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• H. Harbrecht, M. Peters and M. Siebenmorgen. Multilevel accelerated quadra-
ture for PDEs with log-normal distributed random coefficient. Preprint 2013-18,
Mathematisches Institut, Universität Basel, 2013.

• H. Harbrecht, M. Peters and M. Siebenmorgen. Tractability of the quasi-Monte
Carlo quadrature with Halton points for elliptic PDEs with random diffusion.
Preprint 2013-28, Mathematisches Institut, Universität Basel, 2013.
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Chapter I

INTRODUCTION

In this thesis, we consider elliptic boundary value problems with random diffusion coeffi-
cients. Such equations arise in many engineering applications, for example, in the mod-
elling of subsurface flows in porous media, such as rocks, see e.g. [Del79, dM86, Kit97].
These models are of particular importance for geologists since, amongst other things, they
can be used to simulate the pollution caused by the long term disposal of radioactive waste
in an underground repository, see [CGSS00]. Here, it is convenient to use Darcy’s law,
cf. [Dar56], to describe the subsurface flow. The key ingredient in this system of equations
is the hydraulic conductivity a. This parameter measures the transmissivity of a fluid
through an aquifer. It depends on the permeability of the heterogenous media and on the
dynamic viscosity of the fluid. Darcy’s law states that the flow velocity v, more precisely
the discharge per unit which is called Darcy’s flux, is proportional to the gradient of the
hydraulic head u times the hydraulic conductivity parameter a, i.e.

v + a∇u = F in D,
div v = 0 in D.

Herein D ⊂ Rd denotes a spatial domain and the vector field F describes the sources and
sinks in the domain D. The second equation is the mass conservation law, cf. [CGSS00].
In addition, this system of equations has to be equipped with appropriate boundary con-
ditions. For simplicity, we employ homogenous Dirichlet boundary conditions of the hy-
draulic head. Applying the divergence operator and setting f = −divF leads to the
elliptic boundary value problem:

(0.1)
−div

(
a∇u

)
= f in D,

u = 0 on ∂D.

Elliptic boundary value problems are well understood and can be solved with high
accuracy if the input data are known exactly. Unfortunately, the hydraulic conductivity is
not given exactly in most cases and has to be determined from measurements. Since the
media is usually heterogenous and measurements are only available at a discrete number of
points, the hydraulic conductivity is endowed with uncertainty which limits the accuracy
of the model. Thus, a common approach in geology is to model the uncertainty in the
hydraulic conductivity as a random field a over a propability space (Ω,F ,P), see [Del79,
dMDG+05], where Ω denotes a set, F a σ-algebra on Ω and P a probability measure on F .
Naturally, this uncertainty propagates through the model and, therefore, even the solution
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u is a random field. This yields that (0.1) becomes an elliptic boundary value problem
with a random diffusion coefficient:

(0.2)
−div

(
a(x, ω)∇u(x, ω)

)
= f(x) in D × Ω,

u(x, ω) = 0 on ∂D × Ω.

This equation has been the topic in many publications in recent years. To mention only
a few of them, see e.g. [BNT07, BTZ04, CGSS00, FST05, GS91, KX02a, MK05, SG11].
The reason for this is that it is quite challenging to compute an accurate approximation
of the solution or even to derive statistical quantities of the solution, like the expectation,
the variance, and higher order moments.

The random diffusion coefficient a(x, ω) itself or, in the context of geological
models, the logarithm of the diffusion coefficient log

(
a(x, ω)

)
is characterized by its mean

field, its covariance function, and the knowledge of the probability space P, where these
quantities have to be estimated from the measurement data. Thus, the first computational
challenge is to find a suitable representation of the diffusion coefficient. A widely used
approach is the Karhunen-Loève expansion, see [HPS15, Loè77, ST06], which separates the
spatial variable and the stochastic variable. In general, the number of random variables
and spatial functions used in this representation is infinite. For the computation, this
series needs to be truncated appropriately. Numerically, this can be done efficiently by a
pivoted Cholesky decomposition, cf. [BJ05, HPS12, HPS15].

The random variables which appear in the Karhunen-Loève expansion are as-
sumed to be independent and their distributions are given by density functions. It is
convenient to replace them by coordinates, the so called random parameters, which are
defined on the image of the corresponding random variables. How many random pa-
rameters are required in such a series expansion to get an adequate approximation of
the random field depends on the smoothness of the covariance kernel and on the desired
accuracy. This number is, especially for rough covariance kernels, large. This yields
that (0.2) can be rewritten as a high-dimensional parameter dependent elliptic boundary
value problem. Although the solution u depends quite smoothly on the random param-
eters, the computational effort to solve such a parametric equation by e.g. a polynomial
chaos expansion, cf. [FST05, GS91, KX02b, MK05], or stochastic collocation methods,
cf. [Bie11, BNT07, BNTT12, NTW08a, NTW08b], may become unfeasible due to the
curse of dimensionality. Many terms which are used in such a series representation of the
solution often play a negligible role. Therefore, adaptive methods have been developed to
detect the most important coefficients, cf. [BNTT11, BNTT12, BNTT14, CDS11, CCS15].

In this thesis, we are interested in statistical quantities of the solution and not
in the random solution itself. In particular, we consider the computation of the moments.
These quantities appear as integrals over the high-dimensional parameter domain. In most
cases, they cannot be determined analytically and, thus, one has to apply a quadrature
method to solve the integration problem. Hence, the thesis will be mainly concerned with
the investigation of the convergence of different quadrature methods.

The common approach to deal with high-dimensional integrals is theMonte Carlo
quadrature, see e.g. [HH64], which will serve as a benchmark method throughout this
thesis. There are two main reasons for the popularity of this method. On the one hand,
the method is easy to implement and perfectly suited for parallel implementation. Having
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a random number generator at hand which produces random vectors with respect to
the underlying distribution of the random parameter, so called sample points, the Monte
Carlo estimator simply averages the evaluations of the integrand at these sample points.
On the other hand, the convergence of the Monte Carlo method is dimension independent
under low regularity requirements on the integrand. The disadvantages of Monte Carlo
methods are that the convergence rate is of low algebraic order and that deterministic
error bounds are not available since the Monte Carlo estimator itself is a random variable.
Nevertheless, the estimator converges with probability 1 by the law of large numbers and
further convergence properties are provided in the literature, see e.g. [Caf98, STZ01]. For
example, the convergence in distribution of the Monte Carlo estimator results from the
central limit theorem. Since the Monte Carlo quadrature serves throughout this thesis
more as a benchmark method, we restrict ourselves in the sequel to error bounds of the
root mean square error (RMSE).

As mentioned before, the Monte Carlo estimator works under low regularity
requirements on the integrand. Conversely, this implies that the smoothness, which is
provided by the integrands under consideration, is not exploited by the Monte Carlo es-
timator. Hence, we are more interested in quadrature rules which take this smoothness
into account in order to achieve better convergence rates. Instead of choosing the sample
points randomly, one can also construct a deterministic sequence of sample points and
end up with the quasi-Monte Carlo method, see [Nie92]. The construction of such point
sequences is typically performed for the integration of functions defined on the unit cube
[0, 1]m. In order to define quasi-Monte Carlo quadrature rules on more general domains
of integration, one has to map these points appropriately. The quality of the point se-
quence is given by its discrepancy which measures, roughly speaking, the difference of the
point sequence and the uniform distribution. Under certain regularity requirements on the
integrand, the discrepancy serves as an error estimate for the quasi-Monte Carlo quadra-
ture. There exist point sequences such that the quasi-Monte Carlo quadrature provides
a higher convergence rate in comparison to the Monte Carlo quadrature, but, in general,
the convergence rate deteriorates when m gets large.

The third class of considered quadrature methods are Gaussian type quadrature
formulae which are closely related to stochastic collocation methods with collocation points
at Gaussian abscissae. The one-dimensional Gaussian quadrature points and weights are
constructed in such a way that the degree of polynomial exactness is maximized. This
means that the integrals of polynomials up to a certain degree are determined exactly
by the quadrature method. Therefore, a univariate Gaussian quadrature provides the
best possible convergence rate for smooth integrands. Unfortunately, the complexity of
a tensor product Gaussian quadrature increases exponentially with the dimensionality
m. If the integrand has some additional regularity, one can sparsify the tensor product
Gaussian quadrature without a significant loss of accuracy. This yields the sparse Gaussian
quadrature, cf. [BG04, GG98, Zen91]. This approach significantly reduces the complexity.
Nevertheless, the computational cost of the classical sparse grid quadrature still grows
exponentially in m.

The question that arises is how it can be explained that certain quasi-Monte Carlo
methods or certain sparse-grid quadrature methods work well for some kind of integration
problems even if m is large, maybe m = 100. The answer to that question cannot be
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given generally since it depends on the particular choice of the quadrature method and
on the particular integration problem. We will examine in depth whether the considered
quadrature methods converge (nearly) independent of m for the approximation of the
moments of u. The key ingredient therefore is that the integrands, i.e. the solution u to
(0.2) and its powers, have a certain anisotropic behaviour which means that the different
dimensions are not equally important to the integrands. Then, the idea is to exploit this
anisotropic behaviour in the construction of the quadrature methods. Therefore, of course,
the anisotropic behaviour of the integrand has to be quantified which will be done with
the regularity analysis of the integrands.

In recent years, a lot of work has been done to investigate whether quasi-Monte
Carlo quadrature methods can be constructed with dimension- or nearly dimension-inde-
pendent convergence rates for integrands belonging to a certain weighted space, see [NW10,
SW97]. In this context, near dimension-independency refers to independency up to a
polynomial factor. If that is the case, the integration problem is said to be tractable or
polynomial tractable with respect to the weighted function space, cf. [Woź94]. But, having
an existence result of a dimension-independent convergent quasi-Monte Carlo quadrature
in a certain function space at hand does not necessarily imply that the construction of
this quadrature is available as well. Hence, a further challenge is the construction of such
a point sequence, see e.g. [DKLG+14, NC06, SKJ02]. Alternatively, one can show that
some known quasi-Monte Carlo quadrature methods provide a dimension-independent
convergence rate in a certain weighted setting, see e.g. [HPS13b, HW02, Wan02]. In this
thesis, we will concentrate on the latter approach.

For Gaussian quadrature methods, the anisotropic behaviour of the integrand
can also be exploited. This can be done by choosing the number of quadrature points in
each particular dimension according to the importance of this dimension for the integrand.
This yields the anisotropic Gaussian quadrature method. Of course, an anisotropic sparse
Gaussian quadrature can be constructed as well. We will analyze the convergence of the
anisotropic Gaussian quadrature and the anisotropic sparse Gaussian quadrature.

The attempts described above are only concerned with the approximation of
the solution in the random parameters. Nevertheless, the solution has additionally to
be discretized in the spatial variable since each evaluation of a quadrature point or each
determination of a coefficient in the polynomial expansion of the solution corresponds to
a deterministic elliptic PDE. In general, the level of spatial refinement has to be chosen in
such a way that the spatial and the stochastic discretization error are equilibrated. This
means that each deterministic elliptic PDE has to be solved on a fine spatial discretiza-
tion level. Since only a single level of spatial refinement is used for the computation, this
corresponds to a single level method. A recently popular approach to keep the computa-
tional cost low is to apply multilevel techniques, like the multilevel Monte Carlo method,
cf. [BSZ11, CST13, Gil08, Hei00, Hei01], which has been extended to multi-index Monte
Carlo methods, see [HNT16]. The idea of multilevel methods is to combine several spatial
and stochastic levels of refinement in such a way that the coarser spatial refinement levels
are combined with finer stochastic refinement levels and vice versa. In this thesis, we
extend the concepts of the multilevel Monte Carlo method to arbitrary quadrature rules,
yielding the related multilevel quadrature methods, which has already been mentioned in
[HPS16, HPS13a]. Since stochastic collocation methods and Gaussian quadrature methods
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are closely related, the concepts of multilevel quadrature extend to multilevel collocation
methods, cf. [TJWG15, VW14].

The remainder of this thesis is structured as follows. In Chapter II, we introduce
and provide some properties of function spaces which are important for the presented anal-
ysis. In addition to Lebesgue and Sobolev spaces, the Lebesgue-Bochner spaces are con-
sidered which are the canonical function spaces when dealing with random fields. Chapter
III is dedicated to the mathematical formulation of the problem at hand. We describe the
representation of the random diffusion coefficient by its Karhunen-Loève expansion and
analyze the truncation error in the solution arising from the truncation of this expansion.
Moreover, we parametrize the stochastic diffusion problem by introducing coordinates
for the random variables in the Karhunen-Loève expansion. Since the Karhunen-Loève
expansion is computed from its mean field and its covariance kernel, we introduce the co-
variance kernels of the Matérn class. These covariance kernels are commonly used for the
description of stochastic fields and we emphasize some properties of these kernels which are
relevant for further investigations. The main part of Chapter III is devoted to estimates
on the regularity of the solution u to (0.1) and the regularity of its powers up. Especially,
the investigation of the regularity of up is provided here. These estimates are particularly
crucial for the error analysis of the approximation of the moments by the quasi-Monte
Carlo quadrature and the Gaussian quadrature.

The Monte Carlo and the quasi-Monte Carlo quadrature are analyzed in Chapter
IV. Since the convergence analysis of the Monte Carlo quadrature is known, we describe
the method briefly and the focus of this chapter is on the quasi-Monte Carlo method.
More precisely, we concentrate on the quasi-Monte Carlo quadrature with Halton points,
a classical point sequence which is easy to construct even for a high dimensionality m. It
is known that the quasi-Monte Carlo quadrature based on the Halton sequence converges
dimension-independently for functions defined over the hypercube [0, 1]m which exhibit a
certain anisotropic behaviour. This can easily be generalized to functions defined over the
tensor product of arbitrary finite intervals. Hence, if the densities of the random variables
in the Karhunen-Loève expansion have bounded support, like e.g. uniformly distributed
random variables on [−1/2, 1/2], we only need to analyze whether our integrands provide
the required anisotropic behaviour. The situation is more challenging for Gaussian ran-
dom variables. Here, the support of the density functions is R and the solution u may be
unbounded when the modulus of at least one random parameter tends to infinity. There-
fore, the main result of this chapter will be that the approximation of the moments of the
solution u of (0.1) with a lognormally distributed diffusion coefficient by the quasi-Monte
Carlo method based on the first N Halton points converges with a rate O

(
mN−1+δ) for

an arbitrary δ > 0. This implies that the convergence rate is independent of the dimen-
sionality m up to a linear factor. Of course, this result is only available under suitable
regularity and anisotropy conditions of the solution u.

In Chapter V, we discuss the use of Gaussian quadrature rules for the approx-
imation of the moments of u. We base our findings on one-dimensional best polynomial
interpolation error results from [BNT07, Bie09]. These results are very similar for the
uniformly elliptic and the lognormal situation which allows us to perform the conver-
gence analysis for both cases simultaneously. As expected, in case of the anisotropic
tensor product Gaussian quadrature, the decay requirements on the sequence {γk} in or-
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der to get dimension-independent convergence rates turn out to be very strong. Hence,
we also investigate the impact of the dimensionality m on the convergence rate when
dimension-independent convergence cannot be shown. With a new estimate on the num-
ber of quadrature points in an anisotropic sparse grid, we are able to significantly improve
the convergence results for the anisotropic sparse Gaussian quadrature in comparison to
the anisotropic tensor product Gaussian quadrature.

Chapter VI is concerned with the multilevel acceleration of the quadrature meth-
ods. Most importantly, we provide the regularity results which are necessary for the
convergence of the multilevel quadrature. Since we want to combine spatial and stochas-
tic approximation errors, mixed regularity results in the spatial and stochastic variables
are required. These regularity results are employed to establish error estimates for the
multilevel quadrature approximation of the moments of u. We end this chapter with a
complexity analysis of the considered single level and multilevel quadrature methods.

In order to avoid the repeated use of generic but unspecified constants, we will
use the following notation. By C . D we mean that C can be bounded by a multiple
of D, independent of parameters which C and D may depend on. Obviously, C & D is
defined as D . C, and C h D as C . D and C & D.



Chapter II

PRELIMINARIES

In this chapter, we introduce the function spaces which are necessary to establish regularity
results of the solution of an elliptic boundary value problem with stochastic diffusion
coefficient. We start with a short review on Lebesgue and Sobolev spaces. Afterwards, we
consider the Lebesgue-Bochner spaces, which are the canonical spaces for the treatment
of random fields. For further details, we refer to [AE08, AF03, Alt07, LC85]. Throughout
this thesis, we denote by N = {0, 1, 2, . . .} the set of natural numbers including 0 and write
N \ {0} whenever 0 should be excluded.

1. Lebesgue spaces

(1.1) Definition. Let D ⊂ Rd denote a bounded domain. The Lebesgue space Lp(D)
for p ∈ [1,∞) consists of the equivalence classes of measurable functions v : D → R for
which the p-th power is absolutely Lebesgue integrable, i.e.

‖v‖Lp(D) :=
(∫

D
|v(x)|p dx

) 1
p

<∞.

Two functions belong to the same equivalence class if they differ from each other at most
on a Lebesgue null set. Moreover, the space L∞(D) contains the equivalence classes of
essentially bounded functions with respect to the norm

‖v‖L∞(D) := ess sup
x∈D

|v(x)|.

The Lebesgue spaces Lp(D) are Banach spaces for all p ∈ [1,∞] and separable
for p <∞, see e.g. [AF03]. Furthermore, the space L2(D) is a Hilbert space endowed with
the scalar product

(1.2) (v, w)L2(D) =
∫
D
v(x)w(x) dx.

This scalar product is very important for the treatment of Lebesgue spaces, since it implies
a simple characterization of the dual spaces by the Riesz representation theorem.

(1.3) Theorem. Let 1 < p < ∞ and let p′ denote the dual exponent, i.e. 1
p + 1

p′ = 1.
Then, for each L ∈

(
Lp(D)

)′, there exists a function v ∈ Lp′(D) such that

L(w) =
∫
D
v(x)w(x) dx
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for all w ∈ Lp(D). Moreover, it holds ‖v‖Lp′ (D) = ‖L‖(Lp(D))′ . Thus,
(
Lp(D)

)′ is isomet-
rically isomorphic to Lp′(D).

Proof. A proof of this theorem is given in [AF03]. �

Notice that the dual space of L1(D) is isometrically isomorphic to L∞(D), but
the reverse implication does not hold in general.

Several times we will make use of the generalized Hölder inequality.

(1.4) Lemma. For n ∈ N, let pi ∈ [1,∞] for i = 1, . . . , n be given with
∑n
i=1

1
pi

= 1.
Then, it follows for functions vi ∈ Lpi(D), i = 1, . . . , n, that

∏n
i=1 vi ∈ L1(D). Moreover,

these functions satisfy the generalized Hölder inequality

(1.5)
∥∥∥∥∥

n∏
i=1

vi

∥∥∥∥∥
L1(D)

≤
n∏
i=1
‖vi‖Lpi (D).

Proof. For a proof, see [Alt07]. �

For n = 2 and dual exponents p, p′ ∈ [1,∞], the generalized Hölder inequality
(1.5) reduces for functions v ∈ Lp(D) and w ∈ Lp′(D) to

(v, w)L2(D) ≤ ‖v‖Lp(D)‖w‖Lp′ (D).

Hence, the scalar product (1.2) extends to a duality product on Lp(D)× Lp′(D).

2. Sobolev spaces
It is well known that Sobolev spaces come into play when weak solutions of elliptic partial
differential equations are considered. These spaces are defined as follows:

(2.1) Definition. We define the Sobolev space W k,p(D) for k ∈ N as the closure of
C∞(D) with respect to the norm

(2.2) ‖v‖Wk,p(D) =


(∑

|α|≤k ‖∂αv‖
p
Lp(D)

)1/p
for 1 ≤ p <∞,

max|α|≤k ‖∂αv‖L∞(D) for p =∞.

Here, α ∈ Nd denotes the multi-index α = (α1, α2, . . . , αd) with the usual definition
|α| =

∑d
i=1 αi. Moreover, we denote by

(2.3) ∂αv(x) := ∂α1

∂x1

∂α2

∂x2
· · · ∂

αd

∂xd
v(x)

the weak derivative of order α of v. Analogously, the spaces W k,p
0 (D) are given as the

closure of C∞0 (D) with respect to the norm ‖ · ‖Wk,p(D). Additionally, we define for s ∈ R
the Sobolev space W s,p(D) as the functions v ∈W bsc,p(D) such that

‖v‖W s,p(D) :=
(
‖v‖p

W bsc,p(D) + |v|pW s,p(D)

) 1
p
<∞.
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Herein, we denote by |v|W s,p(D) the Sobolev-Slobodeckǐı semi-norm

|v|pW s,p(D) :=
∑
|α|=bsc

∫
D

∫
D

|∂αv(x)− ∂αv(y)|p

|x− y|d+(s−bsc)p dx dy.

As in the case of the Lebesgue spaces, the Sobolev spaces are Banach spaces
which are separable for p < ∞. In particular, the Sobolev spaces W s,2(D), denoted by
Hs(D), are Hilbert spaces with respect to the scalar product

(u, v)Hs(D) :=
∑
|α|≤s

(∂αu, ∂αv)L2(D), if s ∈ N,

and with respect to the scalar product

(u, v)Hs(D) :=(u, v)Hbsc(D)

+
∑
|α|=bsc

∫
D

∫
D

(
∂αu(x)− ∂αu(y)

)(
∂αv(x)− ∂αv(y)

)
|x− y|d+2(s−bsc) dx dy,

if s ∈ R+ \N, see e.g. [Ste03]. An important property of the Sobolev space W s,p(D) is the
compact embedding into the space Cq,λ(D) for certain values of s, p, q and λ. The Banach
space Cq,λ(D) with q ∈ N and λ ∈ (0, 1) consists of q times continuously differentiable
functions, whose derivatives of order q are additionally Hölder-continuous with Hölder-
exponent λ. This space is equipped with the norm

‖v‖Cq,λ(D) := ‖v‖Cq(D) + sup
|α|=q

sup
x 6=y∈D

∣∣∂αv(x)− ∂αv(y)
∣∣

|x− y|λ .

The embedding theorem of Sobolev provides the relation between s, p, q, λ and the dimen-
sionality d of D to ensure this embedding property.
(2.4) Theorem. Let D ⊂ Rd be a bounded domain with Lipschitz boundary and let
s > d/p. Then, we have the following compact embedding of the Sobolev space W s,p(D):

W s,p(D) ↪→
{
Cbs−d/pc,s−d/p−bs−d/pc(D), if s− d/p /∈ N,
Cs−d/p−1,λ(D), if s− d/p ∈ N for arbitrary λ ∈ (0, 1).

Proof. For a proof of this result, see [DD12]. �

A semi-norm | · |Wk,p(D) on W k,p(D) is defined for all k ∈ N if only the Lp-norms
of the weak derivatives of order k are taken into account in (2.2), i.e.

(2.5) |v|Wk,p(D) =
( ∑
|α|=k

‖∂αv‖pLp(D)

)1/p

.

By Sobolev’s norm equivalence theorem, cf. [Ada75], this semi-norm (2.5) defines an equiv-
alent norm on W k,p

0 (D) on bounded domains D. More precisely, there is a constant c ≥ 1
such that

(2.6) |v|Wk,p(D) ≤ ‖v‖Wk,p(D) ≤ c|v|Wk,p(D)

holds for all v ∈ W k,p
0 (D). This result can be proven by the repeated application of the

Poincaré inequality.
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(2.7) Lemma. Let the domain D be bounded. Then, there exists a Poincaré constant
cP > 0 such that for all v ∈W 1,p

0 (D) it holds the Poincaré inequality

(2.8) ‖v‖Lp(D) ≤ cP |v|W 1,p(D).

Proof. A proof of this inequality is provided in [AF03]. �

(2.9) Remark. We denote the Sobolev space W s,2
0 (D) by Hs

0(D). From now on, the
space H1

0 (D) is considered to be equipped with the norm

‖ · ‖H1
0 (D) := | · |H1(D) = ‖∇ · ‖[L2(D)]d ,

which is an equivalent norm to (2.2) by (2.6). Likewise, we use corresponding norms for
the Sobolev spaces W 1,p

0 (D), i.e.

‖ · ‖
W 1,p

0 (D) := | · |W 1,p(D) = ‖∇ · ‖[Lp(D)]d .

The space [Lp(D)]d is defined as the space of equivalence classes of Rd-valued functions
v = [v1, . . . , vd]ᵀ which are bounded with respect to the norm

‖v‖p[Lp(D)]d :=
∫
D
‖v‖pp dx with ‖v‖pp :=

d∑
k=1
|vk|p.

For Sobolev spaces W 1,pi
0 (D), we obtain an analogue to the generalized Hölder

inequality (1.5).

(2.10) Lemma. For n ∈ N, let pi ∈ [1,∞] for i = 1, . . . , n be given with
∑n
i=1

1
pi

= 1.
Then, it follows for functions vi ∈ W 1,pi

0 (D), i = 1, . . . , n, that
∏n
i=1 vi ∈ W 1,1

0 (D). In
addition, these funtions fulfill the inequality

(2.11)
∥∥∥∥∥

n∏
i=1

vi

∥∥∥∥∥
W 1,1

0 (D)

≤ ncn−1
P

n∏
i=1
‖vi‖W 1,pi

0 (D).

Proof. With the product rule for derivatives, it holds that

(2.12)
∥∥∥∥∥

n∏
i=1

vi

∥∥∥∥∥
W 1,1

0 (D)

≤
n∑
i=1

∥∥∥∥∥∇vi∏
j 6=i

vj

∥∥∥∥∥
[L1(D)]d

.

We apply the generalized Hölder inequality (1.5) and the Poincaré inequality (2.8) to
obtain ∥∥∥∥∥∇vi∏

j 6=i
vj

∥∥∥∥∥
[L1(D)]d

≤ ‖∇vi‖[Lpi (D)]d
∏
j 6=i
‖vj‖Lpj (D) ≤ cn−1

P

n∏
j=1
‖vj‖

W
1,pj
0 (D)

.

Summation over these terms in (2.12) yields (2.11). �

We end this section with a brief note on interpolation spaces and inequalities
between Sobolev spaces. For further details, we refer to [BS08] and the reference therein.



Section 3. Lebesgue-Bochner spaces 17

(2.13) Definition. Let X0, X1 denote two Banach spaces with X1 ⊂ X0. For t > 0, we
define a measure for the approximability of X0 with elements of X1 by

K(t, v) := inf
w∈X1

(
‖v − w‖X0 + t‖w‖X1

)
.

Then, the interpolation space [X0, X1]θ,p :=
{
v ∈ X0 : ‖v‖[X0,X1]θ,p < ∞

}
is given as the

set of elements of X0 which are bounded with respect to the norm

‖v‖[X0,X1]θ,p :=
(∫ ∞

0
t−θpK(t, v)pdt

t

)1/p
.

The interpolation space [X0, X1]θ,p fulfills the following lemma, cf. [BS08].

(2.14) Lemma. Let X0, X1 and Y0, Y1 are two pairs of Banach spaces according to
Definition (2.13) and T : Xi → Yi a linear operator. Then T maps [X0, X1]θ,p → [Y0, Y1]θ,p
and satisfies the inequality

‖T‖[X0,X1]θ,p→[Y0,Y1]θ,p ≤ ‖T‖
1−θ
X0→Y0

‖T‖θX1→Y1

It is obvious that it holds X1 ⊂ [X0, X1]θ,p ⊂ X0 for arbitrary Banach spaces
X1 ⊂ X0. For Sobolev spaces, however, it is possible to characterize the interpolation
spaces more precisely. We will only need the characterization for the Sobolev spaces
Hs(D). For more general resuts for Sobolev or Lebesgue spaces, we refer to [BL76].

(2.15) Lemma. The [Hr(D), Hs(D)]θ,2-norm is equivalent to the H(1−θ)r+θs(D)-norm
for arbitrary r, s ∈ R and 0 < θ < 1 provided that D is a Lipschitz domain. This yields
that

[Hr(D), Hs(D)]θ,2 = H(1−θ)r+θs(D).

We will make use of the following norm-inequality

(2.16) ‖v‖Hs(D) . ‖v‖
1−s/r
L2(D)‖v‖

s/r
Hr(D) for all v ∈ Hr(D), 0 ≤ s ≤ r

which can be inferred from Lemma (2.14) and Lemma (2.15) combined with a duality
argument.

3. Lebesgue-Bochner spaces

Let (S,Σ, µ) be a measure space with σ-algebra Σ and measure µ. Moreover, we denote
by X a Banach space over R, equipped with its Borel σ-algebra B and its norm ‖ · ‖X . In
the sequel, the Banach space X will represent a space of real valued functions which are
defined on the domain D ⊂ Rd like a Lebesgue space or a Sobolev space.

Notice that a random field v : D × Ω→ R can be seen as a mapping v : Ω→ X
which assigns an element of a suitable Banach space X to each element ω ∈ Ω. More-
over, recall that a probability space (Ω,F ,P) is particularly a measure space. Thus, the
Lebesgue-Bochner spaces, which transfer the concept of the classical Lebesgue spaces to
strongly measureable and Banach space valued functions, defined over the measure space
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(S,Σ, µ), are the canonical spaces when dealing with random fields. At first defined in
[Boc33], these spaces are well studied nowadays. In many textbooks, the concepts of
Lebesgue spaces are introduced for the general situation of functions which map from a
measure space into a Banach space, see e.g. [Alt07]. We will follow the construction of
[Alt07] and start with the definition of strongly measurable functions v : S → X.

(3.1) Definition. A µ-measurable map is a function v : S → X such that for any
Borel set B ∈ B it follows v−1(B) ∈ Σ. Moreover, a µ-measurable map v is strongly
µ-measurable if there exists a µ-null set N such that v(S \N) is separable.

With this definition at hand, we are able to define the Lebesgue-Bochner space
Lpµ(S;X).

(3.2) Definition. The Lebesgue-Bochner space Lpµ(S;X) is defined for 1 ≤ p <∞ as
the set of equivalence classes of strongly µ-measurable functions v : S → X with finite
norm

‖v‖Lpµ(S;X) :=
(∫

S
‖v(s)‖pX dµ(s)

)1/p
<∞.

For p = ∞, the space L∞µ (S;X) contains all equivalence classes of measurable functions
which are essentially bounded, i.e.

‖v‖L∞µ (S;X) := ess sup
s∈S

‖v(s)‖X := inf
N⊂S:µ(N)=0

sup
s∈S\N

‖v(s)‖X .

Two functions v, w : S → X are in the same equivalence class if v coincides with w
µ-almost everywhere.

The Bochner integral is constructed in a similar way as the Lebesgue integral,
see [AE08, Alt07]. To that end, we denote for an element Si ∈ Σ the indicator function of
Si by

1Si : S → {0, 1}, 1Si(s) =
{

1, if s ∈ Si,
0, else.

For simple functions v(s) =
∑n
i=1 1Si(s)xi, where Si ∈ Σ and xi ∈ X, the Bochner integral

is defined as∫
S
v(s) dµ(s) =

n∑
i=1

µ(Si)xi.

A strongly µ-measurable function v : S → X is Bochner integrable if there exists a sequence
{vj}j of simple functions such that

lim
j→∞

∫
S
‖v − vj‖X dµ(s) = 0.

The Bochner integral is then defined as

(3.3)
∫
S
v dµ(s) = lim

j→∞

∫
S
vj dµ(s).
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A simple characterization of Bochner integrable functions is provided by the Bochner
criterion for integrability. This criterion states that a strongly µ-measurable function
v : S → X is Bochner integrable if and only if∫

S
‖v‖X dµ(s) <∞.

There are several useful properties for the Lebesgue-Bochner spaces and the
Bochner integral. We collect a few of them in the following lemma.

