
State-Dependent Cost Partitionings

for Cartesian Abstractions in Classical Planning

Thomas Keller and Florian Pommerening and Jendrik Seipp

University of Basel, Switzerland
{tho.keller, florian.pommerening, jendrik.seipp}@unibas.ch

Florian Geißer and Robert Mattm¨uller

University of Freiburg, Germany
{geisserf, mattmuel}@informatik.uni-freiburg.de

Abstract

Abstraction heuristics are a popular method to
guide optimal search algorithms in classical plan-
ning. Cost partitionings allow to sum heuris-
tic estimates admissibly by distributing action
costs among the heuristics. We introduce state-

dependent cost partitionings which take context
information of actions into account, and show
that an optimal state-dependent cost partitioning

dominates its state-independent counterpart. We
demonstrate the potential of our idea with a state-
dependent variant of the recently proposed sat-

urated cost partitioning, and show that it has
the potential to improve not only over its state-
independent counterpart, but even over the optimal
state-independent cost partitioning. Our empirical
results give evidence that ignoring the context of
actions in the computation of a cost partitioning
leads to a significant loss of information.

1 Introduction

Abstraction heuristics based on pattern databases [Culberson
and Schaeffer, 1998; Edelkamp, 2001] or the more general
Cartesian abstractions

[Seipp and Helmert, 2013] are pop-
ular methods to guide optimal heuristic search algorithms
in classical planning. Since a single abstraction often pro-
vides poor guidance in challenging problems [Helmert and
Mattmüller, 2008], we would like to combine the information
from several abstractions admissibly. The simplest approach
maximizes over a set of admissible heuristics. However, even
though this often improves over the heuristic of a single ab-
straction, it does not really combine information of different
sources but rather just selects the most accurate one.

Additive pattern databases [Korf and Felner, 2002; Felner
et al., 2004] are one technique for combining information
from a set of abstractions. They are based on the idea that
heuristic estimates can be added up and still form an admis-
sible heuristic as long as the used abstractions are pairwise
independent. The related canonical heuristic [Haslum et al.,
2007] combines both ideas: for a given set of abstractions,

it computes all maximal subsets of pairwise independent ab-
stractions and the sum of their heuristic values, and uses the
maximum of these values to estimate the goal distance from
a given state.

Cost partitioning

[Katz and Domshlak, 2007; 2010] gen-
eralizes additive heuristics by replacing the requirement that
the cost of each action may only be considered in a single
abstraction with the requirement that the accumulated cost
of each action over all abstractions may not exceed the orig-
inal cost. Karpas and Domshlak [2009], for instance, dis-
tribute action costs among sub-tasks derived from a set of
landmarks. In the context of Cartesian abstractions, Seipp
and Helmert [2014] introduced saturated cost partitioning,
where a cost partitioning is computed iteratively by “consum-
ing” the minimum costs in each abstraction such that the costs
of all shortest paths are preserved. Finally, general cost par-

titioning

[Pommerening et al., 2015] extends the formalism
to allow negative costs, which leads to admissible estimates
that can be higher than an optimal cost partitioning restricted
to non-negative costs.

In this paper, we show that even more information can be
extracted from an abstraction collection if context informa-

tion is used. Accounting for complete context information
corresponds to computing a cost partitioning over all tran-
sitions – or, equivalently, over all state-action pairs – rather
than only over all actions. We define the concept of state-
dependent cost partitionings and show that an optimal one
dominates the optimal state-independent cost partitioning.

As the saturated state-independent cost partitioning max-
imizes over all transitions incurred by the same action, it
loses valuable information. We show that the saturated state-

dependent cost partitioning, where costs are consumed only
in a given context, does not suffer from this loss of infor-
mation. Our implementation follows the idea of Geißer et

al. [2016] who use edge-valued multi-valued decision di-
agrams (EVMDDs) [Ciardo and Siminiceanu, 2002] to en-
code context information efficiently. Even though saturated
state-dependent cost partitioning does not dominate optimal
nor saturated state-independent cost partitioning, it has the
potential to produce better heuristic estimates than both. A
preliminary experimental evaluation shows that the concept
is relevant in practice and able to improve heuristic estimates

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3161

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/84007786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in many benchmark instances.

2 Background

Planning Tasks. We consider SAS+ planning tasks
[Bäckström and Nebel, 1995] with state-independent ac-
tion costs, where a planning task is given as a tuple ⇧ =

(V, A, s

I

, s

?

, c) that consists of the following components: V
is a finite set of state variables v, each with an associated fi-
nite domain D

v

. A fact is a pair (v, d), where v 2 V and
d 2 D

v

, and a partial variable assignment s over V is a set
of facts that belong to different variables. If s assigns a value
to each v 2 V , s is called a state. We use function notation
s(v) = d and set notation (v, d) 2 s interchangeably and de-
note the set of states of ⇧ with S. Each action a = hpre, effi
in the set of actions A is a pair of partial variable assignments,
called precondition and effect. The state s

I

2 S is called the
initial state, and the partial variable assignment s

?

specifies
the goal condition. A state s is a goal state if s

?

✓ s. We
denote the set of goal states by S

?

.
An action a is applicable in state s iff pre ✓ s. Applying a

in s yields the state s

0 with s

0
(v) = eff(v) where eff(v) is de-

fined and s

0
(v) = s(v) otherwise. We write s[a] for s0. The

(non-negative) cost of applying a is given by the cost func-
tion c : A ! R+

0 of ⇧ as c(a). However, at several places in
this paper, we are interested in costs that are based on altered
cost functions. An important aspect of this work are general

and state-dependent cost functions c : A ⇥ S ! R that de-
termine transition costs c(a, s) that depend on the state s in
addition to the action a that is applied. Since state-dependent
cost functions are more general, we define the following con-
cepts in terms of state-dependent instead of regular cost func-
tions unless we want to emphasize that the cost function of
the original task is used. The resulting framework is simi-
lar to the formalism introduced by Geißer et al. [2015] for
SAS+planning tasks with state-dependent action costs.

