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Abstract
Sponge metagenomes are a useful platform to mine cryptic biosynthetic gene clusters

responsible for production of natural products involved in the sponge-microbe association.

Since numerous sponge-derived bioactive metabolites are biosynthesized by the symbiotic

bacteria, this strategy may concurrently reveal sponge-symbiont produced compounds.

Accordingly, a metagenomic analysis of the Japanese marine sponge Discodermia calyx

has resulted in the identification of a hybrid type I polyketide synthase-nonribosomal pep-

tide synthetase gene (kas). Bioinformatic analysis of the gene product suggested its

involvement in the biosynthesis of kasumigamide, a tetrapeptide originally isolated from

freshwater free-living cyanobacterium Microcystis aeruginosa NIES-87. Subsequent inves-

tigation of the sponge metabolic profile revealed the presence of kasumigamide in the

sponge extract. The kasumigamide producing bacterium was identified as an ‘Entotheo-

nella’ sp. Moreover, an in silico analysis of kas gene homologs uncovered the presence of

kas family genes in two additional bacteria from different phyla. The production of kasumi-

gamide by distantly related multiple bacterial strains implicates horizontal gene transfer

and raises the potential for a wider distribution across other bacterial groups.

Introduction

Metagenomemining strategies [1] are applicable for the discovery of unknown compounds, par-
ticularly polyketides and nonribosomal peptides, from uncultured bacteria. Based on the colin-
earity rule of domain and module organization of modular polyketide synthase (PKS) and
nonribosomal peptide synthetases (NRPS) [2–3], it is possible to predict the chemical structures
of products derived from orphan gene clusters comprising PKS and/or NRPS genes. As many
polyketides and nonribosomal peptides have been isolated frommarine sponges, and there is
strong evidence that those natural products are actually produced by their microbial symbionts,
sponge metagenomes have become a useful source for identifying the real producers of those nat-
ural products. Among the many different sponge symbionts, e.g., Proteobacteria, Actinobacteria,
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Acidobacteria, Cyanobacteria [4], the ‘Enthotheonella’ group belonging to the candidate phylum
‘Tectomicrobia’ has recently been described as a highly prolific bacterial symbiont phylotype
capable of producing structurally complex bioactivemolecules [5–6]. This as-yet-uncultured
group of bacteria has been frequently detected in severalmarine sponges. In the marine sponges
Theonella swinhoei Y and T. swinhoeiWA, ‘Entotheonella’ was identified as the true producer of
a number of natural products [7–8]. The Japanese marine spongeDiscodermia calyx (Fig 1A) [9]
is also known as a rich source of bioactive compounds, such as calyculins and calyxamides [10–
12]. Through extensive screening of the metagenomic library ofD. calyx, we recently identified
the calyculin biosynthetic gene cluster and linked this cluster to the symbiotic bacterium,
‘Entotheonella’ sp. by employing single cell analysis [13].

Furthermore, we employed degenerate PCR to target gene within theD. calyxmetagenome
that encode ketosynthase (KS) domains [14–18] and found a range of distinct KS domain
sequences. Of these, several were associated with trans-acyl transferase (AT) type KS domains
and characterized as components of the calyculin biosynthetic gene cluster. Other KS domains,
however, could not be attributed to a previously characterized biosynthetic pathway. Therefore,
to search for new biosynthetic gene clusters and their products, extensive characterization of
the diverse KS domains present in theD. calyxmetagenomic library is warranted. Here, we
present such a study, targeting KS domains affiliated with the cis-AT KS group and subse-
quently characterizing the production of the cyanobacterial natural product kasumigamide by
a sponge symbiont.

