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Pricing emission permits in the absence of abatement 
 
 

Abstract 

If emissions are stochastic and firms are unable to control them through abatement, the 

cap in a permit market may be exceeded, or not be reached.  I derive a binary options pricing 

formula that expresses the permit price as a function of the penalty for noncompliance and the 

probability of an exceeded cap under the assumption of no abatement.  I apply my model to the 

EU ETS, where the rapid introduction of the market made it difficult for firms to adjust their 

production technology in time for phase 1.  The model fits the data well, implying that the 

permit price was at least partly driven by firms hedging against stochastic emissions.   
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1.  Introduction 

The centerpiece of emissions permit market theory is that firms equate their marginal 

abatement costs with the permit price.  If a firm finds abating an additional unit of emissions to 

be cheaper than buying a permit, it will make a profit from abating and either buy one fewer or 

sell one more permit on the market.  Conversely, if purchasing a permit is cheaper than 

marginal abatement, the firm will use the permit market to reach compliance.  The result of this 

arbitrage is that marginal abatement costs of all firms are equal to the permit price at every 

point in time.   

However, a permit market may not clear if emissions are stochastic and there are 

constraints on abatement, banking and borrowing.  The natural lower bound for abatement is 

zero: No firm is forced to actively increase its emissions in order to use up any surplus permits.  

Therefore, if business-as-usual (BAU) emissions turn out to be below the cap and no banking 

into the next compliance period is allowed, some permits will not be used.  Any upper bound 

on the permit price, for example in the form of a penalty for noncompliance,  translates to an 

upper bound for abatement:  If BAU emissions turn out to be greater than expected (for 

example due increased consumer demand) and no borrowing from the next compliance period 

is allowed, firms abate to the extent where their marginal abatement costs are equal to the 

penalty.  The emissions cap will be exceeded because firms that do not hold enough permits to 

cover their emissions will choose to pay the penalty rather than engage in abatement.   

In theory, firms can always reduce emissions by cutting output, but this may be costlier 

than paying the penalty.  Some industries face obligations to provide a certain level of output.  

An example is the electricity market where supply has to match (stochastic) consumer demand 

at all times in order for the grid not to crash, and the transmission system operator has the 

authority to force particular generators on- or offline to ensure continued grid functionality.   
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The price path of emission permits during the 2005-2007 period of European Union 

Emissions Trading Scheme (EU ETS) has puzzled market participants and economists alike 

(Figure 1).  The price was above €20 for close to 16 months and even surpassed €30 before 

plummeting to about half of this value after the first round of emissions accounting in April 

2006 revealed that 2005 emissions were below the number of permits issued for that year.  

Rather than dropping to zero immediately, the permit price remained at around €15 for another 

four months before gradually decreasing to zero by mid 2007.  The market did in fact not clear 

for the first compliance phase, with 189 million permits or about 2.7 % of the overall cap 

expiring unused at the end of 2007 (no banking of permits into the second phase was allowed) 

despite a positive permit price during most of the time (Table 1).   

Figure 1: Allowance price and trading volume during phase 1 of the EU ETS 

 

A series of recent studies empirically analyze the first phase of the EU ETS under the 

assumption of a clearing permit market and continuous equality between the permit price and 

firms’ marginal abatement costs (Alberola et al., 2008; Bunn and Fezzi, 2008; Hintermann, 

2010; Mansanet-Bataller et al., 2007; Rickels et al., 2007).  They find limited evidence that the 

permit price was driven by marginal abatement costs such as fuel prices, economic activity or 
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the weather.  One possible reason may be that emissions are stochastic, coupled with 

constraints on abatement.  The EU ETS was set up very rapidly, with little more than a year 

between the initial legislation and the start of the market in January 2005.  Because permit 

banking was not allowed during the first three, only abatement that physically took place by the 

end of 2007 could affect the first-phase permit price.  Considering that planning and installation 

of new production equipment often takes longer than a few years, most analysts concluded that 

fuel switching in the power sector (a shift of the generation merit order from coal towards gas) 

was going to be the predominant method of abatement for phase 1.  On the other hand, 

electricity generators are typically locked into long-term fuel contracts,1 which makes it 

difficult to engage in fuel switching on a meaningful level.   

Table 1: Summary of phase 1 of the EU ETS (Mt=million tons) 
  2005 2006 2007 Total phase 1 
     
Price (OTC, time average) € 18.40 € 18.05 € 0.72 € 12.39 
Trading volumea 262 Mt 817 Mt 1,364 Mt 2,443 Mt 
Allocation (source: CITL) 2,099 Mt 2,072 Mt 2,079 Mt 6,250 Mt 
Emissions (source: CITL) 2,010 Mt 2,031 Mt 2,041 Mt 6,081 Mt 
Surplus (volume) 89 Mt 41 Mt 39 Mt 168 Mt 
Surplus (%) 4.22 % 1.98 % 1.85 % 2.69 % 

  a: OTC and exchange trading for phases 1 and 2, but excluding bilateral trades (source: Point Carbon) 

 

In this paper set up a model in which firms are unable to control their emissions and buy 

permits in order to hedge against the possibility of having to pay a penalty.  The permit price 

thus becomes a binary option that is a function of the probability that the emissions cap is 

exceeded and the penalty for noncompliance, but not of marginal abatement costs.  I compute 

daily emissions based on daily generation of electricity from fossil fuels and use market data 

from the first phase of the EU ETS to estimate a set of free parameters.  The parameter 

                                                                 
1 These fuel contracts are often made for gate delivery in the form of take-or-pay, which makes it almost impossible to re-sell 

the fuel on the market.  Because of limited storage capacity, generators are forced to use this fuel by bidding above (current) 

marginal costs.   
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estimates are highly significant and make economic sense, and the model fits the data well, 

especially when allowing for an updating of expectations at the time of the permit price crash.   

Previous papers have addressed the issue of stochastic emissions and constraints on 

abatement (Chesney and Taschini, 2008).  However, the stochastic equilibrium models derived 

in these studies are too complex to be directly applied to data.  The main contribution of my 

paper is therefore empirical.  To my knowledge, it is the first to account for the possibility of a 

non-clearing permit market while allowing for a direct application of the model to market data.  

In addition, I make use of an extremely detailed dataset about electricity consumption and 

precipitation across Europe that has not been employed in the empirical literature before.   

My model represents a polar case where abatement is constrained to zero and the market 

is only influenced by expectations about aggregate stochastic emissions and the penalty of 

noncompliance.  The other extreme of the spectrum is defined by the textbook situation where 

firms have full control over their emissions, and therefore the permit price is exclusively driven 

by marginal abatement costs.  For phase 1 of the EU ETS, the reality is likely to be found 

somewhere in between: Some abatement probably took place (Ellerman and Buchner, 2008), 

but the empirical evidence suggests that the permit price was not strongly related to marginal 

abatement costs.  In fact, I find that a large portion of the permit price variation during phase 1 

of the EU ETS can be explained without relying on abatement cost drivers at all.  This has 

implications for efficiency, because the equality between marginal abatement costs and the 

permit price are a prerequisite for achieving an emissions cap at least cost.   

Section 2 gives some background about the EU ETS and the relevant literature.  In 

Section 3 I derive an options pricing formula for EU ETS allowances as a function of 

emissions, the cap, the penalty for noncompliance and a set of free parameters.  This formula 

contains the mean and variance of expected future emissions, which I derive in Section 4 as a 

function of exogenous stochastic processes.  Section 5 presents regression results for the 
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parameters of underlying processes and the free parameters in the options pricing formula, and 

section 6 concludes.   

