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We propose a model for the spontaneous motion of a droplet induced by inhomogeneity in inter-
facial tension. The model is derived from a variation of the Lagrangian of the system and we
use a time-discretized Morse flow scheme to perform its numerical simulations. Our model can
naturally simulate the dynamics of a single droplet, as well as that of multiple droplets, where
the volume of each droplet is conserved. We reproduced the ballistic motion and fission of a
droplet, and the collision of two droplets was also examined numerically. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4943582]

I. INTRODUCTION

In far-from-equilibrium systems, it is possible that
the symmetry of isotropic systems breaks spontaneously,
e.g., spontaneous motion in biological systems.1–3 Such self-
propelled phenomena, which are also called “active matter,”4

have recently gained extensive attention, as there is expected
to exist general aspects in active matter. Spontaneous motion
driven by inhomogeneity in interfacial tension is an area
of study relating to active matter.5–16 For example, alcohol
droplets placed on water move spontaneously while exhibiting
deformations to their shape.17,18 Since such systems are
relatively simple, it is possible to perform experiments under
a broad parameter space; therefore, such a setting provides
a preferable experimental framework for investigations of
general aspects.

One of the authors has constructed a model for the
motion of a disk driven by interfacial tension inhomogeneity.19

Although it was possible to reproduce and analyze the
experimental results for the motion of a camphor disk by
use of their model, the same approach is not applicable to
the motion of droplets due to the rigid body assumption of
the disk. In particular, droplet shape deformations are not
negligible, since the coupling between the shape and motion
plays an important role in the self-motion of the droplet as
has been reported in previous works.17,18,20–25 Several studies
have already been made for the modeling of a deformable
self-propelled droplet.26–33 However, in the case of multiple
droplets, the individual volumes are not precisely maintained
in these models; hence the droplets exchange mass. Since
the experimental system we consider here is macroscopic,
such volume changes are usually very slow when compared

a)Author to whom correspondence should be addressed. Electronic mail:
nagayama@es.hokudai.ac.jp.

with the time of motion of the droplets; therefore, these
models have difficulties in analyzing the dynamics of multiple
droplets. What is more, not only the motion of single objects
but also the collective dynamics of active matter has recently
attracted attention;34–38 thus a theoretical model to analyze the
dynamics of multiple droplets is needed. In this article, we
propose a model, based on a naturally constructed Lagrangian
form, for the spontaneous motion of a deformable droplet
driven by interfacial tension. Not only the motion of a single
droplet but also the fission, fusion, and reflection of multiple
droplets can be reproduced using our model. Moreover, the
proper volume of each droplet is conserved.

II. EXPERIMENT

We first explain the experimental setup which we model.17

A schematic diagram of the experimental setup is shown in
Fig. 1(a). Two hundred milliliters of aqueous solution of
1-pentanol (2.2 vol. %) was poured into a Petri dish with a
diameter of 24 cm, and then a droplet of 1-pentanol was placed
on the aqueous phase at 20 ◦C. To observe the motion of the
droplet, the shadowgraph method was used with a digital
video camera (iVIS HV30; Canon, Japan).39

Figures 1 and 2 show the results of the experiment.
A droplet with a volume of 10 µl moved ballistically as
shown in Fig. 1(b). Alcohol diffuses onto the water surface
from the alcohol droplet and the concentration distribution
becomes asymmetric due to the deformation of the droplet.
Therefore, the interfacial tension of water in front of the
droplet becomes higher than that in the rear and the droplet
moves unidirectionally.