Let ⇡ = ha1, . . . , ani be a sequence of actions from A. We
call ⇡ applicable in s0 if there exist states s1, . . . , sn such that
a

i

is applicable in s

i�1 and s

i

= s

i�1[ai] for all i = 1, . . . , n

and write s[⇡] for s
n

. We call ⇡ an s-plan for ⇧ if it is ap-
plicable in s and if s

n

2 S

?

. The cost of an s0-plan ⇡ under
cost function c is the sum of action costs along the induced
state sequence, i.e., c(⇡) =

P
n

i=1 c(ai, si�1). An optimal

s-plan under c is an s-plan that minimizes c(⇡). Its cost is
denoted by h

?

(s, c). If there is no s-plan then h

?

(s, c) = 1.
A heuristic function h estimates the cost of an optimal s-plan
under cost function c with values h(s, c) 2 R [{�1,1}.
Note that we allow negative heuristic values to support gen-
eral cost partitioning [Pommerening et al., 2015]. A heuristic
h is called admissible if it never overestimates the true cost,
i.e., h(s, c) h

?

(s, c) for all states s 2 S.
A planning task ⇧ and a cost function c induce a transition

system T = (S,L, T, s

I

, S

?

) with state space S, transition
labels L, transition relation T , initial state s

I

and goal states
S

?

as usual, except that besides source state s, target state
t and transition label a, transitions in T also carry a weight
w 2 R, which is determined by s and a as w = c(s, a). For
transitions we also write s

a,w��! t. It follows that a plan for
s is a path from s to some s

n

2 S

?

and the plan is optimal if

AB AT AA

BB BT BA

drive-AB, 1

load, 1

drive-BA, 1

unload, 1

drive-AB, 1

Figure 1: Transition system of our running example. States
are of the form xy, where x is the location of the truck and y

the location of the package.

the sum of the weights along the path is minimal.

Cartesian Abstractions. The core idea of abstraction
heuristics is to collapse several states into a single abstract
state, which reduces the size of the transition system and
allows the computation of goal distances that can be used
as admissible heuristic estimates. Given a planning task ⇧

with induced transition system T = (S,L, T, s

I

, S

?

), let ↵
be an equivalence relation on S that describes equivalence
classes of the form D1 ⇥ D2 ⇥ · · · ⇥ D

n

, where D

i

✓ D
vi

for V = {v1, . . . , vn}. The resulting abstract states are of-
ten called Cartesian abstract states, but since we only con-
sider Cartesian abstractions, we call them abstract states in
the following. T and ↵ induce an abstract transition system
T ↵

= (S

↵

, L, T

↵

,↵(s

I

), S

↵

?

) in the following way: each
concrete state s is mapped to the abstract state ↵(s) 2 S

↵; the
initial state s

I

is mapped to the abstract initial state ↵(s
I

) and
goal states are mapped to abstract goal states S↵

?

= {↵(s
?

) |
s

?

2 S

?

}; there is a labelled abstract transition between ↵(s)

and ↵(s

0
) whenever there is a concrete transition with the

same label between s and s

0.
As long as action costs are state-independent, the weight of

an abstract transition is simply the cost of the concrete action
that induces it. In the presence of state-dependent action costs
(which are not present initially in our input tasks, but can be
introduced by state-dependent cost partitionings), determin-
ing the weight of an abstract transition is not as straightfor-
ward. Geißer et al. [2016] define the weight of an abstract
transition between abstract states t and u with transition label
a to be the minimal weight of all concrete transitions labeled
with action a that start in a state s with ↵(s) = t. Together
with the fact that every plan in the concrete transition system
is a plan in the abstract transition system, this definition en-
sures that the cost of each abstract plan may be used as an ad-
missible heuristic estimate. For now, the definition of Geißer
et al. is sufficient for our needs, but we present an enhanced
method in Section 6 that estimates abstract transition weights
more precisely, while still guaranteeing admissibility.

3 Running Example

Throughout the paper, we use a simple logistics task as a run-
ning example, where a truck that starts in location A has to
fetch a package from location B and bring it to A. The truck
must return to B after the delivery. The corresponding transi-
tion system is given in Figure 1.

The task is described by two variables V = {T, P} that en-
code the position of the truck and the package, respectively.

3162

The truck can be in each of the two locations (D
T

= {A,B})
and the package can be in either location or in the truck
(D

P

= {A,B, T}). The truck can drive without load from A

to B (DRIVE-AB) and with load from B to A (DRIVE-BA).
There are actions to LOAD the package into the truck in B or
UNLOAD it from the truck in A. All actions have unit cost.

Note that we explicitly exclude all other actions such as
driving from B to A without the package or unloading the
package at B. While this makes the task trivially solvable,
the task is still sufficient to show some interesting properties.

Figure 2 shows three pairs of abstractions for our exam-
ple task which are used in the remainder of this paper. In
all examples, we assume that the applied heuristic is the goal
distance function in each abstraction, denoted h1 and h2, re-
spectively. Additionally, since all concrete states have exactly
one applicable action, we also refer to state-action pairs (a, s)
as s!. Given cost function c, we write c(s

!
) for c(a, s).

4 State-dependent Cost Partitioning

Early work on additive admissible heuristics has mostly fo-
cused on techniques that allow to generate or identify heuris-
tics that can be added up admissibly because each deals with
a sub-problem of the planning task that can be regarded in-
dependently from the rest [Felner et al., 2004; Haslum et

al., 2007]. An equivalent view on these techniques is to re-
gard them as cost partitionings [Katz and Domshlak, 2007;
2010] that distribute action costs such that each operator is
assigned its full cost in one heuristic and a cost of zero in all
other. However, cost partitionings are more general as costs
can be distributed arbitrarily between the heuristics as long as
the sum over the individual costs does not exceed the original
cost. Given such a cost partitioning, heuristic values are then
computed on a copy of the planning task where actions cost
only the fraction of the actual action cost that is assigned to
the heuristic. Recently, Pommerening et al. [2015] showed
that the framework can be extended from non-negative to gen-
eral cost partitioning, which often allows to derive more ac-
curate heuristic functions.