(3.4) Lemma. (a) The Lebesgue-Bochner spaces Lpµ(S;X) are Banach spaces
for 1 ≤ p ≤ ∞.

(b) The Bochner integral

(3.5) I : L1
µ(S;X)→ X, v 7→ Iv :=

∫
S
v(s) dµ(s)

is a linear map and well defined. Moreover, this map is continuous with continuity
constant 1, i.e.

(3.6)
∥∥∥∥ ∫

S
v(s) dµ(s)

∥∥∥∥
X

≤
∫
S
‖v(s)‖X dµ(s).

(c) Let v : S → X be a µ-measurable function and let w ∈ L1
µ(S;R) with w ≥ 0. If

it holds for µ-almost every s ∈ S that ‖v(s)‖pX ≤ w(s) for a p ∈ [1,∞), then it
follows that v ∈ Lpµ(S;X).

Proof. For the proof of the lemma, we refer to [Alt07]. �

Notice that we will use different notations for the Bochner integral throughout
the thesis when S is further specified. If S is a one-dimensional subset of R and µ is given
by a continuous density with respect to the Lebesgue-measure, we will use I as in (3.5),
the tensorization of those one-dimensional Bochner integral operators is denoted by I, and
if (S, σ, µ) is a probability space, we will employ E.

As in the case of the Lebesgue spaces, the case p = 2 implies a special situation.
Then, the Lebesgue-Bochner space L2

µ(S;X) is a Hilbert space provided thatX is a Hilbert
space. The scalar product is defined by

(v, w)L2
µ(S;X) :=

∫
S

(v(s), w(s))X dµ(s).

If X and S are additionally separable, we know that L2
µ(S;X) is isometrically isomorphic

to the tensor product space L2
µ(S)⊗X, see [LC85], i.e.

L2
µ(S;X) ' L2

µ(S)⊗X.
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PROBLEM FORMULATION

1. Problem formulation

In the following, let D ⊂ Rd for d ∈ N be a domain with Lipschitz continuous boundary
and let (Ω,F ,P) be a complete probability space with σ-field F ⊂ 2Ω and probability
measure P. The completeness of the probability space implies that, for all A ⊂ B and
B ∈ F with P[B] = 0, it follows A ∈ F .

As mentioned in the introduction, we want to approximate the random solution
u(ω) ∈ H1

0 (D) to the stochastic elliptic diffusion problem

(1.1) −div
(
a(ω)∇u(ω)

)
= f in D for almost every ω ∈ Ω

with (deterministic) loading f ∈ L2(D). Instead of directly approximating the solution
u(ω) itself, we rather intend to compute the solution’s moments

(1.2) Mpu(x) := Eup(x) =
∫

Ω
up(x, ω) dP(ω).

Especially, the solution’s expectation given by

(1.3) Eu(x) =
∫

Ω
u(x, ω) dP(ω) ∈ H1

0 (D)

and its variance given by

(1.4) Vu(x) = Eu2(x)− E2
u(x) =

∫
Ω
u2(x, ω) dP(ω)− E2

u(x) ∈W 1,1
0 (D)

are of interest to us. They correspond to the first and the second (centered) moment
of the solution u. As we will show later on, it holds Mpu ∈ W 1,1

0 (D) for a sufficiently
smooth diffusion coefficient a and f ∈ Lp(D). Note, that the knowledge of all moments is
sufficient to determine the distribution of the random field u.

We investigate two different types of diffusion coefficients. On the one hand,
we consider a uniform elliptic diffusion coefficient. With the knowledge of the diffusion
coefficient’s mean field Ea(x) and its covariance kernel ka(x,x′) at hand, a representation
of this diffusion coefficient can be computed by the Karhunen-Loève expansion, cf. [Loè77],
which is analyzed in Section 2. This expansion has the form

(1.5) a(x, ω) = Ea(x) +
∞∑
k=1

√
λkϕk(x)ψk(ω).
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We have to assume certain distribution properties on the occurring random vari-
ables ψk(ω). To ensure ellipticity and boundedness of the associated bilinear form in the
variational formulation, the variation in the diffusion coefficient has to be bounded. We
employ uniformly distributed random variables on [−1/2, 1/2], i.e. ψk ∼ UNI(−1/2, 1/2).
Of course, other distributions of the random variables can be treated in the same way as
long as they can be described by a density function with bounded support. The uniform
ellipticity and the boundedness condition imply that there exist constants a, a > 0 such
that

(1.6) P
(
a ≤ ess inf

x∈D
a(x, ω) ≤ ess sup

x∈D
a(x, ω) ≤ a

)
= 1.

We refer to this case as the uniformly elliptic case.
On the other hand, we consider a lognormally distributed diffusion coefficient a,

where the logarithm of a is given by a centered Gaussian field. Here, the covariance kernel
kb(x,x′) of the logarithm of the diffusion coefficient b(x, ω) = log

(
a(x, ω)

)
is assumed to

be known. The Karhunen-Loève expansion of b yields the representation

(1.7) a(x, ω) = exp
(
b(x, ω)

)
with b(x, ω) =

∞∑
k=1

√
λkϕk(x)ψk(ω).

We know from Chapter I that equations involving such diffusion coefficients are of great
importance for geologists and arise in the treatment of subsurface flow models. Gaussian
random variables are not bounded from above or below which implies that for all c ∈ R it
holds P(ψ < c) > 0 and P(ψ > c) > 0 if ψ ∼ N (µ, σ). Hence, it follows that a lognormal
diffusion coefficient is not uniformly bounded from above or away from zero. Thus, the
treatment of lognormal diffusion coefficients, which we call the lognormal case is more
complicated in comparison to the uniformly elliptic case. Nevertheless, the lognormal case
is in a certain way more flexible than the uniform elliptic case since it yields no restriction
on the variation in the diffusion coefficient.

2. Karhunen-Loève expansion of random fields

In this section, we describe the computation of the Karhunen-Loève expansion in (1.5)
and (1.7). This is a common representation of random fields since it separates the spatial
dependency and the stochastic dependency of the random field. The expansion can be
regarded as the continuous analogue of the singular value decomposition for matrices, see
e.g. [HPS15]. Therefore, we assume the knowledge of the mean field and the covariance
kernel of the stochastic field a(x, ω) ∈ L2

P
(
Ω;L2(D)

)
in the uniformly elliptic case. These

statistics are given by the Bochner integrals

Ea(x) =
∫

Ω
a(x, ω) dP(ω)

and

ka(x,x′) =
∫

Ω

(
a(x, ω)− Ea(x)

)(
a(x′, ω)− Ea(x′)

)
dP(ω).
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It is easily obtained from a ∈ L2
P
(
Ω;L2(D)

)
that the covariance kernel ka is in

L2(D ×D). Hence, the associated covariance operator is a mapping C : L2(D) → L2(D)
defined by

(2.1) (Cu)(x) =
∫
D
ka(x,x′)u(x′) dx′.

This operator is a symmetric and positive semi-definite Hilbert-Schmidt operator. Thus,
due to the compactness of Hilbert-Schmidt operators, the eigenvalues {λk}k of C generate
a decreasing sequence λ1 ≥ λ2 ≥ . . . ≥ 0 which tends to zero. Let us denote by (λk, ϕk)
the eigenpairs of C. Then, the Karhunen-Loève expansion of a is given by

(2.2) a(x, ω) = Ea(x) +
∞∑
k=1

√
λkϕk(x)ψk(ω)

with random variables ψk(ω) which are determined by

ψk(ω) = 1√
λk

∫
D

(
a(x, ω)− Ea(x)

)
ϕk(x) dx.

It can be easily verified that these random variables are uncorrelated, normalized and
centered, i.e. it holds for all k, ` ∈ N that

E[ψk] = 0 and
∫

Ω
ψk(ω)ψ`(ω) dP(ω) = δk,`.

Since the diffusion coefficient itself is not explicitly known, we are generally not
able to determine the distribution of the random variables in (2.2) and have to estimate
them from measurements, for example with a maximum likelihood estimator, cf. [ST06].
The following assumptions on the Karhunen-Loève expansion in the uniformly elliptic case
are widely used:

(2.3) Assumption. The family {ψk}k consists of independent random variables with
image Γk := Im(ψk). Furthermore, the distribution of ψk is described by a density function
ρk : Γk → R+ which is continuous with respect to the Lebesgue measure.

In the lognormal case, we define the Karhunen-Loève expansion of the mean-free
Gaussian random field b(x, ω) analogously to (2.2). The advantage is that the assumption
(2.3) is fulfilled automatically. Since we know that b(x, ω) is Gaussian, we can deduce that
the random variables ψk in the Karhunen-Loève expansion are also Gaussian. Moreover,
due to the fact that they are normalized and centered, it follows immediately that each
random variable ψk is standard normally distributed, i.e. ψk ∼ N (0, 1). This implies that
Γk = R and ρk = exp(−y2

k/2)/
√

2π. In addition, we know that a family of uncorrelated
Gaussian random variables is also independent.

For the further analysis, we assume that the sequence

(2.4) γk :=
√
λk‖ϕk‖L∞(D)

satisfies {γk}k ∈ `1(N). In Chapter VI, we will also require that the products of the first
derivatives of the eigenfunctions with the singular values

(2.5) γ̃k := γk +
√
λk‖∇ϕk‖L∞(D) =

√
λk
(
‖ϕk‖L∞(D) + ‖∇ϕk‖L∞(D)

)
build a summable sequence, i.e. {γ̃k}k ∈ `1(N).
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(2.6) Remark. The decay of the sequences in (2.4) and (2.5) will be very important
throughout this thesis. As we will see, it quantifies the anisotropic dependency of the
solution u on the different stochastic dimensions.

In practice, the Karhunen-Loève expansion needs to be truncated appropriately
after m terms. Hence, we define the truncated diffusion coefficient am : D × Ω→ R via

(2.7) am(x, ω) := Ea(x) +
m∑
k=1

√
λkϕk(x)ψk(ω)

in the uniformly elliptic case. For the lognormal case, we obtain the truncated diffusion
coefficient by

(2.8) bm(x, ω) :=
m∑
k=1

√
λkϕk(x)ψk(ω) and am(x, ω) := exp

(
bm(x, ω)

)
.

Replacing a(ω) in (1.1) by am(ω) yields the truncated problem to determine the solution
um(ω) ∈ H1

0 (D) of the stochastic elliptic diffusion problem

(2.9) −div
(
am(ω)∇um(ω)

)
= f in D for almost every ω ∈ Ω.

The error induced by the truncation of the Karhunen-Loève expansion has to
be considered. We distinguish between strong and weak truncation error estimates. The
strong truncation error ‖u−um‖LqP(Ω;C1,β(D)) for q ≥ 1 and some β > 0 as well as the weak
truncation error ‖E

(
g(um)− g(u)

)
‖C1,β(D) for sufficiently smooth functions g : R→ R are

analyzed for the lognormal case in [CD13, Cha12]. Especially, the weak truncation error
estimate is of interest for us since it provides a bound in case of the moment computation.
For the uniformly elliptic case, a truncation error estimate, pointwise for P-almost all
ω ∈ Ω and measured in the ‖ · ‖H1(D)-norm, is given in [KSS15]. Moreover, the weak
truncation error |E

(
G(u)−G(um)

)
| for linear functionals G ∈

(
H1

0 (D)
)′ is provided there.

Unfortunately, this weak truncation error is not applicable for the moment computation,
but the weak truncation error estimate in [CD13] is straightforwardly transferable to the
uniformly elliptic case. Thus, we will formulate this estimate for the uniformly elliptic
case as well. In the lognormal case, we have the following result from [CD13].

(2.10) Theorem ([CD13]). Assume that the eigenfunctions in the Karhunen-Loève
expansion of the Gaussian random field b(x, ω) are Hölder-continuous with exponent 1/2
and that the series

∞∑
k=1

λk‖ϕk‖2C0,1/2(D)

is convergent. Furthermore, let f ∈ Lp(D) for p > d and define

Rαm :=
∞∑

k=m+1
λk‖ϕk‖2C0,α(D).
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Then, the solution um(ω) to (2.9) with the lognormal diffusion coefficient (2.8) satisfies
for all q ≥ 1 the estimate

(2.11) ‖u− um‖LqP(Ω;C1,β(D)) .
√
Rαm

for any α, β ∈ R with 0 < β < min{1
2 , 1−

d
p} and 0 < β < α < 1/2. The constant hidden

in this estimate depends on f, p, q, α, β and on the diffusion coefficient a.

This is the strong error estimate. For the weak error estimate, the bound can be
improved. In particular, one can prove that the weak error decays with twice the order of
the strong error in the number of terms in the Karhunen-Loève expansion.

(2.12) Theorem ([CD13]). Let the assumptions of Theorem (2.10) be fulfilled and let
g ∈ C6(R) such that g and its derivatives grow at most polynomially as |x| → ∞. Then,
it holds for all m ∈ N the weak error bound

(2.13) ‖E
(
g(um)− g(u)

)
‖C1,α(D) . R

α
m.

This estimate is valid for any α > 0 with 0 < α < min{1/2, 1− d
p}. The constant hidden

in (2.13) is dependent on α, f, g, p and on the diffusion coefficient a.

Since the diffusion coefficient is bounded for P-almost all ω ∈ Ω in the uniformly
elliptic case, it is possible to show the following truncation error bound:

(2.14) Theorem ([KSS15]). The solution um(ω) of (2.9) with a uniformly elliptic dif-
fusion coefficient (2.7) satisfies for every m ∈ N the estimate

‖u(ω)− um(ω)‖H1(D) . ‖f‖L2(D)

∞∑
k=m+1

γk for P-almost all ω ∈ Ω.

The constant in this inequality depends on the ellipticity constant a and on the Poincaré
constant.

The analogue of Theorem (2.12) in the uniformly elliptic case reads:

(2.15) Theorem. Let the assumptions of Theorem (2.10) on the eigenfunctions of the
Karhunen-Loève expansion (2.2) and on the loading f be fulfilled. Additionally, let
g ∈ C6(R) be such that g and its derivatives grow at most polynomially as |x| → ∞.
Then, we obtain for the solution um(ω) of (2.9) with a uniformly elliptic diffusion coeffi-
cient (2.7) the weak truncation error

‖E
(
g(um)− g(u)

)
‖C1,α(D) . R

α
m

for any α ∈ R with 0 < α < min{1
2 , 1 −

d
p}. The constant depends on β, f, g, p and the

ellipticity constant a.

Proof. In the proof of Theorem (2.12), see [CD13], the error function u−um is represented
by a Taylor expansion in the random variables. Therefore, estimates on the partial deriva-
tives of u with respect to the particular random variables are required. From Section 5,
we know that the estimates on the derivatives are similar in the lognormal and in the
uniformly elliptic case. With these estimates at hand, each argument in [CD13] is also
applicable in the uniformly elliptic case. �
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(2.16) Remark. (a) The above estimates imply that we need a number of terms
m(ε) in the Karhunen-Loève expansion to achieve the accuracy ε. Moreover, this
m(ε) is affected by the goal of computation, i.e. whether one is interested in the
solution um itself or if one would like to determine statistics of the solution u
to (1.1) like the expectation, the variance or higher order moments. In the first
case, m(ε) is given by the strong error estimates and, in the second case, by
the weak error estimates. Nevertheless, it turns out to be difficult to calculate
the quantity Rαm exactly or even to provide an algorithm which approximates
Rαm. We use for the computation of the Karhunen-Loève expansion the pivoted
Cholesky decomposition, see [HPS12, HPS15]. Then, the truncation error of the
random field am can rigorously be controlled in terms of the trace of the Schur
complement which accounts for

∑
k>m λk, cf. [HPS15]. This usually provides

a good approximation on Rαm since the quantity is dominated by the decay of
{λk}k. But Rαm might be slightly underestimated since the Cα0 (D)-norms of
the eigenfunctions ϕk for k > m are not available and, hence, not taken into
account. Thus, to rule out the truncation error, we calculate in our numerical
experiments m(ε) in the more conservative way such that

∑
k>m λk < ε2 instead

of
∑
k>m λk < ε.

(b) Regardless of the employed error bound, the number of terms m(ε) increases as
the accuracy ε tends to zero. Thus, it is crucial to find numerical methods for
the approximation of the solution um of the truncated problem (2.9) or of its
statistics which converge (nearly) independently of the dimensionality m(ε).

3. Parametrization of the problem

It is convenient to consider the image of the random variables {ψk}k instead of working
on the rather abstract probability space itself. Therefore, we consider the pushforward
measure Pψ := P ◦ψ with respect to the measurable mapping

ψ : Ω→ Γ :=
m×
k=1

Γk, ω 7→ ψ(ω) :=
(
ψ1(ω), . . . , ψm(ω)

)
.

We know from Assumption (2.3) that the family {ψk}k is independent and that the distri-
bution of ψk is given by the density ρk. Hence, the pushforward measure Pψ is described
by the joint density function ρ with respect to the m-dimensional Lebesgue measure

(3.1) ρ(y) :=
m∏
k=1

ρk(yk).

With the representation (3.1) at hand, we can reformulate the stochastic problem
(1.1) as a parametric deterministic problem. To that end, we substitute the random
variables ψk by the coordinates yk ∈ Γk. Then, we define the parameterized and truncated
uniformly elliptic diffusion coefficient via

(3.2) am(x,y) :=
m∑
k=1

√
λkϕk(x)yk
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for all x ∈ D and y = (y1, y2, . . . , ym) ∈ Γ. Thus, we arrive at the following parametric
and truncated boundary value problem in the uniformly elliptic case:

(3.3)
find for all y ∈ Γ a function um(y) ∈ H1

0 (D) such that
− div

(
am(x,y)∇um(x,y)

)
= f(x) in D.

Likewise, the parametrized and truncated Gaussian field which describes the logarithm of
the diffusion coefficient in the lognormal case is given by

(3.4) bm(x,y) :=
(

m∑
k=1

√
λkϕk(x)yk

)
and am(x,y) := exp

(
bm(x,y)

)
for x ∈ D and y = (y1, y2, . . . , ym) ∈ Γ = Rm. The corresponding parametric and
truncated boundary value problem in the lognormal case reads:

(3.5)
find for all y ∈ Rm a function um(y) ∈ H1

0 (D) such that

− div
(

exp
(
bm(x,y)

)
∇um(x,y)

)
= f(x) in D.

Furthermore, we obtain in the uniformly elliptic as well as the lognormal case
the variational formulation of the problem:

(3.6)
find for all y ∈ Γ a function um(y) ∈ H1

0 (D) such that
Bm,y(um(y), v) = L(v) for all v ∈ H1

0 (D).

The bilinear form Bm,y : H1
0 (D) × H1

0 (D) → R and the linear form L : H1
0 (D) → R are

defined in the usual way as

(3.7) Bm,y(u, v) :=
∫
D
am(x,y)∇u(x)∇v(x) dx, L(v) :=

∫
D
f(x)v(x) dx.

Of course, the uniform ellipticity and boundedness condition (1.6) is still fulfilled
for the parametrized and truncated problem in the uniformly elliptic case. From the Lax-
Milgram lemma, we know that the variational problem (3.6) admits for each y ∈ Γ a
unique solution um(y) ∈ H1

0 (D). This solution additionally satisfies the stability bound

(3.8) ‖um(y)‖H1
0 (D) ≤

cP
a
‖f‖L2(D)

where cP is the Poincaré constant. From this, it follows immediately that the solution um
is contained in the Bochner space Lpρ(Γ;H1

0 (D)) for all p ≥ 1.
The situation is a bit more involved in the lognormal case. Here, the stochastic

diffusion coefficient am(x,y) is neither uniformly bounded away from zero nor uniformly
bounded from above for all y ∈ Γ = Rm. Consequently, it is impossible to show unique
solvability in the classical way as for elliptic boundary value problems. Especially, the
Lax-Milgram lemma does not directly apply to the problem (3.5). Nevertheless, there
exist functions am(y), am(y) : Γ→ R such that

(3.9) 0 < am(y) ≤ ess inf
x∈D

am(x,y) ≤ ess sup
x∈D

am(x,y) ≤ am(y) <∞.
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These functions can obviously be chosen as

(3.10) am(y) = exp
(
−

m∑
k=1

γk|yk|
)

and am(y) = exp
(

m∑
k=1

γk|yk|
)
.

Hence, for every fixed y ∈ Rm, it follows from (3.9) and (3.10) that the problem (3.5) is
elliptic and admits a unique solution um(y) ∈ H1

0 (D) which satisfies

(3.11) ‖um(y)‖H1(D) ≤
cP

am(y)‖f‖L2(D).

The lower and upper bounds am(y) and am(y) in (3.10) are not defined in the
usual way and in general the bounds are not sharp. The canonical choice of these functions
would be

(3.12) am(y) = ess inf
x∈D

am(x,y) and am(y) = ess sup
x∈D

am(x,y).

Nevertheless, these sharper bounds yield no additional benefit for our goals and the defi-
nition in (3.10) simplifies the regularity analysis in Section VI.3. Notice that in our regime
1/am(y) coincides with am(y). Thus, we could state all regularity estimates either depend-
ing on am(y) or on am(y). However, for notational convenience, we present the regularity
results in Section 5 and VI.3 in terms of the quotient

(3.13) κm(y) := am(y)/am(y).

It can easily be shown that 1/am(y) and accordingly am(y) are integrable with
respect to the Gaussian measure. More precisely, according to e.g. [Cha12], it holds:

(3.14) Lemma ([Cha12]). The lower bound am(y) and the upper bound am(y) satisfy
for any p ≥ 1 that 1/am(y), am(y) ∈ Lpρ(Rm).

From this lemma, we can derive that the solution um(y) of (3.5) is unique and
belongs to Lpρ(Rm;H1

0 (D)) for any p > 0.
The parametrization of the problems (3.3) and (3.5), respectively, influences the

computations of the moments (1.2). Instead of integrating with respect to the original
measure P, we now integrate with respect to the pushforward measure. Hence, the domain
of integration becomes the parameter domain Γ. This is possible due to the integral
transform

(3.15) Mpum =
∫

Ω
upm(ω) dP(ω) =

∫
Γ
upm(y)ρ(y) dy.

4. Matérn kernels

The knowledge of the covariance kernel k(x,x′) is crucial for the computation of the
Karhunen-Loève expansion. Moreover, the smoothness of the kernel determines the decay
of the sequences {γk}k, {γ̃k}k, cf. [GH14, ST06], and also provides an estimate on the
error which arises from the truncation of the Karhunen-Loève expansion, see Section 2.

We consider kernels from the Matérn class, cf. [Mat86]. They are often used as
covariance kernels for the definition of stochastic fields. In accordance with [RW05], they
are defined as follows:
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(4.1) Definition. Let r := ‖x − y‖2 and `, σ ∈ (0,∞). Then, the Matérn covariance
kernel function of order ν > 0 is given by

(4.2) kν(r) := σ2 21−ν

Γ(ν)

(√2νr
`

)ν
Kν

(√2νr
`

)
.

Here, Γ denotes the gamma function and Kν denotes the modified Bessel function of the
second kind of order ν, cf. [AS64]. The related covariance operator Cν in (2.1) is called
the Matérn covariance operator.

The expression (4.2) simplifies, cf. [RW05], for ν = p+ 1/2 with p ∈ N to

(4.3) kp+1/2(r) = σ2 exp
(−√2νr

`

)
p!

(2p)!

p∑
i=0

(p+ i)!
i!(p− i)!

(√8νr
`

)p−i
.

The Matérn kernel for ν = 1/2 coincides with the exponential kernel k1/2(r) = σ2e−r/`

and for ν → ∞ one obtains the Gaussian kernel k∞(r) = σ2e−r
2/2`2 . A visualization

of these kernels for different values of ν is given in Figure III.1. As it can be observed
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Figure III.1: Matérn kernels (d = 1, ` = 1, σ = 1) for different values of the smoothness
parameter ν.

in Figure III.1, the parameter ν is a smoothness parameter, i.e. the smoothness of the
kernel kν increases with the modulus of ν. The following proposition on the decay of the
eigenvalues of the Matérn covariance operator reflects this behaviour, see [GKN+14].

(4.4) Proposition ([GKN+14]). There is a constant c > 0 such that the eigenvalues
λ1 ≥ λ2 ≥ . . . of the Matérn covariance operator decay like

(4.5) λj ≤ cj−(1+ 2ν
d

) as j →∞.

We demonstrate now that the Assumptions (2.4) and (2.5) on the sequences
{γj}j and {γ̃j}j as well as the conditions of Theorem (2.10) can be verified for the Matérn
covariance operator under certain conditions on the smoothness parameter ν. Therefore,
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we follow the arguments in e.g. [GH14, GKN+14, ST06]. It holds that the Matérn co-
variance operator Cν , cf. Definition (4.1), is the inverse of a pseudo-differential operator
of order 2ν + d, see [DHS14]. Thus, if the domain D is sufficiently smooth, the operator
Cν is continuous from L2(D) to Hr(D) for all r < 2ν + d. Since the eigenfunctions ϕj are
normalized in L2(D), it follows that

‖ϕj‖Hr(D) = 1
λj
‖Cνϕj‖Hr(D) .

1
λj
‖ϕj‖L2(D) = 1

λj
.

This implies together with the interpolation inequality (II.2.16) that

‖ϕj‖Hs(D) . λ
− s
r

j for all 0 ≤ s ≤ r.

From Theorem (II.2.4), we further conclude that

‖ϕj‖L∞(D) . λ
− d

2r
j for all d/2 < r < d+ 2ν,

‖ϕj‖C0,β(D) . λ
− 2β+d

2r
j for all d/2 + β < r < d+ 2ν,

‖∇ϕj‖L∞(D) . λ
− d+2

2r
j for all d/2 + 1 < r < d+ 2ν.

Thus, we obtain that

‖ϕj‖L∞(D) . λ
− d

4ν+2d−ε
j . j

1
2 +(1+ 2ν

d
)ε for all ε > 0,

and

‖∇ϕj‖L∞(D) . λ
− d+2

4ν+2d−ε
j . j

1
2 + 1

d
+(1+ 2ν

d
)ε for all ε > 0.

This implies together with (4.5) that it holds

(4.6)
√
λj‖ϕj‖L∞(D) . j

− 1
2−

ν
d

+ 1
2 +ε = j−

ν
d

+ε for all ε > 0

and

(4.7)
√
λj‖∇ϕj‖L∞(D) . j

− 1
2−

ν
d

+ 1
2 + 1

d
+ε = j−

ν−1
d

+ε for all ε > 0.

To establish the Assumptions (2.4) and (2.5), the exponents in (4.6) and (4.7)
have to be smaller than −1. This yields the following condition on the smoothness pa-
rameter ν for the sequence {γj}j :

ν

d
> 1 ⇐⇒ ν > d.

For the sequence {γ̃j}j , the condition reads

ν − 1
d

> 1 ⇐⇒ ν > d+ 1.

Thus, the Matérn kernels fulfill the Assumptions (2.4) and (2.5) provided that the param-
eter ν is chosen large enough. Moreover, we know that the sequence {γj}j , and also the



Section 4. Matérn kernels 31

sequence {γ̃j}j , decays for sufficiently large ν with an algebraic rate s1 > 1 and s2 > 1,
respectively, i.e.

(4.8) γj . j
−s1 and γ̃j . j

−s2

which we assume in the following.
To fulfill the conditions of Theorem (2.10), we determine the minimal parameter

ν such that
∑∞
j=1 λj‖ϕj‖2C0,1/2(D) < ∞. Analogously to (4.6) and (4.7), it holds for all

ε > 0 that

λj‖ϕj‖2C0,1/2(D) . j
−1− 2ν

d
+ (d+1)(1+2ν/d)

d+2ν +ε = j−
2ν−1
d

+ε.

This implies the condition

2ν − 1
d

> 1 ⇐⇒ ν >
d+ 1

2 .

(4.9) Remark. Although, the above analysis shows that we loose a part of the decay
of the eigenvalues when considering the sequences γk and γ̃k instead of λk, this behaviour
is not reflected by numerical tests, see e.g. [GKN+14]. There, the decay behaviour of the
sequences γj and γ̃j is similar to the decay behaviour of the eigenvalues, at least for d = 1
and ν = 3/4 or ν = 3/2. In order to corroborate this, we illustrate in Figure III.2 that
the decay of the γk is essentially the same as the decay of the

√
λk for further values of ν,

namely for ν = 5/2, ν = 7/2 and ν = 9/2.
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Figure III.2: Decay of the γk for the Matérn kernels for ν = 5/2 and ν = 7/2
(d = 1, ` = 1/2, σ = 1).
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5. Regularity results in the lognormal case
In this and in the next section, we provide the regularity results which are necessary to
ensure convergence of our quadrature methods presented in Chapter IV and V. The main
results here are the bounds on the derivatives of the powers of the solution upm for some
p > 1 which builds the basis for the error estimation of the moment approximation. For the
solution itself, these results are already available, see e.g. [BNT07, Cha12, HS14, SG11].
Once more, the lognormal case is more involved and we will present the results for this
case in detail and formulate the corresponding results for the uniformly elliptic case as
corollaries in Section 6.

We would like to point out that the constants in these estimates are either generic
or Poincaré constants which appear due to the repeated use of norm equivalences. In gen-
eral, they additionally depend on p when considering the p-th power of um. Nevertheless,
they are independent of the dimensionality m of the parameter space and of the order of
differentiation. Therefore, the constants have to be treated very carefully, especially since
many of the regularity results are proven by induction.

We start with the pointwise bound on the derivatives of um. Therefore, we
shall fix some notation for multi-indices and the related derivatives. For a multi-index
α = (α1, α2, . . . , αm) ∈ Nm and a vector δ ∈ Rm, we define δα :=

∏m
k=1 δ

αk
k . Furthermore,

the binomial coefficient for two multi-indices α,β ∈ Nm is given by(
α

β

)
= α!
β!(α− β)! = α1!α2! · · ·αm!

β1! · · ·βm!(α1 − β1)! · · · (αm − βm)! .

In addition, we need a relation on multi-indices. For two multi-indices α,β ∈ Nm, we
write β ≤ α if βk ≤ αk for k = 1, . . . ,m and β < α if β ≤ α and β 6= α.

It turns out that the solution um is smooth with respect to the parametric variable
y. Hence, for q ∈ N, a Banach space X and a domain Γ ⊂ Rm, we introduce the space
Cq(Γ;X) of q-times continuously differentiable X-valued functions whose derivatives of
order α with |α| ≤ q are continuously extendable to Γ. This space is, for all q < ∞, a
Banach space with respect to the norm

(5.1) ‖v‖Cq(Γ;X) :=
∑
|α|≤q

sup
y∈Γ

∥∥∂αy v(y)
∥∥
X
.

5.1 Pointwise estimates

The differentiability of um follows from the differentiability of the diffusion coefficient am,
cf. [BNTT12], more precisely from the estimate

(5.2)
∥∥∥∥∥∂αy am(y)
am(y)

∥∥∥∥∥
L∞(D)

≤ γα,

where we set γ := [γ1, γ2, . . . , γm]ᵀ. In [BNTT12], a uniformly elliptic diffusion coefficient
is considered which fulfills (5.2). In this case, it is possible to establish estimates uniformly
in y. In the lognormal case the pointwise regularity estimates usually depend on the
parameter y. Hence, we provide the following lemma from [HS14], which is adjusted for
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our purposes. For the sake of completeness and since the proof technique is applied several
times in the subsequent analysis, we review the crucial parts of the proof.

(5.3) Lemma. The derivatives ∂αy um of the solution um to (3.5) satisfy for every
multi-index α ∈ Nm and every y ∈ Rm the estimate

(5.4)
∥∥∂αy um(y)

∥∥
H1

0 (D) ≤ |α|!
(
γ

log 2

)α√
κm(y)‖um(y)‖H1

0 (D).