 

2. Background 

2.1  The European Union Emissions Trading Scheme (EU ETS) 

The EU ETS is the world’s largest emissions permit market to date and covers the EU’s 

carbon dioxide (CO2) emissions from six industrial sectors (Figure 2), among which power & 

heat accounts for about 72% of total emissions.2   

Figure 2: Emissions by sector (Source: CITL, 2006 data) 

 

The EU ETS is organized into distinct multiyear periods called “phases” that are subject 

to different rules and emission caps.  The first phase spanned the years 2005-2007 and was 

considered a pilot run for phase 2, which coincides with the Kyoto compliance period of 2008-
                                                                 
2 The Community Independent Transaction Log (CITL) of the European Commission lists 9 sectors defined by “activity code”, 

which are: Code 1: Combustion installations with thermal output of >20MW; 2: Mineral oil refineries; 3: Coke ovens; 4: Metal 

ore roasting or sintering; 5: Production of pig iron and steel; 6: Cement and lime; 7: Glass; 8: Ceramics; 9: Pulp and paper.  For 

the grouping in figure 2, I aggregated codes 3-5 into “metals” and 7-8 into “glass and ceramics”.  For the other sectors, there is 

a one-to-one correspondence with activity codes.  Within activity code 1, commercial power and heat producers for third parties 

account for 93% of emissions, whereas the remaining 7% come from numerous but relatively small installations involved in the 

production of on-site power and heat (so-called “autoproducers”).   
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2012.  First-phase allowances (one-time rights to emit one ton of CO2, denoted as EUA) could 

not be banked into the second phase and lost their value if unused for compliance.3  About 

12,000 individual installations received a total of 2.1 billion emission allowances annually, 

mostly at no cost. For a more detailed discussion of the market setup, see Kruger and Pizer 

(2004) and the PEW White Paper (2005).   

Firms received allowances allocated mostly for, based on estimates of historic emissions.  

Firms can trade allowances freely within the EU, either bilaterally, through brokers (over-the-

counter or OTC trades) or on one of six exchanges.  By April 30, they have to report their 

emissions and surrender permits corresponding to their emissions in the previous calendar year.  

For every ton of emitted CO2 for which they do not surrender an allowance, firms have to pay a 

penalty (€40 in phase 1 and €100 in phase 2) as well as surrender the missing allowance in the 

following year.  Because firms receive annual allowances in March they can effectively bank 

and borrow across time within a market phase, which implies that the penalty of noncompliance 

will only be applied at the end of a phase.  Since allowance allocation exceeded emissions for 

phase 1, the penalty has not been applied to date.   

Because of the lack of historic emissions data in Europe, many countries relied on firms’ 

emissions forecasts when determining permit allocation, which introduced rather obvious 

incentive problems.  There seems to be a general agreement among analysts that the first round 

of emissions accounting in April 2006 revealed lower-than-expected emissions, indicating that 

the cap was more generous than previously believed.  The downward adjustment of market 

participants’ expectations about aggregate emissions for phase 1 caused the allowance price to 

lose half of its value within a day.  What is less evident than the reasons for the crash is why the 

                                                                 
3 Banking is allowed between the second and later phases.   
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price was so high in the first place,4 and why it did not crash to zero but remained in a range of 

€15 for several months afterwards.   

Another feature of the EU ETS that may be important in the context of this paper is the 

process for second-phase allocation, which took first-phase emissions into account.  The 

European Commission urged member countries not to engage in such “allocation updating”, 

but most of them based their national allocation plans for phase 2 on verified 2005 emissions 

anyway.5  Basing future allocation on current emissions creates a strong disincentive to abate, 

because every unit of abatement comes at a cost not only in the current period but also causes a 

reduction in future free allocation (Boehringer and Lange, 2005).  As a result, it is possible or 

even likely that firms stuck to their existing fuel contracts and merit order even if they had been 

able to engage in fuel switching (or any other form of abatement).   

2.2  Literature  

There is a large theoretical literature in environmental economics about permit trading, 

starting with the seminal work of Montgomery (1972) and Tietenberg (1985).  Later 

contributions extended the analysis to incorporate banking and borrowing of permits 

(Cronshaw and Brown-Kruse, 1996; Leiby and Rubin, 2001; Rubin, 1996) and to address 

uncertainty (Newell et al., 2005; Schennach, 2000; Zhao, 2003).  All of these studies show that 

it is optimal from a social and a firm perspective to equate marginal abatement costs to the 

permit price, and that this will lead to the achievement of an emissions reduction target at least 

cost.   

                                                                 
4 If all firms with an allowance surplus brought them to the market, the price would incorporate information about aggregate 

BAU emissions and the resulting necessary abatement levels.  The fact that the allowance price was positive during much of the 

first phase, in spite of an over-allocation indicates that the allowance price did not reflect all relevant information.   
5 Although obviously problematic from a permit market point of, one has to consider the fact that most EU member countries 

had very little information about CO2 emissions.  Given a grandfathering allocation method, it was very difficult for most 

countries to completely disregard the new information gained during the first year of the market.   
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Empirical studies about price determination in the EU ETS are inconclusive about 

whether observed allowance prices are indeed determined by marginal abatement costs.  In one 

of the first empirical analyses of the market, Mansanet-Bataller et al. (2007) regress allowance 

price changes on changes in fuel prices and extreme weather conditions for the first year of the 

market (2005) and find some statistically significant coefficients with the expected sign, but the 

explanatory power of the model was quite weak.  The most significant exogenous variable 

turned out to be the oil price, which is not an abatement-related measure (very little electricity 

is produced using oil in the EU, and neither the transportation nor the residential sectors are 

covered by the market), and the fuel switch price from coal to gas was not significant.  Rickels 

et al. (2007) extend the analysis to 2006 and find some correspondence between allowance 

prices, fuel prices and European weather before the April 2006 price crash, but virtually none 

for the period afterwards.  They also checked for cointegration between allowance and fuel 

prices, which would be evidence of a systematic relationship, but found none.  In contrast, 

Bunn and Fezzi (2008) did find a cointegrating relationship between prices for allowances, gas 

and electricity, but the relationship between gas and allowance prices was weak and possibly 

due to the fact that both prices are related to electricity prices.   

Hintermann (2010) derives a market model that expresses allowance price changes as a 

function of market fundamentals related to the overall cap and abatement by fuel switching and 

estimates the resulting regression using market data through mid 2007.  He finds that before the 

price crash, there was no correlation between abatement-related fundamentals and the 

allowance price.  The results for the period after the April 2006 price crash are somewhat more 

supportive of the idea of fuel switching, but fuel prices explained a minor share of the 

allowance price variation even in the best-matching specification of a large number of 

specifications.   
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Another strand of literature has looked at the issue from a mathematical finance 

perspective, focusing on the dynamics of allowance prices and methods to hedge against 

emissions-related risk.  Kosobud et al. (2005) applied financial tools to the analysis of SO2 

permits in the US Acid Rain program, and Paolella and Taschini (2008) examine the same 

market as well as the EU ETS.  They find that allowance price returns are fat-tailed and thus are 

best modeled using models that take this property into account.  However, they use a pure time 

series approach and do not aim to identify exogenous price drivers.  In a similar approach, Benz 

and Trueck (2009) focus on the properties of short-term allowance price returns, and propose 

the use of Markov-switching models and time-varying volatility measures to describe the 

observed prices.   

Chesney and Taschini (2008) develop a theoretical model that incorporates asymmetric 

information in the sense that firms have more complete information about their own emissions 

than about those of other firms in the market.  Under the assumption that firms were not able to 

abate emissions before the end of 2007, they show that allowances are financial options and 

simulate allowance prices that for some parameter values show a bubble-like price path similar 

to that observed for phase-1 EUAs.   

Seifert et al (2008) derive a stochastic equilibrium permit price model and analyze the 

resulting EUA price dynamics.  They prove that discounted allowance prices are martingales, 

meaning that they do not follow a seasonal pattern but immediately incorporate all relevant 

market information.  The authors argue that the allowance price in their model will never reach 

zero before the end of the period because the stochastic nature of prices, emissions and 

abatement ensures a positive probability that the cap turns out to be binding and the penalty for 

noncompliance has to be paid, a result which also features in my model.   

Carmona et al. (2009) also develop a model in which allowance prices are driven by the 

probability of the cap to be exceeded, the cash part of the penalty for noncompliance (but not 
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the second-phase allowances that also form part of the penalty) and fuel prices.  They conclude 

with a numerical analysis based on a simplified model version where they use market data to 

calibrate emission and fuel price processes, although their setup does not allow them to 

incorporate daily data to update firms’ expectations about future emissions.  They find that their 

proxy for marginal abatement costs, namely the current cost to abate one ton of CO2 by fuel 

switching, is not highly correlated with the allowance price, supporting my assumption about 

the irrelevance of abatement during phase 1 of the EU ETS.  