Results

Annotation and predicted product of kas gene cluster

Screening of theD. calyx fosmid library using specific primers for the cis-AT KS domain
resulted in the identification of two clones pDCYN1 and pDCYN2. Sequencing of the fosmid
clones revealed the existence of a hybrid PKS-NRPS biosynthetic gene cluster (kasA-I, ~37 kb,
LC160290) (Table 1, Fig 2), composed of 9 open reading frames (ORFs), with kasA-C forming
a PKS-NRPS core. KasA is comprised of an adenylation (A) domain (KasA-A1), a ketoreduc-
tase (KR) domain (KasA-KR), and a peptidyl carrier protein (PCP) domain. KasB consists of
three modules (modules 2–4): the first two modules encodeNRPSs, and the latter encodes a
PKS. The two following NRPS modules (modules 5–6) are encoded in kasC. The substrates for
the five A domains (KasA-A1, KasB-A1, A2, KasC-A1, and A2) were predicted from the NRPS
codes [19] with the exception of KasA-A1, which was unmatched to known data, but anno-
tated to the A domain recruiting phenyl pyruvic acid (PP) based on the close resemblance to

Fig 1. Kasumigamide from the marine sponge Discodermia calyx. (a) The marine sponge Discodermia calyx. (b) Structure of

kasumigamide.

doi:10.1371/journal.pone.0164468.g001
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AerA of aeruginosin biosynthetic gene cluster (S2 Table) [20]. Collectively, the chemical struc-
ture of the PKS and NRPS hybrid compound was predicted to be kasumigamide, which had
previously been isolated from the freshwater cyanobacteriumMicrocystis aeruginosa NIES-87
(Fig 1B) [21]. However there have been no reports of the isolation of this compound from
marine sponges.

Isolation of kasumigamide from marine sponge D. calyx

In order to search for kasumigamide and related compounds, the MeOH extract of the frozen
spongeD. calyx was fractionated by column chromatography, based on LC-MSmonitoring, to
yield the putative kas gene product 1.

The molecular formula of 1 was established by ESI-TOFMS to be C40H50N8O9 [m/z
809.3801 (M+Na)+ for C40H50N8NaO9], which is consistent with that of kasumigamide (S1
Fig). Furthermore, 1D and 2D NMR data of 1, including 1H-1H COSY, HMQC,HMBC, and
NOESY spectra in DMSO-d6+TFA, suggested the presence of β-Ala and Arg (S3 Table) (S4
Table) (S2 Fig) (S3 Fig) (S4 Fig) (S5 Fig) (S6 Fig) [21]. The four aromatic protons (δH = 6.91,
7.00, 7.28, and 7.47) and an exchangeable proton (δH = 10.74) coupled to another aromatic
proton (δH = 7.00) were consistent with an indole ring, supported by the UV absorptionmax-
ima at 280 nm. In addition, the other ten aromatic protons at δH = 7.10–7.23 overlapped,
which suggested the presence of two mono-substituted benzene rings. The HMBC correlation
between aromatic protons (δH = 7.23) and an oxymethine carbon (δC 75.9) indicated the pres-
ence of 3-phenylserine. In contrast, other aromatic protons (δH = 7.16) showed HMBC correla-
tion with a methylene carbon (δC 41.2), which further correlated with an oxymethine proton at
δH = 4.00, supporting the presence of phenyl lactic acid. The amino acid sequence of 1 was con-
firmed by NOESY and HMBC correlations. The ODS HPLC analysis of L-FDAA derivatives of
the hydrolysate of 1 revealed the presence D-Arg and D-erythro-3-phenylserine (D-erythro-
PS). Therefore, the gross structure was concluded to be 1, which is coincident with the pre-
dicted product of the PKS and NRPS hybrid gene cluster, kasA-I.

Kasumigamide producer in the marine sponge

To identify the true producer of kasumigamide inD. calyx, we used the laser microdissection
(LMD)method to isolate the symbiont cells for PCR analysis. As the candidates, two types of

Table 1. Putative ORFs of kasumigamide NRPS-PKS gene cluster derived from “Entotheonella” sp.

