the model and formalism. Major
results are presented in Sec. III and discussed in Sec. IV.

©2016 American Physical Society
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Conclusions are given in Sec. V. In the Appendixes we present
results deeply inside the nematic phase and the gap structure
associated with subleading pairing instabilities.

II. MODEL AND FORMALISM

To elucidate the typical feature of SC driven by orbital
nematic fluctuations and to make computations feasible down
to low temperatures, we employ a minimal model of orbital
nematic physics. Since orbital nematic instability is described
by the occupation difference between the d,, and d, orbitals,
we consider the following minimal interaction [26]:

8
H] = 5 Zl’li_l’ll‘_. (1)
1
Here n;_ is the density-difference operator and is defined
by n;— = n;; — n;; with the electron density operator n;, =
. CLU Cias- | and o are site and spin indices, respectively,

and o = 1,2 correspond to the d,, and d,, orbital, respec-
tively. When the system retains the tetragonal symmetry, the
expectation value of n;_ becomes zero, namely (n;_)=0.
This expectation value becomes finite when the system
loses xy symmetry. Hence the quadratic form of n;,_ in
Eq. (1) may be viewed as a typical interaction driving orbital
nematicity. The coupling strength g is an effective low-energy
interaction coming from not only the bare intraorbital Coulomb
interactions [27], but also the electron-phonon interaction [25],
the Aslamazov-Larkin contribution [8], and the interorbital
Coulomb interaction between Fe and Pnictogen [28]. In
principle, the interaction (1) can lead to a nonuniform solution
of (n;_). However, we checked that the uniform solution gives
the minimum energy in the random phase approximation for
the parameters that we shall use in this paper.

The kinetic term of the two-band model may mimic the
typical FSs in FeSCs [29,30]:

Hy = Z éﬁﬁqﬁwckﬂa, 2

k,o,0,8
where €' = —2t; cosk, — 2t cosk, — 4t3 cos k, cosk, — u,
6132 = -2 cosk, — 2ty cosk, — 4tz cosk, cosk, — pn, and
€.> = —4tysink, sink,. By choosing the parameters

appropriate for FeSCs [30] such as t = —t;, 5/t = 1.5,
3/t =—1.2, 4/t = —0.95, and p = 0.6¢, we obtain two
hole FSs around k = (0,0) and (7,7) and two electron FSs
around k = (7,0) and (0,7) as shown in Fig. 1(a). We denote
them as FSi withi = 1, ...,4. FS1 and FS2 are derived from
both d,; and d,. orbitals and FS3 and FS4 are from the d,,
and the d,, orbital, respectively. Our FSs capture the actual
orbital components obtained in the five-band model [31].
Although the d,, orbital is partially involved in the electron
FSs, the d,, orbital is not relevant to orbital nematicity and
thus is neglected in the present model. For simplicity we use
the unit cell containing one iron.

We study the SC due to orbital nematic fluctuations
in the framework of Eliashberg theory [32]. We solve the
Eliashberg equations down to low temperatures with keeping
the renormalization function as in the previous work [26]. The
key technical development of the present work is to include
a full momentum dependence of the superconducting gap on
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FIG. 1. Typical Fermi surfaces in the tetragonal phase (a) and the
nematic phase (b). Fermi surfaces around (0,0) and (r,7) correspond
to hole pockets and those around (;r,0) and (0,7) electron pockets.
Each FS is denoted as FS1, FS2, FS3, and FS4, respectively. Red
and blue curves denote the parts where the d,, and d,, orbital
components are dominant, respectively, and the linewidth depicts
its weight schematically.

each FS, which was neglected and replaced by a constant on
each FS in the previous study [26].
Our pairing interaction is given by

Ho(‘l»i Qm)
1= gTo(q.ign)
where q and ig, are a momentum transfer and a bosonic
Matsubara frequency, respectively. The first term is the
retarded interaction mediated by nematic fluctuations and
the second one accounts for instantaneous interactions from
Coulomb repulsion gg > 0. I1y(q,ig,,) describes noninteract-
ing nematic particle-hole excitations, namely I1(q,ig,) =
Y kon TG0, i) T3Go(K + q.iw, + igy)T3]. Here Gy is
a 2 x 2 matrix of the noninteracting Green function defined
by Eq. (2), 13 = ((1) _01) is the vertex associated with the orbital
nematic interaction [Eq. (1)], and i w, is a fermionic Matsubara
frequency; T is temperature and N is the total number of lattice
sites.