 

3. Model 

Let tP  be the closing price for an allowance on day t , with the index ),...,2,1( Tt =  

starting on January 1, 2005 and ending on December 31, 2007.  CO2 emissions on day t  are 

represented by tg .  Let ∑ =
≡

t

k k
t gG

11  denote cumulative realized emissions (observed with 

certainty) and ∑ +=
≡

T

tk k
T
t gG

1
 cumulative future emissions until the end of the market 

(stochastic).  Furthermore, let P  refer to the penalty for noncompliance and 0S  to the total 

emissions cap over the entire market period imposed by the regulator.  Finally, it will be useful 

to define t
t GSS 10 −=  to be the “remaining cap” until the end of the market.   

The purchase of an allowance gives the bearer the option to use it for compliance at the 

end of the period or to sell it.  However, if the cap turns out to be not binding, the bearer can 

retire the allowance.  This makes an allowance a financial option, specifically a binary call 

option, also called a cash-or-nothing option, a point also made by Chesney and Taschini (2008).  

At time T  the payoff from holding an allowance is:   

(1) 
00
0

T
T

T

Sif
P

SP if
>

=  ≤
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The penalty of noncompliance P  consists of a cash penalty of €40 plus the cost of buying 

an additional permit for the second phase.  Let II
tP represent the price of the December-2008 

forward contract for an allowance at time t.  The penalty at time T can then be written as6 

(2) II
TP €40 P= +  

At t T<  it is not known whether the cap will be exceeded, provided that it has not been 

exceeded already.  The expected payoff from holding an allowance at time T  is  

(3) 
[ | 0] [ ] ( )

[ | 0] [ ]
t

T T
t T t t t t t

S

t T t t

E P S E P G dG

E P S E P

ζ
∞

> = ⋅

≤ =

∫  

where )( T
tt Gζ  denotes the probability density function over cumulative future CO2 

emissions T
tG  and ][⋅tE  stands for the expectation taken using all information available at time 

t.  The time subscript on the expectation about the penalty results from changing expectations 

about the second-phase price, which is relevant for the non-cash part of the penalty.   

I specify emissions as a linear combination of normally distributed processes (see Section 

4), which means that they are normally distributed as well.  Options pricing formulae are 

usually based on log-normally distributed underlying assets, reflecting the idea that total returns 

are the multiplication of single-period returns.  Cumulative emissions, however, are additive 

rather than multiplicative, and it is therefore appropriate to model them using a normal 

distribution.7  Let tµ  and ts  denote the mean and standard deviation of stochastic cumulative 

                                                                 
6 The cash penalty has to be paid after the end of the first phase, whereas the additional permits will have to be surrendered in 

2009 together with permits for the calendar year 2008.  Because permits can be banked and borrowed within a phase, I abstract 

from the difference in timing of the two penalty components.   
7 In theory, the choice of a normal distribution requires a truncation at zero necessary since negative emissions are not defined.  

But because CO2 emissions in the EU are many standard deviations away from zero, the correction implied by the truncation is 

extremely small, such that for the remainder of this paper I will neglect the truncation issue.   
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future emissions T
tG .  Its standardized form ( ) /T

t t t tQ G sµ≡ −  has a standard normal 

distribution by construction.  Let )(⋅ϕ  and )(⋅Φ  be the probability density function and 

cumulative probability density function of the standard normal distribution, respectively.  I now 

convert the integral in (3) into an integral over tQ : 

(4) 

( )
( )/

[ | 0] [ ] ( )

[ ]

t t t

t T t t t t
S s

II t t
t T

t

E P S E P Q dQ

S€40 E P
s

µ

φ

µ

∞

−

> = ⋅

 −
= + ⋅Φ  

 

∫
 

Arbitrage considerations dictate that the price at time t be equal to the expected price at T, 

discounted by the risk-free rate of interest r.8  Due to arbitrage considerations, the expected 

second-phase price at time T has to be the current forward price, scaled by the rate of interest, 

such that ( )[ ]II r T t II
t T tE P e P−= .  Thus, the discounted expected allowance price at time T is9  

(5) 
( )( ) ( )

( ) ( )

[ | 0] 40

[ | 0] 40

r T t r T t II t t
t T t t

t

r T t r T t II
t T t t

Se E P S e P
s

e E P S e P

µ− − − −

− − − −

 −
> = + ⋅Φ  

 
≤ = +

 

The first parenthesis in (5) is the discounted total penalty for noncompliance per ton of 

uncovered emissions consisting of the cash penalty and a second-phase allowance.  The term 

( )Φ ⋅  represents the probability that the cap is exceeded, which is unity for the second line.   

                                                                 
8 Real-world markets are typically not risk-neutral, but option prices based on risk neutrality nevertheless yield the correct 

(meaning no-arbitrage) solution for traded assets (Hull, 2002).  In the case of emissions, the risk may be spanned by electricity 

future contracts, weather options and derivatives based on emissions-related indicators such as temperature in rivers close to 

nuclear power plants (if water temperatures are too high to cool the plants, nuclear generation is switched off, as has happened 

in Sweden in the Summer of 2005).  In any case, the price of market risk can never be determined with a sufficient degree of 

confidence in order to make its inclusion in an empirical pricing formula worthwhile, due to measurement and identification 

issues (e.g. a greater market fundamental and a higher price of risk have the same effect on the price).   
9 For a fully rigorous exposition that leads to the same result, see Chesney and Taschini (2008) and Carmona (2009).  The latter 

also prove that the permit price is indeed a martingale, a property which is assumed but not formally derived here.   
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Equation (5) is a binary options formula for the allowance price, with the underlying asset 

being normally distributed cumulative future emissions.  What remains to be determined in 

order to evaluate (5) are past emissions (to compute tS ) and the mean and standard deviation of 

cumulative future emissions, tµ  and ts .  Daily emissions are not actually observed, but have to 

be derived from underlying processes and ultimately estimated using market data.  This is the 

subject of the following section.   

 

4. Mean and standard deviation of future emissions 

4.1.  Processes underlying CO2 emissions  

There exist no data about daily CO2 emissions, but for the power and heat sector there is 

something that can serve as a substitute: Daily electricity consumption.   

Electricity is special in the sense that demand has to be met with a matching supply at all 

times in order for the grid not to collapse.  I assume that the short-term price elasticity of 

electricity consumption is zero, such that electricity supply is equal to demand, which in turn is 

a function of exogenous processes such as the weather and overall economic activity.10   

Because only generation from fossil fuels contributes to CO2 emissions, I have to adjust 

total consumption by the availability of “clean” (i.e. non-CO2-emitting) sources of electricity, 

mainly hydroelectric and nuclear power.11   

                                                                 
10 In the long run, consumers will react to higher electricity prices by changing their consumption habits and appliance 

portfolio, such that electricity demand is also a function of the electricity price.  But regardless of the time horizon and the 

associated energy efficiency of households and industry, exogenous shocks will always drive short-term electricity 

consumption.   
11 Although wind generation has increased rapidly during the past few years, it still accounts for a relatively small fraction of 

total power production.   
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Let 

 

ct  represent overall electricity consumption; 

 

ct
c consumption of conventional fossil-

fueled generation; tn  nuclear power generation (all in Giga-Watt-hours (GWh) per day); and 

 

ht  

rainfall in the EU in millimeters (mm) per day.  Demand for conventional generation is  

(6) c
t t t tc c h nη= − −  

where 

 

η is a fixed coefficient translating precipitation into hydroelectric power.12  I 

compute η  by dividing the EU’s total hydro generation in 1990-2005 of 4,852,000 GWh by 

cumulative weighted precipitation over the same period of 9,775 mm, using installed 

hydroelectric capacity per country as weights.  This results in a conversion factor of 

 

η=496.4 

GWh/mm.   