Proof. We differentiate the weak formulation (3.6) with respect to the stochastic parameter
y. For |α| > 0, this leads to∫

D
∂αy
(
am(x,y)∇um(x,y)

)
∇v(x) dx = 0

since the right-hand side is independent of y. With the help of the Leibniz rule

∂αy
(
g(y)h(y)

)
=
∑
β≤α

(
α

β

)
∂βyg(y)∂α−βy h(y),

we obtain that

(5.5)

∫
D
am(x,y)∇∂αy um(x,y)∇v(x) dx

= −
∑

0 6=β≤α

(
α

β

)∫
D
∂βyam(x,y)∇∂α−βy um(x,y)∇v(x) dx.

We now fix the parametric variable y and choose the test function v = ∂αy um(y). This, in
combination with (5.2) and the Hölder inequality, yields∫

D
am(x,y)∇∂αy um(x,y)∇∂αy um(x,y) dx

= −
∑

06=β≤α

(
α

β

)∫
D
∂βyam(x,y)∇∂α−βy um(x,y)∇∂αy um(x,y) dx

≤
∑

0 6=β≤α

(
α

β

)∥∥∥∥∥∂
β
yam(y)
am(y)

∥∥∥∥∥
L∞(D)

(∫
D
am(x,y)∇∂αy um(x,y)∇∂αy um(x,y) dx

)1/2

·
(∫

D
am(x,y)∇∂α−βy um(x,y)∇∂α−βy um(x,y) dx

)1/2
.

Inserting (5.2) and dividing both sides by
(∫

D
am(x,y)∇∂αy um(x,y)∇∂αy um(x,y) dx

)1/2

leads to

(5.6)

(∫
D
am(x,y)∇∂αy um(x,y)∇∂αy um(x,y) dx

)1/2

≤
∑

0 6=β≤α

(
α

β

)
γβ
(∫

D
am(x,y)∇∂α−βy um(x,y)∇∂α−βy um(x,y) dx

)1/2
.
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The rest of the proof is performed by induction. We would like to show that

(5.7)

(∫
D
am(x,y)∇∂αy um(x,y)∇∂αy um(x,y) dx

)1/2

≤ γαB|α|
(∫

D
am(x,y)∇um(x,y)∇um(x,y) dx

)1/2
,

where Bk denotes the k-th ordered Bell number which is defined by the recurrence relation

(5.8) B0 := 1, Bn :=
n−1∑
k=0

(
n

k

)
Bk,

see [Bel34]. The inequality (5.7) is obviously fulfilled for |α| = 0. For the induction step,
we assume that (5.7) holds for all |α| < n. Then, we obtain for |α| = n by inserting (5.7)
into (5.6) that(∫

D
am(x,y)∇∂αy um(x,y)∇∂αy um(x,y) dx

)1/2

≤
∑

06=β≤α

(
α

β

)
γαB|α−β|

(∫
D
am(x,y)∇um(x,y)∇um(x,y) dx

)1/2
.

Hence, the induction step follows due to

(5.9)
∑

0 6=β≤α

(
α

β

)
B|α−β| =

n∑
k=1

∑
|β|=k

(
α

β

)
Bn−k =

n∑
k=1

(
n

k

)
Bn−k =

n−1∑
k=0

(
n

k

)
Bk = B|α|.

Finally, we arrive at the assertion by

‖∂αy um(y)‖H1
0 (D) ≤

√
1

am(y)

(∫
D
am(x,y)∇∂αy um(x,y)∇∂αy um(x,y) dx

)1/2

≤ γαB|α|

√
1

am(y)

(∫
D
am(x,y)∇um(x,y)∇um(x,y) dx

)1/2

≤ γαB|α|
√
κm(y)‖um(y)‖H1

0 (D)

and the estimate on the ordered Bell numbers Bn ≤ n!(log 2)−n, cf. [BNTT12]. �

With this bound on the derivatives of the solution um to (3.5) at hand, we can
perform the convergence analysis for the quadrature of the mean of um. To use the same
error estimates for the higher order moments, we have to provide similar bounds on the
derivatives of the powers upm of um. This is different for the second moment and the higher
order moments, since for the second moment the preceding estimates on the derivatives
of um can directly be used to prove bounds on the derivatives of u2

m. For the higher order
moments, we have to derive pointwise bounds on the W 1,p

0 (D)-norm of the solution’s
derivatives with respect to the random parameter y. Therefore, we have to assume that
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the right-hand side f belongs to Lp(D) instead of L2(D). This estimate is the Lp(D)-
extension of (5.4), but the proofs are different since we cannot exploit the symmetry in
the bilinear form anymore. Hence, the factor κm(y) is involved in the estimate on the
W 1,p

0 (D)-norm instead of the factor
√
κm(y) in the bound on the H1

0 (D)-norm (5.4). Of
course, this leads to stronger estimates for the derivatives of u2

m in terms of κm(y) in
comparison to the bounds on the derivatives of upm for p > 2. We therefore distinguish the
two cases p = 2 and p > 2 and start with the pointwise bound of the derivatives of u2

m.

(5.10) Lemma. The derivatives of u2
m, where um is the solution to (3.5), satisfy

(5.11)
∥∥∂αy u2

m(y)
∥∥
W 1,1

0 (D) . (|α|+ 1)!
(
γ

log 2

)α
κm(y)‖um(y)‖2H1

0 (D)

for all multi-indices α ∈ Nm.

Proof. With the help of the Leibniz rule, we deduce, similar to (5.5), that

(5.12)
∥∥∂αy u2

m(y)
∥∥
W 1,1

0 (D) ≤
∑
β≤α

(
α

β

)∥∥∂α−βy um(y)∂βyum(y)
∥∥
W 1,1

0 (D).

Each summand in (5.12) can be estimated due to Lemma (II.2.10) as follows∥∥∂α−βy um(y)∂βyum(y)
∥∥
W 1,1

0 (D) .
∥∥∂α−βy um(y)

∥∥
H1

0 (D)
∥∥∂βyum(y)

∥∥
H1

0 (D).

The application of Lemma (5.3) yields that

∥∥∂α−βy um(y)∂βyum(y)
∥∥
W 1,1

0 (D) . |β|! |(α− β)|!
(
γ

log 2

)α
κm(y)‖um(y)‖2H1

0 (D).

By inserting this inequality into (5.12), we conclude that

∥∥∂αy u2
m(y)

∥∥
W 1,1

0 (D) .
∑
β≤α

(
α

β

)
|β|! |(α− β)|!

(
γ

log 2

)α
κm(y)‖um(y)‖2H1

0 (D)

=
(
γ

log 2

)α
κm(y)‖um(y)‖2H1

0 (D)

|α|∑
k=0

(|α| − k)! k!
∑
|β|=k

(
α

β

)
.

In view of
|α|∑
k=0

(|α| − k)! k!
∑
|β|=k

(
α

β

)
=
|α|∑
k=0

(|α| − k)! k!
(
|α|
k

)
=
|α|∑
k=0
|α|! = (|α|+ 1)!,

we finally arrive at the assertion (5.11). �

For the derivatives of the higher powers of um, we need, as mentioned above,
regularity results for the derivatives of um in the W 1,p

0 (D)-norm. After that, we shall
apply the Faà di Bruno formula, which is the multivariate analogue to the chain rule, to
achieve estimates on the derivatives ∂αy upm.
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(5.13) Lemma. Let p > 2 and let the right-hand side f be contained in Lp(D). Then,
the solution um to (3.5) is contained in W 1,p

0 (D) and satisfies the regularity estimate

(5.14)
∥∥um(y)

∥∥
W 1,p

0 (D) .
1

am(y)‖f‖L
p(D).

The derivatives of um with respect to the parametric variable y can be estimated by

(5.15)
∥∥∂αy um(y)

∥∥
W 1,p

0 (D) ≤ |α|!
(
C(p,D)γ

log 2

)α
κm(y)‖um(y)‖

W 1,p
0 (D)

with a constant C(p,D) ≥ 1. Additionally, the derivatives of the powers upm with respect
to the parametric variable y fulfill the bound

(5.16)
∥∥∂αy upm(y)

∥∥
W 1,1

0 (D) . |α|!
(
C(p,D)pγ

log 2

)α
κm(y)p‖um(y)‖p

W 1,p
0 (D)

.

Proof. At first, we notice that the bilinear form

(5.17) (u, v)H1
0 (D) := (∇v,∇u)[L2(D)]d

defines a scalar product on the Hilbert space H1
0 (D). Let 1 < p, p′ < ∞ be dual ex-

ponents, i.e. 1/p + 1/p′ = 1. Then, the scalar product (5.17) extends continuously to a
duality product on W 1,p

0 (D) ×W 1,p′
0 (D). It is proven in [Sim72] that, for each function

u ∈W 1,p
0 (D), the estimate

‖u‖
W 1,p

0 (D) = ‖∇u‖[Lp(D)]d = sup
0 6=v∈[Lp′ (D)]d

(∇u, v)L2(D)
‖v‖[Lp′ (D)]d

≤ C(p,D) sup
06=v∈W 1,p′

0 (D)

(u, v)H1
0 (D)

‖v‖
W 1,p′

0 (D)

is valid with a constant C(p,D) ≥ 1. This follows from the fact that W 1,p′
0 (D) is densely

embedded into [Lp′(D)]d by the mapping v 7→ ∇v, cf. [Sim72]. From this, we conclude
that it holds for each fixed y ∈ Rm

‖um(y)‖
W 1,p

0 (D) . sup
06=v∈W 1,p′

0 (D)

(
um(y), v

)
H1

0 (D)

‖v‖
W 1,p′

0 (D)

≤ 1
am(y) sup

0 6=v∈W 1,p′
0 (D)

Bm,y
(
um(y), v

)
‖v‖

W 1,p′
0 (D)

,

with the continuous extension of the bilinear form from (3.7) onto W 1,p
0 (D) ×W 1,p′

0 (D),
that is

Bm,y
(
um(y), v

)
=
∫
D
a(x,y)∇um(x,y)∇v(x) dx.
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Regard that H1
0 (D) ⊂W 1,p′

0 (D) since p′ < 2. In view of f ∈ Lp(D), it is easy to verify by
a density argument that equation (3.6) is still valid for v ∈W 1,p′

0 (D). Therefore, we have

sup
06=v∈W 1,p′

0 (D)

Bm,y
(
um(y), v

)
‖v‖

W 1,p′
0 (D)

= sup
06=v∈W 1,p′

0 (D)

(f, v)L2(D)
‖v‖

W 1,p′
0 (D)

. ‖f‖Lp(D),

which follows from the Hölder inequality and the estimate ‖v‖Lp′ (D) . ‖v‖W 1,p′
0 (D). This

establishes the inequality (5.14).
The second assertion follows similarly to the case p = 2 which is considered in

Lemma (5.3). We show the parts of the proof which are different and refer to the proof of
Lemma (5.3) for the identical parts. We prove by induction that it holds

(5.18)
∥∥am(y)∇∂αy um(y)

∥∥
[Lp(D)]d ≤ |α|!

(
C(p,D)γ

log 2

)α
‖am(y)∇um(y)‖[Lp(D)]d .

The case |α| = 0 is trivial. Let now (5.18) be satisfied for all |α| < n. Then, we have for
|α| = n that

(5.19)
∥∥am(y)∇∂αy um(y)

∥∥
[Lp(D)]d ≤ C(p,D) sup

06=v∈W 1,p′
0 (D)

Bm,y
(
∂αy um(y), v

)
‖v‖

W 1,p′
0 (D)

.

Now, differentiation of the bilinear form (3.7) with respect to y yields

∂αyBm,y
(
um(y), v

)
= Bm,y

(
∂αy um(y), v

)
+

∑
0 6=β≤α

(
α

β

)∫
D
∂βyam(x,y)∇∂α−βy um(x,y)∇v(x) dx.

From the differentiation of the variational formulation (3.6), we know that the left-hand
side vanishes. Therefore, we obtain

Bm,y
(
∂αy um(y), v

)
≤

∑
0 6=β≤α

(
α

β

)∥∥∥∥∂βyam(y)
am(y)

∥∥∥∥
L∞(D)

∫
D

∣∣am(x,y)∇∂α−βy um(x,y)∇v(x)
∣∣ dx

≤
∑

06=β≤α

(
α

β

)
γβ
∥∥am(y)∇∂α−βy um(y)

∥∥
[Lp(D)]d‖v‖W 1,p′

0 (D).

Inserting this into (5.19) leads to∥∥am(y)∇∂αy um(y)
∥∥

[Lp(D)]d

≤
∑

0 6=β≤α

(
α

β

)
(C(p,D)γ)β

∥∥am(y)∇∂α−βy um(y)
∥∥

[Lp(D)]d .

The inequality (5.18) follows then by inserting the induction hypothesis and the same
combinatorial estimates as in the proof of Lemma (5.3).
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Finally, to establish estimate (5.16), we apply Faà di Bruno’s formula, cf. [CS96].
For n := |α|, this formula provides that

(5.20) ∂αy u
p
m(y) =

n∑
r=1

p(p− 1) · · · (p− r + 1)up−rm (y)
∑

P (α,r)
α!

n∏
j=1

(
∂
βj
y um(y)

)kj
kj !βj !

.

The set P (α, r) contains restricted integer partitions of the multi-index α into r non-
vanishing multi-indices. It is defined by

P (α, r) :=
{(

(k1,β1), . . . , (kn,βn)
)
∈ (N× Nm)n :

n∑
i=1

kiβi = α,
n∑
i=1

ki = r,

and ∃ 1 ≤ s ≤ n
∣∣ ki = 0 and βi = 0 for all 1 ≤ i ≤ n− s,

ki > 0 for all n− s+ 1 ≤ i ≤ n and 0 ≺ βn−s+1 ≺ · · · ≺ βn
}
.

For multi-indices β,β′ ∈ Nm, the relation β ≺ β′ means either |β| < |β′| or, if |β| = |β′|, it
denotes the lexicographical order which means that β1 = β′1, . . . , βk = β′k and βk+1 < β′k+1
for some 0 ≤ k < m. Equation (5.20) together with (5.15) and Lemma (II.2.10) yield that

‖∂αy upm(y)‖
W 1,1

0 (D)

≤
n∑
r=1

p(p−1) · · · (p−r+1)
∑

P (α,r)

α!∏n
j=1 kj !βj !

∥∥∥∥up−rm (y)
n∏
j=1

(
∂β

j

y um(y)
)kj∥∥∥∥

W 1,1
0 (D)

.
(
C(p,D)γ

log 2

)α
κm(y)p‖um(y)‖p

W 1,p
0 (D)

·
n∑
r=1

p(p− 1) · · · (p− r + 1)
∑

P (α,r)

α!∏n
j=1 kj !βj !

n∏
j=1

(
|βj |!

)kj .
From [CS96], we know that

∑
P (α,r)

α!∏n
j=1 kj !βj !

= Sn,r,

where Sn,r denote the Stirling numbers of the second kind, cf. [AS64]. Moreover, since∏n
j=1

(
|βj |!

)kj ≤ |α|!, we can further estimate that

n∑
r=1

p(p− 1) · · · (p− r + 1)
∑

P (α,r)

α!∏n
j=1 kj !βj !

n∏
j=1

(
|βj |!

)kj
≤ |α|!

n∑
r=1

p(p− 1) · · · (p− r + 1)Sn,r = |α|!pn.

The last inequality follows from the theory of generating functions for the Stirling numbers
of the second kind, see e.g. [AS64]. This finally completes the proof. �
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The constant C(p,D), which arises from the inequality

(5.21) sup
06=v∈[Lp′ (D)]d

(∇u, v)L2(D)
‖v‖[Lp′ (D)]d

≤ C(p,D) sup
06=v∈W 1,p′

0 (D)

(u, v)H1
0 (D)

‖v‖
W 1,p′

0 (D)
,

will be used several times in the rest of this thesis. Therefore, whenever C(p,D) occurs in
the sequel, it is associated with the constant in (5.21).

5.2 Analytic extension

The Gauss-Legendre quadrature on a finite interval as well as the Gauss-Hermite quadra-
ture on the real line converge exponentially if the integrand can be extended analytically
into a region of the complex plane. Therefore, we establish in this subsection that the
solution um and its powers can be extended analytically with respect to the parametric
variable y into a subset of the m-dimensional space Cm.

Since the diffusion coefficient am(x,y) is not uniformly elliptic with respect to y
in the lognormal case, we cannot expect the solution um of (3.5) to be uniformly bounded
in y. Thus, um may not be contained in the Banach space Cq

(
Rm;H1

0 (D)
)
for q ∈ N.

Nonetheless, we can multiply um by an auxiliary weight and end up with a bounded
product in the sense of a weighted space which is defined as follows, cf. [BNT07].

(5.22) Definition. Let X denote some Banach space, for example X = H1
0 (D) or

X = W 1,1
0 (D). For X and a weight w : Rm → R+, we define the weighted space

C0
w(Rm;X) :=

{
v : Rm → X : v is continuous and sup

y∈Rm
w(y)‖v(y)‖X <∞

}
equipped with the norm

‖v‖C0
w(Rm;X) := sup

y∈Rm
w(y)‖v(y)‖X .

For our problem setting, the weight w should be chosen in such a way that the
solution um is contained in C0

w(Rm;H1
0 (D)). Additionally, the weight should be integrable

with respect to the Gaussian density and the value of this integral should be independent
of the dimensionality m.

(5.23) Definition. For γ := (γ1, . . . , γm) from (2.4), let β = (β1, . . . , βm) ∈ Rm be
such that β > γ. Then, we define the auxiliary weight

σ(y) :=
m∏
k=1

σk(yk) with σk(yk) := exp(−βk|yk|).

If we choose w = σ in Definition (5.22), then the space C0
σ(Rm;X) satisfies that

C0
σ(Rm;X) ⊂ Lpρ(Rm;X) for all p ∈ N. This originates from the fact that

‖v‖Lpρ(Rm;X) ≤
(∫

Rm

(
σ(y)

)−p
ρ(y) dy

) 1
p

‖v‖C0
σ(Rm;X) <∞
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for all v ∈ C0
σ(Rm;X) because of pβkyk = O(y2

k) for yk → ∞ and the integrability of the
normal distribution’s tails. In particular, we will use several times the continuity of the
Bochner integral operator

I : C0
σ(Rm;X)→ X, v 7→ Iv :=

∫
Rm

v(y) dy,

which satisfies

(5.24) ‖Iv‖X ≤ C(σ)‖v‖C0
σ(Rm;X) with C(σ) =

∫
Rm

(
σ(y)

)−1
ρ(y) dy.

The constant C(σ) depends on the choice of β and may grow exponentially in m since the
domain of integration is Rm. This is however not necessarily the case here. If we integrate
the particular weight

(5.25) σs(y) :=
m∏
k=1

σs,k(yk) :=
m∏
k=1

exp(−sγk|yk|), s ≥ 1

with respect to the Gaussian measure, we obtain, cf. [Git10], that

(5.26) C(σs) =
(∫

Rm
σs(y)−1ρ(y) dy

)
≤ exp

(
s2

m∑
k=1

γ2
k + s

√
2
π

m∑
k=1

γk

)
.

This expression depends only on s and the decay of the sequence {γk}k. It is bounded
independently of the dimensionality m due to (2.4). In Proposition (5.27), we will show
that um belongs to C0

σs

(
Rm;H1

0 (D)
)
. Hence, the weight σs fulfills the desired properties

and we assume from now on that the weight is given by (5.25).

(5.27) Proposition. The solution um of (3.5) is contained in C0
σs

(
Rm;H1

0 (D)
)
for all

s ≥ 1. In particular, it holds that

‖um‖C0
σs

(Rm;H1
0 (D)) . ‖f‖L2(D).

Moreover, the square u2
m satisfies u2

m ∈ C0
σs

(
Rm;W 1,1

0 (D)
)
for all s ≥ 2 with

‖u2
m‖C0

σs
(Rm;W 1,1

0 (D)) . ‖f‖
2
L2(D).

Proof. In view of inequality (3.11) and since 1/am(y) = exp
(∑m

k=1 γk|yk|
)
, we derive, for

all s ≥ 1, the first estimate from

σs(y)‖um(y)‖H1
0 (D) . exp

(
m∑
k=1

(γk − sγk)|yk|
)
‖f‖L2(D) ≤ ‖f‖L2(D).

For all s ≥ 2, the second estimate follows from

σs(y)‖u2
m(y)‖

W 1,1
0 (D) ≤ σs(y)‖2um(y)∇um(y)‖L1(D)

. 2σs(y)‖um(y)‖2H1
0 (D) . ‖f‖

2
L2(D). �
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Due to the results of Subsection 5.1, we can bound all derivatives with respect
to y of the solution um and its square u2

m in C0
σs(R

m;X). Moreover, if the right-hand side
f belongs to Lp(D), we obtain similar results for arbitrary powers upm of um.

(5.28) Proposition. For all weights σs with s ≥ 2, the partial derivatives of the solution
um to (3.5) satisfy that

(5.29)
∥∥∂αy um∥∥C0

σs (Rm;H1
0 (D)) . |α|!

(
γ

log 2

)α
‖f‖L2(D).

Especially, it holds that ∂αy u ∈ C0
σs

(
Rm;H1

0 (D)
)
. The partial derivatives of u2

m fulfill
∂αy u

2 ∈ C0
σs

(
Rm;W 1,1

0 (D)
)
for all σs with s ≥ 4 and the bound

(5.30)
∥∥∂αy u2

m

∥∥
C0

σs
(Rm;W 1,1

0 (D)) . (|α|+ 1)!
(
γ

log 2

)α
‖f‖2L2(D) ≤ |α|!

( 2γ
log 2

)α
‖f‖2L2(D).

Proof. From Lemma (5.3), we obtain that∥∥∂αy um∥∥C0
σs

(Rm;H1
0 (D)) = sup

y∈Rm
σs(y)

∥∥∂αy um(y)
∥∥
H1

0 (D)

≤ |α|!
(
γ

log 2

)α
sup

y∈Rm

√
κm(y)σs(y)‖um(y)‖H1

0 (D).

In view of (3.10), we know that
√
κm(y) = exp

(∑m
k=1 γk|yk|

)
. This implies that

∥∥∂αy um∥∥C0
σs (Rm;H1

0 (D)) ≤ |α|!
(
γ

log 2

)α
sup

y∈Rm
exp

(
m∑
k=1

(1− s)γk|yk|
)
‖um(y)‖H1

0 (D)

. |α|!
(
γ

log 2

)α
‖f‖L2(D) sup

y∈Rm
exp

(
m∑
k=1

(2− s)γk|yk|
)
.

Then, the inequality (5.29) follows from s ≥ 2. The bound (5.30) is obtained in the same
way by using Lemma (5.10) instead of Lemma (5.3). �

Analogously, we obtain that the higher powers upm of um fulfill the following
proposition.

(5.31) Proposition. Under the assumptions of Lemma (5.13), the derivatives of upm
with respect to y belong to C0

σs

(
Rm;W 1,1

0 (D)
)
for all σs with s ≥ 3p and it holds that

(5.32) ‖∂αy upm‖C0
σs

(Rm;W 1,1
0 (D)) . |α|!

(
C(p,D)pγ

log 2

)α
‖f‖pLp(D).

We finish this section with the analytic extension of functions v ∈ C0
σs(R

m;X)
whose derivatives admit certain decay properties. We distinguish between the analytic
extension in a particular stochastic direction and the extension in all directions at the
same time. For the first result, we follow the notation in [BNT07] and introduce

(5.33)
σ?s,k(y?k) :=

m∏
i=1
i6=k

σs,i(yi), ρ?k(y?k) :=
m∏
i=1
i6=k

ρ(yi)

and y?k := (y1, . . . , yk−1, yk+1, . . . , ym) ∈ Rm−1.
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Then, we have the following statement which is adopted from Lemma (3.2) in [BNT07].
We shortly review the most important steps of the proof.

(5.34) Theorem. For v ∈ C0
σs(R

m;X), let the derivatives of v with respect to y fulfill
the bound

(5.35)
∥∥∂jykv∥∥C0

σs (Rm;X) . j!µ
j
k

with some constant µk ∈ (0,∞). Then, for τk ∈ (0, 1/µk), the function

v : R→ C0
σ?
s,k

(Rm−1;X), yk 7→ v(x, yk,y?k)

admits an analytic extension v(x, z,y?k) for z ∈ Σ(R, τk) := {z ∈ C : dist(z,R) ≤ τk}.
Moreover, the function v is bounded in the norm

(5.36) ‖v‖
C0
σs,k

(
Σ(R,τk);C0

σ?
s,k

(Rm−1;X)
) := sup

z∈Σ(R,τk)
σs,k(Re(z))‖v(z)‖C0

σ?
s,k

(Rm−1;X).

Proof. For every yk ∈ R, we consider the Taylor expansion around yk in z ∈ C

v(x, z,y?k) =
∞∑
j=0

(z − yk)j

j! ∂jykv(x, yk,y?k).

Thus, given an arbitrary yk ∈ R, we can estimate that

σs,k(yk)‖v(z)‖C0
σ?
s,k

(Rm−1;X) ≤
∞∑
j=0

|z − yk|j

j! σs,k(yk)
∥∥∂jykv(yk)

∥∥
C0

σ?
s,k

(Rm−1;X)

≤
∞∑
j=0

|z − yk|j

j!
∥∥∂jykv∥∥C0

σs (Rm;X) .
∞∑
j=0

(
|z − yk|µk

)j
.

The last expression converges for all |z− yk| ≤ τk < 1/µk. Since we can cover Σ(R, τk) by
the union of balls |z − yk| ≤ τk, the function v can be extended analytically to the whole
region Σ(R, τk) and is bounded with respect to the norm (6.7). �

This theorem establishes that the solution um to (3.5) as well as its powers upm are
analytically extendable in each stochastic dimension in a strip around the real line. This
is sufficient to perform the error analysis of a tensor product Gauss-Hermite quadrature.
Since we will also consider a sparse grid Gaussian quadrature, we have to provide the
analytic extension of the integrand into Σ(Rm, τ ), where Σ(Rm, τ ) is an m-fold Cartesian
product of the form

(5.37) Σ(Rm, τ ) :=
m×
k=1

Σ(R, τk)

with Σ(R, τk) defined as in Theorem (5.34). This is proven in the following theorem which
is a modified version of Theorem (2.1) in [BNTT12].
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(5.38) Theorem. Let v ∈ C0
σs(R

m;X) satisfy the estimate

(5.39) ‖∂αy v(y)‖X . h(y)|α|!µα

for some vector µ ∈ Rm and a continuous function h : Rm → R with h(y) . σs(y). Then,
the function v is analytically extendable to the domain Σ(Rm, τ ) where

(5.40) 0 < τk <
1

C(δ)k1+δµk
and C(δ) :=

∞∑
k=1

k−1−δ.

Moreover, v is bounded in the norm

‖v‖C0
σs (Σ(Rm,τ );X) := sup

z∈Σ(Rm,τ )
σs(Re(z))‖v(z)‖X ,

where Re(z)k := Re(zk).

Proof. We assign to each vector z ∈ Σ(Rm, τ ) the vector y = Re(z) ∈ Rm. Then, the
Taylor expansion of u in y is given by

v(z) =
∑
α∈Nm

1
α!∂

α
y v(y)(z− y)α.

If we define the coordinatewise modulus of z ∈ Cm by abs(z), it holds that

‖v(z)‖X .
∑
α∈Nm

h(y) |α|!
α! µ

α abs(z− y)α = h(y)
∞∑
k=0

∑
|α|=k

k!
α!µ

α abs(z− y)α.

By the generalized Newton binomial formula, see [BNTT12],

∑
|α|=k

k!
α!µ

α abs(z− y)α =
(

m∑
n=1

µn abs(z− y)n

)k

it follows, since abs(z− y)n ≤ τn, that

‖v(z)‖X . h(y)
∞∑
k=0

(
m∑
n=1

µn abs(z− y)n

)k
≤ h(y)

∞∑
k=0

(
m∑
n=1

µnτn

)k
.

Due to (6.9), we obtain that
∑∞
n=1 µnτn < 1 which yields

‖v(z)‖X . h(y).

Furthermore, we deduce that

‖v‖C0
σs

(Σ(Rm,τ );X) = sup
z∈Σ(Rm,τ )

σs(Re(z))‖v(z)‖X . σs(y)h(y) <∞

which completes the proof. �
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6. Regularity results in the uniformly elliptic case
In this section, we state the corresponding results to those from Section 5 for the uniformly
elliptic case. Since the proofs of these results are either known or can immediately be
derived from the proofs of the results in the lognormal case, there are omitted.

We present the associated results to the pointwise regularity estimates Lemma
(5.3), Lemma (5.10) and Lemma (5.13) for the uniformly elliptic case. According to
[CDS10], the derivatives of the solution um to (3.3) fulfill the following lemma.
(6.1) Lemma ([CDS10]). For all α ∈ Nm the derivatives of the solution um to (3.3)
satisfy the estimate

(6.2) ‖∂αy um(y)‖H1
0 (D) ≤ |α|!

(
γ

a

)α
‖um(y)‖H1

0 (D).

With the same techniques as in the lognormal case, we arrive at estimates for
the derivatives of the powers upm of the solution um to (3.3). Again, in the case p = 2 we
can use the bound (6.2) directly, whereas in the case p > 2 the Lp-extension of (6.2) has
to be applied. This yields a better constant in the case p = 2 in terms of the ratio of the
continuity constant a and the ellipticity constant a. We state these results in the following
corollary.
(6.3) Corollary. Let um be the solution to (3.3). Then, it holds for all α ∈ Nm that

(6.4) ‖∂αy u2
m(y)‖

W 1,1
0 (D) . (|α|+ 1)!

(
γ

a

)α
‖u(y)‖2H1

0 (D).

Moreover, if f ∈ Lp(D), we obtain the analogous bounds to Lemma (5.13):∥∥um(y)
∥∥
W 1,p

0 (D) .
1
a
‖f‖Lp(D),

∥∥∂αy um(y)
∥∥
W 1,p

0 (D) . |α|!
(
C(p,D)γ

a

)αa
a
‖um(y)‖

W 1,p
0 (D),∥∥∂αy upm(y)

∥∥
W 1,1

0 (D) . |α|!
(
C(p,D)pγ

a

)α(a
a

)p
‖um(y)‖p

W 1,p
0 (D)

.

With the aid of an example, we illustrates that the estimates on the derivatives
of the solution um in Lemma (6.1) are sharp.
(6.5) Remark. The bound (6.2) on the derivative of um can be motivated by the
following example from [BNTT12, CDS10]: Consider equation (3.3) with the diffusion
coefficient am(y) = 1 +

∑m
i=1 biyi, where bi > 0, yi ∼ UNI(−1/2, 1/2) and

∑m
i=1 bi < 2.

Moreover, let f ∈ L2(D) and denote by um the solution to
−div(am(y)∇um(y)) = f in D, um = 0 on ∂D.

Then, the derivatives of um with respect to y can be determined analytically as

∂αy um(x,y) = g(x) |α|!bα

am(y)|α|+1 ,

where g is the solution to
−∆g = f in D, g = 0 on ∂D.
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In the uniformly elliptic case, the pointwise regularity estimates in Lemma (6.1)
and Corollary (6.3) directly imply that the solution um is contained in Ck(Γ;H1

0 (D))
and that its powers belong to Ck(Γ;W 1,1

0 (D)). Thus, we obtain, analogously to Theorem
(5.34) and Theorem (5.38), the following two results on the analytic extendability.

(6.6) Corollary. For v ∈ C0(Γ;X), let the derivatives of v with respect to y fulfill
the bound∥∥∂jykv∥∥C0(Γ;X) . j!µ

j
k

with some constant µk ∈ (0,∞). Then, for τk ∈ (0, 1/µk), the function

v : Γk → C0(Γ;X), yk 7→ v(x, yk,y?k)

admits an analytic extension v(x, z,y?k) for z ∈ Σ(Γk, τk) := {z ∈ C : dist(z,Γk) ≤ τk}.
In addition, the function v is bounded with respect to the norm

(6.7) ‖v‖C0(Σ(Γk,τk);C0(Γ?
k
;X)) := sup

z∈Σ(Γk,τk)
‖v(z)‖C0(Γ?k;X)

where Γ?k := ×
i=1,i 6=k

Γi.