ORFs Protein size

(aa)

Proposed function Sequence similarity, protein (origin) Identity/Similarity

(%)

Accession

number

ORF1 305 Transposase Transposase (Rhodopirellula europaea) 27/47 WP_008672175

kasD 529 Hydroxylase CmlA (Streptomyces Venezuelae) 39/57 WP_015032127

kasA 1381 NRPS (A, KR, PCP)

kasB 3694 PKS/NRPS (C, A, PCP, C, A, PCP, KS, AT, KR, ACP)

kasC 3560 NRPS (C, A, PCP, E, C, A, PCP, E, C)

kasE 540 Transporter Cyclic peptide transporter (Methylobacter tundripaludum) 38/59 WP_006892918

kasF 168 Transcriptional

regulator

Transcriptional regulator (Desulfurivibrio alkaliphilus) 36/54 WP_013162517

kasG 215 Methyltransferase Methyltransferase (Rhodococcus hoagie) 38/55 WP_022594278

kasH 173 Chorismate synthase Chorismate synthase (Kribbella catacumbae) 39/50 WP_020385871

kasI 341 Hypothetical protein Hypothetical protein ETSY1_01160 (Candidatus

“Entotheonella” sp. TSY1)

92/94 ETX03129

ORF2 305 Transposase Transposase (Rhodopirellula europaea) 27/47 WP_008672175

doi:10.1371/journal.pone.0164468.t001
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cells designated as “F” and “S” filamentous morphologies (Fig 3A) were isolated from the
sponge material. Of these two, only cells with the “F” morphology (Fig 3A) were returned posi-
tive when the genomes were amplified using the kas specific primer pair (Fig 3B). This fila-
mentous bacteriumwas previously reported to be ‘Entotheonella’ sp. as the producer of
calyculins inD. calyx (Fig 3A) [13].

Fig 2. The biosynthetic gene cluster and proposed biosynthetic pathway to kasumigamide. (a) ORFs

encoded in the putative kasumigamide biosynthetic gene cluster, kasA-I. Double-headed arrows show the location of

pDCYN1-2. The ORFs related to PKS-NRPS are highlighted in red. Putative transposases are colored in green. (b)

The domain organization and proposed biosynthetic pathway to kasumigamide.

doi:10.1371/journal.pone.0164468.g002

Fig 3. Symbiont bacteria bearing kas genes. (a) Phase contrast image of D. calyx homogenate. A filamentous

bacterium ‘Entotheonella’ sp. is designated as “F”. A small filamentous bacterium with bright color is designated as “S”.

Scale bars was 20 μm. (b) PCR analysis of dissected cells with the kas-specific primers pair, DCKS10F/DCKS10R (S1

Table), using dissected cells (“F” or “S”) as templates.

doi:10.1371/journal.pone.0164468.g003
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Kasumigamide biosynthetic gene cluster in cyanobacterium

Kasumigamide was first identified in the free-living cyanobacteriumM. aeruginosa NIES-87
[21]; however, its biosynthetic pathway in this organism was unknown. To compare the corre-
sponding gene clusters between the two different bacterial species, we set out to identify a kasu-
migamide biosynthetic gene cluster inM. aeruginosa NIES-87. First, the ability ofM.
aeruginosa NIES-87 to produce kasumigamide was confirmed by LC-MS analysis (S7 Fig).
One of theM. aeruginosametabolites showed the same retention time and molecularmass as
those of kasumigamide isolated fromD. calyx. These results corroborated the previous report
of kasumigamide production inM. aeruginosa NIES-87 [21]. The genome was then sequenced
and assembled (seeMaterials and Methods). A homology-based search revealed the existence
of the PKS-NRPS biosynthetic gene cluster, namedmakasA-D (S5 Table, LC160291) (S8C
Fig). ThemakasA-C genes encode five NRPS modules and one PKS module (Fig 4D).