In this paper, we continue the process of developing more
accurate cost partitioning techniques by presenting state-
dependent cost partitionings, a generalization where context
information of applied actions is additionally taken into ac-
count.
Definition 1. Let ⇧ be a planning task. A (general) state-
dependent cost partitioning for ⇧ is a tuple P = hc1 . . . , cni,
where c

i

: A ⇥ S ! R for 1 i n and

P
n

i=1 ci(a, s)
c(a) for all s 2 S and a 2 A. If P is state-independent,
i.e., such that c

i

(a, s) = c

i

(a, s

0
) for all s, s

0 2 S, a 2 A

and 1 i n, we call P a general state-independent cost
partitioning for ⇧.

The introduction of state-dependent cost functions does not
change the fact that admissible additive heuristic can be de-
rived.
Theorem 1. Let h1, . . . , hn

be admissible heuristics for a

planning task ⇧ and P = hc1 . . . , cni be a state-dependent

cost partitioning for ⇧. Then h

P

(s) =

P
n

i=1 hi

(s, c

i

) is an

admissible heuristic. If any term in the sum is 1, the sum is

defined as 1, even if another term is �1.

Proof sketch: The proof is a straightforward extension of the
corresponding proof for state-independent cost partitionings
(Theorem 1 in the work of Pommerening et al., 2015). It can
be found in the technical report [Keller et al., 2016].

State-dependent cost partitionings differ from their state-
independent counterpart in the fact that each state-action pair
can have its own cost instead of a cost that is shared among
all possible applications of an action. If abstraction heuristics
are considered, this corresponds to transition systems where
all transitions can have arbitrary weights on the one hand and
transition systems where all transitions with the same label
share the same weight on the other.
Definition 2. Let h1, . . . , hn

be admissible heuristics for a

planning task ⇧, P
D

the space of possible state-dependent

cost partitionings and P
I

✓ P
D

the space of possible state-

independent cost partitionings for ⇧. The optimal state-
dependent cost partitioning (OCPD) heuristic estimate for

h1, . . . , hn

in state s is h

ocp

D

(s) = max

P2PD h

P

(s), and the

optimal state-independent cost partitioning (OCPI) heuristic

estimate for h1, . . . , hn

is h

ocp

I

(s) = max

P2PI hP

(s).

State-dependent cost partitionings allow the computation
of more accurate heuristics estimates, which is the most im-
portant theoretical contribution of this paper.
Theorem 2. Let h1, . . . , hn

be admissible heuristics for a

planning task ⇧. For all s 2 S it holds that h

ocp

D

(s) �
h

ocp

I

(s). Moreover, there are planning tasks where the in-

equality is strict for at least one state.

Proof: The statement that hocp

D

(s) � h

ocp

I

(s) for all s 2 S

holds as every state-independent cost partitioning is also a
state-dependent cost partitioning. The second statement fol-
lows from the following example.
Example 1. Consider the two abstract transition systems T1
and T2 in Figure 2a. The first edge label denotes the cost as-

signed by OCPI, and the second the cost assigned by OCPD.

If an action induces only self-loops (depicted by dotted arcs)

in one abstraction and must be part of a shortest path (de-

picted by solid arcs) in the other such as AT

!
and BB

!
, all

optimal cost partitionings use their full cost in the abstrac-

tion where the transition is part of the path. The difference

between OCPI and OCPD is the distribution of the cost of

action DRIVE-AB, which induces the two transitions AB

!

and AA

!
in our example task.

State-independent cost partitionings must assign the same

value to both transitions within each abstraction. Let this

value be x for the first and y for the second abstraction in our

example. The heuristic value of the initial state under an opti-

mal state-independent cost partitioning is then the maximum

of (1+ x) + (y+1) subject to x+ y 1, so h

ocp

I

(AB) = 3.

State-dependent cost partitionings, on the other hand, al-

low that two transitions that are induced by the same action

are assigned different costs within the same abstraction – as

long as the sum of assigned costs for each transition does

not exceed that transitions original cost. In our example, a

possible optimal state-dependent cost partitioning is to as-

sign the full cost to AA

!
in the first and to AB

!
in the

second abstraction, which combines to a heuristic value of

h

ocp

D

(AB) = 2 + 2 = 4

3163

AB AT AA

BB BT BA

x/0

0/0

0/0

1/1

x/1

AB AT AA

BB BT BA

y/1

1/1

0/0

0/0

y/0

(a) Example 1

AB AT AA

BB BT BA

1

0

1

0

1

AB AT AA

BB BT BA

0

1

0

1

0

(b) Example 2

AB AT AA

BB BT BA

1/0

0/0

0/0

1/1

1/1

AB AT AA

BB BT BA

0/1

1/1

0/0

0/0

0/0

(c) Example 3

Figure 2: Abstractions for our running example. Circles depict concrete states, abstract states are rectangular, solid arcs depict
the shortest path from the abstract initial state to an abstract goal state and dotted arcs are abstract self-loops. We denote the
transition system at the top (bottom) of each column with T1 (T2). Edge labels denote costs of different cost partitionings.