Since superconducting instability is a phenomenon close to
the FS, we project the momenta on the FSs. We divide each
FS into small patches and assign the Fermi momentum kr on
each patch; ky is thus a discrete quantity in this paper. The
resulting Eliashberg equations for the gap A(Kp,iw,) and the
renormalization function Z(Kg,iw,) then read as

gq,ign) =g g+ go» 3)

Akp,iwn)Z(Kp,iw,)

8xpk, (fwy — iwy)

=—nT Y Ny
K. |wn’|
Fn

w Skpk (W, — iwy
Z(kp.iw) =1-nT Y Ny, 2 8% ke )

K,/ Wy |wl’l’|

AKpioy), (4

&)

Here g denotes effective nematic fluctuations, which are
obtained by averaging the nematic fluctuations over FS patches
kr and K. It is expressed by

gkpk}(iwn —iwy)

_ AN R BT VK ek — Ko —ion)

1 ~FSp 1 FSp
N 4K

N Lk
The sum over k is limited to a FS patch specified by
kr. The vertex V(Kk,k') describes a coupling between the
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nematic fluctuations and electrons, and is given by V(k,k') =
Ul(k)r3U(K'); U is a 2 x 2 unitary matrix diagonalizing the
kinetic term Eq. (2). Nk, in Egs. (4) and (5) is a momentum
resolved density of states defined on each FS patch. The
renormalization function Z(kr,iw,) is frequently neglected
in research of FeSCs. However, its inclusion is definitely
necessary because orbital nematic fluctuations lead to a strong
coupling SC [26]. As is well known, Eq. (4) can be viewed
as an eigenvalue equation and the transition temperature 7, is
obtained when its eigenvalue A becomes unity.

III. RESULTS

To elucidate the typical property of SC mediated by orbital
nematic fluctuations, we put go = 0 in Eq. (3) in what follows.
The major role of gq is to suppress 7, as shown in Fig. 4 in
Ref. [26]. In fact, the gap structure does not depend much on g
at least in the leading instability; appreciable g, dependences
may appear in some subleading instabilities especially in the
nematic phase. In the present model, nematic instability does
not occur in —g < 1.75¢ [33]; the full phase diagram in the
plane of temperature and the coupling constant g is given
in Fig. 1 in Ref. [26]. We study two typical cases: possible
superconducting instability from the normal phase and from
the nematic phase by taking —g = 1.7¢ and 1.8¢, respectively.
T. in both cases is found to be almost the same and thus the
impact of nematic order on SC can also be discussed through
a comparison with the two cases.

Figure 2(a) shows the temperature dependence of the eigen-
value A for the five largest eigenvalues for g = —1.7¢ where
nematic instability does not occur down to zero temperature.
With decreasing temperature, all A increase monotonically and
the largest one eventually crosses unity at 7, = 0.034¢, where
superconducting instability occurs.

The corresponding eigenvector at the lowest Matsubara
frequency, which we denote as Ag, = A(kp,inT.), shows
sy+-wave symmetry as shown in Fig. 3(a). The gap on FS1
and FS2 exhibits a fourfold modulation, whereas the gap on
FS3 and FS4 a twofold modulation even in the tetragonal
phase. The modulation of the gap is very weak and is at most
about 4% on the hole FS (FS2). Comparison with the orbital
components of the FSs in Fig. 1(a) indicates that A, on FS1
and FS2 is slightly suppressed on the FS parts where two
orbital components contribute equally. A weak modulation
of the pairing gap on the hole FSs is also obtained in the
spin fluctuation mechanism [34-36], which however predicts

1 1 1 Al L L L 1

0 005 01 015 02 0.25 00 0.05 0.1 0.15 02 0.25
T/t T/t

FIG. 2. Temperature dependence of the five largest eigenvalues A

in the tetragonal phase (a) and the nematic phase (b).
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FIG. 3. Momentum dependence of the pairing gap on each FS in
the tetragonal phase (a) and the nematic phase (b). In the right-hand
panels, their momentum dependencies are shown schematically by
featuring a gap magnitude with the thickness of each FS. The polar
angle 6 is measured with respect to the k, axis for each FS.

a large modulation of the gap on the electron FSs, in contrast
to the present orbital nematic mechanism.