Substrate specificity of the adenylation domains

In order to confirm the predicted substrates for the A domains in MakasA-C, an in vitro analy-
sis was performed using the Biomol Green assay strategy [22–23]. The His6-tagged recombi-
nant proteins of the five A domains, MakasA-A1, MakasB-A1, MakasB-A2, MakasC-A1, and
MakasC-A2, were produced in Escherichia coli and purified by nickel-nitrilotriaceticacid (Ni-
NTA) affinity chromatography (S9 Fig). Maltose binding protein (MBP) was used to improve
the solubility of MakasB2 and MakasC1. In the case of MakasB-A1 and MakasC-A2, the C and
PCP domains were coexpressed.MakasA-A1, MakasB-A1, MakasB-A2, and MakasC-A1
exhibited catalytic activities selective for PP, β-Ala, L-Trp, and L-Arg, respectively (Fig 5). In
addition, MakasC-A2 showed higher selectivity to DL-threo-3-phenylserine (DL-threo-PS)
than L-Phe, in accord to the substrate binding prediction (S2 Table). However, we have so far

Fig 4. Comparative analysis of domain organizations of the putative kasumigamide biosynthetic gene clusters. Each gene

cluster derived from (a) D. acidovorans CCUG 274B (b) Herbaspirillum sp. CF444 (c) ‘Entotheonella’ sp. (d) M. aeruginosa NIES-87.

doi:10.1371/journal.pone.0164468.g004
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not succeeded in the heterologous expression of each A domain of KasA-C as well as the entire
gene cluster, kasA-I using E. coli, Streptomyces lividans, or Streptomyces avermitilis as a host.

Kasumigamide biosynthetic gene cluster in phylogenetically diverse

bacteria

The above studies revealed that kasumigamide is produced by two phylogenetically distant bac-
terial species, ‘Entotheonella’ sp. andM. aeruginosa NIES-87. This observation suggests a hori-
zontal transfer of kasumigamide biosynthetic gene cluster can occur between different bacterial
species. Therefore, we searched for additional kas biosynthetic gene clusters using BLASTP,
with KasA-D as a query. As a result, two candidate clusters were found in the β-proteobacteria,
Delftia acidovorans CCUG 274B (WP_016445283-WP_016445295) andHerbaspirillum sp.
CF444 (EJL94052-EJL94061), and the putative kasumigamide biosynthetic gene clusters were

Fig 5. Substrate selectivity of A domains. The relative adenylation activity was estimated by the malachite green

phosphate assay. Error bars represent SEM (n = 3).

doi:10.1371/journal.pone.0164468.g005
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annotated and named dakasA-J and hkasA-H, respectively (S6 Table) (S7 Table) (S8A and
S8B Fig) [24]. The GC contents of kasA-I,makasA-D, dakasA-J, and hkasA-H are 57.5%,
52.9%, 70.6%, and 64.7% respectively. The domain organizations of PKS-NRPSmodules of
dakasA-J and hkasA-H were identical to those of kasA-C (Fig 4A–4C). The A domain binding
sites exhibit 77~100% identity to the corresponding domains of KasA-C and/or MakasA-C (S2
Table). Finally, phylogenetic analysis of the KS domains (S10 Fig) shows their close relation-
ships to each other despite that they are originated from phylogenetically distinct bacteria (S11
Fig).

Discussion

The strategy for isolating kasumigamide fromD. calyx exemplifies the effectiveness of the
metagenomemining approach in identifying cryptic biosynthetic gene clusters as well as their
products. The involvement of the kas cluster in kasumigamide biosynthesis was predicted
based on its domain organization (Fig 2). Whereas the NRPS code of KasA-A1 did not provide
any information about its natural substrate (S2 Table), KasA-KR resembles the KR domain of
AerA (~41% identity), which reportedly reduces PP to generate D-phenyl lactic acid [20].
KasD was annotated as a β-hydroxylase, according to its similarity to CmlA [25] (~39% iden-
tity). CmlA catalyzes β-hydroxylation of L-p-aminophenylalanine (L-PAPA) to L-p-amino-
phenylserine (L-PAPS), and the metal ion binding site of CmlA are also well conserved in
KasD (S12 Fig). Since L-Phe is structurally similar to L-PAPA, KasD was proposed to catalyze
the β-hydroxylation of L-Phe, to generate L-threo-3-phenylserine (L-threo-PS). The epimerase
(E) domain, encoded in module 6, was predicted to epimerize L-threo-PS to D-erythro-PS.