Even though Theorem 2 provides an encouraging result,
its practical impact is limited without further work. This
is mostly because the computation of an optimal state-
dependent cost partitioning with a method that is used to com-
pute a state-independent cost partitioning [Katz and Domsh-
lak, 2010; Bonet and van den Briel, 2014; Pommerening et

al., 2015] would require a compilation with one action for
each state-action pair, a number that is linear in the number
of states and hence exponential in the number of variables.
Even though there are techniques like context splitting [Röger
et al., 2014] that allow to compute a more compact compila-
tion, the worst-case exponential blowup cannot be avoided in
general. We therefore turn our attention to saturated cost par-
titioning [Seipp and Helmert, 2014], a cost partitioning that
is tractable in practice.

5 Saturated Cost Partitioning

Seipp and Helmert [2014] introduced the concept of cost sat-

uration. Iteratively, they compute an abstraction, reduce the
action costs such that all goal distances are preserved, and
use the remaining costs for subsequent abstractions. The re-
sult is known as a saturated cost partitioning. Due to the
greedy nature of the procedure, the resulting cost partition
usually provides worse estimates than the optimal cost parti-
tion. However, we can compute the saturated cost partition-
ing much faster and do not need to hold all abstractions in
memory simultaneously.

Saturated State-independent Cost Partitioning. In order
to show that saturated cost partitioning yields an admissible
heuristic even in the presence of general costs, we extend the
underlying lemma from the original paper to general costs.
Lemma 1 (Lemma 5 of Seipp and Helmert [2014] extended
to general costs). Let h and h

0
denote the goal distance func-

tions in two transition systems T and T 0
that differ only in

the weight of a single transition s ! s

0
, which is w 2 R in T

and w

0 2 R in T 0
. If h(s)� h(s

0
) w

0 w, then h = h

0
.

Proof sketch: We only sketch this proof here and refer to the
technical report [Keller et al., 2016] for a full proof.

The only difference to Lemma 5 of Seipp and Helmert
[2014] is that we allow general costs and hence negative
weights in transition systems. With their proof, it is easy to
see that negative weights are unproblematic unless there is a
negative-cost cycle including the transition s ! s

0 in T 0 but
not in T (because then h(s

0
) 6= h

0
(s

0
)). Assume there is a

cyclic path s

w�! s

0 d�!⇤
s, that is only negative in T 0, i.e.

w+ d > 0 and w

0
+ d < 0. Since h estimates goal distances,

we get h(s0) h(s) + d and hence 0 h(s) � h(s

0
) + d.

However, from h(s) � h(s

0
) w

0 and w

0
+ d < 0, we get

h(s)� h(s

0
) + d < 0, which is a contradiction.

With the preceding lemma we can define saturated state-
independent cost partitioning for general costs while preserv-
ing admissibility.
Definition 3. Let ⇧ be a planning task with cost func-

tion c and ↵1, . . . ,↵n

abstractions. Let hc1, . . . , cni and

P = hĉ1, . . . , ĉni be tuples of cost functions with the fol-

lowing properties: c1 = c; ĉ

i

(a) = max

s2S

h

i

(↵

i

(s)) �
h

i

(↵

i

(s[a])), where h

i

is the goal distance function of T ↵i

with cost function c

i

; and c

i+1 = c

i

� ĉ

i

. We call c

i

the re-
maining cost for T ↵i

, ĉ

i

the saturated cost of T ↵i
and P the

saturated state-independent cost partitioning for ↵1, . . . ,↵n

.

We denote the associated heuristic by h

scp

I . Seipp and
Helmert [2014] show that the saturated cost function pre-
serves the goal distances of all abstract states in all abstrac-
tions, and is minimal among all distance-preserving cost
functions. Next, we illustrate the computation of SCPI in
our example domain.
Example 2. Consider the two abstract transition systems of

our running example that are shown in Figure 2b. The goal

3164

distances of T1 are h1({AB}) = 3, h1({BB,BT}) = 2,

h1({AT,AA}) = 1, and h1({BA}) = 0. The saturated

cost ĉ1 of T1, which annotates the edge labels, assigns the

full cost of 1 to both DRIVE-AB (which induces both AB

!

and AA

!
) and DRIVE-BA (i.e., BT

!
), and 0 to all other

actions. The remaining costs c2, which are used to compute

the goal distances in T2, are hence 0 for all actions except

c2(BB

!
) = c2(AT

!
) = 1. With this, the saturated state-

independent cost partitioning for the initial state of our ex-

ample is h

scp

I

(AB) = 3 + 2 = 5.

Saturated State-dependent Cost Partitioning. As state-
independent cost functions do not allow that costs are as-
signed to actions in the context of the current state, saturated
cost functions are computed by maximizing over all weights
of transitions that are labeled with the same action. State-
dependent cost partitioning offers an opportunity to overcome
this weakness by allowing to reduce the costs of state-action
pairs rather than actions.
Definition 4. Let ⇧ be a planning task with cost func-

tion c and ↵1, . . . ,↵n

abstractions. Let hc1, . . . , cni and

P = hĉ1, . . . , ĉni be tuples of cost functions with the fol-

lowing properties: c1(a, s) = c(a) for all a 2 A and

s 2 S; ĉ

i

(a, s) = h

i

(↵(s)) � h

i

(↵(s[a])), where h

i

is

the goal distance function of T ↵i
with cost function c

i

; and

c

i+1 = c

i

� ĉ

i

. We call c

i

the remaining cost for T ↵i
, ĉ

i

the saturated cost of T ↵i
and P the saturated state-dependent

cost partitioning for ↵1, . . . ,↵n

.

We denote the associated heuristic by h

scp

D . Let us investi-
gate the differences between both versions of cost saturation.
Example 3. Consider the two abstract transition systems in

Figure 2c, where the first transition label denotes the goal dis-

tances of SCPI and the second the goal distances of SCPD.

Due to the state-independence of SCPI, a cost of 1 is as-

signed to both occurrences of DRIVE-AB in the first ab-

straction, such that no cost is left in the second one and

h

scp

I

(AB) = 2 + 1 = 3. Because SCPD is state-dependent,

the cost of AB

!
can be used in the second abstraction and

the heuristic estimate is h

scp

D

(AB) = 2 + 2 = 4.