(6.8) Corollary. The function v ∈ C0(Γ;X) is analytically extendable into the do-
main Σ(Γ, τ ) :=×m

k=1 Σ(Γk, τk) where

(6.9) τk <
1

C(δ)k1+δµk
and C(δ) =

∞∑
k=1

k−1−δ,

if the derivatives of v satisfy for all multi-indices α ∈ Nm the bound
∥∥∂αy v(y)

∥∥
X
. |α|!µα.

Furthermore, v is bounded in the norm

‖v‖C0(Σ(Γ,τ );X) := sup
z∈Σ(Γ,τ )

‖v(z)‖X .
1

1− γ

where γ is given by γ =
∑m
k=1 τkµk < 1.





Chapter IV

(QUASI-) MONTE CARLO QUADRATURE

The computation of the moments (III.3.15) corresponds to the evaluation of the m-
dimensional integration operator I : L1

ρ(Γ;X)→ X

(0.1) Iv(x) =
∫

Γ
v(x,y)ρ(y) dy

for v(x,y) = upm(x,y). For the approximation, we will use quadrature rules Q(m)
N given

by

(0.2)
(
Q(m)
N v

)
(x) =

N∑
i=1

wiv(x, ξi).

Herein, N denotes the number of samples and ξi ∈ Rm is a sample point which is combined
with the quadrature weight wi.

In this chapter, we discuss Monte Carlo and quasi-Monte Carlo quadrature rules.
These quadrature rules are classically of the form

(0.3)
(
Q(m)

(Q)MC,Nv
)
(x) = 1

N

N∑
i=1

v(x, ξi).

Hence, such quadrature rules always use the same weight wi = 1/N for all sample points
ξi.

(0.4) Remark. The evaluation of the integrand in each sample point in (0.2) corre-
sponds to the solution of an elliptic boundary value problem which is defined on the spatial
domain D. In general, such boundary value problems cannot be solved analytically and
so we need to solve them numerically. Of course, this introduces a discretization error in
the spatial variable which is discussed in Chapter VI. In addition, the cost complexity of
the quadrature rules from Chapters IV and V is firstly analyzed in terms of the number of
quadrature points. This corresponds to the assumption that each sample can be evaluated
in constant time, i.e. it requires O(1) operations. Of course, this assumption does not hold
in general. Hence, we will also analyze the computational cost for solving the associated
deterministic boundary value problem later on in Chapter VI.
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In our applications, the dimensionality m of the domain of integration in (0.1)
corresponds to the number of random parameters which are required for an accurate re-
presentation of the diffusion coefficient in (III.3.3) or (III.3.5). Hence, the dimensionality
increases with the desired accuracy ε and tends, in general, to infinity as ε → 0. There-
fore, it is important to construct quadrature methods which converge as far as possible
independently of m.

Monte Carlo quadrature is the method of choice for integration problems where
the dimensionality of the integration domain is large, at least if the integrand depends
almost equally on each dimension. We refer to this situation as the unweighted case. This
is due to the fact that the Monte Carlo method yields a convergence rate, in terms of the
number of quadrature points, which is independent of the dimensionality. For deterministic
quadrature methods, which means that the sample points are chosen deterministically,
the convergence rate usually deteriorates when the dimensionality is large, at least in the
unweighted case. In this case, the cost(ε), which is the number of quadrature points to
get an error of O(ε), may grow exponentially in the dimension m. The situation changes
when we take into account that the integrands under consideration depend anisotropically
on the different parameter dimensions. In particular, the higher dimensions are of less
importance to the integrands. The dependencies are reflected by the regularity results
of the solution and its powers in Section III.5 and Section III.6. This is the weighted
case which, however, offers possibilities to get rid of the exponential dependency on the
dimensionality of deterministic quadrature rules.

(0.5) Remark. In the literature, certain integration problems are investigated in the
context of tractability, see e.g.[SW97, Woź94]. Instead of the integration of a single func-
tion, the standard setting there is to consider the integration in certain Banach spaces
Y ⊂ L1

ρ(Γ) of real valued functions. The cost(ε) corresponds to the number of quadrature
points which are required to get a worst case error O(ε) with respect to all normal-
ized functions in Y. Roughly speaking, the associated integration problem is then called
(polynomially) tractable if there exists a quadrature method such that the cost(ε) can be
bounded by a polynomial in m and ε. Otherwise, the problem is called intractable. There
have been established a lot of positive results, i.e. proofs of tractability, as well as negative
results, i.e. proofs of intractability, in the past 15 years. For an insightful overview of this
topic see [NW08, NW10, NW12]. Nevertheless, even if an integration problem is proven
to be tractable, this implies only the existence and not necessarily the constructability
of the respective quadrature rule, where the latter one is known as a constructive proof
of tractability. Thus, it has also become a challenge to find the quadrature rules which
corroborate the proven tractability results.

We will not focus on the construction of new quadrature methods in this chap-
ter. The main challenge for us is to prove that the quasi-Monte Carlo method based on
Halton points converges, under certain decay conditions on the sequence {γk}k, nearly
dimension-independent for the approximation of the moments in the lognormal case. For
the uniformly elliptic case, this can straightforwardly be derived with the application of
findings from [KSS12a, Wan02]. But, as we will see, this result cannot immediately be
transferred to the lognormal case.
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1. Monte Carlo quadrature

In the case of the Monte Carlo quadrature, the sample points in (0.3) are chosen randomly.
Hence, we need a (pseudo-) random number generator which produces m-dimensional ran-
dom vectors, independent and identically distributed according to the underlying density
function ρ. There are two main advantages of the Monte Carlo quadrature: The method
does not suffer from the curse of dimensionality and the convergence result requires only
weak regularity conditions on the integrand. The drawback of this method is that it con-
vergences only with the low algebraic rate O(N−1/2) in the root mean square sense, see
e.g. [HH64]. More precisely, one has that

(1.1)
(
E‖(I−QN )v‖2X

) 1
2
. N−

1
2 ‖v‖L2

ρ(Γ;X),

see e.g. [BSZ11]. For the sake of simplicity, we restrict ourselves to this estimate, although,
as mentioned in Chapter I, convergence in distribution could be considered as well. From
(1.1), we derive the following proposition.
(1.2) Proposition. The Monte Carlo quadrature for the approximation of the mo-
ments of the solution um in the uniformly elliptic (III.3.3) as well as in the lognormal
case (III.3.5) converges in the root mean square sense dimension-independently with an
algebraic rate of 1/2. It holds

(1.3)
(
E‖(I−QN )um‖2H1

0 (D)

) 1
2
. N−

1
2 ‖f‖L2(D)

for the approximation of the mean and

(1.4)
(
E‖(I−QN )upm‖2W 1,1

0 (D)

) 1
2
. N−

1
2 ‖f‖pLp(D)

for the approximation of the higher order moments with constants which depend on p but
not on m.

Proof. The regularity results of the previous chapter provide that the solution um belongs
to L2

ρ(Γ;H1
0 (D)) and that its powers upm belong to L2

ρ

(
Γ;W 1,1

0 (D)
)
. This follows in the

uniformly elliptic case immediately from the stability estimate (III.3.8) for um and from
the combination of Corollary (III.6.3) with

(1.5) ‖upm(y)‖
W 1,1

0 (D) . ‖um(y)‖p
W 1,p

0 (D)

for upm.
In the lognormal case, we establish the assertion by analogous results. On the one

hand, for um, we exploit the stability estimate (III.3.11) and the integrability of 1/am(y)
with respect to the Gaussian density, see (III.5.26). On the other hand, for upm, we use
the above estimate (1.5), and apply afterwards the Lp-stability estimate (III.5.14) and the
integrability of 1/am(y)p with respect to the Gaussian density.

This implies that it holds for all p ∈ N in the uniformly elliptic as well as in the
lognormal case that

(1.6) ‖um‖L2
ρ(Γ;H1

0 (D)) . ‖f‖L2(D) and ‖upm‖L2
ρ(Γ;W 1,1

0 (D)) . ‖f‖
p
Lp(D)

which establishes the assertion. �
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2. Quasi-Monte Carlo quadrature

From now on, we assume that the parameter domain is given by Γ = [−1/2, 1/2]m in
the uniformly elliptic case and that the distribution of the parameter y is given by the
uniform density ρ(y) ≡ 1. Hence, the random parameters yk are independent for all
k = 1, . . . ,m and uniformly distributed on [−1/2, 1/2]. This simplifies the analysis of
quasi-Monte Carlo quadrature methods which are usually constructed over the unit cube
[0, 1]m. The construction of quadrature rules over [−1/2, 1/2]m is then simply obtained by
shifting each quadrature point by the vector −1/2 := [−1/2, . . . ,−1/2]ᵀ ∈ Rm. Likewise,
in this section, we will make use of the vectors 0,1/2 and 1 which are defined analogously
to the vector −1/2.

2.1 General remarks

The error estimation of the quasi-Monte Carlo quadrature is usually performed for func-
tions f : [0, 1]m → R of bounded variation in the sense of Hardy and Krause, i.e.

VHK(f) :=
∑

‖α‖∞=1
V (|α|)(f(yα,1)

)
<∞,

where V (m)(f) is the variation of f on [0, 1]m in the sense of Vitali, see e.g. [Nie92]. For a
given vector y ∈ Rm, we denote by yα ∈ R|α| the compressed vector which contains those
components yk of y where αk = 1. Additionally, for z ∈ Rm, we write (yα, z) ∈ Rm for the
vector whose k-th component is given either by yk if αk = 1 or by zk if αk = 0. For z = 1,
the vector (yα, z) is contained in the |α|-dimensional face

{
y ∈ [0, 1]m : yj = 1 for αj = 0

}
,

see [Nie92]. Thus, f(yα,1) corresponds to the restriction of f to this |α|-dimensional face.
Note that the variation in the sense of Vitali has a simple expression if the function f has
continuous partial derivatives. Then, it holds that

V (m)(f) =
∫

[0,1]m

∣∣∣∣ ∂mf

∂y1 · · · ∂ym
(y)
∣∣∣∣ dy.

Hence, the variation in the sense of Hardy and Krause can be written as

VHK(f) =
∑

‖α‖∞=1

∫
[0,1]|α|

∣∣∂αy f(yα,1)
∣∣ dyα.

The error of a quasi-Monte Carlo method over the unit cube [0, 1]m is estimated
for functions of bounded variation by means of the star discrepancy D?∞(ΞN ) of the set
ΞN =

{
ξ1, . . . , ξN

}
⊂ [0, 1]m of sample points. It is defined by

D?∞(ΞN ) := sup
t∈[0,1]m

|discrΞN (t)|.

Herein, the local discrepancy function discrΞN : [0, 1]m → R is given by

discrΞN (t) := Vol
(
[0, t)

)
− 1
N

N∑
i=1

1[0,t)
(
ξi
)
,
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where Vol
(
[0, t)

)
denotes the Lebesgue measure of the cuboid [0, t). More precisely, the

quadrature error can be estimated for functions f of bounded variation in the sense of
Hardy and Krause by

(2.1) |(I−QΞN )f | ≤ D?∞(ΞN )VHK(f).

This estimate is known as the Koksma-Hlawka inequality, cf. [Nie92]. The discrepancy
measures the deviation of the sequence ΞN from the uniform distribution on [0, 1]m. In
case of certain, so-called low discrepancy point sequences, e.g. the Sobol sequence, the
Niederreiter sequence or the Halton sequence, the star discrepancy can typically be esti-
mated to be of the order O

(
N−1(logN)m

)
, see e.g. [Ata04, Nie92].

Estimate (2.1) does not reflect any anisotropic behaviour of the integrand. Never-
theless, one can derive a weighted version of the Koksma-Hlawka inequality, cf. [KSS12b].
To that end, we start with the Zaremba-Hlawka identity, see [Hla61, Zar68], which provides
an explicit representation of the quadrature error

(2.2) (I−QΞN )f =
∑

‖α‖∞=1
(−1)|α|

∫
[0,1]|α|

∂αy f(yα,1) discrΞN (yα,1) dyα.

Following [KSS12b], we insert weights ωα ∈ R independent of x and y in (2.2) which yields

(I−QΞN )f =
∑

‖α‖∞=1
(−1)|α|

∫
[0,1]|α|

∂αy f(yα,1)ω−1/2
α ω1/2

α discrΞN (yα,1) dyα.

The application of Hölder’s inequality for the integral as well as for the sum in the above
equation yields the desired weighted and generalized Koksma-Hlawka inequality

(2.3)
∣∣(I−QΞN )v

∣∣ ≤ Dr,sw (ΞN )‖f‖Wr′,s′
w

with dual exponents r,r′ and s,s′, respectively. The weighted discrepancy Dr,sw (ΞN ) is
defined by

(2.4) Dr,sw (ΞN ) :=
( ∑
‖α‖∞=1

‖ω1/2
α discrΞN (yα,1)‖sLr([0,1]m)

) 1
s

and the norm ‖ · ‖Wr′,s′
w

by

(2.5) ‖f‖Wr′,s′
w

:=
( ∑
‖α‖∞=1

‖ω−1/2
α ∂αy f(yα,1)‖s′

Lr′ ([0,1]m)

) 1
s′

.

The modifications for the cases r, s ∈ {1,∞} are defined as usual. The norm (2.5) defines
a Banach space Wr′,s′

w . The weighted Koksma-Hlawka inequality implies that the worst
case quadrature error for functions in the Banach space Wr′,s′

w of a quasi-Monte Carlo
quadrature with respect to the point set ΞN is bounded by the weighted discrepancy
Dr,sw (ΞN ).
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Next, we consider functions v ∈ C1,mix([0, 1]m;W 1,q
0 (D)

)
for q ∈ N \ {0}. The

Banach space C1,mix([0, 1]m;W 1,q
0 (D)

)
consists of all continuously differentiable functions

v : [0, 1]m →W 1,q
0 (D) whose derivatives ∂αy v exist and are bounded for all ‖α‖∞ ≤ 1. We

equip this space with the norm

‖v‖
C1,mix([0,1]m;W 1,q

0 (D)) := sup
‖α‖∞≤1

sup
y∈[0,1]m

‖∂αy v(y)‖
W 1,q

0 (D) <∞.

It holds that the function v(x, ·) is a continuously differentiable function from [0, 1]m → R
for almost all x ∈ D. Thus, we can apply the Zaremba-Hlawka identity (2.2) for almost
all x ∈ D, which leads to

(2.6)

∥∥(I−QΞN )v
∥∥
W 1,q

0 (D)

=
(

d∑
i=1

∫
D

∣∣∣∣ ∂∂xi
[(

I−QΞN
)
v(x, ·)

]∣∣∣∣q dx
)1/q

=
(

d∑
i=1

∫
D

∣∣∣∣∣ ∂∂xi
[ ∑
‖α‖∞=1

(−1)|α|
∫

[0,1]|α|
∂αy v(x,yα,1) discrΞN (yα,1) dyα

]∣∣∣∣∣
q

dx
)1/q

=
∥∥∥∥∥ ∑
‖α‖∞=1

(−1)|α|
∫

[0,1]|α|
∂αy v(·,yα,1) discrΞN (yα,1) dyα

∥∥∥∥∥
W 1,q

0 (D)

.

Then, we obtain from the Bochner inequality (II.3.6) that∥∥(I−QΞN )v
∥∥
W 1,q

0 (D) ≤
∑

‖α‖∞=1

∫
[0,1]|α|

∥∥∂αy v(·,yα,1) discrΞN (yα,1)
∥∥
W 1,q(D) dyα

≤
( ∑
‖α‖∞=1

∫
[0,1]|α|

∥∥∂αy v(·,yα,1)
∥∥
W 1,q

0 (D) dyα
)
D?∞(ΞN ).

This is the analogue to the Koksma-Hlawka inequality for the evaluation of Bochner
integrals in W 1,q

0 (D). Of course, likewise to (2.4), one can obtain a weighted version of
this inequality by replacing ‖f‖Wr′,s′

w
in (2.3) by ‖v‖Wr′,s′

w (W 1,q
0 (D)), where

‖v‖Wr′,s′
w (W 1,q

0 (D))
:=
( ∑
‖α‖∞=1

‖ω−1/2
α ∂αy v(yα,1)‖s′

Lr′ ([0,1]m;W 1,q
0 (D))

) 1
s′

.

2.2 Uniformly elliptic case

For elliptic partial differential equations (III.3.3) with uniformly elliptic diffusion coeffi-
cients, the p-th moment of the solution um corresponds to the integral

(2.7)
∫

[−1/2,1/2]m
upm(x,y) dy =

∫
[0,1]m

upm(x,y− 1/2) dy.

In order to obtain error estimates for quasi-Monte Carlo quadrature methods, we will
show that the integrand on the right-hand side belongs to the Banach space Wr′,s′

w (X)
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with X = H1
0 (D) if p = 1 and X = W 1,1

0 (D) if p > 1. Then, we will use the bound for the
corresponding discrepancy Dr,sw (ΞN ) as an estimate for the quadrature error. Throughout
this subsection, we assume that the sequence of integration points is given by the Halton
sequence, cf. [Hal60].

(2.8) Definition. Let b1, . . . , bm denote the first m prime numbers. Then, the m-
dimensional Halton sequence is given by

ξi = [hb1(i), . . . , hbm(i)]ᵀ, i = 0, 1, 2, . . . ,

where hbj (i) denotes the i-th element of the van der Corput sequence according to bj .
That is, if i = · · · c3c2c1 in radix bj , then hbj (i) = 0.c1c2c3 · · · in radix bj .

For the weighted discrepancy Dr,sw (ΞN ) of the Halton sequence, we know the
following result from [KSS12b].

(2.9) Theorem. Assume that the weights ωα in (2.3) are product weights. This means
that they are given by a sequence {wk}k such that

ωα :=
m∏
k=1

wαkk .

Moreover, let these weights satisfy

(2.10)
∞∑
k=1

wνkk log k <∞

for some ν ≥ 1/2. Let w = [w1, . . . , wm] denote the first m elements of the sequence
{wk}k. Then, the discrepancy Dr,sw (ΞN ) of the first N points of the m-dimensional Halton
sequence ΞN is bounded for all r ≥ 1, s ≥ 2ν and δ > 0 by

(2.11) Dr,sw (ΞN ) . N−
1

2ν+δ.

Here, the hidden constant depends on ν and δ but not on m and tends to infinity when
δ → 0.

Proof. The result is shown for ν = 1/2 in [Wan02] and extended in [KSS12a] for general
ν > 1/2. �

To establish convergence results for the moment computation, it remains to in-
vestigate the conditions under which the shifted powers upm(y − 1/2) of um belong to
the Banach space Wr′,s′

w (X) for a weight vector w that satisfies the condition (2.10) of
Theorem (2.9).1 This condition is satisfied if the weights are of product form and fulfill

(2.12) wk ≤ C1k
−2−η
ν for η > 0 and an arbitrary constant C1 > 0.

1The weight vector w ∈ Rm contains the first m elements of the sequence {wk}k. It is obvious that
condition (2.10) can be fulfilled for all fixed m and every weight vector w ∈ Rm which is extended to a
sequence {wk}k by wk = 0 for k > m. But the aim is that the bound in (2.10) holds independently of m
and, hence, even for m → ∞. Thus, whenever we refer to the summability condition of a m-dimensional
vector in the sequel, it has to be understood in the sense that the bound holds even for m → ∞ with a
dimension-independent constant.
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(2.13) Theorem. Let um be the solution of (III.3.3) and let f ∈ Lp(D) for some in-
teger p ≥ 2. Furthermore, let the sequence {γk}k in (III.2.4) fulfill the algebraic decay
assumption (III.4.8), i.e. γk . k−s1 with s1 > 2 + (1 + η)/2ν for ν ≥ 1/2 and arbitrary
η > 0 from (2.12). Then, for all ` = 1, . . . , p, there is a weight vector w which satisfies
(2.12) such that the shifted power u`m(y−1/2) is contained inWr′,s′

w (X) for all r′ ≥ 1 and
s′ = 2ν/(2ν − 1) with X = H1

0 (D) if ` = 1 and X = W 1,1
0 (D) if ` = 2, . . . , p. Moreover,

the norm ‖u`m‖Wr′,s′
w (X) is bounded independent of m. This implies that the quasi-Monte

Carlo quadrature based on Halton points for approximating the moments up to order p
satisfies the following error estimate

(2.14)
∥∥(I−QΞN )u`m

∥∥
X
. N−

1
2ν+δ

for arbitrary δ > 0 from Theorem (2.9) with a constant which depends on δ and ν but
which is independent of m.

Proof. We use the regularity results of Section III.5 to establish the connection between ν
and the anisotropic behaviour of um and its powers. To this end, we consider a function
v : [0, 1]m → X which satisfies

(2.15) ‖∂αy v(y)‖X . |α|!µα.

Note that the estimate (2.15) is available for v(x,y) = u`m(x,y − 1/2) with a vector µ
determined by µk = C(`,D)`γk/a, see Corollary (III.6.3). Hence, due to the assumption
on the decay of {γk}k, there is for every fixed ` a constant C2 > 0 such that µk ≤ C2k

−s1 .
In accordance with Theorem (2.9), there are results for the quasi-Monte Carlo

quadrature based on Halton points for product weights available. Thus, we set µ̃k = kµk
and obtain for all α with ‖α‖∞ ≤ 1 that

‖∂αy v(y)‖X . µ̃α =
m∏
k=1

µ̃αkk .

For such a function, the norm ‖v‖
W r′,s′

w (X) fulfills the estimate

‖v‖
W r′,s′

w (X) =
( ∑
‖α‖∞=1

‖ω−1/2
α ∂αy v(yα,1)‖s′

Lr′ ([0,1]m;X)

) 1
s′

.

( ∑
‖α‖∞=1

(
ω−1/2
α µ̃α

)s′) 1
s′

.

Using the product form of the weights ωα, the sum in the above expression is
rewritten with s′ = 2ν/(2ν − 1) by

(2.16)
∑

‖α‖∞=1

(
ω−1/2
α µ̃α

) 2ν
2ν−1 =

∑
‖α‖∞=1

m∏
k=1

((
w
−1/2
k µ̃k

) 2ν
2ν−1

)αk
.
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Hence, we have to ensure that the right-hand side of (2.16) is bounded independently of
m ∈ N. A necessary condition to achieve this goal is that the sequence

{(
w
−1/2
k µ̃k

) 2ν
2ν−1

}
k

is summable. A sufficient condition is that the `1-norm of this sequence is smaller than 1.
Choosing the weights wk in such a way that (2.12) is satisfied with equality and

employing the decay properties of µk leads to

(2.17)
∞∑
k=1

(
w
−1/2
k µ̃k

) 2ν
2ν−1 =

(
C2

2
C1

) ν
2ν−1 ∞∑

k=1
k
−2(s1−1)ν

2ν−1 k
2+η

2ν−1 .

This is summable if

2ν(s1 − 1)− 2− η > 2ν − 1 ⇐⇒ s1 > 2 + 1 + η

2ν or ν >
1 + η

2(s1 − 2) .

Since C1 > 0 is an arbitrary constant in (2.12), we can choose C1 such that (2.17) is smaller
than 1. Thus, we have established that v(x,y) = u`m(x,y− 1/2) belongs to Wr′,s′

w (X) for
a weight vector w which satisfies (2.12) and that the norm ‖v‖Wr′,s′

w (X) can be bounded
independently of m.

The error of the quasi-Monte Carlo method based on the Halton sequence to
approximate (2.7) can, therefore, be estimated by the associated discrepancy Dr,sw (ΞN )
which is bounded, according to Theorem (2.9), by Dr,sw (ΞN ) . N−

1
2ν+δ. �

2.3 Lognormal case: QMC quadrature with auxiliary density

In the lognormal case, the moments are given by the Bochner integral, see (III.3.15),

(2.18) (Mpum)(x) =
∫
Rm

upm(x,y) exp
(
− ‖y‖

2
2

2

)
dy = (Iupm)(x).

In order to obtain a quasi-Monte Carlo method for the domain of integration Rm, one can
map the sample points from [0, 1]m to Rm by the inverse normal distribution function.
Numerically, this can be done very efficiently by employing a rational interpolant of the
inverse distribution function, cf. [Mor95].

At first, we will consider the integration of functions f : Γ→ R which are defined
on a general product domain Γ =×m

k=1 Γk ⊂ Rm equipped with general density functions
ρ : Γ → R of product form. Following the lines of [HSW04], we present a strategy for
estimating the error of a quasi-Monte Carlo method in this situation. We will apply the
results for the lognormal case. Nevertheless, due to the quite general representation, we
observe as a by-product that the restriction Γ = [−1/2, 1/2]m and ρ(y) ≡ 1 from the
uniformly elliptic case can be weakened.

With the density function ρ =
∏m
k=1 ρk and the domain Γ =×m

k=1 Γk on hand,
we define the associated distribution function W = [W1, . . . ,Wm] : Γ→ [0, 1]m by

Wk : Γk → [0, 1], y 7→
∫

Γk
ρk(y′)1y′≤y dy′.

Furthermore, we denote the restriction of W to Γα :=
{
yα : y ∈ Γ

}
by Wα.
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It has been shown in [HSW04] that the error of a quasi-Monte Carlo quadrature
given by the quadrature points ΞN =

{
ξ1, . . . , ξN

}
⊂ Γ for the integral∫

Γ
f(y)ρ(y) dy

can again be represented by a generalized version of the Zaremba-Hlawka identity. There-
fore, we denote by

{
ξ̂1, . . . , ξ̂N

}
= Ξ̂N := W

(
Ξn
)
⊂ [0, 1]m the set of quadrature points

which are mapped to the unit cube. Moreover, we define the local same-quadrant discrep-
ancy function discrΞ̂N (z; d), anchored at d ∈ [0, 1]m, by

discrΞ̂N (z; d) := (−1)|α−δd≤z|
(
Vol

(
B(z; d)

)
− 1
N

N∑
i=1

1B(z;d)
(
ξ̂i
))
, z ∈ [0, 1]m.

Herein, B(z; d) denotes the box with vertices z and δd≤z, where the latter vector is given
by

(
δd≤z

)
k

:=
{

1, if dk ≤ zk,
0, if dk > zk.

Then, for an arbitrary anchor point c ∈ Γ, the generalized version of the Zaremba-Hlawka
identity reads

(2.19)
(
I−QΞN

)
f =

∑
‖α‖∞=1

∫
Γα

∂αy f(yα, c)discr(Ξ̂N )α

(
Wα(yα); Wα(cα)

)
dyα.

The identity (2.19) implies the error estimate, see [HSW04],

(2.20)
∣∣(I−QΞN

)
f
∣∣ ≤ ‖f‖

W 1,1
mix,c(Γ)D∞,W(c)

(
Ξ̂N
)
,

where

‖f‖
W 1,1

mix,c(Γ) :=
∑

‖α‖∞=1

∫
Γα

∣∣∂αy f(yα, c)
∣∣ dyα.

Moreover, D∞,W(c)
(
Ξ̂N
)
is the L∞-same-quadrant discrepancy, anchored at W(c), which

is defined, cf. [HSW04], by

D∞,W(c)
(
Ξ̂N
)

:= sup
|α|≤1

sup
yα∈[0,1]|α|

∣∣discrΞN (yα; c)
∣∣.

Note that this discrepancy coincides with D?∞
(
Ξ̂N
)
if W(c) = 1 and describes the L∞-

centered discrepancy for W(c) = 1/2, see [Hic98] and Definition (2.40). The estimate
(2.20) is obtained from (2.19) by the Hölder inequality in the same way as (2.3) is derived
from (2.2) with r = s = ∞. Of course, the Hölder inequality for integrals and sums can
be applied as in (2.3) with arbitrary dual exponents r, r′ and s, s′, leading to different
discrepancies and norms in (2.20).

In complete analogy to (2.6), we can apply the generalized Zaremba-Hlawka
identity (2.19) to functions v ∈ C1,mix(Γ;W 1,q

0 (D)
)
pointwise for almost all x ∈ D. This

leads to the estimate

(2.21)
∥∥(I−QΞN

)
v
∥∥
X
≤ ‖v‖

W 1,1
mix,c(Γ,X)D∞,W(c)

(
Ξ̂N
)
.
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It is also possible to introduce weights in (2.19) to get an error estimate in terms of a
weighted same-quadrant discrepancy if the integrand provides some anisotropic behaviour.

As mentioned before, we accomplished the identity (2.21) for general product
domains and general density functions of product type to illustrate that we can easily
handle the uniformly elliptic case with more general random parameters yk which are
distributed on a bounded interval Γk with respect to the density ρk.

Now, we turn our attention back to the lognormal case, i.e. the domain Γ = Rm
and the density function ρ(y) = (2π)−m/2 exp

(
− ‖y‖22/2

)
, and we will apply (2.21) with

respect to the anchor point c = 0. In particular, the univariate normal distribution
function is given by

Φ: R→ (0, 1) with Φ(y) :=
∫ y

−∞

1√
2π

exp
(
− y′2

2

)
dy′

and its inverse by

Φ−1 : (0, 1)→ R.

The multivariate distribution function Φ : Rm → [0, 1]m is simply defined by the coor-
dinatewise application of the one-dimensional distribution functions, which means that
Φ(y) := [Φ(y1), . . . ,Φ(ym)]ᵀ.

In order to apply (2.21), the norm ‖v‖
W 1,1

mix,c(Rm;X) needs to be bounded. Unfor-
tunately, this condition is generally very restrictive and not fulfilled in our applications
since the norm corresponds to the unweighted integration of ‖∂αy v(y)‖X over Rm for multi-
indices α with ‖α‖∞ ≤ 1. To overcome this obstruction, we follow the lines of [HSW04]
and rewrite the integral Iv(x) according to

Iv(x) =
∫
Rm

v(x,y)ρ(y) dy = ρ

∫
Rm

v(x,y)
√
ρ(y)

√
ρ(y)
ρ

dy

with the scaling factor ρ being defined by ρ :=
∫
Rm
√
ρ(y) dy. We now employ a quasi-

Monte Carlo method with respect to the auxiliary density function
√
ρ(y)/ρ and obtain,

with respect to (2.21), the error estimate

‖(I−QΞN )v‖X . D∞,1/2
(
Φ̂(ΞN )

)
‖v√ρ‖

W 1,1
mix,0(Rm;X).

Herein, we denote by Φ̂ the distribution function according to the modified Gaussian
density

√
ρ(y)/ρ. Moreover, the norm involved here is bounded in case of the moment

computation as it is proven in the next theorem.

(2.22) Theorem. For the solution um to (III.3.5), the following bound is valid

‖um
√
ρ‖

W 1,1
mix,0(Rm;H1

0 (D)) .

( ∑
‖q‖∞≤1

1
2|q|

∑
α≤q

( 2γ
log 2

)α
|α|!

)
‖f‖L2(D) <∞.

Furthermore, if f ∈ Lp(D) for p ≥ 2, it holds for the p-th power upm of um that

‖upm
√
ρ‖

W 1,1
mix,0(Rm;W 1,1

0 (D)).

( ∑
‖q‖∞≤1

1
2|q|

∑
α≤q

(2C(p,D)pγ
log 2

)α
|α|!

)
‖f‖pLp(D)<∞.
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Proof. Each summand in the expression

‖v√ρ‖
W 1,1

mix,0(Rm;X) =
∑

‖α‖∞=1

∫
R|α|

∥∥∥∂αy (v(yα,0)
√
ρ(yα,0)

)∥∥∥
X

dyα

can be estimated by∫
R|α|

∥∥∥∂αy (v(yα,0)
√
ρ(yα,0)

)∥∥∥
X

dyα

=
∑
β≤α

α!
β!(α− β)!