The kasumigamide producer inD. calyx was identified as an ‘Entotheonella’ sp. by a single
cell analysis in conjunction with PCR. This bacterial phylotype has been reported as the symbi-
otic producer of not only secondarymetabolites in T. swinhoei [7], but also calyculin A inD.
calyx [13], highlighting the fact that ‘Entotheonella’ is responsible for the production of multi-
ple natural products in Theonellidae sponges. In addition, four kasumigamide gene clusters
were detected in very different bacterial species, namely ‘Entotheonella’ sp. (a marine sponge
symbiont), the free-living cyanobacteriumM. aruginosa NIES-87, the human oral bacterium
D. acidovorans CCUG 274B, andHerbaspirillum sp. CF444 from the endosphere of the tree
Populus deltoids (Fig 4). Although we did not confirm the production of kasumigamide in the
latter two bacterial species, the phylogenetic tree analysis of KS domains illuminate close rela-
tionships among the kas-related gene clusters (S10 Fig).

On the other hand, some peculiar features of the domain or module organization can be
found in the kas family gene clusters. One of the remarkable points is the shift of PKS module
in theM. aeruginosa NIES-87 kas-cluster (makasA-D), while the positions of the PKS module
in the other kas genes were located on module 4, in agreement with the order of the biosyn-
thetic reactions. To rule out the possibility that this inconsistency is due to misassembly, the
contiguous domain organization betweenmodules 5 and 6 inmakasC was confirmed by clon-
ing of the corresponding region. To obtain further evidence for the biosynthetic mechanism of
makasA-D, we conducted substrate specificity assays with all five A domains, which have the
substrate binding sites closely related to their counterpart domains in KasA-C with 77%~89%
identity (S2 Table). Four of them accepted the substrates expected from the amino acid
sequences of their substrate binding sites. Although the putative substrate of MakasC-A2 was
L-Phe, this A domain exhibited specificity for DL-threo-PS. Considering the fact that D-ery-
thro-PS is the C-terminal residue of kasumigamide, the biosynthetic mechanism of this step
was proposed, as follows. First, L-Phe is hydroxylated by MakasD to generate L-threo-PS. Sub-
sequently, MakasC-A2 loads the L-threo-PS onto the PCP domain. Finally, L-threo-PS is

Biosynthetic Gene Cluster of Kasumigamide
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epimerized to D-erythro-PS by MakasC-E1, which is encoded betweenmodule 4 and 5 (S13
Fig) [26–27].

Other unusual features of the kas family genes are the absence of a thioesterase (TE) domain
and the likely termination of the chain by a condensation (C) domain. Since some C domains
have been reported to function as a TE domain [28], we expect that the C-terminal C domain
encoded in kasC, dakasC, and hkasC can serve as a thioesterase.However, since the C-terminal
C domain is missing inmakasA-D, the release mechanism of themakas pathway remains
unclear.