In analogy to Theorem 2, Example 3 hints at a theoretical
dominance of SCPD over SCPI. However, it turns out that
this is not the case due to the inaccuracy caused by the greedy
nature of saturated cost partitionings.
Theorem 3. There are planning tasks ⇧ and ⇧

0
with states

s 2 S and s

0 2 S

0
such that h

scp

D

(s) > h

scp

I

(s) and

h

scp

I

(s

0
) > h

scp

D

(s

0
).

Proof sketch: Example 3 shows that there are instances
where h

scp

D

(s) > h

scp

I

(s). For hscp

I

(s) > h

scp

D

(s), consider
the following example.
Example 4. Consider the planning task and the three ab-

stract transition systems that are shown in Figure 3. The ab-

stractions in the example are not Cartesian, which is neces-

sary to keep it small. An example that follows the same idea

but uses Cartesian abstractions is contained in the technical

report

[

Keller et al., 2016

]

.

First, consider the state-independent case (first label in the

figure): in T1, only the cost of a1 is required to maintain the

heuristic values, i.e., the saturated cost of T1 is ĉ1(a1) = 1

and 0 for all other actions. The remaining cost of a1 for T2
thus is 0, so the abstract initial state has a heuristic value of 0

in T2 and the saturated cost of T2 is 0 for all actions. Since a0,

a2, and a3 all still have their original cost in T3, the abstract

initial state of T3 has a heuristic value of 2. Therefore, the

overall heuristic value is h

scp

I

(I) = 0 + 0 + 2 = 2.

Now consider the state-dependent case (second label in the

figure): here, the saturated cost of T1 is ĉ1(a1, B) = 1 but

ĉ1(a1, A) = 0, so the remaining cost for T2 is c2(a1, A) = 1

and the heuristic value for the abstract initial state of T2 is

1 instead of 0. This means that the saturated cost of T2 is

ĉ2(a0, I) = ĉ2(a1, A) = ĉ2(a2, C) = ĉ2(a3, E) = 1 and

0 for all other actions, and that no cost remains for a2 and

a3 in T3. Therefore, the overall heuristic value is h

scp

D

(I) =

0 + 1 + 0 = 1 < 2 = h

scp

I

(I).

In Theorems 2 and 3 we have investigated the relationship
between OCPD and OCPI on the one hand and SCPD and
SCPI on the other. What is left is the relationship between
SCPD and OCPI.

Corollary 1. There are a planning tasks ⇧ and ⇧

0
with states

s 2 S and s

0 2 S

0
such that h

scp

D

(s) > h

ocp

I

(s) and

h

ocp

I

(s

0
) > h

scp

D

(s

0
).

Proof: For the first part, consider Examples 1 and 3 where
h

scp

D

(AB) = 4 and h

ocp

I

(AB) = 3. The second part follows
from Definition 2 and Theorem 3.

Figure 4 shows a summary of our theoretical results (where
A � B means A dominates B). While optimal state-
dependent cost partitioning clearly combines the best of both
worlds, we leave it for future work, since computing it is
exponential. On the other hand, saturated state-dependent
cost partitioning may not always result in better heuristic
estimates, but it has the potential to surpass optimal state-
independent cost partitioning, which warrants further investi-
gation. We therefore discuss practical considerations for the
computation of saturated state-dependent cost partitioning in
the following section.

6 Implementation Details of hscpD

Given a set of abstractions, Section 5 reveals a general work-
flow to compute saturated state-dependent cost partitionings.
For each abstraction we have to apply the following four
steps: (1) determine the abstract transition weights (with the
current remaining cost function), (2) compute the abstract
goal distances, (3) compute the saturated state-dependent cost
function, and (4) determine the remaining cost function. Note
that the cost function for the first abstraction is the (state-
independent) original cost function, while subsequent ab-
stractions use the remaining costs, computed in the previous
iteration. In general, it is not important how we obtain the ab-
stractions, although some abstractions or abstraction orders
may result in better heuristics than others. We will briefly
discuss this in Section 7. In fact, we do not even require
Cartesian abstractions. When we describe the implementa-
tion of the four steps above in the remainder of this section,
we will, however, see that Cartesian abstractions are neces-
sary to guarantee some important properties.

3165

I C E

A F D

B G

a

0
,

2

a1
,

1

a1, 1

a

2
,

1

a

3
,
1

a

4
,

0

I C E

A F D

B G

a

0
,

2

/

2

a1
,

0

/

1

a1, 0/0

a

2
,

1

/

1

a

3
,
1
/
1

a

4
,

0

/

0

I C E

A F D

B G

a

0
,

2

/

1

a1
,

0

/

0

a1, 0/0

a

2
,

1

/

0

a

3
,
1
/
0

a

4
,

0

/

0

Figure 3: Example for a planning task and abstractions where hscp

I

(I) > h

scp

D

(I). Circles depict concrete states, abstract states
are rectangular, and dotted arcs are abstract self-loops. A shortest path from the initial abstract state to the goal abstract state
is highlighted in red. We denote the transition systems with T1, T2, and T3 from left to right. Edge labels denote costs with
different cost partitionings.

OCPD

SCPD OCPI

SCPI

� �

�

incomparable

incomparable

Figure 4: Summary of theoretical dominance results.