∫
R|α|

∥∥∥∂βyv(yα,0)∂α−βy

√
ρ(yα,0)

∥∥∥
X

dyα.

Due to the product structure of the auxiliary density and since we consider only mixed
first order derivatives, we find that

∂α−βy

√
ρ(yα,0)= (−1)|α−β|

2|α−β|
√
ρ(yα,0)(yα,0)α−β, and α!=β!=(α− β)!=1.

Hence, we arrive at∫
R|α|

∥∥∥∂αy (v(yα,0)
√
ρ(yα,0)

)∥∥∥
X

dyα

=
∑
β≤α

1
2|α−β|

∫
R|α|

∥∥∥∂βyv(yα,0)
∥∥∥
X

(yα,0)α−β
√
ρ(yα,0) dyα.

For all functions v whose mixed first order derivatives grow at most exponentially in ‖y‖,
the norm

∥∥v√ρ∥∥
W 1,1

mix,0(Rm;X) is bounded since
√
ρ(yα,0) =

∏m
k=1

(
exp(−y2

k/4)
)αk decays

double exponentially in ‖yα‖. Thus, the integrals on the right-hand side of this equation
are all finite.

For the solution um, we obtain the first assertion with σs from the regularity
result (III.5.29) as follows

∫
R|α|

∥∥∥∂αy (um(yα,0)
√
ρ(yα,0)

)∥∥∥
H1

0 (D)
dyα

.
∑
β≤α

|β|!
2|α−β|

(
γ

log 2

)β
‖f‖L2(D)

∫
R|α|

(yα,0)α−βσs−1(yα,0)
√
ρ(yα,0) dyα

.
∑
β≤α

|β|!
2|α−β|

(
γ

log 2

)β
‖f‖L2(D).

Note that the last step holds since
∫
R|α|(yα,0)α−βσs−`(yα,0)

√
ρ(yα,0) dyα < ∞ for all

` ∈ N.
For the p-th power upm of the solution, the assertion follows analogously using

(III.5.30) for p = 2 and (III.5.32) for p > 2. The constant C(p,D) from (III.5.32) is equal
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to 1 for p = 2. By setting v = upm, we thus arrive at∫
R|α|

∥∥∥∂αy (upm(yα,0)
√
ρ(yα,0)

)∥∥∥
W 1,1

0 (D)
dyα

.
∑
β≤α

|β|!
2|α−β|

(
C(p,D)pγ

log 2

)β
‖f‖pLp(D)

∫
R|α|

(yα,0)α−βσs−p(yα,0)
√
ρ(yα,0) dyα

.
∑
β≤α

|β|!
2|α−β|

(
C(p,D)pγ

log 2

)β
‖f‖pLp(D).

This implies the second assertion. �

(2.23) Remark. The presented approach in this subsection is well suited for lognormal
distributed diffusion coefficients which depend on a small number of random parameters.
Nevertheless, there arise the following problems for a large dimensionality m.

(a) Unfortunately, the introduction of the auxiliary density function does not pre-
serve the structure of the anisotropy in the derivatives or at least we are not able
to prove this with the analysis presented above. Thus, a weighted version of the
Koksma-Hlawka inequality like in the uniformly elliptic case is not applicable and
so we cannot make use of Theorem (2.9). Hence, the quadrature error cannot be
bounded by the weighted discrepancy of the point sequence Φ̂(ΞN ) and, thus,
the convergence rate generally deteriorates for classical low discrepancy sequences
when m gets large.

(b) It is proven in [HSW04] that in [0, 1]m there exist point sets of cardinality N for
all N ∈ N such that the (unweighted) L∞-same-quadrant discrepancy is bounded
by O(

√
m/N) and, hence, that the integration problem is polynomially tractable,

see Remark (0.5). Nevertheless, this proof is non-constructive. Moreover, there
are constructions of N sample points whose star discrepancy is nearly as good as
the non-constructive proven one, cf. [NW08], but the computation of these points
has exponential runtime in m. To find point sets with polynomially bounded (in
m and N) L∞-same-quadrant discrepancy which are in addition constructable in
polynomial time in N and m is still an open problem, cf. [NW08].

2.4 Lognormal case: QMC quadrature based on Halton points

Next, we propose another approach which is available for the quasi-Monte Carlo method
based on the Halton sequence. Hence, we assume as in Subsection 2.2 that the set of
quadrature points ΞN is given by the Halton sequence (2.8). Instead of introducing an
auxiliary density function, we simply transform the integral onto the unit cube [0, 1]m.
The integrand may then tend to infinity around a region of the boundary. But, according
to [Owe06], the first N points of the Halton sequence provide the interesting feature
that they avoid the region around the boundary of the unit cube. Thus, this method
takes only into account the behaviour of the integrand inside a certain set KN ⊂ [0, 1]m,
which contains these first N points, but introduces a truncation error. We will show,
under certain anisotropy conditions, that this truncation error can be estimated nearly
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independently of the dimension m and that the anisotropic behaviour of the integrand is
preserved inside KN up to a certain extent. This will then prove that the quasi-Monte
Carlo quadrature based on Halton points converges nearly dimension-independent for the
computations of the moments of the solution um to (III.3.5).

In the sequel, we will focus our analysis on the quadrature of the expectation
of the solution um to (III.3.5). Analogous results can be established in the same way for
the computations of the moments, see Corollary (2.47), when applying the corresponding
regularity results for the powers of um.

We transform the Bochner integral (2.18) onto the unit cube [0, 1]m. It is well
known that it holds∫

R
f(y)ρ(y) dy =

∫
R
f(y) 1√

2π
exp

(
− y2

2

)
dy =

∫ 1

0
f
(
Φ−1(z)

)
dz

for a function f ∈ L1
ρ(R) due to the substitution z = Φ(y). With the definition of Φ at

hand, we can extend the above integral transform to the multivariate case, i.e. f ∈ L1
ρ(Rm)

and ∫
Rm

f(y)ρ(y) dy =
∫

(0,1)m
f
(
Φ−1(z)

)
dz.

Although we have f ◦Φ−1 ∈ L1((0, 1)m
)
, the integrand might be unbounded in a neigh-

bourhood of the hypercube’s boundary in our application since the diffusion coefficient
may tend to zero. This implies that the variation in the sense of Hardy and Krause might
be unbounded, too. As a consequence, the Koksma-Hlawka inequality (2.1) or a weighted
version of this estimate is not applicable. Due to the definition of the Halton sequence,
cf. (2.8), the first N points ΞN = ξ1, . . . , ξN of this sequence are included in the cuboid

KN :=
m×
k=1

[(bkN)−1, 1− (bkN)−1].

Let now ûm(x, z) := um
(
x,Φ−1(z)

)
. For z ∈ (0, 1)m \ KN and almost every

x ∈ D, we replace ûm by its low-variation extension ûm,ext, cf. [Owe06],

(2.24) ûm,ext(x, z) := ûm(x, c) +
∑

‖α‖∞=1

∫
[cα,zα]

1(yα,c)∈KN∂
α
y ûm(x,yα, c) dyα.

For a given anchor point c ∈ KN , the extension coincides by definition (2.24) with the
function ûm on KN , i.e. ûm,ext(x, z) = ûm(x, z) for all z ∈ KN and almost all x ∈ D. We
are now ready to prove the main result of this chapter.

(2.25) Theorem. Let the sequence {γk}k satisfy the decay property γk . k−4−2η for
arbitrary η > 0. Then, the convergence of the quasi-Monte Carlo quadrature using Halton
points for approximating the expectation of the solution um to (III.3.5) depends at most
linearly on the dimensionality m and is algebraic in the number of quadrature points.
More precisely, there exists for each δ > 0 a sequence {δk}k ∈ `1(N) with δk ' k−1−η and
a δ̃ > 0 with δ̃ +

∑∞
k=1 δk < δ such that the error of the quasi-Monte Carlo quadrature

with N Halton points satisfies

(2.26)
∥∥(I−QΞN )ûm

∥∥
H1

0 (D) . ‖f‖L2(D)
(
mN−1+‖δ‖∞ +N−1+δ̃+|δ|)

≤ ‖f‖L2(D)(m+ 1)N−1+δ.
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Herein, the vector δ ∈ Rm is given by δ = [δ1, . . . , δm]ᵀ. The constant hidden in the above
inequality depends on the sequence {δk}k, on δ̃ and on δ, but is independent of m.

The proof of this theorem is performed by splitting the error of integration into
three parts. Namely, with respect to the extension ûm,ext, we write

(2.27)

∥∥(I−QΞN )ûm
∥∥
H1

0 (D)

6
∥∥I(ûm − ûm,ext)

∥∥
H1

0 (D)+
∥∥QΞN (ûm − ûm,ext)

∥∥
H1

0 (D)+
∥∥(I−QΞN )ûm,ext

∥∥
H1

0 (D).

Due to ûm
∣∣
KN

= ûm,ext
∣∣
KN

, the second term on the right-hand side of (2.27) vanishes.
The first term on the right-hand side of (2.27), which corresponds to the truncation error
of the quasi-Monte Carlo quadrature based on the Halton sequence, will be estimated by
Lemma (2.28). Finally, the third term on the right-hand side of (2.27), which reflects the
integration error inside KN , will be estimated in Lemma (2.41).

(2.28) Lemma. Let the conditions of Theorem (2.25) be satisfied and let ûm,ext be
defined according to (2.24). Then, it holds

(2.29)
∥∥I(ûm − ûm,ext)

∥∥
H1

0 (D) . ‖f‖L2(D)N
−1+‖δ‖∞m.

Proof. We organize the proof in four steps.
(i.) On the one hand, from [Fan13], we know that

Φ−1(z) <
√
− log

(
2π(1− z)2(1− log(2π(1− z)2))

)
for all z ∈ [0.9, 1].

Furthermore, we have from [PR96] that

Φ−1(z) ≤
√
−2 log(1− z)

− 2.30753 + 0.27061
√
−2 log(1− z)

1 + 0.99229
√
−2 log(1− z)− 0.08962 log(1− z)

+ 0.003

for all z ∈ [0.5, 1]. These inequalities imply that

Φ−1(z) ≤
√
−2 log(1− z) for all z ∈ [0.5, 1].

Due to the symmetry of the distribution, this shows that∣∣Φ−1(z)
∣∣ ≤ √−2 log(min{z, 1− z}) for all z ∈ [0, 1].

The derivative of the distribution function Φ is the Gaussian density function. Hence, the
derivative of its inverse can easily be determined. We derive that

d
dzΦ−1(z) =

√
2π exp

(Φ−1(z)2

2

)
≤
√

2πmin{z, 1− z}−1,

which implies the estimate∣∣∣∣∣
m∏
k=1

( d
dzk

Φ−1(zk)
)αk ∣∣∣∣∣ ≤

m∏
k=1

(√
2πmin{zk, 1− zk}−1

)αk
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for all non-negative integers αk.

(ii.) On the other hand, one verifies

exp
(
γk
∣∣Φ−1(z)

∣∣) ≤ C(δk, γk) min{z, 1− z}−δk

for all δk > 0 with the constant

C(δk, γk) =

exp
(
γ2
k

2δk

)
, if δk ≤ γk√

2 log 2 ,
exp(
√

2 log 2γk)
exp(δk log 2) , else.

Hence, we find by the definition of am and am that√√√√ am
(
Φ−1(z)

)
am
(
Φ−1(z)

)3 = exp
(

m∑
k=1

2γk
∣∣Φ−1(zk)

∣∣)

≤
m∏
k=1

(
C(δk, 2γk) min{zk, 1− zk}−δk

)
.

Consequently, with Lemma (III.5.3) and the stability estimate (III.3.11), we deduce for
any multi-index α that

∥∥∂αy um(Φ−1(z)
)∥∥
H1

0 (D)

6 |α|!
(
γ

log 2

)α√√√√am
(
Φ−1(z)

)
am
(
Φ−1(z)

)∥∥um(Φ−1(z)
)∥∥
H1

0 (D)

. |α|!
(
γ

log 2

)α√√√√ am
(
Φ−1(z)

)
am
(
Φ−1(z)

)3 ‖f‖L2(D)

≤ ‖f‖L2(D)|α|!
(
γ

log 2

)α m∏
k=1

(
C(δk, 2γk) min{zk, 1− zk}−δk

)
.

(iii.) For an arbitrary multi-index α, it holds for all z ∈ (0, 1)m that

(2.30)

∥∥∂αz ûm(z)
∥∥
H1

0 (D) =
∥∥∂αz um(Φ−1(z)

)∥∥
H1

0 (D)

=
∥∥∥∥∂αy um(Φ−1(z)

) m∏
k=1

( d
dzk

Φ−1(zk)
)αk∥∥∥∥

H1
0 (D)

=
∣∣∣∣∣
m∏
k=1

( d
dzk

Φ−1(zk)
)αk ∣∣∣∣∣∥∥∂αy um(Φ−1(z)

)∥∥
H1

0 (D).

From now on, we choose the anchor point c = 1/2 and define

(2.31) C̃ :=
√

2πmaxk∈NC(δk, 2γk)
log 2 .
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Note that C̃ <∞ since there is a k0 ∈ N such that C(δk, 2γk) ≤ 1 for all k ≥ k0 under the
decay assumptions on the sequences {δk}k and {γk}k. Due to Φ−1(1/2) = 0, we easily get
from item (ii.) that

(2.32)

∥∥∂αy um(Φ−1(zα, c)
)∥∥
H1

0 (D)

. ‖f‖L2(D)|α|!
(
γ

log 2

)α m∏
k=1

(
C(δk, 2γk) min{zk, 1− zk}−δk

)αk
holds for all α with ‖α‖∞ = 1. Thus, by combining (2.30) with item (i.) and inequality
(2.32), we arrive at the estimate

(2.33)
∥∥∂αz ûm(zα, c)

∥∥
H1

0 (D) . |α|!‖f‖L2(D)

m∏
k=1

(
γkC̃ min{zk, 1− zk}−1−δk

)αk
.

From (2.24), we infer the identity

ûm(x, z)− ûm,ext(x, z) =
∑

‖α‖∞=1

∫
[cα,zα]

1(yα,c)/∈KN∂
α
y ûm(x,yα, c) dyα.

This, together with the estimate (2.33) on the derivates of ûm yields for every z /∈ KN ,
cf. [Owe06], that

‖ûm(z)− ûm,ext(z)‖H1
0 (D)

≤
∑

‖α‖∞=1

∫
[cα,zα]

1(yα,c)/∈KN
∥∥∂αy ûm(yα, c)

∥∥
H1

0 (D) dyα

. ‖f‖L2(D)
∑

‖α‖∞=1
|α|!

m∏
k=1

(
γkC̃

)αk
·
∫

[cα,zα]
1(yα,c)/∈KN

m∏
k=1

(
min{yk, 1− yk}−1−δk

)αk
dyα

≤ ‖f‖L2(D)
∑

‖α‖∞=1
|α|!

m∏
k=1

(
γkC̃

∫ 1/2

min{zk,1−zk}
y−1−δk
k dyk

)αk
.

Herein, the integral can simply be bounded via its lower limit according to

(2.34)

‖ûm(z)− ûm,ext(z)‖H1
0 (D)

. ‖f‖L2(D)
∑

‖α‖∞=1
|α|!

m∏
k=1

(
γkC̃ min{zk, 1− zk}−δk

)αk
≤ ‖f‖L2(D)

∑
‖α‖∞=1

m∏
k=1

(
kγkC̃ min{zk, 1− zk}−δk

)αk

= ‖f‖L2(D)

(
m∏
k=1

(
1 + min{zk, 1− zk}−δkkγkC̃

δk

)
− 1

)

≤ ‖f‖L2(D)

m∏
k=1

(
1 + kγkC̃

δk

)
min{zk, 1− zk}−δk .
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Next, due to Bochner’s inequality (II.3.6) and due to the fact that ûm coincides with ûm,ext
in KN , it follows that∥∥I(ûm − ûm,ext)

∥∥
H1

0 (D) 6
∫

(0,1)m

∥∥ûm(z)− ûext(z)
∥∥
H1

0 (D) dz

=
∫

(0,1)m\KN

∥∥ûm(z)− ûm,ext(z)
∥∥
H1

0 (D) dz.

In view of the estimate (2.34), we conclude that∥∥I(ûm − ûm,ext)
∥∥
H1

0 (D)

. ‖f‖L2(D)

∫
(0,1)m\KN

m∏
k=1

min{zk, 1− zk}−δk dz
m∏
k=1

(
1 + kγkC̃

δk

)

≤ ‖f‖L2(D)2m
m∑
j=1

∫ (bjN)−1

0
z
−δj
j dzj

m∏
i=1
i 6=j

∫ 1/2

0
z−δii dzi

m∏
k=1

(
1 + kγkC̃

δk

)

≤ ‖f‖L2(D)2m
m∑
j=1

(bjN)δj−12−m+12|δ|
m∏
k=1

[(
1 + kγkC̃

δk

)(
1

1− δk

)]

. ‖f‖L2(D)N
‖δ‖∞−1m

m∏
k=1

[(
1 + kγkC̃

δk

)(
1

1− δk

)
2δk
]
.

(iv.) It remains to prove that the appearing constants are bounded independently
of the dimensionality m. Therefore, it is sufficient to show that

(2.35)
∞∏
k=1

(
1 + kγkC̃

δk

)(
1

1− δk

)
2δk <∞.

Since we may choose δk > 0 arbitrarily, we can assume that the sequence {δk} satisfies
the conditions of Theorem (2.25). Then, it holds

(2.36)
∞∏
k=1

2δk = 2
∑∞

k=1 δk ≤ 2δ and
∞∏
k=1

1
1− δk

= exp
(
−
∞∑
k=1

log(1− δk)
)
.

We make use of the fact that the Taylor expansion of the logarithm log(x) at x = 1 is
given by

log(1− h) = −
∞∑
k=1

hk

k
= −h−O(h2), h > 0.

By inserting this into the equation on the right of (2.36), we obtain

(2.37)
∞∏
k=1

1
1− δk

≤ exp
( ∞∑
k=1

(
δk +O

(
δ2
k

)))
. exp(δ + cδ2)
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for some c > 0. Since the sequence {γk}k decays asymptotically faster than k−4−2η, it
follows that

(2.38)
∞∏
k=1

(
1 + C̃kγk

δk

)
.
∞∏
k=1

(
1 + c̃k−2−η) <∞

for some c̃ > 0. This establishes estimate (2.35) and, thus, finally the assertion (2.29). �

(2.39) Remark. Notice that the last estimate of item (iii.) is quite rough. In fact, if
we sum up

∑m
j=1 b

δj−1
j , we end up with a factor log(m) or even log(log(m)), cf. (V.3.46),

than a factor m since bk h k log k. Moreover, for this lemma, the weaker decay condition
{γk}k . k−3−2η is sufficient. This can easily be seen from equation (2.38) and the definition
of the constant C̃, cf. (2.31). These are the only parts in the proof of Lemma (2.28)
where the decay properties of {γk}k enter. Especially, they remain valid under the weaker
assumption {γk}k . k−3−2η.

Lastly, we bound the third term in (2.27). Therefore, we apply the estimate (2.20)
on [0, 1]m with the L∞-centered discrepancy. We will bound this L∞-centered discrepancy
roughly by the extreme discrepancy. The L∞-centered discrepancy can be represented in
a more explicit form than the L∞-same-quadrant discrepancy and is defined as follows,
see [HW02].

(2.40) Definition. The local centered discrepancy function is defined for a given set of
N sample points ΞN ⊂ [0, 1]m as discrc(ΞN ) : [0, 1]m → R,

discrc(z,ΞN ) :=
m∏
k=1

(
− zk + 1{zk>1/2}

)
− 1
N

N∑
i=1

m∏
k=1

(
1{zk>1/2} − 1{zk>ξik}

)
.

Then, the L∞-centered discrepancy is given by

Dc(ΞN ) := sup
z∈[0,1]m

∣∣discrc(z,ΞN )
∣∣.

Furthermore, we introduce the extreme discrepancy by

Dextr(ΞN ) := sup
x,y∈[0,1]m

∣∣∣∣∣Vol
(
[x,y)

)
− 1
N

N∑
i=1

1[x,y)(ξi)
∣∣∣∣∣.

It follows directly from the definition that the L∞-centered discrepancy can be
bounded by the extreme discrepancy. This fact can be used to estimate the third term on
the right-hand side of (2.27).

(2.41) Lemma. Let the conditions of Theorem (2.25) be satisfied and let ûm,ext be
defined by (2.24). Then, it holds

(2.42)
∥∥(I−QΞN )ûm,ext

∥∥
H1

0 (D) . ‖f‖L2(D)N
−1+δ̃+|δ|.
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Proof. Application of the identity (2.19) with Γ = [0, 1]m and the anchor point c = 1/2
leads for almost all x ∈ D to the representation of the quadrature error

(I−QΞN )ûm,ext(x) =
∑
‖α‖=1

∫
[0,1]|α|

∂αy ûm,ext(x,yα, c)discr(ΞN )α
(yα; cα) dyα.

From

discr(ΞN )α
(yα; cα) = (−1)|α|−

∣∣δ1/2≤yα

∣∣
discrc(yα, (ΞN )α),

we obtain by Bochner’s inequality (II.3.6) the error estimate

(2.43)

∥∥(I−QΞN )ûm,ext
∥∥
H1

0 (D)

≤
∑

‖α‖∞=1

∫
[0,1]|α|

∥∥∂αz ûm,ext(zα, c)
∥∥
H1

0 (D) dzα sup
zα∈[0,1]|α|

discrc
(
zα, (ΞN )α

)
.

The next step is to introduce weights wk ∈ (0,∞) for k = 1, . . . ,m and define
the associated product weights with respect to the multi-index α by ωα :=

∏m
k=1w

αk
k .

Later on, we will specify these weights by exploiting the decay properties of the occurring
derivatives of the integrand. By inserting the weights into (2.43), we deduce that

(2.44)

∥∥(I−QΞN )ûm,ext
∥∥
H1

0 (D)

≤
∑

‖α‖∞=1

{
ω−1/2
α

∫
[0,1]|α|

∥∥∂αz ûm,ext(zα, c)
∥∥
H1

0 (D) dzα
}{

ω1/2
α Dc

(
(ΞN )α

)}

≤
{

sup
‖α‖∞=1

ω−1/2
α

∫
[0,1]|α|

∥∥∂αz ûm,ext(zα, c)
∥∥
H1

0 (D) dzα
}{ ∑
‖α‖∞=1

ω1/2
α Dc

(
(ΞN )α

)}
.

This corresponds in the terminology of the beginning of section 2 to the weighted and
generalized centered Koksma-Hlawka inequality with the choices r = ∞ and s = 1, see
(2.3). Due to the definition of ûm,ext, cf. (2.24), the derivative ∂αz ûm,ext(zα, c) vanishes
in [0, 1]|α| \

(
KN

)
α
and coincides with the derivative of ûm in

(
KN

)
α
. Therefore, with C̃

defined as in (2.31), we can estimate

sup
‖α‖∞=1

ω−1/2
α

∫
[0,1]|α|

∥∥∂αz ûm,ext(zα, c)
∥∥
H1

0 (D) dzα

. ‖f‖L2(D) sup
‖α‖∞=1

ω−1/2
α |α|!

∫
(KN )α

m∏
k=1
αk=1

(
γkC̃ min{zk, 1− zk}−1−δk

)
dzα

≤ ‖f‖L2(D) sup
‖α‖∞=1

ω−1/2
α 2|α|

m∏
k=1
αk=1

(
kγkC̃

∫ 1/2

(bkN)−1
z

(−1−δk)
k dzk

)

≤ ‖f‖L2(D) sup
‖α‖∞=1

ω−1/2
α

m∏
k=1

(
2kγkC̃
δk

)αk
(bkN)αkδk .
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The specific choice of the weights

(2.45) wk = 8πC(δk, 2γk)2k2γ2
k

δ2
k log2 2

, k = 1, . . . ,m,

yields that

ω1/2
α =

m∏
k=1

(2kγkC̃
δk

)αk
.

Therefore, we obtain that

sup
‖α‖∞=1

ω−1/2
α

m∏
k=1

(
2kγkC̃
δk

)αk
(bkN)αkδk ≤ N |δ|

m∏
k=1

bδkk .

Now, the prime number theorem, see e.g. [SMC95], implies that bk < 2k log(k+2). Hence,
we deduce that

∞∏
k=1

bδkk = exp
( ∞∑
k=1

δk log bk

)
. exp

( ∞∑
k=1

k−1−η log
(
2k log(k + 2)

))
<∞.

From this, we finally conclude the estimate

sup
‖α‖∞=1

ω−1/2
α

∫
[0,1]|α|

∥∥∂αz ûm,ext(zα, c)
∥∥
H1

0 (D) dzα . N |δ|‖f‖L2(D).

This bounds the first term on the right-hand side of (2.44).
In order to bound the weighted sum of the L∞-centered discrepancies, i.e. the

second term on the right-hand side of (2.44), we use the following result from [Nie92]:

Dextr(ΞN ) ≤ 2mD?(ΞN ).

Thus, it follows that∑
‖α‖∞=1

ω1/2
α Dc

(
(ΞN )α

)
≤

∑
‖α‖∞=1

ω1/2
α Dextr

(
(ΞN )α

)
≤

∑
‖α‖∞=1

ω1/2
α 2|α|D?

(
(ΞN )α

)
.

Under the decay property
∞∑
k=1

w̃
1/2
k k log k <∞

of the weights w̃k := 4wk, it is shown in [Wan02], that

(2.46)
∑

‖α‖∞=1
w̃1/2
α D?∞

(
(ΞN )α

)
. N−1+δ̃

holds for all δ̃ > 0 with a constant which depends on δ̃ but not on the dimensionality m.
This condition is satisfied if the weights fulfill w̃1/2

k . k−2−η. Hence, we get the following
condition on the decay of γk:

4kγkC̃
δk

. k−2−η =⇒ γk .
δk

4C̃
k−3−η ' k−4−2η. �
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With the preceding two lemmata at hand, we can establish the estimate (2.27).
This completes the proof of Theorem (2.25). Note that the estimation of the L∞-centered
discrepancy in Lemma (2.41) by the extreme discrepancy is not sharp and might be im-
provable. This would lead to a better constant in the determination of the weights wk.
Nevertheless, this does not affect the summability condition of the weights and, therefore,
does not influence the requirements on the decay of {γk}k. Moreover, in the last proof,
we used the result of [Wan02] about the estimation of the discrepancy, which can be ex-
tended by the result in [KSS12a] as already pointed out in the uniformly elliptic case.
This would make the proof of Lemma (2.41) more technical and is therefore omitted. It
would imply that the integration error considered in Lemma (2.41) can still be bounded
independently ofm with a lower convergence rate provided that the sequence {γk}k decays
only faster than {k−3−η}k for some η > 0. We would like to point out that the decay con-
dition, needed in the proof of Lemma (2.28) to bound the truncation error with constants
nearly independent of m, is {k−3−η}k. Nevertheless, we would not claim that this is a
sharp condition. In particular, we observe in our numerical results dimension-independent
convergence rates even for a weaker decay of the sequence {γk}k.

In Theorem (2.25), we have shown approximation results of the quasi-Monte
Carlo quadrature based on Halton points for the mean of the solution um to (III.3.5). Note
that, due to the regularity estimates proven in Section III.5, the result can be extended in
complete analogy for the computation of the p-th momentMpum provided that f ∈ Lp(D).
This is due to the similar behaviour of the estimates on the solution’s derivatives and the
derivatives of its powers.

(2.47) Corollary. Let f ∈ Lp(D) for p > 2. Under the conditions of Theorem (2.25),
the quasi-Monte Carlo quadrature using the first N Halton points for approximating the
p-th moment of the solution um to (III.3.5) satisfies the error estimate

(2.48)
∥∥(I−QΞN )ûpm

∥∥
W 1,1

0 (D) . ‖f‖
p
Lp(D)mN

−1+δ

with a constant depending on p and δ, but not on the dimensionality m.

Proof. In the proof of Theorem (2.25), we exploited the bounds on the derivative of the
integrand um. The p-th power of um satisfies the following estimate on the derivatives∥∥∂αy upm(y)

∥∥
W 1,1

0 (D) . |α|!
(
C(p,D)pγ

log 2

)α(am(y)
am(y)

)p
‖um(y)‖p

W 1,p
0 (D)

.

This estimate is very similar to the bound on the derivatives of um. To apply all the steps
of the proof of Theorem (2.25), we observe that the modified sequence {C(p,D)pγk}k has,
for each fixed p, up to a constant the same decay behaviour as {γk}k. Moreover, with
(III.5.14), we can estimate that(

am(y)
am(y)

)p
‖um(y)‖p

W 1,p
0 (D)

≤ exp
(

m∑
k=1

3pγk|yk|
)
‖f‖pLp .

This leads in item (ii.) of the proof of Lemma (2.28) to the constant C(δk, 3pγk). Since
3pγk also has up to a constant the same behaviour as 2γk, all the steps of the proofs of
the Lemmata (2.28) and (2.41) remain valid which verifies (2.48). Nevertheless, we would
like to mention that the constants in (2.48) may grow exponentially in p. �
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3. Numerical results
For the numerical validation of the theoretical findings, we consider the computation of
the first four moments of the solution um of the one-dimensional diffusion problem

(3.1) −∂x
(
am(x,y)∂xum(x,y)

)
= 1 in D = (0, 1)

with homogenous Dirichlet boundary conditions, i.e. um(0,y) = um(1,y) = 0. The dif-
fusion coefficient am(x,y) is determined by a truncated Karhunen-Loève expansion with
respect to a covariance kernel of the Matérn class. More precisely, we investigate the two
different kernels k7/2 and k5/2 from (III.4.3) where the correlation length ` is set to ` = 1/2
and the variance σ2 = 1/4. The decay of the related sequences {γk}k is depicted in Fig-
ure III.2. The computation of the truncated Karhunen-Loève expansion is performed by
a pivoted Cholesky decomposition of the associated covariance operator C, see (III.2.1).
Although, a truncation with respect to the weak error estimates in Section III.2 would
be sufficient, we truncate the Karhunen-Loève expansion in a more conservative way. As
already mentioned in Remark (III.2.16), we choose m in such a way that the trace error
in the covariance operator C is smaller than ε2 in order to rule out the truncation error.
Herein, the accuracy ε reflects the precision of the spatial discretization.

We have discretized (3.1) by piecewise linear finite elements and choose piecewise
constant elements for the discretization of the diffusion coefficient. The discretization level
is in all computations set to 14 which results in a meshwidth h = 2−14. This fine meshwidth
prevents that the overall error is dominated by the finite element discretization error.
Notice that for higher-dimensional spatial domains D, it would be unfeasible to employ
such high refinement levels. Hence, the one-dimensional toy problem under consideration
is perfectly suited for the investigation of the convergence of the moment computation.

Since the solution of (3.1) is not known analytically, we have to provide a reference
solution. This reference solution is computed by the quasi-Monte Carlo quadrature with
Halton points and N = 10 · 220 ≈ 107 samples.

For the investigation of the convergence rates of the Monte Carlo as well as the
quasi-Monte Carlo method based on Halton points, we have kept the spatial discretization
level fixed and successively increased the number of quadrature points N by N = 10 ·2j for
j = 1, 2, . . . , 20. Additionally, in case of the Monte-Carlo, we compute the RMSE based
on five realizations of the Monte-Carlo estimator. The error with respect to the reference
solution is measured in the H1(D)-norm for the approximation of the mean and in the
W 1,1(D)-norm for the approximations of the higher order moments, respectively.