The second largest eigenvalue is nearly degenerate to the
leading s,.-wave gap in Fig. 2(a). It corresponds to d,2_ -
wave symmetry where there are line nodes on FS1 and FS2 and
a full gap on FS3 and FS4 with a sign opposite to each other.
Interestingly a similar feature of such quasidegeneracy of s-
and d-wave solutions was obtained also in the spin fluctuation
mechanism [5,31]. In addition, the exact degeneracy between
s- and d-wave symmetry was found when nematic fluctuations
are assumed independent from momentum and frequency [37].
The third, fourth, and fifth largest eigenvalues in Fig. 2(a) are
rather suppressed. Details of their gap structure are presented
in Fig. 6 in Appendix B.

Figure 2(b) shows the temperature dependence of eigenval-
ues for g = —1.8¢. The eigenvalues increase with decreasing
T and reach close to A =1 at the onset temperature of
nematic instability Tony = 0.102¢. However, they do not cross
unity. This peculiar behavior at T = Ton comes from the
divergence of the effective interaction g,k (iw, — iw,) at
kr = K} and w, = w,. As aresult, Z also diverges in Eq. (5).
Such divergence of g and Z, however, cancels out in Eq. (4)
because their contributions enter like g/Z. Other nondiagonal
components such as kp # Kk, and w, # w, in Eq. (4) become
negligible compared to the diagonal components because of
the contribution of 1/Z. Hence the matrix in Eq. (4) is reduced
essentially to the unit matrix. This is the reason why all
eigenvectors tend to be degenerate at the nematic transition
and their eigenvalues become close to unity. In 7 < Tpn;, the
nematic order develops and thus low-energy nematic fluctua-
tions are necessarily suppressed. Consequently the eigenvalues
are also suppressed. However, the largest eigenvalue starts
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FIG. 4. Momentum dependence of the renormalization function
Zy,. on each FS in the tetragonal phase (a) and the nematic phase (b).

to grow again at lower temperatures, suggesting that orbital
nematic fluctuations are still strong enough to drive SC. The
largest eigenvalue eventually crosses unity at 7, = 0.034¢,
leading to superconducting instability there. In contrast to
the case of superconducting instability from the tetragonal
phase [Fig. 2(a)], the second largest eigenvalue, which is
characterized by nodal s-wave symmetry [see Fig. 7(a)
in Appendix B], is suppressed and no quasidegeneracy of
superconducting instability occurs in the nematic phase.

While the orbital nematic order has two degenerate solu-
tions, namely =+ (n;_), we consider a positive solution here. As
a result, as shown in Fig. 1(b), FS1 (FS2) elongates along the
ky (ky) direction, whereas FS4 expands along the k, direction
and FS3 shrinks upon developing the nematic order. The
corresponding eigenvector is plotted in Fig. 3(b). In contrast to
Fig. 3(a), Ak, shows a twofold modulation on FS1 and FS2. Its
modulation amounts to as large as about 40% with respect to its
mean value. This strong modulation is understood in terms of
the occupation difference of two orbitals in the nematic phase.
In the present nematic phase, the d,, orbital is occupied more
than the d,, orbital. Hence the contribution of the d, orbital
to the FSs becomes smaller than the other as seen in Fig. 1(b).
Its contribution to the pairing is then suppressed. Since FS1
and FS2 consist of both d,; and d, orbitals [Fig. 1(b)], the
pairing gap acquires substantial modulations on the hole FSs
with minima where the d,, orbital is dominant as shown in
Fig. 3(b). It is interesting that the enhancement of the gap
modulation in the nematic phase is also obtained in the spin
fluctuation mechanism [38]. On the other hand, FS3 and FS4
consist of essentially a single orbital component and thus the
modulation of Ak, remains very weak. The magnitude of the
gap on FS3 becomes substantially smaller than that on FS4,
because the minor d,; orbital forms FS3.