Nuclear generation is “flat”, i.e. power plants are not ramped up and down on a daily or 

even seasonal basis but provide constant output.  In the EU, 12 member countries have nuclear 

power plants.13  Their combined average generation in the years 2003-2005 was 2,679 GWh 

per day, which I will use as a measure for tn n t= ∀ .   

The emission intensity of the marginal generator varies over the dispatch order (the 

sequence according to which generators come online, usually based on least cost).  The correct 

measure for CO2-emissions in Europe’s power & heat sector is  

(7) 
0

( )
c
tc

t tg y dy= Ψ∫  

                                                                 
12 Since precipitation can be stored to some extent, either in reservoirs or as snow in the mountains, there is no immediate 

relationship between precipitation and hydro generation on any given day.  On the long run, however, all hydro generation is 

ultimately due to precipitation, and even if rainfall today may not translate into more generation today, it nevertheless reduces 

expected conventional generation needed to satisfy consumer electricity demand until the end of the phase.   
13 These are Belgium, Czech Republic, Germany, Spain, Finland, France, Hungary, Netherlands, Slovakia, Slovenia, Sweden 

and UK.   
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where ( )c
t tcΨ  is a function transforming conventional thermal power generation into 

emissions.  To compute the integral in (7) I would need to know the dispatch order for each 

day, as well as the marginal emission intensity of all generators involved, information which is 

not available.  Instead, I approximate the emission intensity of all generators that are not 

continuously running by a linear function.  This allows me to express (7) as 

(8) 
min min( )

c
t t

c
t

g k c

k g c

γ

γ

≈ + ⋅

≡ − ⋅
 

The parameter γ  represents the average emission intensity of fossil-fueled electricity 

generation beyond minimum consumption min( )c
tc .  For the period under consideration I treat 

γ  as fixed.  The constant k captures the difference between CO2 emissions associated with 

minimum thermal generation 

 

gmin  and the (theoretical) emissions if the emission intensity γ  

were applicable to infra-marginal generation as well.14  Combining (6) and (8), emissions are a 

function of a set of parameters and the two stochastic exogenous processes tc  and th :   

(9) ( )t t tg k c h nγ η= + ⋅ − −  

At time t, the mean of future CO2 emissions is defined by  

(10) 

( )

1

1

[ ] ( )

( ) [ ] [ ]

T
T

t t t t k k
k t

T

t k t k
k t

E G E k c h n

T t k E c E h n

µ γ η

γ η

= +

= +

 
= = + ⋅ − − 

 

= − + ⋅ − −

∑

∑
 

                                                                 
14 The average emission intensity of inframarginal conventional generation can be greater or smaller than the emission intensity 

of marginal generation. For example, if inframarginal generation stems largely from lignite or anthracite coal power plants, then 

k>0 because these generators have a greater emission intensity than the marginal conventional generators which are 

predominantly hard coal and gas generators.  On the other hand, if inframarginal generation contains a large share of combined 

cycle gas turbines (CCGTs), then k<0.  In the EU, k>0 is more likely given the significant fraction of lignite generation in 

Germany and the new EU member countries from Eastern Europe.   
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The variance (for a derivation see Appendix) is  

(11) 

 

st
2 = Vart[Gt

T ] = Vart[gk ]
k= t +1

T

∑ + 2 Covt[gk, gu]
u= k +1

T

∑
k= t +1

T

∑

= γ 2 Vart[ck ] − 2ηCovt[ck, hk ] + η2Vart[hk ]( )
k= t +1

T

∑

+ 2γ 2 Covt[ck,cu] + η2Covt[hk,hu] −ηCovt[ck,hu] −ηCovt[hk,cu]( )
u= k +1

T

∑
k= t +1

T

∑

 

Both expressions are functions of the constants n and η (which I treat as fixed), the 

parameters k and γ, and the mean, variance and covariance of electricity consumption and 

precipitation, the derivation of which is the subject of the next subsection.   

4.2.  Properties of the stochastic processes ct and ht  

For the analysis of the stochastic processes that describe electricity demand and 

precipitation, I will draw extensively from a paper by Alaton et al. (2002).  Although they focus 

on pricing a weather option over heating-degree days, their analysis can also be applied to 

electricity demand and precipitation because both are exogenously driven stochastic processes 

that contain deterministic annual fluctuation and long-term trends.  The contribution of my 

paper is not the derivation of the property of such processes, but the application of these 

methods to CO2 allowance pricing.   

I model both electricity consumption and precipitation as diffusion processes consisting 

of a deterministic mean and a stochastic part, and which exhibit mean-reversion.  For 

mathematical tractability, I include the stochastic element in the form of a generalized Wiener 

process.  Combining the processes in the index ,x c h= , they can be described as 

(12) ( )( ) ,
m

m x xt
t x t t i t t

dxdx a x x dt dW x c h
dt

σ
 

= + ⋅ − + = 
 
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This is known as an Ornstein-Uhlenbeck (OU) process with a non-zero mean m
tx  that 

changes over time, and time-varying volatility.  The term in brackets represents the drift, 

followed by the diffusion term defined by the standard Wiener process x
tdW  multiplied by the 

volatility.  The mean reversion parameter 

 

ax measures the speed at which the processes revert 

back to their long-term mean.  Lastly, the index ( )i t  labels the calendar month to which the 

time index t refers.  I constrain the volatility to be constant within each calendar month, but 

allow it to differ across months, such that ( ) (1,...,12)i t ∈ .  For example, if day t belongs to 

January of any year, then ( ) 1i t = .   

The standard form of the OU-process can be derived simply by setting / 0m
tdx dt =  and 

( )
x x
i tσ σ=  (note that the volatility remains deterministic in spite of its time subscript).  At ts ≤ , 

the solution for the stochastic differential equations in (12) is  

(13) ( ) ( )
( )( ) x x

t
a t s a tm m x x

t s s t i
s

x x x e x e dWτ
τ τσ− − − −= − ⋅ + + ∫  

The first term on the RHS is the deviation of actual consumption/precipitation at the 

present time s from its mean.  As time goes on, the impact of this deviation will diminish due to 

the mean-reversion property of both processes, measured by the exponent.  If one of the 

processes is at its average at time s, or if st >> , then the first term will drop out, and the 

expectation at time t simply becomes m
tx .    

In my empirical approach, I specify the long-term mean of electricity consumption and 

precipitation at time t as  

(14) 0 1 2 sin[2 / 365 ]m x x x x x
t tx t t D WDβ β β π ω= + ⋅ + ⋅ + + ⋅  
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The parameters x
0β  and x

1β  describe the level and trend of the process x, respectively, 

whereas x
2β  describes the amplitudes of the respective sine wave.  The phase angle xω  shifts 

the oscillation of the two processes to their correct position.  Lastly, the vector of coefficients 

xD  accounts for differences across different weekdays, with tWD  being a vector of weekday 

dummies (this only applies to electricity consumption, as there is no reason to believe that 

precipitation follows a particular weekday pattern).   

Using (13), we can compute the mean and variance of future electricity demand and 

precipitation.  The expectation of the level of the process at time t, taken on day s, depends on 

the deviation of the current level from its long-term mean, as well as the expected long-term at 

time t:  

(15) ( )[ ] [ ] xa t sm m
s t s s tE x x x e x− −= − ⋅ +  

Since the diffusion term in (12) is unaffected by the presence of a deterministic time-

varying mean, the variance is that of a regular OU-process and is derived by applying Itô’s 

integral of a deterministic integrand (for a general treatment, see Shreve (2004)):  

(16) ( )2 2 ( ) 2
( )[ ] [ ] ( )x

t
a t y x

s t s t s t i y
s

Var x E x E x e dyσ− − = − =   ∫  

If the volatility does not change between s and time t, (16) can be solved for  

(17) ( )
2

( ) 2 ( )( )
[ ] 1

2
x

x
i t a t s

s t
x

Var x e
a

σ −= −  

If the variance changes between s and t, the expression becomes more complicated.  I will 

denote the first day of each month as { }min min : ( )it t i t i= = .  I show in the Appendix that for 

hcx ,=  and )()( tisi ≤ , the general expression for the variance is  
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(18) 
min

1

( ) 1
2 ( ) 2 ( )2 2 2 2

1 ( ) ( )
( )

1[ ] ( ) ( ) ( ) ( )
2

x k x

i t
a t t a t sx x x x

s t k k i t i s
k i sx

Var x e e
a

σ σ σ σ+

−
− − − −

+
=

 
 = − + −  

 
∑  

If the volatility is constant across different calendar months, (18) reduces to (17).   