When the volume of the droplet was increased to 300 µl,
the droplet split into smaller droplets, as shown in Fig. 1(c).
Fig. 2 shows the interaction between two droplets that were

0021-9606/2016/144(11)/114707/8/$30.00 144, 114707-1 © 2016 AIP Publishing LLC
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FIG. 1. Experimental setup and characteristic motion of a droplet. (a) Exper-
imental setup for observing the motion of an alcohol droplet on an aqueous
phase (1-pentanol solution with a concentration of 2.2 vol. %). The shadow-
graph method was used to observe the motion of the droplet. (b) Ballistic
motion of the alcohol droplet with a volume of 10 µl. The outlines of the
droplet per 1 s are shown in the left figure. The droplet moved upward. The
right figure is a snapshot of the droplet. (c) Fission of a droplet (300 µl). The
outlines of the droplets are shown per 0.67 s. The droplets moved upward.
The same color represents the outline at the same time. The droplet elongated
before splitting into smaller droplets.

formed as a result of the fission of a single droplet. After the
split, droplets of various volumes formed and each continued
moving on the water. Here, pairs of droplets were basically
found to interact repulsively; when they approached each
other at a small angle, the droplets bounced off one another
(Fig. 2(a)). In contrast, two droplets fused together when they
collided head-on as shown in Fig. 2(b).

III. MATHEMATICAL MODEL

To model the dynamics of alcohol droplets, we first
constructed a mathematical model for the motion of a single
droplet. The schematic illustration of the system is shown

FIG. 2. Collision of two droplets of approximately the same size. The
droplets moved upward. The outlines of the droplets are shown per 0.067 s.
The same color represents the outline at the same time. (a) Two droplets with
a small approach angle bounced off each other. (b) Front-on collision of two
droplets. Droplets fused into a single droplet.

in Fig. 3. Although the droplet had a lens-like shape as in
Fig. 3(a), the thickness of the droplet is supposed to be so thin
that we consider the system in which a droplet is located on
a flat water surface as in Fig. 3(b). Actually, the thickness of
the droplet is calculated to be around 1 mm considering the
surface tension and density difference.40 The hydrodynamic
flow may affect the motion of the droplet, but we only consider
the effect of the tension gradient at the droplet as a driving
force in the present framework for simplicity. In our model,
the x-y plane corresponds to the water surface, which we
assume is confined to a domain Ω. The height of the droplet
from the water surface is u(t, x, y), where u is exactly 0 except
for the area under the droplet, and interfacial tensions at the
alcohol-air, air-water, and alcohol-water interfaces are γa, γw,
and γwa, respectively. The total interfacial energy in the system
is then given by the equation

FIG. 3. (a) Schematic illustration of the actual shape of a lens-shaped alcohol
droplet. (b) Schematic illustration considered in our model. A droplet is
placed on a flat water surface (x-y plane). The height of the droplet from
the x-y plane is u(x, y) and the alcohol concentration under the droplet is
v0. The interfacial tensions of the alcohol-air, water-air, and alcohol-water
interfaces are γa, γw, and γwa, respectively. The quantity γw depends on the
concentration of alcohol on the water surface, v(x, y).
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U1 =


Ω

(
(γa


1 + |∇⃗u|2 + γwa)χu>0 + γwχu=0

)
dx⃗

=


Ω

((γa


1 + |∇⃗u|2 + γwa)χu>0 + γw(1 − χu>0)

)
dx⃗

=


Ω

(
γa


1 + |∇⃗u|2 + γwa − γw

)
χu>0 dx⃗ +


Ω

γw dx⃗,

(1)
where χu=0 and χu>0 denote the characteristic functions of
their set,

χu=0 =



0 (u > 0),
1 (u = 0), (2)

and

χu>0 =



1 (u > 0),
0 (u = 0). (3)

We consider thin droplets, where gravity has a large effect.
Therefore, the following gravitational energy of a droplet, U2,
is added to the Lagrangian:

U2 =
1
2


Ω

ρgu2 dx⃗, (4)

where ρ is the density difference between alcohol and water,
and g is the acceleration of gravity. Assuming ∂u/∂t(x⃗) is
proportional to the flow speed of the alcohol, the kinetic
energy of the system can be expressed as