3.1 Results for lognormal diffusion

The Matérn kernel for ν = 7/2
For the smoothness parameter ν = 7/2, we have truncated the Karhunen-Loève expansion
after m = 30 terms. As can be seen from Figure III.2, the sequence {γk}k decays in this
case exactly with a rate of k−4 which is the limiting case in order to fulfill the requirements
of Theorem (2.25).

The error plots of the Monte Carlo method for the approximation of the first
four moments and the according plots of the quasi-Monte Carlo method are visualized in
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Figure IV.1: Errors for ν = 7/2 of the Monte Carlo quadrature (left) and the quasi-Monte
Carlo quadrature (right) in the lognormal case.

Figure IV.1. In these plots, we see that the convergence rate of the quasi-Monte Carlo
method is in each case superior to the convergence rate of the Monte Carlo method.
As expected, we observe algebraic convergence rates. In case of the quasi-Monte Carlo
method, we obtain a convergence rate of N−5/6 for the computation of the mean and a
slightly lower rate for the second and higher order moments. This can be explained by
the exponential dependence of the constant in Corollary (2.47) on p for the quasi-Monte
Carlo method. Since we plot absolute errors and the considered norms of the moments
decrease from the first to the fourth moment, the initial errors decrease from the first to
the fourth moment as well. For the Monte-Carlo method, we observe for all moments the
expected convergence rate 1/2.
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Figure IV.2: Errors for ν = 5/2 of the Monte Carlo quadrature (left) and the quasi-Monte
Carlo quadrature (right) in the lognormal case.
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The Matérn kernel for ν = 5/2
For the smoothness parameter ν = 5/2, we have truncated the Karhunen-Loève expansion
after m = 64 terms. As expected, the convergence rates of the Monte Carlo quadrature
remain unchanged in comparison to the previous example. Although, the correlation kernel
k5/2 does not meet the required smoothness assumptions of Theorem (2.25) anymore, we
observe the same convergence rates, as for the correlation kernel k7/2. A visualization of
the corresponding errors plots is given in Figure IV.2. From this figure, we immediately
deduce that the quasi-Monte Carlo quadrature is preferable to the Monte Carlo quadrature
for this example.

In our examples, we observe essentially the same convergence behavior of the
Monte Carlo and the quasi-Monte Carlo quadrature based on Halton points with respect
to an increasing length of the Karhunen-Loève expansion. This behaviour was expected for
the Monte Carlo quadrature. For the quasi-Monte Carlo quadrature, this indicates that the
linear dependency on the dimensionality m in the convergence rate in Theorem (2.25) can
be removed or at least weakened, see also Remark (2.39). In addition, the results for the
correlation kernel k5/2 imply that the claimed decay conditions on {γk}k in Theorem (2.25)
can most likely be improved.

3.2 Results for uniformly elliptic diffusion

The Matérn kernel for ν = 7/2
We consider (3.1) with a diffusion coefficient which is given by a truncated Karhunen-Loève
expansion

am(x,y) = Ea(x) +
m∑
k=1

√
λkϕk(x)yk x ∈ [0, 1].

In addition to the covariance kernel, the expectation field of am has to be known. We set
Ea(x) ≡ 2.5 which is sufficient to guarantee the positivity of am.

The convergence results for the Monte Carlo and quasi-Monte Carlo quadrature
based on Halton points for the approximation of the first for moments of um are visualized
in Figure IV.3. As in the lognormal case, the Monte Carlo quadrature yields for all
moments a convergence rate 1/2. The convergence results for the quasi-Monte Carlo
quadrature are expected to be slightly better than in the lognormal case. Indeed, all
the moments converge with a rate of approximately 10/11. Hence, the convergence rate
comes close to the upper bound 1. The convergence rate of a quasi Monte Carlo quadrature
based on Halton points is even for m = 1 limited by 1 since, in this case, the discrepancy is
bounded by O(N−1). This demonstrates that the dimensionality m does not significantly
impair the convergence of the quasi-Monte Carlo quadrature in the numerical examples.

The Matérn kernel for ν = 5/2
As in the previous example, we set the expectation field of a to Ea(x) ≡ 2.5. On the left-
hand side of Figure IV.4, the convergence rate of the Monte Carlo quadrature is shown. As
in all other examples, the convergence rate is 1/2 for the moment computation. Neverthe-
less, we observe that the convergence of the Monte Carlo quadrature is not monotonically
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Figure IV.3: Errors for ν = 7/2 of the Monte Carlo quadrature (left) and the quasi-Monte
Carlo quadrature (right) in the uniformly elliptic case.

with respect to the number of quadrature points. This can be explained since the method
provides error estimates in the mean square sense.
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Figure IV.4: Errors for ν = 5/2 of the Monte Carlo quadrature (left) and the quasi-Monte
Carlo quadrature (right) in the uniformy elliptic case.

For the quasi-Monte Carlo quadrature, we observe essentially the same error
plots, visualized on the right-hand side of Figure IV.4, as for the Matérn kernel with
smoothness parameter ν = 7/2. This demonstrates that the quasi-Monte Carlo quadra-
ture works robust with respect to the increase of the dimensionality which is, as for the
lognormal examples, m = 30 for ν = 7/2 and m = 64 for ν = 5/2.

We conclude that the quasi-Monte Carlo method based on Halton points outper-
formes the Monte Carlo quadrature in the numerical examples of this section. Especially
in the lognormal case, the quasi-Monte Carlo quadrature performes even better than ex-
pected. More precisely, the method converges dimension-independent with a rate close to
1 even if the Matern kernel with ν = 5/2 is used. In particular, this case is not covered
by our analysis anymore.



Chapter V

GAUSSIAN QUADRATURE

In this chapter, we discuss and analyze the application of Gaussian quadrature rules for
approximating the moments of the solution um to (III.3.3) or to (III.3.5). We will consider
full tensor product quadrature methods as well as sparse Smolyak type quadrature meth-
ods. The uniformly elliptic case (III.3.3) is treated with the Gauss-Legendre quadrature,
assuming that the random parameters in the Karhunen-Loève expansion are uniformly
distributed. As long as the ellipticity of the diffusion coefficient is guaranteed, in principle
any arbitrary distribution on a finite interval can be considered. This would lead to a dif-
ferent system of orthogonal polynomials which can be determined by a 3-term-recurrence
relation, see e.g. [HB09]. Then, a Gaussian quadrature rule with n points is constructed
based on the roots of the n-th orthogonal polynomial. Since the underlying density func-
tion for the lognormal case (III.3.5) is the Gaussian density, the orthogonal polynomials
in this case are given by the Hermite polynomials and, thus, the resulting quadrature is
the Gauss-Hermite quadrature.

The main focus of this chapter will be, as in the previous one, the investigation
whether the convergence rate of such methods deteriorates with the dimensionality m or
not. We consider anisotropic tensor product Gaussian quadrature and anisotropic sparse
Gaussian quadrature methods. The convergence analysis is based on one-dimensional
best polynomial interpolation error results from [BNT07, Bie09]. These error estimates
are quite similar in the lognormal as well as in the uniformly elliptic case. Hence, we
summarize the results into a more general one-dimensional Gaussian quadrature error
estimate and treat both cases simultaneously. In order to obtain dimension-independent
convergence rates for the anisotropic Gaussian quadrature, the decay requirements on the
sequence {γk}k turn out to be quite strong, namely γk . exp(k−1−η) for η > 0. Thus, we
additionally analyze the impact of the dimensionality in case of an algebraically decaying
sequence {γk}k.

For the anisotropic sparse Gaussian quadrature, we present a new bound on the
number of indices in an anisotropic sparse grid in order to improve the results of the
anisotropic tensor product Gaussian quadrature. We formulate this estimate as a conjec-
ture since it is only proven for two dimensions in this chapter. In the appendix, the proof
is extended up to m = 5 dimensions 1. Nevertheless, we checked this bound numerically
for various values of m and various anisotropic settings. With this new estimate at hand,
we can at least show that the convergence rate of the anisotropic sparse Gaussian quadra-

1In the meantime, the conjecture is proven by Abdul-Lateef Haji-Ali
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ture is dimension-independent for arbitrary exponentially decaying sequences {γk}k. This
is, for example, the case for Gaussian covariance kernels. Moreover, in case of algebraic
decay properties on {γk}k and a moderate dimensionality m, our analysis still provides
satisfactory results, since the dimensionality enters only with the factor log(log(m)) into
the convergence rate. Although these estimates require the validity of the conjecture, the
findings help to better understand why the convergence rate of anisotropic sparse grid
quadratures behaves quite well even for moderately smooth covariance kernels. At the
end of this chapter, the theoretical findings are validated by numerical examples.

1. Univariate Gaussian quadrature

Let ρ > 0 be a density function on Γ ⊂ R. Then, we define an scalar product on L2
ρ(Γ) by

(v, w)L2
ρ(Γ) =

∫
Γ
v(y)w(y)ρ(y) dy.

A sequence of orthonormal polynomials in L2
ρ(Γ) can be constructed by the 3-term-

recurrence relation

(1.1) βk+1pk+1(y) = (y − αk+1)pk(y)− βkpk−1(y), k ≥ 1

with p−1 ≡ 0 and p0 ≡ 1. The coefficients αk and βk are given by

αk+1 = (pk(y), ypk(y))L2
ρ(Γ) and

βk+1 = ‖qk+1‖L2
ρ(Γ) with qk+1 = (y − αk+1)pk(y)− βkpk−1(y).

The N -point Gaussian quadrature on Γ with respect to the density ρ is then
defined by the quadrature points JN := {η1, . . . , ηN} and the corresponding quadrature
weights {ω1, . . . , ωN}. The quadrature points are determined as the N roots of pN and
the weights by ωk = (Lk, 1)L2

ρ(Γ), where Lk denotes the k-th Lagrange polynomial with
respect to the point set JN . Numerically, these quadrature rules can be constructed by
determining the eigenpairs of the Jacobi matrix JN which is associated with the 3-term-
recurrence relation (1.1), see [HB09]. This Jacobi matrix is the N ×N tridiagonal matrix

JN =


β1 α1 0

α1 β2
. . .

. . . . . . αN−1
0 αN−1 βN

 .

Denoting by (λk,vk)Nk=1 the eigenpairs of JN , where the eigenvectors vk are assumed to
be normalized, i.e. ‖vk‖2 = 1, it holds that ηk = λk and ωk = v2

k,1 for k = 1, . . . , N .
With the quadrature points and weights at hand, we define the univariate N

point Gaussian quadrature rule

(
QG,Nv

)
(x) =

N∑
k=1

ωkv(x, ηk)
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to approximate the Bochner integral(
Iv
)
(x) :=

∫
Γ
v(x, y)ρ(y) dy.

This quadrature rule corresponds to the quadrature operator QG,N : C0
σ(Γ;X)→ X, where

σ is given by (III.5.23) for m = 1 in the lognormal case and σ ≡ 1 in the uniformly elliptic
case, respectively. With the construction above, we are in principle able to consider
arbitrary density functions. Nevertheless, we restrict ourselves to the Gauss-Legendre
quadrature on Γ = [−1/2, 1/2] in the uniformly elliptic case and denote the associated
quadrature operator with N points by QGL,N . Likewise, we write QGH,N for the Gauss-
Hermite quadrature operator with N points.

In the sequel, we adapt the analysis and the notation presented in [BNT07],
where the approximation error of the stochastic collocation method is analyzed. Ac-
cording to [BNT07], we shall introduce the one-dimensional Gaussian auxiliary weight√
ρ(y) = (2π)1/4 exp(−y2/4) for the lognormal case and denote the corresponding space

by C0√
ρ(R;X). The norm in C0√

ρ(R;X) is weaker than the norm in C0
σ(R;X) which yields

that C0
σ(R;X) ⊂ C0√

ρ(R;X).
The following two lemmata bound the one-dimensional quadrature error by the

polynomial best approximation error. They are slight modifications of the corresponding
lemmata in [BNT07] for the polynomial interpolation.

(1.2) Lemma. The quadrature operator QGH,N : C0
σ(R;X)→ X is continuous.

Proof. Consider v ∈ C0
σ(R;X). By using the triangle inequality and exploiting the posi-

tivity of the weights wk of the Gauss-Hermite quadrature, we deduce that

‖QGH,Nv‖X =
∥∥∥∥∥
N∑
i=1

ωiv(ηi)
∥∥∥∥∥
X

≤
N∑
i=1

ωi‖v(ηi)‖X =
N∑
i=1

ωi
σ(ηi)

∥∥σ(ηi)v(ηi)
∥∥
X

≤ max
i=1,...,N

∥∥σ(ηi)v(ηi)
∥∥
X

N∑
i=1

ωi
σ(ηi)

. ‖v‖C0
σ(R;X).

The last inequality follows from [Usp28], where the convergence
N∑
i=1

ωi
σ(ηi)

N→∞−→
∫
R

ρ(y)
σ(y) dy <∞

is shown. �

The above lemma is also valid for the space C0√
ρ(R;X). Moreover, the Gauss-

Legendre quadrature operator QGL,N : C0([−1/2, 1/2];X) → X is obviously continuous
with continuity constant 1 =

∑N
i=1wi, i.e. it holds for all v ∈ C0([−1/2, 1/2];X) that

‖QGL,Nv‖X ≤ ‖v‖C0([−1/2,1/2];X).

The continuity and the polynomial exactness of the quadrature operators are
exploited to relate the quadrature error to the polynomial best approximation error in
C0√

ρ(R;X) in the lognormal case and in C0([−1/2; 1/2];X) in the uniformly elliptic case,
respectively. Therefore, let us denote by Pn(Γ) the space of polynomials of degree at most
n.
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(1.3) Lemma. For every v ∈ C0√
ρ(R;X), the quadrature error of the N -point Gauss-

Hermite quadrature is bounded by
‖Iv −QGH,Nv‖X . inf

w∈P2N−1(R)⊗X
‖v − w‖C0√

ρ
(R;X).

Accordingly, for every v ∈ C0([−1/2, 1/2];X), it holds for the N -point Gauss-Legendre
quadrature that

‖Iv −QGL,Nv‖X . inf
w∈P2N−1([−1/2,1/2])⊗X

‖v − w‖C0([−1/2,1/2];X).

Proof. Since the N -point Gauss-Hermite quadrature is exact for all polynomials of degree
2N − 1, it holds that QGH,Nw = Iw for all w ∈ P2N−1(R)⊗X. Moreover, we have by the
continuity of the integration operator I in C0√

ρ(R;X) that

‖v‖L1
ρ(R;X) =

∫
R
‖v‖Xρ(x) dx . ‖v‖C0√

ρ
(R;X).

Using additionally Bochner’s inequality (II.3.6) and the continuity of the quadrature op-
erator QGH,N , cf. Lemma (1.2), we deduce for arbitrary w ∈ P2N−1(R)⊗X that

‖Iv −QGH,Nv‖X ≤ ‖I(v − w)‖X + ‖QGH,N (v − w)‖X
. ‖v − w‖L1

ρ(R;X) + ‖v − w‖C0√
ρ
(R;X)

. ‖v − w‖C0√
ρ
(R;X).

The assertion follows in complete analogy in case of the Gauss-Legendre quadrature. �

Hence, in order to estimate the approximation error of the univariate Gauss-
quadrature, we have to estimate the error of the polynomial best approximation for certain
functions v ∈ C0√

ρ(R;X) in the lognormal and for certain functions v ∈ C0([−1/2, 1/2];X)
in the uniformly elliptic case, respectively. This would not lead to useful results for general
functions v contained in these spaces, but the specific integrands under consideration pro-
vide additional regularity. In particular, they are analytic and, moreover, analytically ex-
tendable into a region of the complex plane according to Theorem (III.5.34) and Corollary
(III.6.6). For such kind of functions, approximation results are available. In the lognormal
case, we exploit the one-dimensional approximation error discussed in [Bie09]. The proof
of this result is based on estimates for the Fourier-Hermite coefficients which are calculated
with the help of Cauchy’s integral theorem. Therefore, recall that σs(y) = exp(−sγ|y|)
and X denote a Banach space, for example X = H1

0 (D) or X = W 1,1
0 (D).

(1.4) Lemma ([Bie09]). 2 Suppose that v ∈ C0
σs(R;X) admits an analytic extension

in Σ(R, τ) for some 1/
√

2 < τ < 1/γ. Then, the error of the best approximation by
2Unfortunately, this lemma turned out to be wrong after the defense of the thesis. The proof of this

lemma is based on an estimate of the Hermite coefficients of the function v by means of Cauchy’s integral
formula. But, there is a factor

√
n! missing in each Hermite coefficient and, hence, even convergence of the

remainder of the Hermite series cannot be proven with this estimate. For a fixed dimensionm, the estimate
(1.8) can be used instead to obtain convergence results. However, for small values of τ , the estimate (1.8)
is not very accurate due to the constant C(τ) and, thus, it does not yield good enough results for a
convergence analysis with respect to a growing dimensionality m and increasing regions of analycity τk for
k = 1, . . . ,m. Therefore, the following analysis in this chapter is only valid for the uniformly elliptic case
or, in more generality, for multivariate quadrature problems where an estimate (2.9) is available for the
univariate quadrature.
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polynomials of degree at most n can be bounded by

(1.5) inf
w∈Pn(R)⊗X

‖v − w‖C0√
ρ
(R;X) ≤ C(σs, τ)e− log(

√
2τ)n‖v‖C0

σs
(Σ(R,τ);X)

where ‖v‖C0
σ(Σ(R,τ);X) = supz∈Σ(R,τ) σ(Re(z))‖v(z)‖X and

(1.6) C(σs, τ) =
2 exp

(
(sγ)2

4

)
exp(sγτ)

√
2τ − 1

.

(1.7) Remark. The above lemma is only useful when the quantity τ which describes
the region of analyticity is greater than 1/

√
2. For smaller values of τ , there are estimates

available of the form

(1.8) inf
w∈Pn(R)⊗X

‖v − w‖C0√
ρ
(R;X) ≤ C(τ)

√
n exp(−τ

√
n),

cf. [BNT07, Bie11]. Although, the estimate (1.8) looks quite promising, the constant C(τ)
may grow considerably fast in τ , approximately like exp(τ2/2) and, thus, (1.8) is not useful
for large values of τ .

Nevertheless, the regions of analyticity in our application grow with the dimen-
sionality which implies that at least after a certain fixed number k0 of dimensions the
conditions of Lemma (1.4) on τk are fulfilled for all k ≥ k0. In this case, we would have to
deal with (1.8) in the first k0 dimensions which further complicates, but does not impair
our analysis. Hence, we assume in the following that each τk for k = 1, . . . ,m meets the
assumptions of Lemma (1.4).

The numerator in the constant in (1.6) decreases for decreasing sγ. Hence, for
fixed s and γ <

√
2, the numerator in (1.6) can be bounded by a generic constant C > 0.

Therefore, we can reduce estimate (1.5) to

(1.9) inf
w∈Pn(R)⊗X

‖v − w‖C0√
ρ
(R;X) ≤

C√
2τ − 1

e− log(
√

2τ)n‖v‖C0
σs

(Σ(R,τ);X).

Lemma (1.4) shows that the univariate Gauss-Hermite quadrature converges ex-
ponentially in terms of the number of quadrature points for functions which are analyt-
ically extendable into some strip around the real line. The corresponding result for the
Gauss-Legendre quadrature is provided by the next lemma from [BNT07].

(1.10) Lemma ([BNT07]). Suppose that v ∈ C0([−1/2, 1/2];X) admits an analytic
extension in Σ([−1/2, 1/2], τ) for some τ > 0. Then, the error of the best approximation
by polynomials of degree at most n can be bounded by

(1.11) inf
w∈Pn([−1/2,1/2])⊗X

‖v − w‖C0([−1/2,1/2];X) ≤
2

κ− 1e
−n log κ‖v‖C0

σ(Σ([−1/2,1/2],τ);X),

with κ = 2τ +
√

1 + 4τ2.
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2. Anisotropic tensor product Gaussian quadrature
The integrals in our approximation are defined over the m-dimensional domain Γ. Hence,
we have to construct a multivariate quadrature formula. This can simply be done by
tensorization of the univariate quadrature rules. Therefore, we define the tensor product
Gaussian quadrature operator with respect to a multi-index N ∈ Nm by

(2.1)
(
QG,Nv

)
(x) :=

(
m⊗
k=1

Q
(k)
G,Nk

v

)
(x) =

∑
α∈JN

ωαv(x,ηα)

as an approximation to the multivariate integration operator I defined in (IV.0.1). Herein,
the index set is given by JN =×m

k=1 JNk . Moreover, the quadrature points and weights
are defined according to

(2.2) ηα :=
(
η(1)
α1 , . . . , η

(m)
αm

)
and ωα :=

m∏
k=1

ω(k)
αk
.

Note that I coincides, due to the product structure of the measure ρdx, with the tensor
product integration operator

I :=
m⊗
k=1

I(k).

2.1 Continuity of the Gaussian quadrature operator

It is crucial to investigate the continuity of QG,N and I in order to establish error esti-
mates with constants which are independent of the dimension m of the parameter domain
Γ. In analogy to the univariate case, we denote the tensor product Gauss-Hermite quadra-
ture operator by QGH,N and the tensor product Gauss-Legendre quadrature operator by
QGL,N. In the uniformly elliptic case, the continuity of QGL,N is again fulfilled with
continuity constant 1:

(2.3)
‖QGL,Nv‖X =

∥∥∥∥∥ ∑
α∈JN

ωαv(x,ηα)
∥∥∥∥∥
X

≤ ‖v‖C0([−1/2,1/2]m;X)
∑
α∈JN

ωα = ‖v‖C0([−1/2,1/2]m;X).

(2.4) Lemma. Let the weight σs be defined as in (III.5.25). Then, the multivariate
tensor product Gaussian quadrature operator QGH,N as well as the integration operator
I are continuous as mappings C0

σs(R
m;X) → X with continuity constants which depend

on s but not on m.

Proof. For the integration operator I, the assertion is directly obtained by (III.5.26) with
the continuity constant C(σs). For the quadrature operator QGH,N, we conclude in the
same way as in the univariate case that

(2.5) ‖QGH,Nv‖X ≤ ‖v‖C0
σs

(Rm;X)
∑
α∈JN

ωασ
−1
s (ηα).
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It remains to show that
∑
α∈JN

ωασ
−1
s (ηα) is bounded by a constant independent of m.

Therefore, we exploit the fact that the function σs(y) =
∏m
k=1 exp(−sγk|yk|) as well as the

weights ωα have tensor product structure. Hence, the sum on the right-hand side of (2.5)
can be rewritten into a product of univariate Gauss-Hermite quadrature formulae

∑
α∈JN

ωασ
−1
s (ηα) =

m∏
k=1

Nk∑
`=1

ω
(k)
` exp

(
sγk

∣∣∣η(k)
`

∣∣∣).
From [Usp28], we know that the univariate Gauss-Hermite quadrature formula converges
for σ(y) = exp(γ|y|) and arbitrary γ ∈ R. To establish dimension independence of the
continuity constant of the tensor product operator, we have to use the decay properties
of the sequence γk. Since {γk}k ∈ `1(N), there exists an index k0 such that sγk < 1
for all k > k0. We assume now, without loss of generality, that it holds sγk < 1 for all
k ∈ N. Otherwise, the continuity constant will additionally depend on k0, but will remain
independent on m. This assumption allows us to construct an estimate on the continuity
constant of the univariate Gauss-Hermite quadrature operator. In particular, we show
that

(2.6)
Nk∑
`=1

ω
(k)
` exp

(
sγk

∣∣∣η(k)
`

∣∣∣) ≤ 1
1− sγk

.

With this estimate at hand, we can conclude with the Taylor expansion of the logarithm
at 1 and the summability of the sequence {γk}k, see (IV.2.37), that

∑
α∈JN

ωασ
−1
s (ηα) ≤

m∏
k=1

1
1− sγk

= exp
(
−

m∑
k=1

log(1− sγk)
)

≤ exp
( ∞∑
k=1

γk + cs2
∞∑
k=1

γ2
k

)
<∞

holds with a constant c > 0. For the proof of (2.6), we follow some arguments from [Usp28].
From there, we know that the Gauss-Hermite quadrature approximates the moments

Mp := 1√
2π

∫
R
yp exp

(
− y2

2

)
dy, p ∈ N,

from below. Moreover, it is well known that the moments can be determined by

Mp =
{

0, if p is odd,
(p− 1)!!, if p is even,

where (p− 1)!! := (p− 1) · (p− 3) · · · 3 · 1.

For notational convenience, we omit the dependency on k in (2.6) and set γ = sγk with
γ < 1. This leads, in combination with the series expansion of the exponential, to

(2.7)
N∑
`=1

ω` exp(γ|η`|) =
N∑
`=1

ω`

∞∑
j=1

(γ|η`|)j

j! =
∞∑
j=1

γj

j!

N∑
`=1

ω`|η`|j .
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For even j, the convergence of the Gauss-Hermite quadrature for the moments from below
implies that

N∑
`=1

ω`|η`|j ≤Mj = (j − 1)!!.

With the application of the Cauchy-Schwarz inequality, we additionally obtain that it
holds

N∑
`=1

ω`|η`|j =
N∑
`=1

√
ω`|η`|j+1

√
ω`|η`|j−1 ≤

√√√√ N∑
`=1

ω`|η`|j+1

√√√√ N∑
`=1

ω`|η`|j−1

≤
√
Mj−1Mj+1 =

√
jMj−1

for odd j ∈ N. It is now easily validated that
∑N
`=1 ω`|η`|j ≤ j! for all j ∈ N. Inserting

this into (2.7) yields that

N∑
`=1

ω` exp(γ|η`|) ≤
∞∑
j=0

γj = 1
1− γ .

Hence, we have established the estimate (2.6) which completes the proof. �

With the convergence results of the univariate quadrature at hand, we are able to
estimate the error of the tensor product Gaussian quadrature. A crucial ingredient is the
analytic extendability of the integrands under consideration which is provided in Lemma
(III.5.34) for the lognormal case and in Corollary (III.6.6) for the uniformly elliptic case.
The error analysis leads to an anisotropic tensor product quadrature formula since the
number of quadrature points in each direction is determined by the region of analytic
extension in this particular direction.

2.2 Error estimate for the anisotropic Gaussian quadrature

In this subsection, we analyze the convergence of the anisotropic tensor product Gaussian
quadrature. The basis for this analysis are the one-dimensional error estimates in Lemma
(1.4) and Lemma (1.10) and the continuity of the asociated multivariate integral and
quadrature operators, cf. (2.3) and Lemma (2.4). To estimate the error in the lognormal
and in the uniformly elliptic case simultaneously, we make the following assumption on
the one-dimensional error estimates.

(2.8) Assumption. Let the function v ∈ C0
σ(Γ;X) ⊂ L2

ρ(Γ;X) be analytically ex-
tendable into Σ(Γ, τ) where X denotes a Banach space. Moreover, let QG,N denote the
N -point Gaussian quadrature with respect to the density function ρ. Then, there exist
functions g, h : R+ → R+ such that the error of the Gaussian quadrature can be bounded
by

(2.9) ‖(I −QG,N )v‖X ≤ g(τ) exp
(
− h(τ)(2N − 1)

)
‖v‖C0

σ(Σ(Γ,τ);X).
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(2.10) Remark. According to Lemma (1.3) and Lemma (1.4), the Assumption (2.8) is
fulfilled for the Gauss-Hermite quadrature with σ(y) = σs(y), Γ = R, h(τ) = log(

√
2τ)

and g(τ) = C/(
√

2τ − 1). The constant C depends, besides on the continuity constants of
I and QGH,N , only on a generic constant, cf. (1.9).

For the Gauss-Legendre quadrature, the combination of Lemma (1.3) and Lem-
ma (1.10) yields that the Assumption (2.8) is fulfilled with σ(y) ≡ 1, Γ = [−1/2, 1/2],
h(τ) = log(κ) and g(τ) = 4/(κ− 1) with κ = 2τ +

√
1 + 4τ2.

With the one-dimensional error estimate (2.9) at hand, we can establish the
following result for the error of the anisotropic tensor product Gaussian quadrature.

(2.11) Theorem. For each k = 1, . . . ,m, let v ∈ C0
σ(Γ;X) ⊂ L2

ρ(Γ;X) be analytically
extendable into Σ(Γk, τk). Additionally, let the tensor product Gaussian quadrature op-
erator QG,N : C0

σ(Γ;X) → X as well as the integration operator I : C0
σ(Γ;X) → X be

continuous. If we choose the number of quadrature points Nk in the k-th direction such
that

(2.12) Nk >
| log ε|
2h(τk)

+ 1
2 ,

we obtain that the error of QG,Nv for approximating the integral Iv is bounded by

(2.13) ‖(I−QG,N)v‖X . ε max
k=1,...,m

‖v‖
C0
σk

(
Σ(Γk,τk);C0

σ?
k

(Γ?k;X)
) m∑
k=1

g(τk),

where we use the notation Γ?k = ×
i=1,i 6=k

Γi, cf. Lemma (III.6.6). Moreover, the constant in

(2.13) is only dependent on the continuity constants of QG,N and I.

Proof. We estimate the tensor product quadrature error as usual by the sum of the one
dimensional quadrature errors

(2.14)
‖(I−QG,N)v‖X

≤
m∑
k=1

∥∥∥(Q(1)
G,N1

⊗ . . .⊗Q(k−1)
G,Nk−1

⊗
(
I(k) −Q(k)

G,Nk

)
⊗ I(k+1) ⊗ . . .⊗ I(m)

)
v
∥∥∥
X
.

With the continuity of the multivariate integral as well as the multivariate Gaussian
quadrature operator, we can further deduce that

(2.15)

∥∥∥(Q(1)
G,N1

⊗ . . .⊗Q(k−1)
G,Nk−1

⊗
(
I(k) −Q(k)

G,Nk

)
⊗ I(k+1) ⊗ . . .⊗ I(m)

)
v
∥∥∥
X

. sup
y?
k
∈Γ?k

σ?k(y?k)
∥∥∥(I(k) −Q(k)

G,Nk

)
v(y?k)

∥∥∥
X
.

Next, we employ the one-dimensional error estimate (2.9) which yields that∥∥∥(I(k) −Q(k)
G,Nk

)
v(y?k)

∥∥∥
X

≤ g(τk) exp
(
− h(τk)(2Nk − 1)

)
sup

z∈Σ(Γk,τk)
σk(Re(z))‖v(z,y?k)‖X .
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Inserting this estimate into (2.15), we derive that

(2.16)

∥∥∥(Q(1)
G,N1

⊗ . . .⊗Q(k−1)
G,Nk−1

⊗
(
I(k) −Q(k)

G,Nk

)
⊗ I(k+1) ⊗ . . .⊗ I(m)

)
v
∥∥∥
X

. g(τk) exp
(
− h(τk)(2Nk − 1)

)
‖v(z)‖

C0
σk

(
Σ(Γk,τk);C0

σ?
k

(Γ?k;X)
).

With the choice (2.12) of the number of quadrature points and for a desired accuracy
ε < 1, the assertion follows from

exp
(
− h(τk)(2Nk − 1)

)
≤ exp

(
− h(τk)

| log ε|
h(τk)

)
= exp(−| log(ε)|) = ε

and the summation in (2.14) over the terms in (2.16). �

Theorem (2.11) implies that the error of the anisotropic tensor product Gaussian
quadrature is of order ε when we can bound the associated one-dimensional Gaussian
quadrature errors by (2.9). If the sequence {g(τk)}k is additionally summable, we can also
bound the constant independently of m. Therefore, we investigate whether the sequence
{g(τk)}k is summable in case of the Gauss-Hermite and the Gauss-Legendre quadrature.
To this end, we have to exploit the behaviour of τk for the integrands under consideration.
In particular, we relate the increase of τk to the decrease of γk in the lognormal case by
the following remark.