Lastly, the covariance between electricity consumption and precipitation on days t and u 

for 

 

s ≤ t ≤ u is defined by (see Appendix):  

(19) 

( )

( )

( )

[ , ] [ ]

[ , ] [ , ]

[ , ] [ , ]

x

h

c

a u t
s t u s t

a u t
s t u s t t

a u t
s t u s t t

Cov x x e Var x

Cov c h e Cov c h

Cov h c e Cov c h

− −

− −

− −

= ⋅

= ⋅

= ⋅

 

There is no reason to believe that consumption of electricity and precipitation on the same 

day should be systematically related, and the data confirm this.  I therefore set [ , ]s t tCov c h =

[ , ]s t uCov c h = [ , ] 0s t uCov h c =  in eq. (11).  Expressions (15) and (18)-(19) can now be 

substituted into (10) and (11), which in turn have to be substituted into (5).   

 

5. Estimation 

Estimation proceeds in two steps: First, I estimate the parameters 0 1 2, , , ,x x x xβ β β ω  ,c
xD a  and 1 12,...,x xσ σ , using 

data available through 2005, or through 2007 where necessary (see below).  Second, I estimate the remaining parameters in tµ  

and ts  in the allowance pricing formula (5) using data starting in 2006, treating the first-step estimates as given.    
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5.1.) Data 

Allowance prices:  Over-the-counter (OTC) closing allowance prices from Point Carbon.   

Electricity consumption:  Daily data about electricity consumption is available from the 

Union for the Coordination of Transmission of Electricity (UCTE) for continental European 

countries, 15 including all EU member countries except for the Nordic countries, the UK, 

Ireland, the Baltic States, Malta and Cyprus.  Electricity consumption on the third Wednesday 

of each month is available starting in 1994 for 9 EU countries, in 1996 for Germany, and in 

1999 for another 5 countries.  Consumption on the weekend following the third Wednesday of 

each month is available for the year 2000 only.  Starting in 2006, electricity consumption is 

available on a daily basis for all UCTE countries.  To supplement the UCTE data I obtained 

historic electricity consumption data from the transmission system operators (TSOs) in the UK, 

Ireland and the Nordic countries.16  I exclude Malta, Cyprus and the Baltic States due to lack of 

data.  The 20 countries included in the analysis account for 99% of total production in the EU-

25.  The EU produces nearly all of the electricity it consumes, with net imports/exports 

accounting for less than 0.1 percent of overall consumption.  I therefore set EU consumption 

equal to EU generation.  In order to accommodate the variation in type and provenance of the 

data I will carry out the analyses separately for each group of countries for which the available 

data is of the same type and covers the same time period.  The six groups are listed in Table 2, 

and Figures 3a-f show the available pre-2006 electricity consumption data by group.   

  

                                                                 
15 Available at http://www.entsoe.eu/, last accessed in September 2008.   
16 UK: Daily data since 2001 from the National grid, available at http://www.nationalgrid.com/uk/Electricity/Data/;  Ireland: 

Daily data since 2002 from Eirgrid, available at http://www.eirgrid.com; Denmark: Daily data since 2000 from Energinet, 

available at http://www.energinet.dk; Finland: Daily data since 2004 from Fingrid, available at http://www.fingrid.fi; Sweden: 

Daily data since 2000 from Svenska Kraftnät, available at http://www.svk.se/web/Page.aspx?id=5794.    

http://www.entsoe.eu/
http://www.nationalgrid.com/uk/Electricity/Data/
http://www.eirgrid.com/
http://www.energinet.dk/
http://www.fingrid.fi/
http://www.svk.se/web/Page.aspx?id=5794
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Table 2: Data availability (pre-2006) and installed hydroelectric capacity by country 
Countries Start of data series Hydro capacity 
  Type Year Sourcea in 2006 (MW) 
Group 1 

       Austria 3rd Wed. 1994 UCTE 11'811 
   Belgium 3rd Wed. 1994 UCTE 1'411 
   France 3rd Wed. 1994 UCTE 25'457 
   Greece 3rd Wed. 1994 UCTE 3'133 
   Italy 3rd Wed. 1994 UCTE 21'070 
   Luxembourg 3rd Wed. 1994 UCTE 1'128 
   Netherlands 3rd Wed. 1994 UCTE 37 
   Portugal 3rd Wed. 1994 UCTE 4'948 
   Spain 3rd Wed. 1994 UCTE 20'714 
Group 2 

       Germany 3rd Wed. 1996 UCTE 9'100 
Group 3 

       Czech Republic 3rd Wed. 1999 UCTE 2'175 
   Hungary 3rd Wed. 1999 UCTE 46 
   Poland 3rd Wed. 1999 UCTE 2'324 
   Slovak Republic 3rd Wed. 1999 UCTE 2'429 
   Slovenia 3rd Wed. 1999 UCTE 873 
Group 4 

       UK daily 2002 Country TSO 4'256 
   Ireland daily 2002 Country TSO 512 
Group 5 

       Denmark daily 2000 Country TSO 10 
   Sweden daily 2000 Country TSO 16'180 
Group 6 

       Finland daily 2004 Country TSO 3'044 
a:UCTE: Union for the Coordination of transmission of electricity; TSO: Transmission system operator 

 
Precipitation:  Data from the European Climate Assessment and Dataset,17 which 

contains daily entries for 1,048 monitoring stations located in 42 countries.  The period of 

observation varies from a few years to >150 years, with most series spanning several decades.  

To model the stochastic process underlying precipitation, I use data covering the years 1976-

2005.  The conversion of precipitation into hydroelectric power is location-specific.  For 

example, rainfall in the Netherlands or in Denmark is largely irrelevant because these countries 

have very little installed hydroelectric generation capacity, whereas hydro generation 

constitutes a large share of total power production in Alpine and Scandinavian countries.  I 

                                                                 
17 Klein Tank et al. (2007): “Daily Dataset of 20th-Century Surface Air Temperature and Precipitation Series for the European 

Climate Assessment”, available at eca.knmi.nl, last accessed in September 2008.   
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average station entries by country,18 and then create a weighted European average using 

installed hydroelectric capacity in 2006 as weights.19  Installed hydro generation is given in the 

last column of Table 2.  Weighted precipitation in millimeters (mm) is shown in Figure 4 for a 

subset of the sample period.  Whereas it is difficult to visually discern a pattern in the raw data 

(Fig. 4a), using moving 7-day-average (Fig. 4b) reveals a clear seasonality.   