The momentum dependence of the renormalization func-
tion at the lowest Matsubara frequency is shown in Fig. 4; here
Zx, = Z(kp,inT,). A value of Zy, is substantially larger than
the typical weak-coupling SC characterized by Zy, close to
unity. Hence orbital nematic fluctuations drive strong coupling
SC[26]. OnFS1and FS2, Z, shows a weak k dependence in
both tetragonal and nematic phases, with fourfold symmetry in
the former and twofold symmetry in the later. On FS3 and FS4,
Zy, exhibits a twofold modulation and its value is enhanced
more than that on FS1 and FS2. This is because the size of the
FS is rather small and thus orbital nematic fluctuations, which
have large spectral weight at small momentum, contribute
effectively via intrapocket scattering processes. In particular,
the value of Zy, amounts to as large as about 3.7 in the
tetragonal phase.

PHYSICAL REVIEW B 94, 214505 (2016)

While we have considered the case where FS3 survives in
the nematic phase, essentially the same results are obtained
even if FS3 disappears due to large nematicity. Details are
presented in Appendix A.

IV. DISCUSSIONS

We have studied SC mediated by orbital nematic fluctu-
ations. In particular, we have elucidated one of fundamental
properties of SC, namely the structure of the pairing gap, by
allowing a momentum dependence of the gap in a theory of
Ref. [26]. Except that the pairing gap and the renormalization
function acquire a momentum dependence, we have found that
results obtained in Ref. [26] remain valid almost quantitatively.
In fact, a value of T, is enhanced only slightly by allowing the
momentum dependence.

The structure of the pairing gap can be revealed directly
by angle-resolved photoemission spectroscopy (ARPES). We
have obtained the weak momentum dependence of the gap
in the tetragonal phase [Fig. 3(a)], which can be viewed
as a nearly isotropic gap. Such a gap roughly captures
experimental observations in various materials when we
focus on the FSs originating mainly from the d.; and d,,
orbitals: BaFe,(As;_,P,), with x = 0.30 [39] and 0.35 [40],
Bag ¢Ko4Fe,As, [40], and FeTey¢Sep4 [41]. While we have
obtained s, .-wave symmetry as the leading instability, the
sign of the superconducting gap can be a subtle issue. In the
mechanism of orbital nematic fluctuations, SC is driven mainly
by intrapocket scattering processes and the relative sign among
the gaps on different pockets is determined by interpocket
nematic fluctuations which are relatively weak [26]. Hence the
pairing symmetry could easily change from sy to s; wave
when some repulsive interactions between hole and electron
pockets are added even if orbital nematic fluctuations are still
dominant. This is actually the case when spin fluctuations are
added to orbital nematic fluctuations [42] and to various charge
fluctuations [28].

For Ba(Fe;_,Co,);As, with x = 0.1, a nearly isotropic
gap was observed on all FSs except for one electron FS
around (7r,0), where nodes or gap minima were reported [43].
The presence of the nodelike structure in the tetragonal
phase is not captured in the present theory, which may be
resolved by considering the following possibilities. First,
while the d,, and d,, orbitals are dominant contributions
to the Fermi level, the second dominant contribution comes
from the d, orbital [31]. Since a modulation of the gap
originates from the multiorbital natures in the present theory,
a stronger modulation, namely gap minima, could be realized
by including the d,, orbital. Second, the leading s -wave
symmetry is nearly degenerate to the second leading instability
[Fig. 3(a)], which is characterized by d,>_,>-wave symmetry.
This d,>_,»-wave symmetry could be stabilized by additional
effects such as spin fluctuations. Third, spin fluctuations
themselves, on the other hand, tend to drive s;-wave symmetry
in general [4-6] and their inclusion yields the competition
with s, -wave symmetry. Such competition may lead to a
nodelike feature of s-wave gap. This is indeed the case at
least when the system contains both orbital fluctuations with
large momentum transfers and spin fluctuations [44]. While a
node was not obtained, the pairing gap was found to exhibit
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large modulations on the electron FSs when spin and charge
fluctuations compete with each other; the gap on the hole FSs,
however, remains almost isotropic [28].

The superconducting gap structure was also revealed for
FeSe films, whose T, can be more than 65 K [45-47]. A nearly
isotropic gap was observed on the electron FSs for monolayer
FeSe [48,49] and K-coated multilayer FeSe [50]. A similar
gap structure was also observed for CsggFe,Se, [51] and
Ko gFe>Se, [51]. These results are consistent with our results
[Fig. 3(a)]. While FeSe films [46] and alkali-intercalated
FeSe [51] are special in the sense that hole FSs are absent and
only the electron FSs exist, the present theory is expected not
to be sensitive to the actual FS geometry (see also Appendix A)
since SC from orbital nematic fluctuations comes mainly from
intrapocket scattering processes [26].