K =
1
2


Ω

σu
(
∂u
∂t

)2

χu>0 dx⃗, (5)

where σ is a proportional coefficient. If the droplet has the
large volume under the gravity, we can regard the height of the
droplet as fixed constant because the gravitational energy is
much larger than the interfacial energy. Therefore, the kinetic
energy can be rewritten as

K =
1
2
σu0


Ω

(
∂u
∂t

)2

χu>0 dx⃗, (6)

where u0 is the height of the droplet. Assuming |∇u|2 ≪ 1, the
Lagrangian of the system is described as follows:

L(u) = K −U1 −U2

=
1
2


Ω

(
− γa

���∇⃗u���
2
− 2 (γa + γwa − γw)

− ρgu2 + σu0

(
∂u
∂t

)2)
χu>0 dx⃗ −


Ω

γw dx⃗. (7)

The first variation of the action integral corresponding to
Eq. (7) under the volume constraint is calculated as

σu0ut t = γa∆u − ρgu + λ, (u > 0), (8)
where λ is a Lagrange multiplier,

λ =
1
V


Ω

(γa|∇u|2 + σu0uut t χu>0 + ρgu2)dx⃗. (9)

At the boundary of the droplet, we also find that u evolves
according to

γa
���∇⃗u���

2
− σu0(ut)2 = 2 (γa + γwa − γw) . (10)

Here, ∇⃗u = tan θ, where θ is a contact angle. Since
1 − (tan θ)2/2 ≈ cos θ, Eq. (10) can be rewritten as

σ

2
(ut)2 + γa cos θ = γw − γwa. (11)

It is noted that this equation is Young’s relation, which is a
well-known equation for the contact angle under equilibrium
conditions,41 when ut = 0. The derivations of Eqs. (8)-(10)
are explained in the Appendix.

We assume that the concentration of alcohol is maintained
at saturated concentration, v0, under the droplet. Thus, the time
evolution for the concentration of alcohol on water, v , can be
described as

∂v

∂t
= dv∆v − h(v) + g(u, v), (12)

h(v) = k1v, (13)
g(u, v) = k2(v0 − v)u, (14)

where dv is the diffusion constant of alcohol at the water
surface, k1 is the rate of evaporation of alcohol, and k2 is the
rate of supply of alcohol. Here, we neglect the solubility of
alcohol since the alcohol is almost saturated in water17 and the
volume of the droplet is kept constant since the evaporation is
slow. In our model, γw depends on v by the relation

γw(v) = γ0

1 + βv4 + γ1, (15)

where γ0 and γ1 are prescribed scalar values.42,43 We remark
that it is difficult to solve Eqs. (8)-(10) using a conventional
method such as finite difference methods, since the term ut t

degenerates at u = 0 and Eq. (9) includes an integral of the
unknown function. However, we are able to overcome these
difficulties by employing a variational method known as the
discrete Morse flow.44,45 The discrete Morse flow is explained
in the Appendix. We also include a dissipation term in Eq. (8).
This term, written as αut, is given to stabilize the oscillatory
motions. In this approach, letting un be the approximation of
u at the nth time step, un is defined as the minimizer of the
following functional under the volume constraint condition
for the droplet:

Jn(u) = 1
2


Ω

(
σu0

|u − 2un−1 + un−2|2
h2 χu>0 + α

|u − un−1|2
h

+ γa
���∇⃗u���

2
+ Γ(v)χϵ(u) + ρgu2

)
dx⃗, (16)

where
Γ = 2(γa + γwa − γw), (17)

and χϵ(u) is a smooth continuous function on 0 < u ≤ ϵ ,

χϵ(u) =



1 (u > ϵ),
0 (u = 0). (18)