 
  

                                                                 
18 For relatively flat countries such as Belgium and Luxembourg, I simply take an average of all monitoring stations.  However, 

since hydro generation in the Alps and in Scandinavia is highly location-specific, I take an average of the subset of monitoring 

stations that are located in or near mountains.  A full list of the selected stations is available from the author upon request.   
19 This data comes from UCTE (www.ucte.org) for continental Europe; from Nordpool (www.nordel.org) for Scandinavia; 

from the Austrian Energy Agency (www.energyagency.at/enercee/) for the Baltic States; from Harrison (2005) for the UK; and 

from the Electricity Supply Board (ESB, available at http://www.esb.ie/main/about_esb/power_stations_intro.jsp) for Ireland; 

all accessed in September 2008.   

http://www.ucte.org/
http://www.nordel.org/
http://www.energyagency.at/enercee/
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Figure 3: Available daily electricity consumption, pre-2006 

 
         3a: Group 1 (AU, BE, FR, GR, IT, LU, NL, PT and ES)   3b: Group 2 (Germany) 

 

 
      3c: Group 3 (CZ, HU, PL, SK and SK)   3d: Group 4 (UK and Ireland) 

 

 
     3e: Group 5 (Sweden and Denmark)          3f:  Group 6 (Finland) 
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Figure 4: Weighted average precipitation in the EU 

 
     4a: Daily precipitation      4b: Weekly moving averages 

 

5.2  Parameter estimation for electricity consumption and precipitation 

Using data through 2005, I estimate the parameters 0 1 2, , , , ,x x x x x xD aβ β β ω  and 

1 12,...,x xσ σ  with a model that features an autoregressive error to account for mean-reversion and 

multiplicative heteroskedasticity to allow the variance to differ across months:  

(20) ( )

0 1 1 2

1

2
( )

2 1 2 6
( ) 0 1 11

sin(2 / 365) cos(2 / 365)

~ 0, ( )

( ) exp{ ... } ; , , ..., ,

x x x x x x
t t t

x x x x
t t t

x x
t i t

x x x x
i t t t

x t t t D WD

u

u N

Jan Nov x c c c h

β β α π α π ε

ε ϕ ε

ξ

ξ λ λ λ

−

= + ⋅ + ⋅ + ⋅ + ⋅ +

= ⋅ +

= + ⋅ + + ⋅ =

 

The index x covers six different electricity consumption series, plus the precipitation 

series, for which I carry out separate regressions.  The parameters xx
10 , ββ  and xD  are the same 

as in (14) and are estimated directly by maximum likelihood.  The transformation of the sine 

wave plus the phase angle into a sine and cosine wave is a standard trigonometric relation and 

serves to linearize the equation.  The parameters x
2β  and xω  can be computed using the 

estimates of x
1α  and x

2α :20  

                                                                 
20 See, for example, Beckwith et al. (1995), p. 131.  The t-statistics have to be computed using the delta method.   
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(21) 
2 2

2 1 2

2 1

( ) ( )

arctan[ / ]

x x x

x x x

β α α

ω α α

= +

=
;   hcccx ,...,,, 621=  

For a stationary autoregressive process with one time lag, the variance is given by21  

(22) ( )
2

2 ( )2 2
( )

( )
( ) [ ] [ ]

1

x
i tx

i t t t t
x

E x E x E
ξ

σ ε
ϕ

 = − = =  −
 

The mean-reversion parameter xa  measures the speed at which a shock to tx  is felt at 

later times.  From (15), the expectation of future electricity consumption or precipitation is  

 
( )

( )

[ ] [ ] x

x

a t sm m
s t s s t

a t sx m
s t

E x x x e x

e xε

− −

− −

= − +

= ⋅ +
 

The term )( staxe −−  is equivalent to the impulse-response function of the AR(1) process 

defined by ( , ) t st sχ ϕ −=  (see e.g. Hamilton (1994) p. 53-54), which measures the impact of 

an exogenous shock occurring in period s on the variable in period t.  Equating the two and 

solving yields  

(23) ln( )x xa ϕ= −  

I derived the expressions for the mean, variance and covariance in (15), (18) and (19) for 

aggregate electricity consumption.  Having six data groups requires the following adjustment:  

(15’) 
6

1
[ ] [ ]j

s t s t
j

E c E c
=

= ∑  

                                                                 
21 Because Series 1-3 only contain data for every 3rd Wednesday and some weekends, and because the estimate for ξix improves 

with greater frequency (Hayashi and Yoshida, 2005), I use the 2006-7 data to estimate ϕx and ξix for Series 1-3.  I also use 

2006-7 data to estimate the correlation coefficients.  For all other first-step parameters, I use pre-2006 data only.  The variance 

and mean reversion estimates from Series 4-6 (for which such a comparison can be made) are not significantly different 

between pre- and post-2006 data.   



27 

 

(18’) 
6 6 6

1 1 1
[ ] [ ] 2 [ , ]j j l

s t s t s t t
j j l j

Var c Var c Cov c c
= = = +

= +∑ ∑ ∑  

(19’) ( )
6 6 6*( ) *( ) *( )

1 1 1
[ , ] * [ ] [ , ]j j lc c c

a u t a u t a u tj j l
s t u s t s t t

j j l j
Cov c c e Var c e e Cov c c− − − − − −

= = = +

= + +∑ ∑ ∑  

with the covariance across the individual time series given by  

                 ( ) min
1

( ) 1
( )( ) ( )( )

1 1 ( ) ( ) ( ) ( )
( )

[ , ]
j l j l j l j lj l k j lc c c c

j l

j l i t
a a t t a a t sj l c c c c c c c c

s t t k k k k i t i t i s i s
k i sc c

Cov c c e e
a a

ρ σ σ σ σ σ σ σ σ+
−

− + − − + −

+ +
=

 
= − + − +  

∑
 

Table 3 shows the first-stage parameter estimates.  The correlation coefficients in Table 4 

imply that electricity consumption across the six different regions is highly correlated.  Based 

on these estimates I compute the mean, variance and covariance terms in eqs. (10-11).   

5.3  Parameter estimation in the options formula 

I now turn to estimating the remaining parameters in the options pricing formula.  

Because emissions were below the total cap for the first phase as a whole as well as for each 

year individually, I disregard the second line of eq. (5). Substituting (10) and (11) into (5) while 

using (8) and simplifying gives   

(25) 

( ) ( )

( ) ( )

0( )

1 1
1/2

2 2

1 1 1

40

[ ] [ ]

[ ] [ ] 2 [ , ] [ , ]

tr T t II
t t

t

T t

t t k t k k k
k t k

T T T

t t k t k t k u t k u
k t k t u k

A S Tk
P e P

B

with

A E c E h n c h n

B Var c Var h Cov c c Cov h h

γ
γ

η η

η η

− −

= + =

= + = + = +

 − −
= + ⋅Φ   

 

≡ − − + − −

 
≡ + + + 

 

∑ ∑

∑ ∑ ∑

 
At is the sum of past and expected future consumption of conventional electricity, 

whereas Bt is the standard deviation of future conventional generation.  Conditional on the first-

stage parameter estimates, At and Bt can be treated as exogenous daily data.    
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Table 3: Parameter estimates for diffusion processes 
  c1 c2 c3 c4 c5 c6 h 
        
N 168 144 108 1,460 2,190 730 10,950 
β0 1486.06 1248.56 654.25 763.47 569.68 207.54 23.45 
   z 22.73 36.44 17.47 16.92 25.12 1.95 44.10 
β1 86.98 5.33 4.84 9.06 -2.07 1.20 -0.01 
   z 32.44 3.92 3.42 5.57 -2.44 0.33 -0.28 
Mo n/a n/a n/a -20.84 -3.51 0.66 n/a 
   z n/a n/a n/a -22.31 -5.98 1.60 n/a 
Fr n/a n/a n/a -20.31 -13.98 1.01 n/a 
   z n/a n/a n/a -20.31 -22.31 2.31 n/a 
Sa -416.47 -207.72 -72.13 -128.22 -67.15 -15.71 n/a 
   z 32.44 3.92 3.42 -101.66 -97.18 -28.56 n/a 
Su -750.21 -328.49 -128.43 -157.64 -72.43 -21.45 n/a 
   z -13.80 -26.70 -12.23 -133.32 -103.87 -43.08 n/a 
XNY n/a n/a n/a -86.72 -37.25 -11.54 n/a 
   z n/a n/a n/a -20.08 -12.89 -4.85 n/a 
β2 375.85 145.36 116.96 134.10 104.99 36.98 3.00 
   z 18.99 25.19 32.22 35.09 41.12 10.91 7.06 
ω 1.33 1.39 1.41 1.23 1.34 1.35 -0.40 
   z 42.06 49.94 46.71 38.54 47.09 14.26 -2.96 
         
ϕ* 0.58 0.39 0.59 0.84 0.86 0.91 0.52 
   z 18.95 11.32 21.52 95.98 87.02 74.92 103.92 
a* 0.54 0.94 0.53 0.18 0.15 0.09 0.65 
   z 10.24 10.68 11.38 17.15 13.20 6.94 68.02 
        