A superconducting gap inside the nematic phase may be
discussed for FeSe 93S0.07 [52]. The gap on the hole FS around
(0,0) exhibits the sizable momentum dependence with gap
maxima (minima) along the k. (k,) axis in Fig. 3(b), which
captures the observed gap structure on the hole FS [52]. The
SC gap on the hole FS around (7,7) has maxima (minima)
along the k, (k,) direction as seen in Fig. 3(b). Recalling that
FeSCs have two irons per unit cell, our Brillouin zone would
be folded and thus the hole FS around (;r,7) is actually moved
around (0,0) through a momentum shift of (;r,7), forming
the outer hole FS around (0,0). Consequently, we expect an
antiphase gap structure between two hole FSs around (0,0),
that is, the outer FS has a larger (smaller) gap along the k, (k)
axis, whereas the inner FS has a smaller (larger) gap there.
This predicted gap structure as well as the gap on the electron
FSs has not been resolved in experiments [52].

V. CONCLUSIONS

Employing a minimal two-band model consisting of the
dy; and d,; orbitals, we have studied typical properties
of SC mediated by orbital nematic fluctuations. We have
solved the Eliashberg equations down to the superconducting
onset temperature with keeping not only the renormalization
function but also a full momentum dependence of the paring
gap on the FSs. We have found that the leading instability is
s++-wave symmetry. The pairing gap exhibits a fourfold and
twofold modulation on the hole and electron FSs, respectively,
in the tetragonal phase. The gap is suppressed on the parts of the
FSs where two orbitals contribute equally, but its suppression is
weak and the gap may be approximated as a constant. SC with
d,>_>-wave symmetry can also be driven by orbital nematic
fluctuations as a nearly degenerate state to the s -wave state.
The impact of the nematic order is noticeable. First, the gap
on the hole FSs acquires a significant modulation. The gap
is suppressed on parts of the FSs where the d,, (d,;) orbital
becomes dominant, when the d,; (d,) orbital is occupied less
than the other. Second, the fourfold modulation of the gap on
the hole FSs changes to a twofold modulation, whereas the
twofold modulation remains on the electron FSs. Third, the
quasidegeneracy of s ;- and d,2_,>-wave solutions is lifted in
the nematic phase. The d,>_»-wave solution is suppressed by
changing its symmetry to highly anisotropic s-wave state.

We have focused on orbital nematic fluctuations in order to
establish the typical gap structure of SC mediated by them,

PHYSICAL REVIEW B 94, 214505 (2016)

which will serve to disentangle complex phenomena with
combined effects from multiorbitals and multifluctuations in
FeSCs. Given that the nematic phase is realized close to
the SDW phase in the general phase diagram of FeSCs, we
consider it reasonable to assume that spin fluctuations are
also important to SC. In fact, there are a plenty of studies
trying to explain the superconducting gap in FeSCs in terms
of the spin fluctuation mechanism [53]. An important future
issue is to clarify the condition of which mechanism, spin
fluctuations or orbital nematic fluctuations, is dominant over
the other or whether both mechanisms should be considered on
an equal footing in general. Although these two mechanisms
rely on different physics, interestingly they share some aspects
of SC: (i) the pairing gap with s-wave symmetry [4-6], (ii)
the presence of a d,»_,»-wave solution nearly degenerate
to the leading instability in the tetragonal phase [5,31],
(iii) the weak modulation of the pairing gap on the hole FSs
in the tetragonal phase [34-36], and (iv) its enhancement in
the nematic phase [38]. The positions of gap minima/maxima
obtained in the spin fluctuation mechanism [38], however, vary
from the present work.
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APPENDIX A: GAP STRUCTURE DEEPLY
INSIDE THE NEMATIC PHASE

Superconductivity mediated by orbital nematic fluctuations
comes mainly from intrapocket scattering processes [26].
Hence the geometry of the FSs is not important to
the superconducting instability. This is a crucial differ-
ence from other superconducting mechanisms such as spin
fluctuations [4-6] and orbital fluctuations with a large momen-
tum transfer [7,8]. To demonstrate this, we here present results
of superconducting instability deeply inside the nematic phase
(g = —1.9¢t), where FS3 vanishes due to large nematicity and
the other FSs, namely FS1, FS2, and FS4 are elongated slightly
more than Fig. 1(b), as seen in Fig. 5(d).