The presence of putative kasumigamide biosynthetic gene clusters among different kinds of
bacteria living in various environments implies horizontal gene transfer between different bac-
terial species. The pair of long terminal repeats flanking the kas gene was annotated as putative
transposases (Table 1, S14 Fig), suggesting the role of transposons in interspecies transfer of
kas gene clusters. Sponge-associated bacteria reportedly contain high numbers of transposable
insertion elements, expected to take part in the evolution of symbiont bacteria genomes [29].
Examples of hypothetical horizontal transmission have been suggested for gene clusters encod-
ing synthesis of actin-bindingmacrolides, such as luminolide, tolytoxin, and misakinolide [8].
Althoughmacrolide compounds are produced by different bacterial species, including
‘Entotheonella serta’ (which is associated with the marine sponge T. swinhoeiWA), the gene
clusters encoding some transposases exhibit high relationship between the corresponding PKS
domains [8]. Themakas gene is also flanked by two putative transposases, ORFM1 and
ORFM2, which are widely conserved in severalM. aeruginosa strains. Notably, makasA-D
sequences were only found inM. aeruginosa NIES-87 strain (S8C Fig) among sixteen different
strains whose genomes are available in National Center for Biotechnology Information (NCBI)
data bank. As in the case forM. aeruginosa strains, only one of four sequencedD. acidovorans
strains contains the kas family genes, though we could not observe a putative transposase
region in the kas-related genes encoded in the other two kinds of bacterial species, the β-pro-
teobacteria,D. acidovorans CCUG 274B andHerbaspirillum sp. CF444.

It is known that the same or similar secondarymetabolites were identified from different
kinds of bacteria, even across phyla. Lyngbyatoxins, which are potent skin irritants, were origi-
nally isolated from the marine cyanobacteriumMoorea producens (formerly Lyngbya majus-
cule) [30–31]. On the other hand, structurally and pharmacologically related compounds,
teleocidin and olivoretin, were isolated from the marine Streptomyces spp [32–35]. Saxitoxin,
which is produced by marine dinoflagellates, is also made by some freshwater cyanobacteria
[36]. The gene clusters were assembled independently in the distantly related bacteria [37].
Thus, the study presented here suggests that other bacteriamay also have the ability to produce
kasumigamide. Although the biological activity of kasumigamide had been reported to be anti-
algae against Chlamydomonas neglectaNIES-439 [21], further investigations are required to
decipher its advantageous role in the survival competition among taxonomically distant bacte-
rial species.

Materials and Methods

Specimen collection

The marine spongeD. calyx was collected by hand, at a depth of 10 m, during scuba diving at
Shikine-jima Island, Tokyo, on May 18, 2011. The specimens were kept frozen at −30°C and
used for the construction of the clone library and isolation of kasumigamide. The single cell
isolation was performedwith the specimen collected at a depth of 10 m in the ocean near
Nakagi, Shizuoka, Japan in December 4, 2013. Samples were transported to the laboratory (4
h) in a cooling box and immediately processed for single cell analysis. Permits and approval for

Biosynthetic Gene Cluster of Kasumigamide
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the collections at Shikine-jima and Nakagi were obtained from the local governments. Both
specimens contained calyculins, calyxamides as well as kasumigamide, which was confirmed
by LC-MS analysis.

Fosmid clone library screening

TheD. calyxmetagenomic DNA fosmid library is composed of 250,000 colonies, each contains
approximately 40 kb of insert DNA, as previously reported [38]. We focused on the DCKS10,
which shares homology with the cis-AT-type-KS domains (the KS region of JamM [39], 59%
identity), among 19 different partial sequences of KS domains obtained in our previous PCR
analysis with KS degenerate primers fromD. calyxmetagenomic DNA [10]. The following
primer pair was used: DCKS10F/DCKS10R(S1 Table) for screening positive fosmids. The
library was screened by the Piel pooling strategy [40]. The screening yielded two positive fos-
mids, pDCYN1-2.

Genome sequencing and assembly

The sequencing of pDCYN1-2was performedon an Ion PGM sequencer (Life Technologies),
with a total number of 48,198 sequence reads (~300 bp). These sequenceswere assembled using
the de novo assemblerMIRA (v3.4.2.0) [41], and 17 contigs were obtained. Further assembly to
produce larger contigs was achievedwith the Genious assembler (Biomatters), with the default
medium sensitivity. This assembly provided a contig of 40 kb. Putative protein-coding sequences
(CDSs) were determined by a combination of FramePlot [42] and the Glimmer 3.02 [43]. The
domain organizations were assessed by BLASTP and PKS/NRPS analysis [44].