σi*       

Jan  499.71 133.17 88.72 65.21 46.42 23.69 17.21 
Feb 316.67 94.92 53.10 45.35 42.27 23.84 16.15 
Mar 366.30 119.39 64.96 67.47 41.32 21.19 19.15 
Apr 453.41 142.96 79.08 79.32 51.52 31.36 14.49 
May 400.48 135.97 55.56 92.75 48.67 33.66 16.28 
Jun 387.02 132.80 59.94 45.64 46.51 34.84 16.54 
Jul 427.82 116.79 55.50 20.17 30.71 12.12 18.07 
Aug 305.51 97.78 50.71 69.65 12.10 7.77 20.91 
Sep 389.43 122.02 61.45 23.50 18.56 7.65 20.21 
Oct 387.15 120.30 64.95 31.66 27.65 11.17 22.63 
Nov 432.38 108.56 73.35 39.00 35.50 19.57 21.50 
Dec 414.69 163.85 85.40 96.82 55.91 42.84 17.68 
*For series 1-3, based on 2006-7 data; all other estimates based on pre-2006 data 

 

Table 4: Correlation coefficients among different series (2006-7 data) 
  c1 c2 c3 c4 c5 c6 h 
c1 1.000       
c2 0.8814* 1.000      
c3 0.9016* 0.8730* 1.000     
c4 0.4554* 0.2976* 0.4927* 1.000    
c5 0.5170* 0.3897* 0.6032* 0.9231* 1.000   
c6 0.4588* 0.3672* 0.5573* 0.8496* 0.9418* 1.000  
h -0.067 0.014 -0.036 -0.038 -0.033 -0.020 1.000 

*p<0.05    
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Before proceeding to estimation I need to make two empirical adjustments to (25):  First, 

because my data only covers 2006-2007 emissions and only from the power sector, I include a 

parameter 

 

V  representing 2005 emissions as well as emissions from all other sectors (in all 

years).  Firms have expectations about this parameter, and it is evident from the April 2006 

price crash that these expectations were updated after the first round of emissions verifications.  

As a second adjustment I therefore include an adjustment factor 

 

V EV  multiplied by a dummy 

variable 

 

Dt
EV  taking the value of zero before, and of one after the first round of emissions 

verifications.  This leads to the following regression specification:  

(26) ( )( ) 2

2
30

40 ~ (0, )
EV EV

r T t II t t
t t t t

t

A K D VP e P N
B

K S V Tk

ε
γ ε ε σ

γ
− −  − + ⋅

= + ⋅Φ + 
 

≡ − − ⋅

 

The parameter K represents the number of allowances available to firms in the power 

sector in the years 2006-7:  This number is the total cap 0S  minus emissions in 2005 and from 

other sectors in all years (V ), plus an adjustment for the difference between infra-marginal and 

marginal emission intensity ( 2
3 Tk ).22  I use an interest rate r of 10% per annum (using zero and 

20% did not significantly alter the results) and estimate eq. (26) by nonlinear least squares.   

As an extension I allow the standard deviation of expected future electricity consumption 

to differ from tB , and further I consider the (very likely) possibility that firms updated this 

standard deviation after the permit price crash:  

(27) ( ) ( )
( )40 *

EV EV
r T t II t t

t t EV EV
t t

A K D VP e P
B D

γ
γ θ θ

− −
 − + ⋅ = + Φ
 ⋅ + ⋅ 

 

                                                                 
22 If the emission intensity of inframarginal generation were the same as that of marginal generation, then K=0 and this 

adjustment drops out.  The factor 2/3 generation stems from the fact that V already contains total emissions for 2005.   
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Setting θ=1 and θEV=0 reduces (27) to (26).   

An additional empirical problem is that the parameters K , tγ  and EVV  are not 

individually identified.  I therefore compute estimates for tγ  and EVV  conditional on K .  

Naturally, one could just as well condition on tγ  or EVV , but I argue that I have a somewhat 

better idea about K  than about tγ  or EVV .  I choose a sensible range for K  based on the 

following calculation:   

The total cap 0S  is 6,300 Mt (million tons) CO2, or 2,100 Mt per year (see Table 1), 

which I will use for expected 2005 emissions (emissions were in fact below the cap in 2005, but 

this was not known until the permit price crash in April 2006; in fact, this was the reason for the 

crash).  Third-party power and CPH producers23 emit about 1,175 Mt per year, leaving 925 Mt 

for all other industrial emitters in the years 2006-7 (IEA data).  If firms’ expectations 

approximately reflect these numbers, then 2,100 Mt 2*925 3,950 MtV ≈ + = .   

To get an approximate estimate for Tk, I assume that lignite plants run continuously and 

are never at the margin, whereas marginal generation consists of a mix of gas and hard coal 

generation.  The emission intensity of lignite exceeds the (weighted average) emission intensity 

of coal and gas generation by about is about 225 tCO2/GWh, and electric output from lignite is 

about 290,000 GWh per year (IEA data).  This means that 2/3∙Tk ≈ 2∙225 t/GWh∙290,000 GWh 

=130.5 Mt, which in turn implies that K ≈ 2,220 Mt.  I use a range of 1,800 Mt ≤ K ≤ 2,600 Mt 

to account for the uncertainty embedded in this calculation.   

The left panel in Table 5 shows the results from estimating (26) for different values of K .  

The parameter EVV  can be interpreted as the market participants’ updating of the number of 

permits that are available to cover emissions in the power sector.  The range of 81-116 Mt 

                                                                 
23 These are generators that sell their output on the market.  I assume that combined power and heat (CPH) producers optimize 

their power output and treat heat production as a byproduct.   



31 

 

makes sense in the context of a market that was initially viewed to have a very stringent cap, 

but then turned out to have an allowance surplus of 89 Mt.24  The range of the emission 

intensity γ  of 607-876 tCO2/GWh is also plausible, considering that the emission intensity of 

gas and coal generators is about 420 and 960 t CO2/GWh, respectively, and that coal generators 

are in the majority in Europe.  All estimates are statistically significant at p<0.001.   

Table 5: Parameter estimates from estimating model 1 (eq. (26)) and 2 (eq. (27); N=513 
  Model 1 

 
Model 2 

K γ VEV 
 

γ VEV θ−1 θEV 
(Mt) (tCO2/GWh) (Mt) 

 
(tCO2/GWh) (Mt) 

  
        1'800 606.6 -80.6 

 
606.0 -7.8 

  1'900 640.3 -85.0 
 

639.7 -8.3 
 2'000 673.9 -89.5 

 
673.3 -8.8 

  2'100 707.6 -94.0 
 

707.0 -9.2 
  2'200 741.3 -98.5 

 
740.7 -9.7 0.17 -0.89 

2'300 775.0 -103.0 
 

774.3 -10.1 (all K) 
2'400 808.7 -107.0 

 
808.0 -10.5 

  2'500 842.4 -112.0 
 

841.7 -11.0 
  2'600 876.1 -116.0 

 
875.3 -11.4 

     t-value 983.34 -34.83 
 

463.63 -2.00 0.45 -2.40 
   p-value <0.001 <0.001 

 
<0.001 0.046 0.653 0.017 

Adj. R2 0.9581 
 

0.9854 
Cox-Snell R2 vs. Null-model 0.8140 

 
0.9450 

   model 2 vs. 1 
  

0.6519 

 

The adjusted R2 is very high, but due to the presence of the dummy variable this may not 

be a very meaningful measure.  As an additional measure of model fit I employ the Cox-Snell 

generalized R2, defined by 2 2/1 [ (0) / ( )] N
C SR L L β− = − , where ( )L β  and (0)L  refer to the 

likelihood of the full model and of a model that contains only a constant and an emission 

verification dummy, respectively, and N is the number of observations.  The measure 2
C SR −  has 

an intuitive interpretation: It represents the proportion of the variation of the dependent variable 

                                                                 
24 The negative sign is due to the fact that the number of permits available to the power sector is the total number of permits in 

the market, minus what has been used up already, represented by V.  A negative adjustment of V implies that more permits are 

available for the power sector; a positive coefficient would imply the opposite.   
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that is unexplained by the null model (Nagelkerke, 1991).  Thus, Model 1 accounts for 81 % of 

the allowance price variation that is unexplained by a model that only relies on pre- and post-

crash intercepts.   