Figure 5(a) shows the temperature dependence of the
eigenvalues. With decreasing temperature, the eigenvalues
increase and take a cusp at T = Ton = 0.202¢, where the
nematic instability sets in. The eigenvalues do not cross unity
there because the quasiparticle residue Z~' goes to zero
there, as in the case of Fig. 2(b). Below Tpn, low-energy
orbital nematic fluctuations are suppressed, leading to the
suppression of the eigenvalues. At T =~ 0.14t, the eigenvalues
drop discontinuously. This temperature corresponds to the
temperature at which FS3 vanishes because the nematic
order parameter grows to be large enough to push up FS3
above the Fermi energy. The largest eigenvalue, however,
starts to increase at lower temperature and finally leads to
superconducting instability at 7, = 0.052z.

In Fig. 5(c) we show the momentum dependence of the
pairing gap. The results are essentially the same as Fig. 3(b). A
quantitative difference is that Ak, acquires a larger modulation
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FIG. 5. Major results deeply inside the nematic phase for g =
—1.9¢ where FS3 vanishes. (a) Temperature dependence of the five
largest eigenvalues 1. (b) Momentum dependence of the renormal-
ization function Zy, on each FS. The polar angle 6 is measured with
respect to the k, axis for each FS as shown in (d). (¢) Momentum
dependence of the pairing gap on each FS. (d) Sketch of Ay, by
featuring a gap magnitude with the thickness of each FS.

on the hole FSs. The regions on the FSs where the d,, and
d. orbital components are dominant are almost the same as
Fig. 1(b) except for the absence of FS3. The gap minima
are then realized on the FS parts consisting mainly of the
minority orbital, namely the d,; component. The resulting
modulation of the pairing gap amounts to as large as about
60%. In spite of the large modulations on FS1 and FS2, the
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gap on FS4 exhibits a very weak momentum dependence.
This is because FS4 consists of essentially a single orbital
(see Fig. 1). We summarize the gap structure associated with
subleading instabilities in Fig. 8 in Appendix B.

The corresponding renormalization function is shown in
Fig. 5(b). In line with the large modulation of Ak, on FS1 and
FS2, Zy, on FS1 and FS2 also shows a modulation as large
as about 17% with a twofold modulation much more clearly
than the corresponding results in Fig. 4(b) because of larger
nematicity here. On the other hand, Zy, on FS4 features a very
weak momentum dependence, similar to that of Ay,.

APPENDIX B: MOMENTUM DEPENDENCE OF PAIRING
GAP OF SUBLEADING INSTABILITIES

We present the momentum dependence of the pairing gap
associated with the second, third, fourth, and fifth largest
eigenvalues shown in Figs. 2 and 5(a).

Figure 6 shows results in the tetragonal phase (g = —1.7¢).
The second largest eigenvalue is characterized by d>_ ,2-wave
symmetry, which is nearly degenerate to the leading s, -wave
symmetry [see Fig. 2(a)]. The third one is characterized by
s+-wave symmetry, which is the same symmetry as that often
obtained in the spin fluctuation mechanism [4—6]. The fourth
one corresponds to dy>_,2-wave symmetry. The difference
from the second one lies in the sign of the gap on FS3 and
FS4. The fifth one is characterized by s, -wave symmetry,
the same symmetry as the leading one [Fig. 3(a)]. The
main difference appears in the magnitude of the gap on
FS3 and FS4, which is substantially suppressed for the fifth
leading instability. Looking through those gap structure of the
subleading instabilities, we can conclude that the momentum
dependence of the pairing gap is very weak for the s-wave
solutions in the tetragonal phase.

(b) Third largest
1.8

(d) Fifth largest
1.6 T T
g=-1.7t

0 /2 13

FIG. 6. Momentum dependence of the pairing gap for the second (a), third (b), fourth (c), and fifth (d) largest eigenvalues in the tetragonal
phase for g = —1.7¢. The right-hand panel is a sketch of the gap structure by featuring a gap magnitude with the thickness of each FS. The

polar angle 6 is measured with respect to the k, axis for each FS.
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PHYSICAL REVIEW B 94, 214505 (2016)

6 (b) Third largest
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FIG. 7. Momentum dependence of the pairing gap for the second (a), third (b), fourth (c), and fifth (d) largest eigenvalues in the nematic
phase for g = —1.8¢. The right-hand panel is a sketch of the gap structure by featuring a gap magnitude with the thickness of each FS.