(2.17) Remark. (a) Notice that the regularity result (III.5.29) for the solution
um to (III.3.5), the regularity result (III.5.30) for u2

m, and, if f ∈ Lp(D), the reg-
ularity result (III.5.32) for upm imply the conditions of Lemma (III.5.34). This,
together with Lemma (2.4) verifies the conditions of Theorem (2.11) in the log-
normal case.

(b) Furthermore, the regions of analytic extendability {τk}k can be chosen in such a
way that {τ−1

k }k is summable due to Assumption (III.4.8) on the weights {γk}k.
Indeed, we have by (III.4.8) that the sequence {γk}k belongs to `1(N). Now,
we have that the solution um to (III.3.5) and the powers of um, respectively,
fulfill the requirements (III.5.35) in Theorem (III.5.34) with µk = γk/ log 2 and
µk = pC(p,D)γk/ log 2, respectively. This implies that µk has the same asymp-
totic decay behaviour as γk. Since the region of analyticity in the k-th direction
has to satisfy τk < 1/µk, we can, for example, bound the region of analyticity by
τk = 1/2µk. This ensures that τ−1

k has the same asymptotic decay behaviour as
µk and, hence, as γk.

(c) For each k = 1, . . . ,m, the quantity

‖v(z)‖
C0
σk

(
Σ(Γk,τk);C0

σ?
k

(Γ?k;X)
) = sup

z∈Σ(R,τk)
σs,k

(
Re(z)

)
‖v(z)‖C0

σ?
s,k

(Rm−1;X)

in Theorem (2.11) is bounded by a constant times ‖f‖L2(D) for the computation
of the mean and by a constant times ‖f‖pLp(D) for the computation of the p-th
moment. Nevertheless, the constant obviously depends on the choice of τk and
tends to infinity if τk comes close to the boundary of the analyticity region, i.e. if
τk → 1/µk, as can be seen from the proof of Lemma (III.5.34).



Section 2. Anisotropic tensor product Gaussian quadrature 83

From Remark (2.17), we conclude that τ−1
k has, up to a constant, the same be-

haviour as γk in the lognormal case. Due to the similarity of the regularity results from
Section III.6 and with the same argumentation as above, we also obtain that τ−1

k h γk in
the uniformly elliptic case. Hence, the summability of the sequence {g(τk)}k follows imme-
diately from the summability of {τ−1

k }k in the uniformly elliptic as well as the lognormal
case. This can be seen in the lognormal case from

(2.18) g(τk) = C√
2τk − 1

and the assumption that τk <
√

2 for all k, cf. Remark (1.7). In the uniformly elliptic
case, the summability of {g(τk)}k follows from the summability of {τ−1

k }k due to

(2.19) g(τk) = 4
κk − 1 ≤

2
τk
.

Hence, the quadrature error in Theorem (2.11) is, for the multivariate Gauss-Hermite
and the multivariate Gauss-Legendre quadrature, of order ε with a constant which is
independent of m.

2.3 Cost complexity of the anisotropic Gaussian quadrature

The next step is to analyze the cost, i.e. the number of quadrature points which are
required to provide the error O(ε). It is obvious that the number of quadrature points
is given by the cardinality of the set JN which is simply the product of the number of
quadrature points of the univariate quadrature formulae, i.e.

cost(QG,N(ε),m) = #
(
JN(ε)

)
=

m∏
k=1

Nk(ε).

The number of quadrature points in each direction is determined by (2.12). Thus, it holds
that

(2.20) cost(QG,N(ε),m) =
m∏
k=1

⌈ | log ε|
2h(τk)

+ 1
2

⌉
≤

m∏
k=1

(
| log ε|
h(τk)

+ 1
)
.

The inequality follows from dx2 e ≤ x for x ≥ 1. From the following lemma, we know
that the cost in (2.20) can be bounded independently of m if the sequence {h(τk)k}k is
summable.

(2.21) Lemma. If the sequence {h(τk)k}k in (2.12) is summable, then there exists for
each δ1, δ2 > 0 a constant C(δ1, δ2) independent of m and ε such that the cost in (2.20)
can be bounded by

(2.22) cost(QG,N(ε),m) ≤ C(δ1, δ2)ε−δ1−δ2 .

Proof. From the summability of {h(τk)−1}k, it follows that there exists a j0 ∈ N for each
δ1 > 0 such that

(2.23)
∞∑

k=j0+1
h(τk)−1 ≤ δ1.
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Hence, we can split the product in (2.20) into

(2.24) cost(QG,N(ε),m) ≤
j0∏
k=1

(
| log ε|
h(τk)

+ 1
)

m∏
k=j0+1

(
| log ε|
h(τk)

+ 1
)
.

We assume here that m > j0 since we are interested in the asymptotic behaviour when
ε→ 0 which implies m→∞. With (2.23), the second factor can simply be estimated by

m∏
k=j0+1

( | log ε|
h(τk)

+ 1
)

= exp
(

m∑
k=j0+1

log
( | log ε|
h(τk)

+ 1
))
≤ ε−δ1 .

The number of factors j0 in the first product in (2.24) is fixed and depends only on the
choice of δ1 and on the decay properties of {h(τk)−1}k, cf. (2.23). Hence, j0 is particularly
independent of the desired accuracy ε and, thus, also independent of m. Since j0 is a fixed
natural number, there exists for all δ2 > 0 a constant C(δ1, δ2), independent of ε and m,
such that

j0∏
k=1

(
| log ε|
h(τk)

+ 1
)
≤ C(δ1, δ2)ε−δ2 .

Indeed, there is for arbitrary δ2 > 0 a suitable constant c > 0 which depends on δ2 and j0
such that log(x)j0 ≤ cxδ2 . This establishes the desired inequality (2.22). �

(2.25) Remark. Unfortunately, the summability of the sequence {h(τk)−1}k requires
that the regions of analyticity τk increase like τk & exp(ck1+η) for some η > 0. This
corresponds to a superexponentially decay of {γk}k, i.e. γk . exp(−ck1+η). Such a decay
rate is not obtained by any correlation kernel of the Matérn class. An example for a
correlation kernel which provides such a decay behaviour for γk is given in [NTW08b].

Since correlation kernels of the Matérn class do not provide the necessary decay
properties on the sequence {γk}k to obtain dimension-independent convergence rates for
the moment computation with anisotropic Gaussian quadrature rules, we investigate how
the convergence rate deteriorates with the dimension for an algebraic decay γk . k−s1 ,
see (III.4.8). Hence, the sequence {τk}k increases with the same rate τk & ks1 , cf. Remark
(2.17). This implies that the sequence {h(τk)}k increases in the lognormal case like

(2.26) h(τk) = log(
√

2τk) ≥ log
(
c1k

s1
)

and in the uniform elliptic case like

(2.27) h(τk) = log(κk) ≥ log(4τk) ≥ log
(
c2k

s1
)
.

For simplicity of the further calculation, we assume that c1 = c2 = 2. Then, we
can estimate the right-hand side in the cost estimate (2.20) by

m∏
k=1

(
| log ε|
h(τk)

+1
)

=
(
| log ε|2

log(2) +1
)(

| log ε|2

log(2 · 2s1) +1
)

exp
(

m∑
k=3

log
( | log(ε)|

log(2ks1) +1
))

≤
(
| log ε|2

log(2) +1
)(

| log ε|2

log(2 · 2s1) +1
)

exp
(

m∑
k=3

| log(ε)|
log(2ks1)

)
.
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The first two factors can be estimated as in (2.21) by C(δ)εδ for arbitrary δ > 0.
Therefore, the essential term which dominates the cost for large values of m is the third
factor. We can estimate the sum in the third factor by

(2.28)
m∑
k=3

1
log(2ks1) ≤

m∑
k=1

1
log(ks1) ≤

1
s1

∫ m

2
log(x)−1 dx = Li(m)

s1
.

The evaluation of the Eulerian logarithmic integral Li(x) at m in (2.28) behaves
like O(m/ log(m)), see [AS64]. Both expressions, Li(m) and m/ log(m), are used as esti-
mates for the number of primes contained in the firstm natural numbers. Thus, it is known
that Li(m) log(m)/m→ 1 for m→∞. Moreover, it is also known that Li(m) > log(m)/m
and, hence, the constant in the O-notation converges to 1 from above for m→∞.

Employing the estimate on the Eulerian logarithmic integral, we end up with the
estimate of the cost

(2.29) cost(QGL,N(ε),m) . ε−
C
s1

m
log(m) .

The bound (2.29) implies that the convergence rate of the anisotropic tensor
product Gaussian quadrature is algebraic and deteriorates quite quickly with the dimen-
sionality.

(2.30) Remark. (a) To get an impression, how the term m/(s1 log(m)) behaves,
we calculate for s1 = 4 and m = 15, that m/(s1 log(m)) ≈ 1.3848. Using the
correct Eulerian logarithmic integral instead of the approximation m/ log(m), we
achieve Li(15)/4 ≈ 1.7774. The above setting corresponds to the consideration
of the kernel of the Matérn class with ν = 7/2, defined on the unit interval [0, 1]
and truncated after 15 stochastic dimensions. For this example, we expect a con-
vergence rate of the anisotropic Gaussian quadrature method of ε−1.7774 which
would be still superior to the convergence rate of a Monte-Carlo method. Nev-
ertheless, any offset in the decay of the sequence {γk}k remarkably compromises
the convergence results.

(b) In this section, we investigated the convergence and cost complexity of the
anisotropic tensor product Gaussian quadrature. It turns out that the decay
conditions on the sequence {γk}k are very strong, i.e. γk . exp(k−1−η) for ar-
bitrary η > 0, in order to obtain dimension-independent convergence rates. We
further analyzed how the convergence rate deteriorates with the dimensionality
m for algebraic decaying sequences {γk}k. As expected, for large values of m,
the convergence rate becomes worse than the convergence rate of a Monte Carlo
quadrature. Nevertheless, we achieve considerably improved results in compari-
son with an isotropic Gaussian quadrature rule. This yields that the anisotropic
tensor product Gaussian quadrature performs, for moderate values of m, like
m = 10 or m = 15, and sufficiently algebraic decay of {γk}k, still comparable to
a Monte Carlo quadrature.
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3. Anisotropic sparse Gaussian quadrature

3.1 Definition of the sparse Gaussian quadrature

In this section, we construct anisotropic sparse Gaussian quadrature methods. Such meth-
ods are sparse Smolyak type quadratures, cf. [Smo63], and very similar to the anisotropic
sparse collocation method based on Gaussian collocation points which has been introduced
in [NTW08b].

We start by considering an increasing sequence of univariate Gaussian quadrature
points

(3.1) θj :=
{
ηi,j
}Nj
i=1 ⊂ R, Nj ∈ N, j = 1, 2, . . . ,

where N1 ≤ N2 ≤ . . .. The associated Gaussian quadrature weights are denoted by{
ωi,j

}Nj
i=1 and the associated Gaussian quadrature operators are denoted by QG,j . For a

multi-index α ∈ Nm, we define the multidimensional tensor product quadrature operator
by

QG,α := Q
(1)
G,α1
⊗ · · · ⊗Q(m)

G,αm
.

Following the notation of [NTW08a], we introduce for j ∈ N the difference
quadrature operator

(3.2) ∆j := QG,j −QG,j−1, where QG,−1 := 0.

With the telescoping sum QG,j =
∑j
`=0 ∆`, the isotropic tensor product quadrature oper-

ator QG,j, which uses in each direction Nj quadrature points, can be rewritten by

(3.3) QG,j =
∑

‖α‖∞≤j
∆(1)
α1 ⊗ . . .⊗∆(m)

αm , where j = (j, . . . , j) ∈ Nm.

The cost of applying the isotropic full tensor product quadrature operator (3.3)
is obviously given by the number of points Nm

j contained in it. Thus, this isotropic
tensor product quadrature extremely suffers from the curse of dimensionality. The classical
sparse Gaussian quadrature, cf. [GG98, BG04], can overcome this obstruction up to a
certain extent. It is based on linear combinations of tensor product quadrature formulae
of relatively small size. To define the sparse Gaussian quadrature, we introduce as in
[NTW08a, BNR00] for each approximation level q the sets of multi-indices

X(q,m) :=
{

0 ≤ α ∈ Nm :
m∑
n=1

αn ≤ q
}

and

Y (q,m) :=
{

0 ≤ α ∈ Nm : q −m+ 1 ≤
m∑
n=1

αn ≤ q
}
.

The Smolyak quadrature operator, cf. [Smo63, GG98], is then given by

(3.4) AG(q,m) :=
∑

α∈X(q,m)
∆(1)
G,α1
⊗ . . .⊗∆(m)

G,αm
.
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α1

α2
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012345

α3 = 0
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α3 = 3
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α3 = 5

Figure V.1: The 21 indices contained in the sparse grid X(5, 2) on the left and the 56
indices contained in X(5, 3) on the right.

An equivalent expression is obtained by the combination technique [GSZ92]

(3.5) AG(q,m) =
∑

α∈Y (q,m)
(−1)q−|α|

(
m− 1
q − |α|

) =QG,α︷ ︸︸ ︷(
Q

(1)
G,α1
⊗ . . .⊗Q(m)

G,αm

)
.

A visualization of the set of indices X(q,m) is given in Figure V.1.
The number of quadrature points used in the above approach is considerably

reduced compared to the full tensor product quadrature. But it is not taken into account
that the different stochastic dimensions are of different importance to the solution um. In
fact, the cardinality of the set X(q,m) is given by

#X(q,m) =
(
q +m

m

)

which still grows exponentially in the stochastic dimension m. Thus, we equip each
stochastic dimension with a weight and use a weighted version of the Smolyak quadra-
ture operator. Let w ∈ Rm+ denote a weight vector for the different stochastic dimen-
sions. We assume in the following that the weight vector is sorted in ascending order,
i.e. w1 ≤ w2 ≤ . . . ≤ wm. Otherwise, we would rearrange the stochastic dimensions. We
modify the sparse grid sets X(q,m) and Y (q,m) in the following way, see also [NTW08b],

(3.6) Xw(q,m) :=
{

0 ≤ α ∈ Nm :
m∑
n=1

αnwn ≤ q
}
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and

(3.7) Yw(q,m) :=
{

0 ≤ α ∈ Nm : q − |w| <
m∑
n=1

αnwn ≤ q
}
.

With this notation at hand, the anisotropic Smolyak quadrature operator of level q ∈ N is
defined by

(3.8) AG,w(q,m) :=
∑

α∈Xw(q,m)
∆(1)
G,α1
⊗ . . .⊗∆(m)

G,αm

which can equivalently be expressed as, cf. [NTW08b],

(3.9) AG,w(q,m) =
∑

α∈Yw(q,m)
cw(α)QG,α, with cw(α) :=

∑
β∈{0,1}m

α+β∈Xw(q,m)

(−1)|β|.

The formula (3.9) can be regarded as the anisotropic combination technique
quadrature. For the evaluation of this formula, we only need to determine the coefficients
cw(α) and to apply tensor product quadrature formulae of relatively small size. Thus,
in order to compute the approximation of the moments to the solution um to (III.3.3) or
to (III.3.5) with the anisotropic Smolyak quadrature (3.9), it is sufficient to evaluate the
integrand v = upm on the anisotropic sparse grid

Jw(q,m) :=
⋃

α∈Yw(q,m)
θα1 × . . .× θαm .

Note that the Smolyak quadrature operator (3.4) coincides with the anisotropic Smolyak
quadrature operator (3.8) for the special weight vector w = 1.

In Figure V.2, the indices of the weighted sparse grid X(1,2.5)(5, 2) and of the
weighted sparse grid X(1,2,3)(5, 3) are visualized. We observe that the number of indices
is drastically reduced in comparison to the according isotropic sparse grids visualized in
Figure V.1.

3.2 Preliminaries for the convergence analysis

In order to analyze the approximation error of the anisotropic sparse Gaussian quadrature
method, we provide in this subsection some preliminary results. Firstly, we remember that
the solution um to (III.3.3) or (III.3.5) and its powers are, in view of Corollary (III.6.8)
and Theorem (III.5.38), analytically extendable in the following sense:

(3.10) Lemma. Let X = H1
0 (D) for p = 1 and X = W 1,1

0 (D) for p ≥ 2. The powers
upm for p ≥ 1 of the solution um to (III.3.3) in the uniformly elliptic case admit an analytic
extension into the region Σ(Γ, τ ) for all τ with

τk <
a

C(δ)k1+δC(p,D)pγk
, where C(δ) =

∞∑
k=1

k−1−δ for arbitrary δ > 0.

In accordance with the regularity estimate (III.6.2) for um and the estimate (III.6.4) for
u2
m, we have that C(1, D) = C(2, D) = 1. For p > 2, the constant C(p,D) is given as in
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α1

α2
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0
1
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5

α 1α 2
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012345

α3 = 0

α3 = 1

Figure V.2: The 10 indices contained in the weighted sparse grid X(1,2.5)(5, 2) on the left
and the 16 indices contained in X(1,2,3)(5, 3) on the right.

(III.5.21) according to the regularity estimates for the higher order moments in Corollary
(III.6.3). In addition, it holds that

‖upm‖C0(Σ([−1/2,1/2]m,τ );X) . ‖f‖
p

Lp+δ1,p (D)
with δ1,p =

{
1, if p = 1,
0, if p > 1.

In the lognormal case, the solution um to (III.3.5) and its powers are analytically extend-
able into Σ(Rm, τ ) provided that

τk <
log 2

C(δ)k1+δC(p,D)pγk
.

Moreover, the p-th moment upm is bounded in accordance with

‖upm‖C0
σs

(Σ(Rm,τ );X) . ‖f‖
p

Lp+δ1,p (D)

for a weight function σs with s ≥ 2p if p ∈ {1, 2} and with s ≥ 3p if p ≥ 3. The constants
which are involved in the estimates depend on the choice of τ and s, but are independent
of m.

Notice that, due to the Assumption (III.4.8) which states that γk . k−s1 for a
s1 > 1, there always is an r > 0 such that the sequence {τk}k which describes the region
of analytic extension satisfies

(3.11) τk & k
r.

The sequence {τk}k is therefore increasing and tends to infinity.
For the further error analysis, we extend some results established in [NTW08b].

As for the Gaussian tensor product quadrature, we base our convergence results on the
one-dimensional error estimate (2.9). According to the estimate (2.9), we choose in (3.1)
the sequence

{
Nj
}
j
of the number of quadrature points as

(3.12) Nj =
⌈1

2(j + 2)
⌉
.
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Then, we can estimate the error of the difference Gaussian quadrature operator
∆G,j := QG,j−QG,j−1 for all j ≥ 1 and for all functions v ∈ C0

σ(Γ;X) which are analytically
extendable in Σ(Γ, τ) by

(3.13)

‖∆G,jv‖X ≤ ‖v −QG,jv‖X + ‖v −QG,j−1v‖X

≤ g(τ)
(
e−h(τ)(j+1) + e−h(τ)j

)
‖v‖C0

σ(Σ(Γ,τ);X)

≤ g(τ)
(
1 + e−h(τ)

)
e−h(τ)j‖v‖C0

σ(Σ(Γ,τ);X)

≤ 2g(τ)e−h(τ)j‖v‖C0
σ(Σ(Γ,τ);X).

For j = 0, the difference Gaussian quadrature operator coincides with the function evalu-
ation at the midpoint z of Γ which implies that

(3.14) ‖∆G,0v‖X = ‖QG,0v‖X = ‖v(z)‖X ≤ e−h(τ)·0‖v‖C0
σ(Σ(Γ,τ);X).

Analogously, it follows from (3.12) and (2.9) that

(3.15) ‖Iv −QG,jv‖X ≤ g(τ)e−h(τ)(j+1)‖v‖C0
σ(Σ(Γ;τ);X).

Now, let us assume that the multivariate integrand can be analytically extended
into the region Σ(Γ, τ ) as validated for the integrands under consideration in Lemma
(3.10). Then, it follows that the error of the tensor product of the operators ∆G,j is
bounded by the product of the one-dimensional errors. Indeed, we obtain for a multi-
index α ∈ Nm that

(3.16)

∥∥∥(∆(1)
G,α1
⊗ · · · ⊗∆(m)

G,αm

)
v
∥∥∥
X

≤max(2g(τ1), 1−α1)e−h(τ1)α1 sup
z∈Σ(Γ1,τ1)

σ1(Re(z))
∥∥∥(∆(2)

G,α2
⊗ · · · ⊗∆(m)

G,αm

)
v(z)

∥∥∥
X

≤
(

m∏
k=1

max(2g(τk), 1− αk)
)
e−
∑m

k=1 h(τk)αk‖v‖C0
σ(Σ(Γ,τ );X).

The product in the above estimate is bounded by a constant which is independent of the
dimensionality m if the sequence {g(τk)}k tends to zero as k increases. In addition, we
only take the maximum in this product in order to ensure that the constant is not less
than 1 if αk = 0.

3.3 Error estimate for the anisotropic sparse Gaussian quadrature

With the above preliminaries, we are able to establish error estimates for the anisotropic
sparse Gaussian quadrature. Therefore, we adapt some parts of the analysis in [NTW08b],
but then conclude in a different way.

(3.17) Lemma. Let v : Γ→ X be analytically extendable into the region Σ(Γ, τ ) and
let the univariate Gaussian quadrature estimate (2.9) hold for each dimension k = 1, . . . ,m.
Moreover, let the sequence of quadrature points be chosen as in (3.12) and let the weight
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vector w be given by wk = h(τk). Then, the error of the anisotropic sparse Gaussian
quadrature (3.4) is bounded by

(3.18)

∥∥(I−AG,w(q,m)
)
v
∥∥
X

. max
k=1,...,m−1

C(k)e−q
(
g(τ1) +

m−1∑
k=1

g(τk+1)#Xw1:k(q, k)
)
‖v‖C0

σ(Σ(Γ,τ );X)

where we use the notation w1:k = [w1, . . . , wk]ᵀ and

Xw1:k(q, k) =
{
α ∈ Nk :

k∑
n=1

αnwn ≤ q
}
.

Furthermore, the constants C(k) in (3.18) are given by

C(k) =
k∏

n=1
max(g(τn), 1)

and the constant hidden in (3.18) is the continuity constant of I.

Proof. In the same way as in [NTW08b], the error of the sparse quadrature is rewritten,
with the notation I =

⊗m
n=1 I

(n), by

(3.19) I−AG,w(q,m) =
m∑
k=1

R(q, k)
m⊗

n=k+1
I(n).

The quantity R(q, k) is defined for k ≥ 2 by

R(q, k) :=
∑

α∈Xw1:k−1 (q,k−1)

k−1⊗
n=1

∆(n)
G,αn

⊗
(
I(k) −Q

G,
⌊(
q−
∑k−1

n=1 αnwn
)
/wk
⌋)

and for k = 1 by

R(q, 1) := I(1) −QG,bq/w1c.

For k > 2, each summand in (3.19) can be estimated with (3.15), (3.16) and with the
continuity of the integration operator by∥∥∥∥∥

(
R(q, k)

m⊗
n=k+1

I(n)
)
v

∥∥∥∥∥
X

.
∑

α∈Xw1:k−1 (q,k−1)

(
k−1∏
n=1

max(g(τn), 1)
)
e−
∑k−1

n=1 αnh(τn)

· g(τk)e−h(τk)
(⌊(

q−
∑k−1

n=1 αnwn
)
/wk
⌋

+1
)
‖v‖C0

σ(Σ(Γm,τ );X)

. g(τk)
∑

α∈Xw1:k−1 (q,k−1)
e−h(τk)

(⌊(
q−
∑k−1

n=1 αnwn
)
/wk
⌋
+1
)
−
∑k−1

n=1 αnh(τn)

· ‖v‖C0
σ(Σ(Γm,τ );X).
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With the choice wn = h(τn) for all n = 1, . . . ,m, it follows that∥∥∥∥∥
(
R(q, k)

m⊗
n=k+1

I(n)
)
v

∥∥∥∥∥
X

. g(τk)
∑

α∈Xw1:k−1 (q,k−1)
e−q−

∑k−1
n=1 αnwn+

∑k−1
n=1 αnwn‖v‖C0

σ(Σ(Γm,τ );X)

= g(τk)
∑

α∈Xw1:k−1 (q,k−1)
e−q‖v‖C0

σ(Σ(Γm,τ );X .

For k = 1, we have that R(q, 1) = I(1) −QG,bq/w1c. We thus deduce that∥∥∥∥∥
(
R(q, 1)

m⊗
n=2

I(n)
)
v

∥∥∥∥∥
X

. g(τ1)e−h(τ1)(bq/w1c+1)‖v‖C0
σ(Σ(Γm,τ );X)

. g(τ1)e−q‖v‖C0
σ(Σ(Γm,τ );X).

Combining our findings yields the estimate (3.18). �

Whenever the sequence {g(τk)}k is summable, we can further estimate the sum
in (3.18).

(3.20) Lemma. Let the conditions of Lemma (3.17) hold and let the sequence {g(τk)}k
be summable. Then, the error estimate (3.18) can be simplified to

(3.21)
∥∥(I−AG,w(q,m)

)
v
∥∥
X
. e−q#Xw1:m−1(q,m− 1)‖v‖C0

σ(Σ(Γ,τ );X)

with a constant which depends on the continuity of I, the summability of {g(τk)}k and on
the value of C(k) in (3.18), but which is independent of the dimensionality m.

Proof. The constants C(k) in (3.18) are for each k = 1, . . . ,m − 1 bounded by a generic
constant independent of the dimensionality m, whenever {g(τk)}k is summable. Hence,
(3.18) reduces to

∥∥(I−AG,w(q,m)
)
v
∥∥
X
.e−q

(
g(τ1)+

m−1∑
k=1

g(τk+1)#Xw1:k(q, k)
)
‖v‖C0

σ(Σ(Γ,τ );X).

Furthermore, it holds for k = 1, . . . ,m− 2 that

#Xw1:k(q, k) ≤ #Xw1:k+1(q, k + 1).

Thus, we can bound the sum in the above inequality by

g(τ1)+
m−1∑
k=1

g(τk+1)#Xw1:k(q, k) ≤ #Xw1:m−1(q,m− 1)
m∑
k=1

g(τk).

Then, the summability of {g(τk)}k implies the assertion. �
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(3.22) Remark. The summability of the sequence {g(τk)}k is an immediate conse-
quence of the summability of {τ−1

k }k, cf. (2.18) and (2.19). For the anisotropic tensor
product Gauss-Hermite quadrature as well as for the anisotropic Gauss-Legendre quadra-
ture, the summability of {τ−1

k }k is deduced from the summability of {γk}k for the inte-
grands under consideration. Since we diminish the region of analyticity for the anisotropic
sparse Gaussian quadrature in order to expand the integrands analytically into a cross
product domain Σ(Γ, τ ), see Lemma (3.10), we require that r in (3.11) is greater than 1
for the summability of {g(τk)}k. This is the case if γk fulfills (III.4.8) with s2 > 2. Hence,
we restrict ourselves in the sequel to this situation.

3.4 Cost complexity of the anisotropic sparse Gaussian quadrature

Lemma (3.20) implies that the error of the anisotropic sparse Gaussian quadrature method
on level q can be bounded by exp(−q) times the number of indices which are contained
in Xw(q,m− 1). To find an error estimate in terms of the number of quadrature points,
we additionally have to estimate the cost of the sparse Gaussian quadrature method on
level q. Therefore, we establish a bound on the number of quadrature points used in the
combination technique formula (3.9). This number is given by

(3.23)

cost
(
AG,w(q(ε),m)

)
=

∑
α∈Yw(q,m)

m∏
k=1

Nαk =
∑

α∈Yw(q,m)

m∏
k=1

⌈1
2
(
(αk + 2)

)⌉

≤
∑

α∈Yw(q,m)

m∏
k=1

(αk + 1).

Then, we simply use that Yw(q,m) ⊂ Xw(q,m), cf. (3.6) and (3.7), and estimate the
maximum value of the summands in (3.23). For this, we have to solve the optimization
problem

max
α∈Xw(q,m)

m∏
k=1

(
αk + 1

)
.

This is equivalent to the problem

max
α∈Nm

m∏
k=1

(
αk + 1

)
s.t.

m∑
k=1

wkαk ≤ q.

We get an upper bound for this optimization problem if we extend the admissible set of
multi-indices to arbitrary m-dimensional vectors with positive coefficients

sup
α∈Rm

m∏
k=1

(αk + 1) s.t.
m∑
k=1

wkαk ≤ q and αk ≥ 0 for k = 1, . . . ,m.

The problem’s solution can be calculated by solving the equivalent optimization problem

sup
α∈Rm+

m∑
k=1

log(αk + 1) s.t.
m∑
k=1

wkαk ≤ q and αk ≥ 0 for k = 1, . . . ,m.
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We solve it by means of Lagrangian multipliers and get the optimal solution

αk =


q+
∑n0

`=1 w`
n0wk

− 1, if k ≤ n0,

0, if k > n0,

where n0 is determined by

(3.24) n0 = argmax
n=1,...,m

{
q +

n∑
`=1

w` ≥ nwn

}
.

This implies the following lemma on the upper bound for (3.23).

(3.25) Lemma. Let the weight vector w = [w1, . . . , wm]ᵀ be ordered ascendingly. Then,
the cost complexity of the anisotropic sparse Gaussian quadrature on level q is, with n0
from (3.24), bounded by

(3.26) cost
(
AG,w(q,m)

)
≤ #Xw(q,m)

n0∏
k=1

(
q +

∑n0
`=1w`

n0wk

)
.

The product on the right-hand side in (3.26) can further be estimated.

(3.27) Lemma. Let the weight vector w = [w1, . . . , wm]ᵀ be ordered ascendingly. Ad-
ditionally, let n0 be given according to (3.24). Then, it holds that

(3.28)
n0∏
k=1

(
q +

∑n0
`=1w`

n0wk

)
≤

m∏
k=1

(
q

kwk
+ 1

)
.

Proof. We show for k = 1, 2, . . . , n0 − 1 that

(3.29)

(
q +

∑n0−k
`=1 w` + kwn0

n0wn0

)(
q +

∑n0
`=1w`

n0wn0−k

)

≤
(
q +

∑n0−k−1
`=1 w` + (k + 1)wn0

n0wn0

)(
q +

∑n0−1
`=1 w`

(n0 − 1)wn0−k

)
.

The successive application of this inequality for k = 1, 2, . . . , n0 − 1 leads to
n0∏
k=1

(
q +

∑n0
`=1w`

n0wk

)
≤
(

q

n0wn0
+ 1

)
n0−1∏
k=1

(
q +

∑n0−1
`=1 w`

(n0 − 1)wk

)
.

Then, it follows by proceeding in the same way for n0 − 1, n0 − 2, . . . , 2 that

n0∏
k=1

(
q +

∑n0
`=1w`

n0wk

)
≤
(

q

n0wn0
+1
)(

q

(n0 − 1)wn0−1
+1
)
n0−2∏
k=1

(
q +

∑n0−2
`=1 w`

(n0 − 2)wk

)

≤
n0∏
k=1

(
q

kwk
+ 1

)
.

Since n0 < m, this would immediately imply the assertion.
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To prove (3.29), we use the abbreviation q̃ := q +
∑n0−k−1
`=1 w` and rewrite this

inequality by

(n0−1)
(
q̃+wn0−k+kwn0

)(
q̃ +

n0∑
`=n0−k

w`

)
−n0

(
q̃+(k + 1)wn0

)(
q̃+

n0−1∑
`=n0−k

w`

)
≤0.

After expanding the products, some of the terms vanish and we can simplify this expression
to

n0

(
q̃wn0−k + (k + 1)w2

n0 + (wn0−k − wn0)
n0∑

`=n0−k
w`

)

−
(
q̃

(
q̃ +

n0∑
`=n0−k

w`

)
+ (wn0−k + kwn0)

(
q̃ +

n0∑
`=n0−k

w`

))

≤ n0

(
q̃(wn0−k − wn0) + (wn0−k − wn0)

n0∑
`=n0−k

w`

+ (k + 1)w2
n0 − (wn0−k + kwn0)wn0

)

≤ n0
(
n0wn0

(
wn0−k − wn0

)
− wn0

(
wn0−k − wn0

))
= n0(n0 − 1)

(
wn0−k − wn0

)
≤ 0.