The right panel of Table 5 contains the estimates from specification (27), which I call 

model 2.  The implied emission intensity γ  is about the same as in model 1, and the parameter 

estimate of 1.17θ =  is not significantly larger than unity, implying that Bt correctly reflects 

market participants’ pre-crash estimate of the standard deviation of expected future 

conventional electricity consumption.  However, the value of 0.89EVθ = −  implies that market 

participants drastically reduced their assessment of this standard deviation after the first round 

of emissions verification to about a quarter of Bt, coupled with a relatively small adjustment of 

their expectation of outstanding permits.  The model fit as measured by the 2
C SR −  increases to 

95%.  Relative to model 1, the introduction of the two additional parameters in model 2 

accounts for 65 % of the remaining unexplained variation.   

Since Bt is an unbiased estimate of the standard deviation, a possible interpretation of the 

results of model (27) is that the new information that became available in April 2006 led market 

participants to under-estimate the uncertainty associated with future emissions.  Naturally, such 

an interpretation is conditional on the model being correct, and on market participants having 

access to the same information as presented in this study.   

Figure 5 shows the predicted price series computed using the estimates from the two 

specifications, along with the actual allowance price.  Both predictions track the price 

reasonably well, although the more flexible second specification follows the EUA much closer.  

Importantly, both models are able to explain a stabilization of the EUA price at a level 

significantly above zero after the price crash.  This is because although the cap was seen to be 

generous after the first round of emissions verifications, there remained a nonzero probability 
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of higher-than-expected emissions in the future and therefore a chance that the cap would turn 

out to be binding in spite of the low 2005 emissions.   

Figure 5: EUA price and predictions from estimating (27) and (28) 

 
 

6. Conclusions 

In this paper I derive an expression for the allowance price during phase 1 based on the 

assumption that emissions are stochastic and firms are unable to abate.  In this case, the value 

of an allowance is characterized by a pricing formula for a binary option that contains the 

penalty of noncompliance multiplied by the probability of a binding cap.   

I estimate the model using data about daily electricity consumption and precipitation.  

The parameter estimates of the options pricing formula are highly significant and make 

economic sense.  The predicted allowance price series fits the observed prices well, especially 

when accounting for uncertainty embedded in emissions from other sectors and allowing firms’ 

expectation of uncertainty to be updated after the first round of emissions verifications.  The 
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results imply that firms were hedging against the possibility of having to pay a penalty, and that 

uncertainty about future emissions may be a key allowance price driver.   

Importantly, the model is able to explain the price stabilization after the price crash, 

followed by a long and steady decline towards zero, which is due to a declining (but nonzero) 

probability that the cap would unexpectedly turn out to be binding due to a late surge in 

emissions.  Models based on the equality of allowance price and marginal abatement costs 

would only be able to explain such a movement if marginal abatement costs also expressed a 

steady decline towards the end of the market, a scenario for which there is no evidence in the 

empirical literature.  This may be the reason for the generally poor performance of such models 

in explaining price drivers in the EU ETS.   

Naturally, my results are contingent on the assumption of no abatement, which allowed 

me to derive a closed-form solution for the permit price and thus apply the pricing formula to 

market data.  My model has to be understood as a polar case, whereas in reality some 

abatement probably did occur, especially while the allowance price remained high.  If firms 

were partially able to control their emissions, the allowance price would presumably still 

exhibit some options features but at the same time incorporate drivers related to marginal 

abatement costs, in keeping with results reported by Carmona et al (2009).   

The accumulated evidence from empirical studies suggests that abatement was not the 

predominant price driver during the first phase of the EU ETS.  Furthermore, considering that 

first-phase emissions were used to determine second-phase allocation, it is entirely possible that 

firms did not want to abate emissions, even if they were able to do so, which empirically 

amounts to the same thing.  In this sense, the assumption of no abatement may not be 

unrealistic.   

Equality between permit price and marginal abatement costs is a prerequisite for 

efficiency in any permit market, and in this sense once would conclude that phase 1 of the EU 
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ETS was not efficient.  However, another goal of the first phase that was probably more 

important than efficiency was to prepare the market for the Kyoto period.  Considering that the 

EUA price exhibits much less volatility in the current (second) phase, the first phase may have 

fulfilled its role as a pilot phase.  Whether marginal abatement costs indeed drive the permit 

price in the current phase is, however, an open question that requires further research.   
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Appendix 

Result 1:  Variance of future emissions 
The variance of T

tG  is defined by  

(A1) 2

1 1 1
[ ] [ ] 2 [ , ]

T T T
T

t s t s k s k u
k t k t u k

s Var G Var g Cov g g
= + = + = +

= = +∑ ∑ ∑  

At time s , the variance tg  and the covariance between tg  and ug  for s t u< <  are  
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Combining (A2) and (A3) establishes the result in equation (11) 

(11) 
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Result 2:  Generalization of the variance for different volatilities  
Restating equation (16), the variance of tc  and th  for ts ≤≤0  is  

(16) 2 ( ) 2
( )[ ] ( ) ,x

t
a t x
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Suppose that at time s, we’re in month 5 and want to calculate the variance of 

consumption/precipitation in month 8. Using the notation defined in the text that 

{ }min
( ) min : ( )i tt t i t i= = , with ( ) (1,...,12)i t ∈  we have that min min min min

6 7 8 9s t t t t t< < < < < .  I now 

split up the integral in (17) into four integrals with constant volatility:  

(A4)               
min min min
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Next, I split the exponents such that they match with the new upper limits of the integrals and 

move the remainder (a constant) in front:  

(A5) 
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Because the volatilities are constant within each integral, each of them can be solved to  
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Multiplying out and some rearranging gives 
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which can be generalized to  
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Result 3:  Covariance of x on two different days  
The covariance between tx  and ux , for hcx ,=  and uts ≤≤  is given by 
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I split up the second integral into two parts and pull out the constant term:  
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Multiplying out gives 

(A7) 

( ) ( ) ( )

( ) ( )

[ , ] [ ( )] * [ ( )]

[ ( )] * [ ( )]

x x x

x x

t t
u t t t

s t u s x x
s s

t u
t u

s x x
s t

Cov x x e E e i dW e i dW

E e i dW e i dW

ρ ρ τ ρ τ
τ τ

ρ τ ρ τ
τ τ

σ τ σ τ

σ τ σ τ

− − − − − −

− − − −

 
=  

 
 

+  
 

∫ ∫

∫ ∫
 

The second term is the expectation of the product of two stochastic processes occurring during 

non-overlapping time periods.  Because a Wiener process is i.i.d., this term drops out.  Using 

the fact that dtdW =2)(  establishes the result:  

(20) 

( ) ( ) ( )

( ) 2 ( ) 2 2

( )

[ , ] [ ( )] * [ ( )]

[ ( )]( )

* [ ]

x x x

x x

x

t t
u t t t

s t u s x x
s s

t
u t t

s x
s

u t
s t

Cov x x e E e i dW e i dW

e E e i dW

e Var x

ρ ρ τ ρ τ
τ τ

ρ ρ τ
τ

ρ

σ τ σ τ

σ τ

− − − − − −

− − − −

− −

 
=  

 
 

=  
 

=

∫ ∫

∫

 

 


	Pricing emission permits in the absence of abatement
	1.   Introduction
	2. Background
	2.1  The European Union Emissions Trading Scheme (EU ETS)
	2.2  Literature

	3. Model
	4. Mean and standard deviation of future emissions
	4.1.  Processes underlying CO2 emissions
	4.2.  Properties of the stochastic processes ct and ht

	5. Estimation
	5.1.) Data
	5.2  Parameter estimation for electricity consumption and precipitation
	5.3  Parameter estimation in the options formula

	6. Conclusions
	Role of the funding sources
	References
	Result 1:  Variance of future emissions
	Result 2:  Generalization of the variance for different volatilities
	Result 3:  Covariance of x on two different days