In the nematic phase the pairing gap acquires a sizable
modulation along the FSs. Figure 7 is the corresponding
results in the nematic phase for g = —1.8¢. The pairing gap
for the second largest eigenvalue shows a similar momentum
dependence to that in Fig. 6(a). However, d,2_,>-wave sym-
metry cannot be defined in the nematic phase. Instead, the
result in Fig. 7(a) is characterized by nodal s-wave symmetry.
Nodes enter hole pockets FS1 and FS2. The third leading
instability corresponds to the so-called si-wave symmetry
although s-wave gap on FS1 and FS2 becomes nearly zero at

(a) Second largest

1 1 1
8 g=-1.9¢
6 FSl—— FS2—+=— FS4 k0 -
; ' 4 2
1
+
0 /2 m 3n/2 2n 0 f @

(c) Fourth largest

7 e=-1.91' ' .
Fs1 —— | .

35 FS2 —=—

5. FS4

e~ ngx
<0

ol .
3.5
1 1
0 /2 3n/2 21 0 k ps

Ty

0 =0,m and 0 = /2,37 /2, respectively. It is interesting that
the pairing gap on FS3 becomes largest in Figs. 7(a) and 7(b),
although FS3 is tiny. The fourth one is also characterized by
sy-wave symmetry. In contrast to the third one, the gap on
FS3 is nearly zero. While this is not a leading instability,
the solution in Fig. 7(c) provides an interesting example of
essentially gapless s-wave SC in a multipocket system. The
fifth solution [Fig. 7(d)] is similar to the fourth one in the
tetragonal phase [Fig. 6(c)] and features a kind of d,2>_,>-wave
symmetry, although the correct symmetry is the so-called

b) Third largest
3.2( ) £

=191
FS1—— FS2—=— FS4

L
0 /2 s

P 3n/2 2n 0 kK, @
(d) Fifth largest
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0
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FIG. 8. Momentum dependence of the pairing gap for the second (a), third (b), fourth (c), and fifth (d) largest eigenvalues deeply inside the
nematic phase for g = —1.9¢ where FS3 vanishes. The right-hand panel is a sketch of the gap structure by featuring a gap magnitude with the

thickness of each FS.
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s-wave symmetry classified by A; representation in the Cy,
point group. The gap on FS3 is nearly zero, similar to the case
of the fourth solution [Fig. 7(c)].

While the leading instability is characterized by the same
s++-wave symmetry in both Figs. 3(b) and 5(c), the subleading
instabilities deeply inside the nematic phase, where FS3
vanishes, exhibit symmetries rather different from Fig. 7.
Figure 8(a) shows Ay, corresponding to the second largest
eigenvalue. It is characterized by a very large modulation on
FS1 and FS2 and the gap almost vanishes at 8 = 0,7 on FS1
and 6 = 7/2,37/2 on FS2. This solution is similar to Ak,
of the third largest eigenvalue for g = —1.8¢ [see Fig. 7(b)].
The gap on FS4 has the sign opposite to that on the hole

PHYSICAL REVIEW B 94, 214505 (2016)

FSs. In this sense the gap structure is si-wave symmetry.
Figure 8(b) corresponds to the third largest eigenvalue and is
a similar result to Fig. 8(a), except that the gap on FS4 has the
opposite sign and the modulation of the gaps on FS1 and FS2
is smaller. In fact, these two solutions are almost degenerate
as seen in Fig. 5(a). The fourth largest eigenvalue corresponds
to p-wave symmetry, as shown in Fig. 8(c). It is interesting to
recognize that a p-wave solution, in principle, can be driven
orbital nematic fluctuations deeply inside the nematic phase.
This p-wave solution is almost degenerate to the fifth leading
instability as seen in Fig. 5(a). The fifth one is nodal s-wave
symmetry with nodes on FS2. A nodelike feature is also
realized on FS1 where the gap nearly vanishes at 6 = 0, 7.
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