It has been proved that un obtained by minimizing Jn
under the volume constraint is an approximate solution
to Eqs. (8)-(10). Here, we remark that the volume
constraint is not complicated in our approach, since
the solution with the constraint is proportional to that
without it.44,45
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FIG. 4. Numerical results. (a) The mo-
tion of a smaller droplet (V = 0.1). A
droplet deformed into an asymmetric
shape and moved ballistically. The out-
lines of the droplet, which are defined as
the closed curves where u = 0.01 (left),
and the snapshots of v with time in-
terval 2.8 (right) are shown. (b) The
motion of a larger droplet (V = 2.0).
The droplet split into smaller droplets.
The outlines of the droplets with time
interval 1.68 are shown. The same
color represents the outline at the same
time. (c) Interaction of two droplets
(V = 0.035) during collision. The out-
lines of the droplets with time inter-
val 0.7 and the snapshots of v with
interval 2.1 are shown. (c-1) Collision
with a small approach angle (7π/180).
Droplets bounced off each other. (c-2)
Collision with a large approach angle
(π/9). Droplets coalesced. The droplet
after fusion continued moving upward.

IV. NUMERICAL RESULTS

The following parameters were used in our numerical
simulation, ϵ = 0.01, h = 3.5 × 10−3, σ = 2.0, u0 = 1.0,
α = 2.0, γa = 5.5, ρ = 2.0, g = 9.8, γwa = 1.56, γ0 = 6.0,
γ1 = 1.0, β = 10.0, dv = 0.3, k1 = 1.0, k2 = 64.0, and v0
= 1.0. The results of numerical simulation are shown in Fig. 4.
Figure 4(a) shows the motion of a droplet with V = 0.1. The
droplet deformed spontaneously while continuing moving,
and the simulations yielded a concentration distribution of
alcohol (v) that was higher in the rear of the droplet.

When there are more than one droplet, we can define
Jn for each droplet since u is identically zero outside the
droplet. By minimizing each Jn, the dynamics of the multiple
droplets can be obtained. Redefining the set of Jn for each
time step, we can simulate the splitting and fusion of the
droplets. Actually, when a large droplet (V = 2.0) was placed
as the initial condition, the droplet elongated and then split
into multiple droplets, as shown in Fig. 4(b). This numerical
result corresponds well to the experimental result in Fig. 1(b).

We also investigated the interaction between two droplets
using this model. Figures 4(c-1) and 4(c-2) show the fusion
and repulsion of two droplets, respectively. At the initial state,
there were two droplets at the mirror-symmetric positions
across the center line. The approach angle, which is defined
as the angle of the direction of the droplet motion from the
center line, was varied. The direction of motion is calculated
as 

Π
x⃗ ∂u

∂t
dx⃗

�
Π

x⃗ ∂u
∂t

dx⃗
� , (19)

where Π is the area including only one droplet. As shown in
Fig. 4(c-1), two droplets with small approach angle (7π/180)
reflected and moved apart. On the other hand, when the
approach angle was large (π/9), the droplets fused into a
single droplet, after which the droplet continued moving
upward (Fig. 4(c-2)). It should be noted that the fusion is
observed without inertia term (σ = 0, data not shown).

V. SUMMARY

In summary, we proposed a model obtained from
variational principles for the motion of alcohol droplets driven
by interfacial tension inhomogeneity. Using our model, the
dynamics of multiple droplets can be calculated with the
volume constraints. We reproduced ballistic motion and fission
of a droplet with our model. The interaction of two droplets
was also analyzed.

In the present model, we have added the dissipation
term. However it is introduced phenomenologically, and the
derivation from more fundamental equation such as Navier-
Stokes equation and estimation from the experimental results
are remained as future study.
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APPENDIX: DETAILS OF CALCULATIONS

In this appendix, the derivations of Eqs. (8)-(10) in the
main text and the discrete Morse flow are explained.