Edge-valued Decision Diagrams. To encode state-
dependent cost functions, we need a suitable representation.
We chose edge-valued multi-valued decision diagrams,
because they are (i) often compact, albeit worst-case expo-
nential, they (ii) allow efficient computation of abstract cost
values as long as the abstract states are Cartesian

[Geißer et

al., 2016], and they (iii) admit reasonably efficient arithmetic

operations, in particular subtraction of the current saturated
costs from the current remaining costs that is needed to
determine the remaining costs for the next iteration. Taking
binary sums and differences is linear in the product of the
sizes of the input EVMDDs, a result that can be easily
generalized from a result by Lai et al. [1996] on EVBDDs.
EVMDDs work as follows: like BDDs [Bryant, 1986],
EVMDDs contain decision nodes. At each decision node, the
diagram branches over the value of the associated decision
variable. There are three differences from BDDs: first,
branchings can be n-ary instead of only binary, second, the
values returned by evaluating an EVMDD can come from a
finite range of values instead of just being true or false, and
third, the return values are associated with the edges of the
diagram instead of the leaves. When traversing an EVMDD
for a single valuation s, the resulting value is the sum of edge
weights along the unique path corresponding to s.

Determining Abstract Transition Weights. Assume that
we have an EVMDD representing the remaining cost function
for the current abstraction of some action a, and that we want
to use this EVMDD to determine abstract transition weights
for the next abstraction we build. The main challenge is this:
with the EVMDD, we can easily determine what a costs in
any concrete state. Geißer et al. [2016] show that we can
use the same EVMDD to efficiently determine what a costs
in any abstract state as well, as long as the abstract state is
Cartesian. Here, we extend their technique in order to obtain
more accurate transition weights depending not only on the
source state of the transition, but also on its target state. Note
that for deterministic transition systems, this does not make
a difference, but for non-deterministic transition systems it
does, and that the abstractions we consider here may indeed
introduce non-determinism. More specifically, we want to be
able to assign two different weights to two different abstract
transitions t a�! u1 and t

a�! u2 with the same abstract source
state t and the same action label a depending on whether it
leads to u1 or u2. This gives us more accurate abstract goal
distances. In order to accomplish this, we (i) identify via re-
gression the subset t1 of t where a is applicable and leads to
u1, and (ii) restrict t to that subset; and similarly for u2. Both
regression and intersection of Cartesian sets preserve Carte-
sianness [Seipp and Helmert, 2013], so we can still safely
assume that t1 and t2 are Cartesian sets and hence admit effi-
cient EVMDD operations. Note that any two such t1, t2 that
are computed by regression are indeed disjoint, even if they
originate from the same abstract state t via regression through
the same action a from two different states u1 and u2. Fig-
ure 5 illustrates the idea of improving the abstraction via re-
gression. The abstract state t contains four concrete states
where a is applicable, at costs 2, 3, 4, and 5, respectively.
Simply minimizing the cost of a over all four states would
require us to assign cost 2 to a in the entire set t. However, by
partitioning the four concrete states into the two states leading
to successors in u1 at cost 3 and 5 (represented by the Carte-
sian set t1), and into those two states leading to successors in

3166

a, 3

a, 2

u
1

regra(u
1

)

t

regra(u
2

)

u
2

t
1

t
2

hi = 4

hi = 7

hi = 5

a, 3

a, 5

a, 2

a, 4

Figure 5: Abstract transition weights.

u2 at cost 2 and 4 (represented by the Cartesian set t2), we
can now assign cost 2 to a in t2, and the higher cost of 3 to a

in t1.

Computing Saturated State-dependent Cost Functions.

Computing abstract goal distances is straightforward, e. g.,
using Dijkstra’s algorithm in a backward manner. We skip
discussing that and move on to computing saturated state-
dependent cost functions. We already know how to compute

them from the theoretical part of this paper. Here, we dis-
cuss how to efficiently represent them using EVMDDs. As-
sume that after regression and saturation, action a costs �

k

in Cartesian set t
k

, k = 1, . . . ,m. Then we can obtain an
EVMDD that encodes the saturated cost function of a as fol-
lows: for each set t

k

, we can efficiently compute an EVMDD
that encodes the characteristic function of t

k

weighted with
its cost �

k

. This EVMDD branches on all relevant variables
in sequence, routing branches inconsistent with t

k

immedi-
ately to the sink and branches consistent with it to the next
decision node/variable. All edge weights are zero except for
those leading from the last decision variable to the sink that
are consistent with t

k

. Those carry weight �
k

. Moreover,
we can compute an EVMDD representing the sum of those
characteristic-function EVMDDs for k = 1, . . . ,m, which is
exactly the saturated cost function we are after. Taking this
sum is exponential only in the number of Cartesian sets m and
nothing else. In general, this cannot be avoided, not even in
the Cartesian setting. Note that for abstract sets which do not
lead to the goal we can assign sufficiently small saturated cost
values to concrete states mapped to them. This results in ar-
bitrarily large remaining costs, which mirrors the observation
that applying the action in such a state makes the task unsolv-
able. Finally, representing the new remaining cost function
of a as an EVMDD is trivial. We have EVMDDs for the pre-
vious remaining cost function and for the current saturated
cost function of a. Taking the difference of two functions is a
simple EVMDD operation and returns the desired EVMDD.

7 Empirical Evaluation

Even though the focus of this paper is on theoretical aspects
of state-dependent cost partitionings, we have performed a
brief empirical evaluation as well. Its aim is to investigate
whether the potentially exponential blowup of the EVMDD
size is critical in practice and how relevant state-dependent
cost partitionings are in practice. It is important to note that
we are not evaluating an elaborate algorithm that is optimized

for the computation of accurate heuristic values with state-
dependent cost partitionings. The creation of abstractions
that are well suited to be used in combination with state-
dependent cost partitionings is in particular not the focus of
this paper, but plays an important role when accurate heuristic
estimates are desired. Moreover, we did not implement any
form of variable ordering in the decision diagrams [Rudell,
1993], which would further reduce their exponential blowup.