Isolation and structure elucidation of kasumigamide

To isolate the putative kasA-I product from the frozen sponge,D. calyx (2.0 kg, wet weight),
the methanol extract was partitioned between hexane and H2O. The aqueous layer was then
partitioned between EtOAc and H2O. The aqueous layer was further partitioned between n-
BuOH and H2O. The n-BuOH-soluble material was fractionated by gel-filtration column chro-
matography (Sephadex LH-20; 2.5 × 75 cm) with MeOH. The fractionwas further separated
by HPLC (CosmosilMS-II C18; 10 × 250 mm, Nacalai Tesque, flow rate 4.0 mL/min; 0−100%
CH3CN/H2O over 30 min; UV detection at 280 nm) to obtain pure kasumigamide (2.3 mg).
The LC-MS data for monitoring were obtained from an Agilent 1100 series HPLC-micro TOF
mass spectrometer (Bruker Daltonics), using electrospray ionization with a Cosmosil 5C18
MS-II column (2.0 × 75 mm), 5–100%MeOH/H2O in 0.1% AcOH over 20 min, 0.2 mL/min,
positive ESI mode. To monitor an (M + H)+ ion peak of kasumigamide atm/z 787.38, the mass
range betweenm/z 787.3 and 787.5 was selected for the extracted ion chromatogram.

PCR analysis of dissected filamentous bacterial cells

Aliquots of the calcium/magnesium-free artificial seawater suspension of minced sponge tis-
sues were spread onto Membrane slides (PEN-Membrane 2.0 μm, Leica), dehydrated by
sequential incubations in 50%, 70%, and 90% aqueous ethanol for 3 min at each step, and air
dried. Two or ten portions of autofluorescent cells and single filament or five filaments of fila-
mentous bacteria (‘Entotheonella’ sp.) were directly isolated into a PCR tube by laser microdis-
section (Leica LMD7000). As other bacteria in Fig 3B, the membrane area containing other
bacterial cells, except for filamentous bacterial cells, was concurrently dissected. The template
DNA for the dissection PCR was adjusted according to a previously published procedure [13].
The PCR was performed in a volume of 10 μl, containing 1.75 mMMgCl2, 0.4 μM of each
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primers, 0.3 mM dNTPs and 0.25 U of KAPATaq Extra DNA polymerase (Nippon Genetics).
The specific primers DCKS10F/DCKS10Rwere used for detection of the kasumigamide bio-
synthetic gene cluster.

Metabolic and genomic analysis of M. aeruginosa NIES-87

M. aeruginosa NIES-87 was obtained from the National Institute for Environmental Studies
collection, and cultured in MAmedium [45]. The methanol extract (9.6 mg) of freeze-dried
bacteria was analyzed on LC-MS, as described above. TheM. aeruginosa NIES-87 genomic
DNA was isolated according to the previously published method [46]. Sequencing of the geno-
mic DNA was performed by an Ion PGM sequencer, with a total number of 414,749 sequence
reads (~300 bp). These sequences were assembled de novo into contigs by using the Genious
assembler, with the default medium sensitivity. Putative CDSs were determined by combining
the prediction results from the FramePlot [42] and the Glimmer 3.02 [43] programs into one
large contig (26 kb). The domain organizations were assessed by BLASTP and PKS/NRPS anal-
ysis [44]. In order to confirm the DNA sequence ofmakasC, the cloning of the corresponding
region was performedwith the primer pair, MA5F/MA6R (S1 Table). The PCR products
amplified from theM. aeruginosa NIES-87 genomic DNA were introduced into pT7Blue T-
vector (Novagen). The constructed plasmid pMAYN1 was subjected to the sequence analysis
by Eurofins Genomics K. K.