1. Derivation of main equations

First, the derivations of Eqs. (8) and (9) are explained.
We set

J(u) =
 τ

0
L (u) dt . (A1)

To calculate the first variation of this functional, we perturb
using functions from the admissibility set,

KV B


u ∈ W 1,2

(
Ωτ, R⃗

)
; u = 0 on ∂Ω,


Ω

udx⃗ = V

, (A2)

where Ωτ = {(x, t)|x ∈ Ω, t ∈ (0, τ)}.
In particular, for any test function ϕ∈C∞0

(
Ωτ∩{u>0};R⃗

)
,

we introduce the perturbation uϵ as

uϵ = V
u + ϵϕ
V + ϵΦ

, (A3)

where

Φ(t) =

Ω

ϕ(x, y, t) dx⃗. (A4)

Then uϵ belongs to KV ,
Ω

uϵ dxdy =
V

V + ϵΦ


Ω

(u + ϵϕ) dx⃗ = V, (A5)

uϵ |∂Ω = 0. (A6)

Since u is a stationary point of the functional, the following
relation is satisfied:

lim
ϵ→0

dJ
dϵ

(uϵ) = lim
ϵ→0

J(uϵ) − J(u)
ϵ

= 0. (A7)

Therefore,

lim
ϵ→0

J(uϵ) − J(u)
ϵ

= lim
ϵ→0

γa

2ϵ


Ωτ


V

( |∇u + ϵ∇ϕ|
V + ϵΦ

)2
− |∇u|2


dz⃗

− lim
ϵ→0

σu0

2ϵ


Ωτ

 1
(V + ϵΦ)4

�(ut + ϵϕt)(V + ϵΦ) − (u + ϵϕ)ϵΦt

	2χuϵ>0 − u2
t χu>0


dz⃗

− lim
ϵ→0

1
2ϵ


Ωτ

(
R(v)χuϵ>0 − R(v)χu>0

)
dz⃗ + lim

ϵ→0

ρ

2ϵ


Ωτ

g(u + ϵϕ)2V 2 − gu2(V + ϵΦ)2
(V + ϵΦ)2 dz⃗

= lim
ϵ→0

γa

2ϵ


Ωτ

1
(V + ϵΦ)2

�
V 2(|∇u|2 + 2ϵ∇u∇ϕ + ϵ2|∇ϕ|2) − (V 2 + 2ϵVΦ + ϵ2

Φ
2)|∇u|2	dz⃗

− lim
ϵ→0

σu0

2ϵ


Ωτ

1
(V + ϵΦ)4

�
V 2{(ut + ϵϕt) + ϵΦVut − ϵΦtu}2χuϵ>0 − (ut)2(V + ϵΦ)4χu>0 + o(ϵ)	dz⃗

+ lim
ϵ→0

ρ

2ϵ


Ωτ

1
(V + ϵΦ)2

�
V 2(2guϵϕ + gϵ2ϕ2) − 2gu2ϵVΦ − gu2ϵ2

Φ
2	dz⃗

= lim
ϵ→0

γa

2ϵ


Ωτ

2V 2ϵ∇u∇ϕ + 2ϵVΦ|∇u|2 + o(ϵ)
(V + ϵΦ)2 dz⃗

− lim
ϵ→0

σu0

2ϵ


Ωτ

1
(V + ϵΦ)4

�
2ϵutϕtV 4 + 2ϵV 3

Φ(ut)2 − 2ϵV 3
Φtuut − 4ϵV 3

Φ(ut)2�χu>0 + o(ϵ)dz⃗

+ lim
ϵ→0

ρ

2ϵ


Ωτ

2guϵV 2ϕ − 2gu2ϵVΦ + o(ϵ)
(V + ϵΦ)2 dz⃗

=


Ωτ


γa

(
∇u∇ϕ − 1

V
Φ|∇u|2) − σu0

(
utϕt −

1
V

ut(uΦ)t
)
χu>0 + ρ

(
guϕ − 1

V
gu2
Φ
)

dz⃗

=


Ωτ∩{u>0}

(γa∇u∇ϕ − σu0utϕt + ρguϕ)dz⃗ +
1
V


Ωτ

(
− γa|∇u|2Φ + σu0ut(uΦ)t χu>0 − ρgu2

Φ
)
dz⃗

= 0, (A8)
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where z⃗ = (x, y, t). Formally integrating by parts in time and
recalling the expression for the Lagrange multiplier, one has