We have implemented the saturated state-dependent cost
partitioning algorithm that is sketched in the previous section
on top of the CEGAR implementation of Seipp and Helmert
[2013] in the Fast Downward planning system [Helmert,
2006]. Our algorithms use the same parameter settings as
the configuration that performed best for saturated state-
independent cost partitionings in the original work on the
topic [Seipp and Helmert, 2014] with two exceptions: first,
we used a maximal number of states (10000) instead of a
timeout to decide when the heuristic computation terminates
in order to make the abstraction generation process determin-
istic. And second, we do not interleave the generation of an
abstraction based on the latest remaining cost function with
the computation of its saturated cost function but compute
all abstractions with the original cost function instead. Com-
bined, both changes make sure that all algorithms compute
their respective cost partitionings on identical abstract transi-
tion systems.

We have performed experiments on all supported IPC
1998–2014 benchmarks on Intel Xeon E5-2660 CPUs run-
ning at 2.2 GHz with a time limit of 30 minutes and a mem-
ory limit of 2 GB. The exponential blowup of the EVMDD
size is critical in only six out of 57 domains, namely FREE-
CELL, MPRIME, MYSTERY, PIPESWORLD-NOTANKAGE,
PIPESWORLD-TANKAGE, and TIDYBOT 2011. However, a
simple procedure that uses saturated state-independent costs
for all abstractions where the number of transitions with non-
zero cost is too large leads to an algorithm that preserves the
advantages of state-dependent cost partitionings in most do-
mains and mitigates the risk of unmanageable EVMDDs suc-
cessfully.

Table 1 gives the number of instances per domain where the
heuristic value of the initial state with h

scp

D is larger, smaller
and derived from a different sum of heuristic values in com-
parison to h

scp

I . The state-dependent version improves over
the state-independent one in 228 out of 1667 instances, it per-
forms worse in 76, and there are another 25 instances where
both compute the same heuristic estimate for the initial state
but based on different sums. It is a promising result that hscp

D

is already better in approximately 1
7 of the instances even

when the considered abstractions are not tailored to exploit
context information. We believe that the fact that hscp

I per-
forms better on an instance is a sign that state-dependent costs
are relevant in that instance, and it may very well only be the
greediness of saturated cost partitionings, the poor abstrac-
tion generation or even just the abstraction order that prevent
a result where h

scp

D is better than h

scp

I instead of worse.
Even when the estimates do not differ, we assume that it

is often only the choice of abstractions that prevents an im-
proved heuristic estimate with state-dependent cost partition-
ings. A look at the domains where the heuristic estimates

3167

Domain h

scp

D

> h

scp

I

h

scp

D

< h

scp

I different sum

AIRPORT (50) 1 1 2
BARMAN 2011 (20) 16 0 16
BARMAN 2014 (14) 8 1 9
BLOCKS (35) 21 4 26
DEPOT (22) 4 3 7
DRIVERLOG (20) 1 5 7
ELEVATORS 2008 (30) 19 1 22
ELEVATORS 2011 (20) 12 1 15
FLOORTILE 2011 (20) 7 4 13
FLOORTILE 2014 (20) 7 5 14
GRID (5) 4 0 4
HIKING 2014 (20) 12 2 15
MPRIME (35) 1 0 2
MYSTERY (30) 0 0 1
NOMYSTERY 2011 (20) 4 1 5
OPENSTACKS (30) 2 0 2
OPENSTACKS 2008 (30) 10 0 10
OPENSTACKS 2011 (20) 6 0 6
OPENSTACKS 2014 (20) 3 0 3
PARCPRINTER 2008 (20) 7 1 8
PARCPRINTER 2011 (20) 5 1 6
PARKING 2011 (20) 0 1 1
PATHWAYS-NONEG (30) 3 16 22
PSR-SMALL (50) 11 0 11
ROVERS (40) 3 4 8
SATELLITE (36) 7 3 11
SCANALYZER 2008 (30) 1 0 1
SCANALYZER 2011 (20) 1 0 1
SOKOBAN 2008 (30) 6 0 6
SOKOBAN 2011 (20) 3 0 3
TETRIS 2014 (17) 1 1 2
TPP (30) 8 2 11
TRANSPORT 2008 (30) 14 4 20
TRANSPORT 2011 (20) 11 6 18
TRANSPORT 2014 (20) 9 9 18
TRUCKS (30) 0 0 1
WOODWORKING 2008 (30) 0 0 1
WOODWORKING 2011 (20) 0 0 1
Remaining domains (723) 0 0 0

Total (1667) 228 76 329

Table 1: Number of instances per domain where h

scp

D

(s

I

) is
larger, smaller or the result of a different sum than h

scp

I

(s

I

).

differ in at least one instance reveals that similarly structured
problems (like, for instance, route or transportation problems)
are either present with a large number of representatives or
not at all. This hints at the fact that the relevance of con-
text information is domain- and not instance-dependent (i.e.,
relevant in all instances that are part of a domain with at
least one instance were the heuristic estimates differ). Under
the assumption that this is the case, there are 944 instances
among the 1667 and hence more than half of them where
state-dependent cost partitionings have the potential to im-
prove over state-independent ones. We believe that this is
a promising result that encourages future work on the topic,
e.g., on well-suited abstraction generation methods or other
state-dependent cost partitionings.

8 Conclusion

We generalized the concept of cost partitionings even fur-
ther and showed that additional information can be extracted
from a set of abstractions if context information of applied
actions is taken into account. We showed that an opti-
mal state-dependent cost partitioning dominates all state-
independent cost partitionings and that there are planning
tasks where the dominance is strict. As it is unclear how

an optimal state-dependent cost partitioning can be computed
efficiently in practice, we applied the idea to the efficiently
computable saturated cost partitioning. We showed that satu-
rated state-dependent cost partitioning does not dominate its
state-independent sibling, but may still surpass optimal state-
independent cost partitioning. We discussed practical consid-
erations regarding saturated state-dependent cost partitioning
and reasoned that EVMDDs are a suitable representation for
the resulting cost functions as long as the abstractions are
Cartesian. A baseline implementation of our approach re-
vealed that there are indeed many instances among the IPC
benchmarks where the heuristic estimates improve under a
state-dependent cost partitioning. It furthermore allows to
conjecture that taking context information into account can
pay off in the majority of IPC benchmark tasks.