Heterologous expression of adenylation domains

To examine the substrate specificity of the A domains, we performed the heterologous expres-
sion of five A domains: MakasA-A1, MakasB-A1, MakasB-A2, MakasC-A1, and MakasC-A2.
AlthoughMakasA-A1, MakasB-A2, and MakasC-A1 were expressed as the single A domain,
MakasB-A1 and MakasC-A2 were coexpressedwith the corresponding C domain and PCP
domain in E. coli. The DNA fragments encodingmakasA-A1,makasB-A1, andmakasC-A2
were amplified by PCR and cloned into pCold II plasmid (Takara). The DNA fragments encod-
ingmakasB-A2,makasC-A1 were amplified by PCR and cloned into NhisMBP-pET28b(+). In
NhisMBP-pET28b(+), MBP was introduced into the N-terminal region of the pET28b(+)
(Novagen) multicloning site. ThemakasA-A1,makasB-A1,makasB-A2,makasC-A1, and
makasC-A2 sequences were amplified with the MakasA-A1F/MakasA-A1R, MakasB-A1F/
MakasB-A1R,MakasB-A2F/MakasB-A2R, MakasC-A1F/MakasC-A1R, and MakasC-A2F/
MakasC-A2R primers, respectively (S1 Table). The E. coli BLR(DE3) cells harboring the plas-
mids pCold IImakasA-A1/makasB-A1/makasC-A2 and NhisMBP-pET28b(+)makasB-A2/
makasC-A1 were cultured at 37°C to an OD600 of 0.6–0.8, in LB medium, containing 100 μg/ml
ampicillin or 50 μg/ml kanamycin. To induce protein expression, 0.5 mM isopropyl-1-thio-β-
D-galactopyranoside was added to the cooled cultures. Expression was performed at 15°C for
16 h. All of the following procedures were performed at 4°C. For MakasA-A1, MakasB-A1, and
MakasC-A2, the cells were collected by centrifugation at 10,000 g and resuspended in 50 mM
Tris-HCl buffer (pH 8.0), containing 300 mMNaCl, 10% (v/v) glycerol and 5 mM imidazole
(buffer A). The cells were disrupted by sonication, and the lysate was centrifuged at 10,000 g
for 20 min. The supernatant was loaded onto a COSMOGELHis-Accept (Nacalai Tesque) col-
umn equilibrated with buffer A. After washing the resin with buffer A containing 10 mM imid-
azole, Nhis-MakasA-A1, Nhis-MakasB-A1, and Nhis-MakasC-A2 were eluted with buffer A
containing 300 mM imidazole. For MakasB-A2 and MakasC-A1, the cells were collected by
centrifugation at 10,000 g and resuspended in 50 mM Tris-HCl buffer (pH 8.0), containing 300
mMNaCl, 10% (v/v) glycerol (buffer B). The cells were disrupted by sonication, and the lysate
was centrifuged at 10,000 g for 20 min. The supernatant was loaded onto an amylose resin
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(BioLabs) column equilibrated with buffer B. After washing the resin with buffer B, NhisMBP-
MakasB-A2 and NhisMBP-MakasC-A1 were eluted with buffer B containing 20 mMmaltose.
These eluate were filtered, using an Amicon Ultra 10 K device (Merck Millipore), to remove
the imidazole and to concentrate the protein.

Functional analysis of adenylation domains

Each purified protein (1 μM) was incubated with 1 mM substrate in 50 μl of buffer, containing
32 mM hydroxylamine, 1 mM dithiothreitol, 0.4 U/ml pyrophosphatase (Sigma), 0.5 mM
ATP, 10 mMMgCl2, and 50 mMTris-HCl buffer (pH7.5). The reaction was incubated for 10
min at room temperature, and then quenched by adding 50 μl of the working reagent from the
malachite green phosphate assay kit (Enzo). After a 10 min incubation at room temperature,
the absorption at 620 nm (A620) was measured. The control A620 value was subtracted from the
A620 value of the reactionmixture, and then the relative adenylation activity was calculated.
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