1
V


Ωτ

(−γa|∇u|2Φ + σu0ut(uΦ)t χu>0 − ρgu2
Φ) dz⃗

=
1
V


Ωτ

(−γa|∇u|2 − σu0ut tuχu>0 − ρgu2)Φ dz⃗

=

 τ

0

(
Ω

ϕdx⃗
) ( 1

V


Ω

(−γa |∇u|2 − σu0ut tuχu>0

− ρgu2)dx⃗
)
dt

=

 τ

0

(
Ω

ϕ dx⃗
)
(−λ) dt

= −

Ωτ∩{u>0}

λϕ dz⃗, (A9)

where

λ =
1
V


Ω

(γa |∇u|2 + σu0ut tuχu>0 + ρgu2) dx⃗. (A10)

Therefore, we obtain the following weak formulation for
Eq. (8) by use of Lagrange multiplier λ:

Ωτ∩{u>0}
(γa∇u∇ϕ − σu0utϕt + ρguϕ − λϕ) dz⃗ = 0,

∀ϕ ∈ C∞0 (Ωτ ∩ {u > 0}; R⃗). (A11)

By 
Ωτ∩{u>0}

γa∇u∇ϕz⃗ = −

Ωτ∩{u>0}

γa∇2u ϕz⃗,

and 
Ωτ∩{u>0}

σu0utϕt z⃗ = −

Ωτ∩{u>0}

σu0ut t ϕz⃗,

finally we obtain the following formulation:
Ωτ∩{u>0}

(−γa∇2u + σu0ut t + ρgu − λ)ϕ dz⃗ = 0,

∀ϕ ∈ C∞0 (Ωτ ∩ {u > 0}; R⃗). (A12)

Therefore, Eq. (8) is derived.

2. Derivation of equation on boundary

Here, the derivation of Eq. (10) is explained.
For simplicity, we set γa = σ = ρ = u0 = 1. For any

η ∈ C∞0 (Ωτ; R⃗3), the map,

˜⃗z = τε(z⃗) B z⃗ + εη⃗(z⃗), (A13)
τε : Ω × (0, τ) → Ω × (0, τ), (A14)

is used to define a volume-preserving domain perturbation,

uε =
V
Vε

u(τ−1
ε ( ˜⃗z)). (A15)

In this case, the Jacobian of τε is

|Dτε | = 1 + ε divη⃗ + o(ε), (as ε → 0) (A16)

and we write

Vε =


Ω

u(τ−1
ε ( ˜⃗z)) d ˜⃗z. (A17)

Then

Vε =


Ω

u(τ−1
ε ( ˜⃗z)) d ˜⃗z

=


Ω

u(z⃗)|Dτε(z⃗)| dz⃗

= V + ε

Ω

u(z⃗)divη⃗(z⃗) dz⃗ + o(ε). (A18)

Therefore,

lim
ε↓0


Ω

uε dz⃗ = V, (A19)

and the perturbation has the volume constraint property. Next,
we record the following relation:

∂uε

∂zi
(z⃗) = V

Vε

3
j=1

∂u
∂z j

(τ−1
ε ( ˜⃗z))∂(τ

−1
ε ) j

∂zi
( ˜⃗z)

=
V
Vε

3
j=1

∂u
∂z j

(τ−1
ε ( ˜⃗z))(Dτε)−1

j i (τ−1
ε ( ˜⃗z))

=
V
Vε

3
j=1

∂u
∂z j

(τ−1
ε ( ˜⃗z))