This work also opens up several possible directions for fu-
ture work. Saturated state-dependent cost partitionings can
be improved by reasoning about the order of the considered
abstract transitions systems or with methods that generate
Cartesian abstractions that are tailored to exploit context in-
formation. Dynamic variable orderings for decision diagrams
are an enhancement that has the potential to further minimize
the risk that an EVMDD’s size gets out of hand. And finally,
it should be possible to narrow the gap between the (error-
prone) saturated state-dependent cost partitionings on the one
hand and the optimal ones (which are intractable in practice)
on the other. Context splitting, for instance, seems promis-
ing as it provides a tool that allows an iterative compilation
of the input task, which might give rise to near-optimal state-
dependent cost partitionings in the future.

Acknowledgments

This work was supported by the European Research Council
as part of the project “State Space Exploration: Principles,
Algorithms and Applications” and by BMBF grant 02PJ2667
as part of the KARIS PRO project.

References

[Bäckström and Nebel, 1995] Christer Bäckström and Bern-
hard Nebel. Complexity results for SAS+ planning. Com-

putational Intelligence, 11(4):625–655, 1995.
[Bonet and van den Briel, 2014] Blai Bonet and Menkes van

den Briel. Flow-based heuristics for optimal planning:
Landmarks and merges. In Proc. ICAPS 2014, pages 47–
55, 2014.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms
for boolean function manipulation. IEEE Transactions on

Computers, 35(8):677–691, 1986.
[Ciardo and Siminiceanu, 2002] Gianfranco Ciardo and

Radu Siminiceanu. Using edge-valued decision diagrams
for symbolic generation of shortest paths. In Proceedings

of the Fourth International Conference on Formal Meth-

ods in Computer-Aided Design (FMCAD 2002), pages
256–273. Springer Berlin Heidelberg, 2002.

[Culberson and Schaeffer, 1998] Joseph C. Culberson and
Jonathan Schaeffer. Pattern databases. Computational In-

telligence, 14(3):318–334, 1998.

3168

[Edelkamp, 2001] Stefan Edelkamp. Planning with pattern
databases. In Proc. ECP 2001, pages 84–90, 2001.

[Felner et al., 2004] Ariel Felner, Richard Korf, and Sarit
Hanan. Additive pattern database heuristics. JAIR,
22:279–318, 2004.

[Geißer et al., 2015] Florian Geißer, Thomas Keller, and
Robert Mattmüller. Delete relaxations for planning with
state-dependent action costs. In Proc. IJCAI 2015, pages
1573–1579, 2015.

[Geißer et al., 2016] Florian Geißer, Thomas Keller, and
Robert Mattmüller. Abstractions for planning with state-
dependent action costs. In Proc. ICAPS 2016, 2016. To
appear.

[Haslum et al., 2007] Patrik Haslum, Adi Botea, Malte
Helmert, Blai Bonet, and Sven Koenig. Domain-
independent construction of pattern database heuristics for
cost-optimal planning. In Proc. AAAI 2007, pages 1007–
1012, 2007.

[Helmert and Mattmüller, 2008] Malte Helmert and Robert
Mattmüller. Accuracy of admissible heuristic functions
in selected planning domains. In Proc. AAAI 2008, pages
938–943, 2008.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. JAIR, 26:191–246, 2006.

[Karpas and Domshlak, 2009] Erez Karpas and Carmel
Domshlak. Cost-optimal planning with landmarks. In
Proc. IJCAI 2009, pages 1728–1733, 2009.

[Katz and Domshlak, 2007] Michael Katz and Carmel
Domshlak. Structural patterns of tractable sequentially-
optimal planning. In Proc. ICAPS 2007, pages 200–207,
2007.

[Katz and Domshlak, 2010] Michael Katz and Carmel
Domshlak. Optimal admissible composition of abstrac-
tion heuristics. AIJ, 174(12–13):767–798, 2010.

[Keller et al., 2016] Thomas Keller, Florian Pommerening,
Jendrik Seipp, Florian Geißer, and Robert Mattmüller.
State-dependent cost partitionings for cartesian abstrac-
tions in classical planning: Full proofs. Technical Report
CS-2016-002, University of Basel, Department of Mathe-
matics and Computer Science, 2016.

[Korf and Felner, 2002] Richard E. Korf and Ariel Felner.
Disjoint pattern database heuristics. AIJ, 134(1–2):9–22,
2002.

[Lai et al., 1996] Yung-Te Lai, Massoud Pedram, and Sarma
B. K. Vrudhula. Formal verification using edge-valued bi-
nary decision diagrams. IEEE Transactions on Computers,
45(2):247–255, 1996.

[Pommerening et al., 2015] Florian Pommerening, Malte
Helmert, Gabriele Röger, and Jendrik Seipp. From non-
negative to general operator cost partitioning. In Proc.

AAAI 2015, pages 3335–3341, 2015.
[Röger et al., 2014] Gabriele Röger, Florian Pommerening,

and Malte Helmert. Optimal planning in the presence of
conditional effects: Extending LM-Cut with context split-
ting. In Proc. ECAI 2014, pages 80–87, 2014.

[Rudell, 1993] Richard Rudell. Dynamic variable ordering
for ordered binary decision diagrams. In Proc. ICCAD

1993, pages 42–47, 1993.
[Seipp and Helmert, 2013] Jendrik Seipp and Malte

Helmert. Counterexample-guided Cartesian abstrac-
tion refinement. In Proc. ICAPS 2013, pages 347–351,
2013.

[Seipp and Helmert, 2014] Jendrik Seipp and Malte
Helmert. Diverse and additive Cartesian abstraction
heuristics. In Proc. ICAPS 2014, pages 289–297, 2014.

3169