×
(
δi j − ε

∂η j

∂zi
(τ−1

ε ( ˜⃗z)) + o(ε)
)
, (A20)

where δi j denotes the Kronecker delta function. Calculating
the inner variation, one has

lim
ε→0

1
ε

(
J(uε) − J(u)) = lim

ε→0

1
2ε


Ωτ

V 2

V 2
ε

2
i=1

(
∂u
∂zi
− ε

3
j=1

∂u
∂z j

∂η j

∂zi

)2
(1 + ε divη⃗) − |∇u|2


d ˜⃗z

+ lim
ε→0

1
2ε


Ωτ

(
R(v(τε))(1 + ε divη⃗) − R(v)) χu>0 d ˜⃗z + lim

ε→0

1
2ε


Ωτ

V 2

V 2
ε

gu2(1 + ε divη⃗) − gu2

d ˜⃗z

− lim
ε→0

1
2ε


Ωτ

V 2

V 2
ε

(
∂u
∂t
− ε

3
j=1

∂u
∂z j

∂η j

∂t

)2
− u2

t


χu>0 d ˜⃗z

+ lim
ε→0

1
ε


Ωτ


γwa(v(τε))(1 + ε divη⃗) − γwa(v)


d ˜⃗z

= 0, (A21)
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lim
ε→0

1
ε


Ωτ

1
V 2 + 2εV


Ω

u divη⃗ dx⃗ + o(ε)
V 2

2
i=1

(
∂u
∂zi
− ε

3
j=1

∂u
∂z j

∂η j

∂zi

)2
(1 + ε divη⃗) − |∇u|2(V 2 + 2εV


Ω

u divη⃗ dx⃗ + o(ε))d ˜⃗z (A22)

+ lim
ε→0

1
2


Ωτ

 R(v(τε)) − R(v)
ε

+ R(v(τε))divη⃗

χu>0 d ˜⃗z + lim

ε→0

1
2ε


Ωτ

1
V 2 + 2εV


Ω

u divη⃗ dx⃗ + o(ε)

V 2gu2(1 + ε divη⃗) − gu2

(
V 2 + 2εV


Ω

u divη⃗ dx⃗ + o(ε))d ˜⃗z

− lim
ε→0

1
2ε


Ωτ

1
V 2 + 2εV


Ω

u divη⃗ dx⃗ + o(ε)
V 2

(
∂u
∂t
− ε

3
j=1

∂u
∂z j

∂η j

∂t

)2
(1 + ε divη⃗) − u2

t

(
V 2 + 2εV


Ω

u divη⃗ dx⃗ + o(ε)) χu>0 d ˜⃗z

+ lim
ε→0


Ωτ

(γwa(v(τε)) − γwa(v)
ε

+ γwa(v(τε))divη⃗
)
d ˜⃗z

= 0, (A23)
Ωτ∩{u>0}


−

2
i=1

3
j=1

∂u
∂zi

∂u
∂z j

∂η j

∂zi
+

1
2
|∇u|2divη⃗ − |∇u|2

V


Ω

u divη⃗ dx⃗

d ˜⃗z

+
1
2


Ωτ∩{u>0}

div(R(v)η⃗)d ˜⃗z +

Ωτ∩{u>0}

( gu2

2
divη⃗ − gu2

V


Ω

u divη⃗ dx⃗
)
dz⃗

−

Ωτ∩{u>0}


−

3
j=1

∂u
∂t

∂u
∂z j

∂η j

∂t
+

u2
t

2
divη⃗ −

u2
t χu>0

V


Ω

u divη⃗ dx

dz⃗ +


Ωτ

div(γwa(v)η⃗) dz⃗

= 0. (A24)

Using the expression for the Lagrange multiplier, one has
Ωτ∩{u>0}


−

3
i=1

3
j=1

∂u
∂zi

∂u
∂z j

∂η j

∂zi
+

1
2
|∇u|2divη⃗

+
1
2

div(R(v)η⃗) + gu2

2
divη⃗ (A25)

+

3
j=1

∂u
∂t

∂u
∂z j

∂η j

∂t
−

u2
t

2
divη⃗ − λu divη⃗


d ˜⃗z

+


Ωτ

div(γwa(v)η⃗) d ˜⃗z = 0, (A26)

which, upon defining

∇hu =
(
∂u
∂x1

,
∂u
∂x2

,−∂u
∂t

)
, (A27)

∇zu =
(
∂u
∂x1

,
∂u
∂x2

,
∂u
∂t

)
, (A28)

can be written as
Ωτ∩{u>0}

1
2
(∇z · η⃗)(∇zu · ∇hu) − ∇zuDη⃗∇hu

+
1
2

div(R(v)η⃗) + gu2

2
divη⃗ − λu divη⃗


d ˜⃗z

+


Ωτ

div(γwa(v)η⃗) d ˜⃗z

= 0. (A29)

We also note the following relation:

1
2
(∇z · η⃗)(∇zu · ∇hu) − ∇zuDη⃗∇hu

− (η⃗ · ∇zu)(∆u − ut t − gu + λ) + 1
2

div(R(v)η⃗)

+
gu2

2
divη⃗ − λu divη⃗

= ∇z ·
1
2
η⃗(∇zu · ∇hu) − (η⃗ · ∇zu)∇hu +

1
2

R(v)η⃗

+
gu2

2
η⃗ − λuη⃗


, (A30)

so that, upon using Green’s theorem, we obtain


Ωτ∩{u>0}


∇z ·

1
2
η⃗(∇zu · ∇hu) − (η⃗ · ∇zu)∇hu

+
1
2

R(v)η⃗ + gu2

2
η⃗ + λuη⃗

 
d ˜⃗z

+


Ωτ

div(γwa(v)η⃗) d ˜⃗z

=
1
2


Ωτ∩∂{u>0}

(∇zu · ∇hu)(η⃗ · ν⃗)

− 2(η⃗ · ∇zu)(∇hu · ν⃗) + R(v)(η⃗ · ν⃗)dS

= 0, (A31)
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where ν⃗ is the outer normal vector on Ωτ ∩ {u > 0}. Since
ν⃗ = −∇zu/|∇zu|, one has

Ωτ∩∂{u>0}

(
− |∇u|2 + u2

t + R(v))(ν⃗ · η⃗) dS = 0,

∀η⃗ ∈ C∞0 (Ωτ; R⃗3), (A32)

and hence the following condition holds on the free boundary:

|∇u|2 − (ut)2 = R(v) on Ωτ ∩ ∂{u > 0}. (A33)

3. Discrete Morse flow

The discrete Morse flow builds a sequence of weak
solutions to approximating elliptic problems by minimizing
Jn(u) under the volume constraint condition and obtains a
solution to original problems (8)-(10) by taking the discretized
parameter h to zero.46

For example, considering the functional,

Hn(u) =

Ω

( |u − 2un−1 + un−2|2
2h2 χu>0 +

|∇u|2
2

)
dx, (A34)

and using perturbations uϵ = u + ϵφ(x) where φ ∈ C∞0 (u > 0),
we compute the Euler-Lagrange equation,

d
dϵ

Hn(uϵ)|ϵ=0 = 0, (A35)
Ω

(u − 2un−1 + un−2

h2 φ + ∇u∇φ
)
dx = 0. (A36)

Formally taking h → 0 in the above equation yields
Ω

�
ut tφ + ∇u∇φ

�
dx = 0, (∀φ ∈ C∞0 (u > 0)), (A37)

which is a weak formulation for the wave equation (inside the
free boundary),

ut t = ∆u in {u > 0}. (A38)

Therefore, by successively minimizing Hn(u), we can
construct a sequence of functions approximating the weak
solution to the above wave equation.
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