Here, the first and second inequality follow from q̃ +
∑n0
`=n0−k w` = q +

∑n0
`=1w` ≥ n0wn0

and from wn0−k ≤ wn0 . This completes the proof. �

Now, we can deduce, in view of (3.26) and (3.28), that the complexity of the
anisotropic sparse Gaussian quadrature is bounded by

(3.30) cost
(
AG,w(q,m)

)
≤
(

m∏
k=1

(
q

kwk
+ 1

))
#Xw(q,m).

3.5 A sharp estimate on the anisotropic sparse index set

In order to complete the convergence analysis, it remains to estimate the number of indices
in the set Xw(q,m). A quite rough estimate is provided by

(3.31) #Xw(q,m) ≤
m∏
k=1

(
q

wk
+ 1

)

which corresponds to the number of indices in the anisotropic full tensor product case. This
result was proven in [NTW08b] and is, of course, not sharp. Moreover, with the estimate
(3.31), we are obviously not able to improve the convergence results of the anisotropic
tensor product Gaussian quadrature. Hence, we provide a sharper bound on Xw(q,m)
which is yet only proven for dimensions m up to 5 and is, therefore, a conjecture.
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(3.32) Conjecture. The cardinality of the set Xw(q,m) in (3.6), where the weight
vector w = [w1, . . . , wm] is ascendingly ordered, i.e. w1 ≤ w2 ≤ . . . ≤ wm, is bounded by

(3.33) #Xw(q,m) ≤
m∏
k=1

q
wk

+ k

k
.

Proof (for m = 1 and m = 2). The cardinality of the set Xw(q,m) is given by

#Xw(q,m) =

⌊
q
w1

⌋∑
α1=0

⌊
q−α1w1
w2

⌋∑
α2=0

. . .

⌊
q−
∑m−1

k=1 αkwk

wm

⌋
∑
αm=0

1.

The assertion is clear for m = 1 since

#Xw(q, 1) =

⌊
q
w1

⌋∑
α1=0

1 =
⌊ q
w1

⌋
+ 1.

For m = 2, we have that

#Xw(q, 2) =

⌊
q
w1

⌋∑
α1=0

(⌊q − α1w1
w2

⌋
+ 1

)
=
⌊ q
w1

⌋
+ 1 +

⌊
q
w1

⌋∑
α1=0

⌊q − α1w1
w2

⌋
.

Since w1 ≤ w2, the term
⌊ q−α1w1

w2

⌋
vanishes for α1 =

⌊ q
w1

⌋
. Hence, by rearranging the

summation, we can deduce that

#Xw(q, 2) =
⌊
q

w1

⌋
+ 1 +

⌊
q
w1

⌋
−1∑

α1=0

⌊
q − α1w1

w2

⌋

=
⌊
q

w1

⌋
+ 1 +

⌊
q
w1

⌋∑
α1=1

⌊
α1w1 + q −

⌊ q
w1

⌋
w1

w2

⌋

≤
⌊
q

w1

⌋
+ 1 +

⌊
q
w1

⌋∑
α1=1

(
α1w1
w2

+
q −

⌊ q
w1

⌋
w1

w2

)

=
⌊
q

w1

⌋
+ 1 +

⌊
q

w1

⌋q − ⌊ q
w1

⌋
w1

w2
+ w1
w2

⌊ q
w1

⌋(⌊ q
w1

⌋
+ 1

)
2 .

Now, we apply the identity

⌊ q
w1

⌋
+ 1 = q

w1
+ 1−

( q
w1
−
⌊ q
w1

⌋)
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in the last summand to obtain

#Xw(q, 2)

≤
⌊
q

w1

⌋
+ 1 +

⌊
q

w1

⌋q − ⌊ q
w1

⌋
w1

w2
+ w1
w2

⌊ q
w1

⌋( q
w1

+ 1
)

2 − w1
w2

⌊ q
w1

⌋( q
w1
−
⌊ q
w1

⌋)
2

=
⌊
q

w1

⌋
+ 1 +

⌊
q

w1

⌋q − ⌊ q
w1

⌋
w1

2w2
+ w1
w2

⌊ q
w1

⌋( q
w1

+ 1
)

2

=
⌊
q

w1

⌋
+ 1 + w1

w2

q
w1

( q
w1

+ 1
)

2 +
⌊
q

w1

⌋q − ⌊ q
w1

⌋
w1

2w2
− w1
w2

( q
w1
−
⌊ q
w1

⌋)( q
w1

+ 1
)

2

≤
⌊
q

w1

⌋
+ 1 +

q
w2

( q
w1

+ 1
)

2

≤ q

w1
+ 1 +

q
w2

( q
w1

+ 1
)

2 =
(
q

w1
+ 1

)(
1 + q

2w2

)

=
( q
w2

+ 2
)( q
w1

+ 1
)

2 .

The second to last inequality holds since q
w1

+ 1 ≥ b qw1
c + 1. This proves the conjecture

also for m = 2. �

(3.34) Remark. (a) The proof of the conjecture (3.32) is only given for m = 2. In
the Appendix A, we prove the conjecture for m = 3, 4, 5 and provide a strategy
for establishing the assertion for general m. Moreover, we reduce the problem to
two subproblems which are possibly easier to solve. Nevertheless, the induction
step is complicated since one has to handle terms of the form

∑bq/w1c
k=1 ki for

i = 1, . . . ,m. These terms can be determined by the Faulhaber formulae which
involve the Bernoulli numbers and these numbers are not so easy to deal with.
So far, we were not able to prove the result in arbitrary dimensions. However,
we validated the estimate numerically in various dimensions and with various
weights.

(b) We would like to point out that estimate (3.33) is sharp in the isotropic case,
i.e. for the weight w = 1. Moreover, the ordering of the weight vector is crucial
in this estimate. There are examples where this estimate does not hold if the
weights are not in ascending order.

(c) At first glance one might claim that even the estimate

#Xw(q,m) ≤
m∏
k=1

⌊
q
wk

⌋
+ k

k

is valid. This is true in a lot of cases which we investigated. Nevertheless, there
are examples where this estimate fails. For these reasons, we think that the
conjecture is sharp.
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(d) There exist a lot of estimates on the cardinality of such index sets in the literature,
see e.g. [BD72]. The reason is that this problem is equivalent to the estimation
of the number of integer solutions of linear Diophantine inequalities, which is a
problem in number theory, or to the calculation of the integer points in a convex
polyhedra. Nevertheless, all estimates that we found in the literature were not
useful for our specific problem in order to obtain improved results in comparison
with the anisotropic tensor product Gauss-Hermite quadrature.

3.6 Convergence in terms of the number of quadrature points

Let us assume that the Conjecture (3.32) holds for arbitrary m ∈ N. Combining (3.21),
(3.30) and (3.33), the findings of the previous four subsections can be summarized to the
error estimate of the anisotropic sparse grid quadrature

(3.35)
∥∥(I−AG,w(q,m)

)
v
∥∥
X
. e−q

(
m−1∏
k=1

(
q

kwk
+ 1

))
‖v‖C0

σ(Σ(Γ,τ );X)

and the complexity estimate

(3.36) cost
(
Aw(q,m)

)
≤
(

m∏
k=1

(
q

kwk
+ 1

))2

.

In a similar way as in (2.21), we establish conditions on the decay of {γk}k
such that the convergence rate in terms of the number of quadrature points is dimension-
independent and algebraic of arbitrary order.

(3.37) Theorem. Let the conditions of Lemma (3.17) and Lemma (3.20) be satisfied
and let the Conjecture (3.32) hold. If the sequence {(kh(τk))−1}k is summable, then there
exists a constant C(δ1, δ2) independent of the dimension m for all δ1, δ2 > 0 such that the
following estimate holds

(3.38) ‖v −AG,w(q,m)v‖X . C(δ1, δ2)e−q(1−δ1−δ2)‖v‖C0
σ(Σ(Rm,τ );X).

Moreover, the complexity in this case is bounded by

(3.39) cost
(
Aw(q,m)

)
≤ C(δ1, δ2)2e2q(δ1+δ2).

Hence, the convergence of the anisotropic sparse Gaussian quadrature method is dimen-
sion-independent and of arbitrarily algebraic order. More precisely, it holds that

(3.40) ‖v −AG,w(q,m)v‖X . C(δ1, δ2)1+ 1−δ1−δ2
δ1+δ2 N(q)−

1−δ1−δ2
2(δ1+δ2) ‖v‖C0

σ(Σ(Rm,τ );X)

where N(q) denotes the total number of quadrature points in AGH,w(q,m).

Proof. The combination of Lemma (3.20), Lemma (3.31) and Conjecture (3.32) leads to

‖v −AG,w(q,m)v‖X .
m−1∏
k=1

(
q

kwk
+ 1

)
e−q‖v‖C0

σ(Σ(Rm,τ );X).
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From the definition of the weights wk, cf. Lemma (3.17), we know that wk = h(τk). Since
{(kh(τk))−1} is summable, it follows in the same way as for the cost of the tensor product
quadrature (2.24) that there exists for each δ1, δ2 > 0 a constant C(δ1, δ2) independent of
m such that

(3.41)
m−1∏
k=1

(
q

kwk
+ 1

)
≤ C(δ1, δ2, r) exp

(
q(δ1 + δ2)

)
.

This implies (3.38). The second estimate (3.39) follows immediately from (3.41) and the
third estimate (3.40) is obtained by combining (3.38) and (3.39). �

(3.42) Remark. The condition that {(kh(τk))−1}k is summable implies that h(τk) has
to increase with a stronger rate than log(k). In particular, a rate log(k)1+δ for arbitrary
δ > 0 would be sufficient. Unfortunately, since h(τk) h log(cτk), cf. (2.26) and (2.27),
for the Gauss-Hermite and Gauss-Legendre quadrature, any algebraic increase of τk is
not sufficient for the summability of {(kh(τk))−1}k. Nevertheless, if τk increases subex-
ponentially with any arbitrary rate, i.e. τk h exp(kδ) for arbitrary δ > 0, summability of
{(kh(τk))−1}k is guaranteed. This is, for example, the case for analytic kernel functions,
like the Gaussian correlation kernel in arbitrary spatial dimensions. Indeed, we know from
[ST06] that the sequence {γk}k decays for analytic correlation kernels subexponentially.

From Remark (3.42), we conclude that we cannot show a dimension-independent
convergence rate for the anisotropic sparse Gaussian quadrature method when the se-
quence {τk}k increases only algebraically. Unfortunately, only an algebraic increase of
{τk}k is obtained in the important case of the moment computation of the solution to
(III.3.3) or (III.3.5) when the diffusion coefficient is determined by a covariance kernel of
the Matèrn class with smoothness parameter ν < ∞. Thus, we investigate how fast the
convergence rate deteriorates for an algebraic increase, i.e. τk & kr.

(3.43) Lemma. Let the sequence {h(τk)−1}k increase as h(τk) ≥ log(ckr) for some
c > 1 and r ∈ R+. Then, we obtain that the number of indices in the anisotropic sparse
grid is bounded by

(3.44) #Xw(q,m) . exp
(
q

r
log(log(m))

)

with a constant which is independent of m.

Proof. From Conjecture (3.32), we know that

#Xw(q,m) ≤
m∏
k=1

(
q

kwk
+ 1

)
.

Next, we split the product into

(3.45)
m∏
k=1

(
q

kwk
+ 1

)
=
(
q

w1
+ 1

)(
q

2w2
+ 1

)(
q

3w3
+ 1

) m∏
k=4

(
q

kwk
+ 1

)
.
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We further estimate that
m∏
k=4

(
q

kwk
+ 1

)
≤ exp

( m∑
k=4

log
(

q

kwk
+ 1

))
≤ exp

( m∑
k=4

q

kwk

)
.

Next, the sum in the above estimate can be bounded by

(3.46)

m∑
k=4

q

kwk
≤
∫ m

3

q

x log(xr) dx = q

r

∫ m

3

1
x log(x) dx

= q

r

∫ log(m)

log(3)

1
z

dz = q

r

(
log(log(m))− log(log(3))

)
.

The first three factors in (3.45) are estimated by(
q

w1
+ 1

)(
q

2w2
+ 1

)(
q

3w3
+ 1

)
≤ C exp

( log(log(3))
r

q

)
.

Hence, we end up with

m∏
k=1

(
q

kwk
+ 1

)
≤ C exp

( log(log(3))
r

q

)
exp

(
q

r

(
log(log(m))− log(log(3))

))

. exp
(
q

r

(
log(log(m))

)
. �

With Lemma (3.43) at hand, we are able to quantify how the dimensionality m
compromises the convergence rate of the anisotropic sparse Gaussian quadrature. In fact,
the dimensionality enters only with a factor log(log(m)) in case of algebraic increasing
regions of analyticity.

(3.47) Theorem. Let the conditions of Lemma (3.17) and Lemma (3.20) be satisfied
and let the Conjecture (3.32) hold. Moreover, let the assumptions of Lemma (3.43) be
fulfilled. Then, the error of the anisotropic sparse Gaussian quadrature AGH,w(q,m) is
bounded in terms of the total number of quadrature points by

(3.48) ‖v −AG,w(q,m)v‖X . N(q)−
r

2 log(log(m)) + 1
2 ‖v‖C0

σ(Σ(Rm,τ );X).

Proof. Inserting (3.44) into (3.35) and (3.36), respectively, leads to the error estimate

∥∥(I−AG,w(q,m)
)
v
∥∥
X
. e−q

(
1− log(log(m))

r

)
‖v‖C0

σ(Σ(Γ,τ );X)

and the complexity estimate

N(q) = cost
(
AG,w(q,m)

)
. e2q

(
log(log(m))

r

)
.

Combining both estimates implies the desired estimate (3.48). �
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We analyzed the convergence of anisotropic sparse Gaussian quadrature rules for
the moment computation of the solution to (III.3.3) or (III.3.5), respectively. With the
new estimate (3.33) on the number of indices Xw(q,m), we are able to get significantly
improved results in comparison with the convergence of the anisotropic tensor product
Gaussian quadrature. More precisely, we are able to show dimension-independent conver-
gence with an arbitrarily algebraic rate if the regions of analyticity of the integrand grow
exponentially like τk & exp(kδ) for arbitrary δ > 0. This covers the important case of
diffusion coefficients which are derived from Gaussian covariance kernels. In addition, we
analyzed the case when τk grows algebraically, which covers the case of covariance kernels
of the Matèrn class, and obtain that the dimensionality m compromises the convergence
rate at most by the term log(log(m)).

4. Numerical Results

As in the previous chapter, we consider for the numerical validation of our theoretical
findings the one-dimensional model problem (IV.3.1). In order to compare the performance
of the anisotropic (sparse) Gaussian quadrature to the Monte Carlo or quasi-Monte Carlo
quadrature, we employ the same numerical examples as in Chapter IV.

For the anisotropic Gaussian quadrature, we calculate the number of quadrature
points Nk for k = 1, . . . ,m in accordance with (2.12), i.e.

Nk =
⌈
| log ε|/2h(τk) + 1/2

⌉
,

and successively increase the accuracy ε = 10−0.5j for j = 1, 2, 3, . . .. The function h(τ) is
given by h(τ) = log(

√
2τ) in the lognormal case and by h(τ) = log(2τ +

√
1 + 4τ2) in the

uniformly elliptic case, cf. Remark (2.10). Moreover, the quantity τk which describes the
region of analyticity is set to τk = log(2)/γk in the lognormal case and to τk = 1/γk in the
uniformly elliptic case, respectively. From the regularity results in Sections III.5 and III.6,
one might propose to adjust the region of analyticity by a factor 1/p for the computation
of the p-th moment and by a factor a in the uniformly elliptic case. But, as the numerical
results demonstrate, the chosen setting provides comparable results for the computation
of all moments under consideration.

For the anisotropic sparse Gaussian quadrature, we set the weights wk according
to wk = h(τk) with the same functions h(τ) and the same quantities τk as for the tensor
product quadrature for the lognormal and the uniformly elliptic case, respectively. Hence,
our anisotropic sparse Gaussian quadrature is essentially a sparsification of the anisotropic
tensor product Gaussian quadrature. To choose the same quantity τk for the region of
analyticity as for the tensor product quadrature seems to be a violation of Lemma (3.10).
Indeed, the assertion of this lemma is that the quantities τk, which describes the region of
analytic extendability in each direction Σ(Γk, τk), should be scaled by τ̃k = τk/(C(δ)k1+δ)
in order to ensure analytic extendability into the tensor domain Σ(Γ, τ̃ ). Nevertheless, the
numerical results suggest that the sparsification of the anisotropic Gaussian quadrature
yields an error which is nearly as good as the error of the anisotropic Gaussian quadrature
itself. This indicates, additionally to the supposition that the quantity τk can be chosen
as for the anisotropic tensor product quadrature, that the factor #Xw1:m−1(q,m − 1) in
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the error estimate (3.21) can be removed or at least be improved. To measure the impact
of these considerations, we recall the estimate (3.48)

‖v −AG,w(q,m)v‖X . N−
r

2 log(log(m)) + 1
2 ‖v‖C0

σ(Σ(Rm,τ );X).

In this estimate, the additive term 1/2 reflects the factor #Xw1:m−1(q,m − 1) from the
error estimate (3.21) and r is the rate of algebraic increase of τ̃k. Hence, the preceeding
considerations suggest that the additive term 1/2 in (3.48) can be reduced and that r
behaves rather like s1 than like s1 − 1− δ. This would imply that the convergence rate is
better approximated by

(4.1) N
− s1

2 log(log(m))

than by (3.48). As we will see, the observed convergence rates are closer to the one
predicted by (4.1), particularly for larger values of m.

For nearly all numerical examples, it turns out that the convergence rates slightly
decrease from the computation of the mean to the the computation of the second moment
and even successively for the higher order moments. Therefore, we state for all examples
the actually obtained convergence rate for the mean and for the fourth moment. The
convergence rate of the second and third moment is then between these two convergence
rates.

4.1 Results for a lognormal diffusion
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Figure V.3: Errors for ν = 7/2 of the anisotropic Gaussian quadrature (left) and the
anisotropic sparse Gaussian quadrature (right) in the lognormal case.

The Matérn kernel for ν = 7/2

In this example, we have to deal with a 30-dimensional integration problem. The con-
vergence rates for the computation of the first four moments of the anisotropic Gaussian
quadrature method are depicted on the left-hand side of Figure V.3. From the decay rate
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s1 = 4 of γk, we can derive the expected convergence rate according to (2.28) and (2.29)
as

ε−
Li(30)

4 ≈ ε−2.9944.

Denoting by N the total number of Gaussian quadrature points, this corresponds approx-
imately to the algebraic convergence rate N−1/2.9944. As we see in the error plot, the
actually obtained convergence rate is approximately N−1/2 for the fourth moment. It
increases slightly up to a convergence rate of N−4/7 for the mean. Hence, the convergence
rate is better than expected.

The associated results for the sparse Gaussian quadrature methods are shown on
the right-hand side of Figure V.3. According to (3.48), the predicted convergence rate is

N
− r

2 log(log(m)) +1/2 ≈ N−
3

2 log(log(30)) +1/2 = N−0.7254.

In fact, we observe in Figure V.3 a convergence rate of N−1.6 for the mean and a con-
vergence rate of N−1.2 for the fourth moment. As for the anisotropic tensor product
Gaussian quadrature, the results are better than expected. In particular, the anisotropic
sparse quadrature achieves the accuracy of the reference solution after only 103 to 104

points. Especially for the mean, the convergence rate is much better estimated by (4.1)
which predicts a convergence rate of

N
− s1

2 log(log(m)) ≈ N−1.6338.

We conclude that the anisotropic sparse Gaussian quadrature exceeds the con-
vergence rates of all other quadrature methods and is therefore the recommend quadrature
for this example.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−6

10
−5

10
−4

10
−3

10
−2

Points

E
rr

o
r

 

 

Eu

M2
u

M3
u

M4
u

N −1/2/ N −1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

Points

E
rr

o
r

 

 

Eu

M2
u

M3
u

M4
u

N −1/2/ N −1

Figure V.4: Errors for ν = 5/2 of the anisotropic Gaussian quadrature (left) and the
anisotropic sparse Gaussian quadrature (right) in the lognormal case.

The Matérn kernel for ν = 5/2
For the smoothness parameter ν = 5/2, we end up with a Karhunen-Loève expansion of
length m = 64. In this case, the expected convergence rate of the anisotropic Gaussian
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quadrature is given by

ε−
Li(64)

3 ≈ ε−6.9632

which is associated with the algebraic rate N−0.1436. Roughly speaking, this predicts that
the method is useless for this kind of problems. From the error plot on the right-hand side
of Figure V.4, we, however, see that the convergence rate is much better than predicted.
We observe for the computation of the mean a rate of N−1/2 and for the fourth moment a
rate of N−1/3. This means that the anisotropic Gaussian tensor product quadrature per-
forms comparable to the Monte Carlo method for this 64-dimensional integration problem.

For the anisotropic sparse Gaussian quadrature, the convergence rate is much
better predicted by (4.1) which leads to

N
− 3

2 log(log(64)) ≈ N−1.0524

than with (3.48) which yields

N
− 2

2 log(log(64)) +1/2 = N−0.2016.

Indeed, the actually observed rate in the plot on the right-hand side of Figure V.4 is
approximately N−1.25 for the mean and N−1 for the fourth moment. This shows that
the sparse Gaussian quadrature yields good results even for a quite large dimensionality
m = 64. Moreover, the formula (4.1) leads to quite accurate results for the approximation
of the convergence rate in the lognormal case. In addition, the results validate that the
impact of the dimenisonality m on the algebraic convergence rate is not more than a factor
log(log(m)).

4.2 Results for a uniformly elliptic diffusion

For the uniformly elliptic case, we expect similar results in comparison with the results
in the lognormal case due to the similarity of the one-dimensional error estimates of the
Gauss-Hermite and the Gauss-Legendre quadrature. Recall that we set the expectation
of the diffusion coefficient for the uniformly elliptic case to Ea(x) ≡ 2.5.

The Matérn kernel for ν = 7/2
The numerical results for the Matérn kernel with smoothness parameter ν = 7/2, correla-
tion length ` = 1/2 and variance σ2 = 1/4 are depicted in Figure V.5.

We observe for the anisotropic Gauss-Legendre quadrature a convergence rate
of about N−1/2 for the mean and N−1/3 for the fourth moment. Surprisingly, this co-
incides with the convergence rate of the anisotropic Gauss-Hermite quadrature for the
rougher Matérn kernel with ν = 5/2. Moreover, from the convergence plot, one might
deduce that the convergence rates stagnate after 104 quadrature points. Nevertheless,
the employed anisotropic sparse Gauss-Legendre is just a sparsification of the anisotropic
Gauss-Legendre quadrature and the former quadrature converges even after some stagna-
tion, for example from 70 to 300 quadrature points. Hence, it can be expected that the
error of the anisotropic Gauss-Legendre quadrature would decrease when employing the
next smaller ε. Since the number of quadrature points of the anisotropic Gauss-Legendre
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Figure V.5: Errors for ν = 7/2 of the anisotropic Gaussian quadrature (left) and the
anisotropic sparse Gaussian quadrature (right) in the uniformly elliptic case.

quadrature drastically increases with the accuracy, this next smaller ε is not feasible for
computation anymore. Notice that the number of quadrature points of the anisotropic
Gauss-Legendre quadrature in this example for the smallest value of ε is already about
4 · 106.

The convergence rate of the anisotropic sparse Gauss-Legendre quadrature is vi-
sualized on the right hand side of Figure V.5. In contrast to the lognormal case, we obtain
a convergence rate which is essentially the same for the computation of all considered
moments and of order N−1. The results are slightly worse in comparison with the associ-
ated results for the lognormal case. Nevertheless, the anisotropic sparse Gauss-Legendre
quadrature performs in this example still slightly better than the quasi-Monte Carlo
method (rate N−0.91) and outperforms the Monte Carlo quadrature or the anisotropic
tensor product Gauss-Legendre quadrature.

The Matérn kernel for ν = 5/2

At first glance, the convergence plots of the anisotropic tensor as well as the anisotropic
sparse Gauss-Legendre quadrature for the Matérn kernel with ν = 5/2 look identically to
those for the Matérn kernel with ν = 7/2 . This can be explained since the observed error
is essentially the same for the same choice of ε in (2.12). Nevertheless, a closer look on
the axis of abscissae confirms that the number of quadrature points in this example is, as
expected, higher compared to the number of points for the Matérn kernel with ν = 7/2.
For the anisotropic Gauss-Legendre quadrature, the convergence rate for the mean reduces
from N−1/2 for the Matérn kernel with ν = 7/2 to N−3/7 and the convergence rate for
the fourth moment reduces from N−1/3 to N−2/7. This reflects the behaviour described
before. Nevertheless, the rates are still much better than the expected rate N−0.1436. This
suggests that the dimensionality m has less impact on the deterioration of the convergence
rate than expected by (2.29).

For the anisotropic sparse Gauss-Legendre quadrature, the convergence rate de-
creases only slightly from N−1 to N−0.91. This convergence rate is exactly the convergence
rate obtained by the quasi-Monte Carlo method. Hence, we can recommend the use of the
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Figure V.6: Errors for ν = 5/2 of the anisotropic Gaussian quadrature (left) and the
anisotropic sparse Gaussian quadrature (right) in the uniformly elliptic case.

quasi-Monte Carlo quadrature based on Halton points or the application of the anisotropic
sparse Gauss-Legendre quadrature for this example.

The numerical experiments validate that the influence of the dimensionality for
anisotropic Gaussian quadratures is drastically reduced in comparison with the corre-
sponding isotropic Gaussian quadratures. Indeed, isotropic Gaussian quadrature rules or
even isotropic sparse Gaussian quadrature rules are not able to deal with a 64-dimensional
integration problem. Moreover, the results corroborate that m influences the convergence
rates at most by a factor m/ log(m) for the anisotropic tensor product Gaussian quadra-
ture and at most by a factor log(log(m)) for the anisotropic sparse Gaussian quadratures
and, hence, our theoretical findings.



Chapter VI

MULTILEVEL QUADRATURE

Up to now, we were only concerned with the approximation error of the solution which is
caused by the truncation of the Karhunen-Loève expansion of the diffusion coefficient and
the quadrature error of the Bochner integral in the parametric variable y. We neglected
so far that we have to solve a deterministic elliptic boundary value problem for each
quadrature point ξk ∈ Γ. In general, we cannot solve this problem analytically and,
therefore, we need to approximate the solution um(x, ξk) by e.g. finite elements. In this
chapter, we hence discuss at first the error of a finite element discretization. Of course,
one can solve all of the occurring deterministic elliptic boundary value problems on a high
refinement scale, which is chosen in such a way that the discretization error in the finite
element space is of the same order as the truncation error and the quadrature error. This
means that the computational effort is given by the computational effort for a single solve
of a deterministic elliptic boundary value problem times the number of quadrature points
needed for the approximation of the Bochner integral. Another approach, the multilevel
quadrature method, does not treat the approximation error of the Bochner integral and
the finite element error separately, but instead combines these two error sources in a sparse
grid like fashion. To that end, one defines a nested sequence of finite element spaces and a
sequence of quadrature rules with increasing accuracy. Then, one combines these two scales
of refinement in such a way that only a few quadrature points are used when the resulting
PDEs are solved on the finest finite element scale while successively more quadrature points
are spent when the resulting PDEs are solved on a coarser refinement level. This, of course,
leads to a reduction of the computational complexity, but requires additional regularity
results on the integrand under consideration. These regularity results can be derived by
essentially the same techniques in the uniformly elliptic and in the lognormal case except
for the additional problems which are caused due to the lack of uniformly boundedness
for lognormal diffusion coefficients. Hence, we consider throughout this chapter only the
lognormal case in detail and refer to some regularity results from [CDS10] in the uniformly
elliptic case.

1. Finite element approximation in the spatial variable

For the spatial discretization of the diffusion problem under consideration, we will employ
multilevel finite elements. This constitutes the key ingredient for the multilevel quadra-
ture idea. Therefore, we consider a coarse grid triangulation T0 = {τ0,k} of the domain D.
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Then, for ` ≥ 1, a uniform and shape regular triangulation T` = {τ`,k} is recursively ob-
tained by uniformly refining each simplex τ`−1,k into 2d simplices with diameter h` h 2−`.
For n ≥ 1, we define the finite element spaces on level ` by

Sn` (D) := {v ∈ C(D) : v|∂D = 0 and v|τ ∈ Pn for all τ ∈ T`} ⊂ H1
0 (D),

where Pn denotes the space of all polynomials of total degree n. We restrict ourselves
in the sequel to the case n = 1, i.e. linear finite elements. Then, for given y ∈ Γ, we
shall introduce the Galerkin projection G`(y) : H1

0 (D) → S1
` (D) to discretize the spatial

variable. It is defined via the Galerkin orthogonality∫
D
am(y)∇

(
v −G`(y)v

)
∇w dx = 0 for all w ∈ S1

` (D).

Moreover, we set G−1(y) := 0 for all y ∈ Γ. In the sequel, letters in the German type
setting will always refer to a Galerkin projection, i.e.

v`(y) := G`(y)v ∈ S1
` (D).

The Galerkin projection um,`(y) of the solution um(y) to the diffusion problem
(III.3.5) is known to fulfill the following error estimate.1

(1.1) Lemma. Let the domain D be convex or sufficiently smooth, f ∈ L2(D) and
am(y) ∈ W 1,∞(D). Then, the Galerkin projection um,`(y) ∈ S1

` (D) of the lognormal
diffusion problem (III.3.5) satisfies the error estimate

(1.2) ‖um(y)− um,`(y)‖H1
0 (D) . 2−`

√
κm(y)‖um(y)‖H2(D),

where κm(y) is given by (III.3.13). Moreover, if f ∈ Lp(D) for given p > 2, then
um(y) ∈W 2,p(D) and it holds upm,`(y) ∈ Sp` (D) with

(1.3)
∥∥(upm − upm,`

)
(y)
∥∥
W 1,1

0 (D) . 2−`κm(y)p‖um(y)‖pW 2,p(D).

Here, the constants hidden in (1.2) depend on D and in (1.3) additionally on p but not
on y ∈ Rm.

Proof. The parametric diffusion problem (III.3.5) is H2-regular for each fixed y ∈ Rm
since D is convex or sufficiently smooth and f ∈ L2(D). Hence, the first error estimate
immediately follows from the standard finite element theory.

For p > 2, it follows from [Gri11] that the solution um(y) belongs to W 2,p(D) for
each fixed y ∈ Rm. Then, we apply Lemma (II.2.10) to obtain

(1.4)

∥∥(upm − upm,`
)
(y)
∥∥
W 1,1

0 (D) =
∥∥∥∥∥(um − um,`

)
(y)

p−1∑
i=0

uim(y)up−1−i
m,` (y)

∥∥∥∥∥
W 1,1

0 (D)

≤
p−1∑
i=0
‖(um − um,`)(y)‖

W 1,p
0 (D)‖um(y)‖i

W 1,p
0 (D)‖um,`(y)‖p−i−1

W 1,p
0 (D)

.

1Error estimates in respectively L2(D) and L1(D) are derived by straightforward modifications, yielding
the convergence rate 4−`. Then, the error analysis of the multilevel quadrature can be performed with
respect to these norms, provided that the precision of the underlying quadrature rule, see (2.3), is also
chosen as ε` = 4−`.
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By using the estimate ‖(um − um,`)(y)‖
W 1,p

0 (D) . 2−`κm(y)‖um(y)‖W 2,p(D), cf. [BS08], it
follows that

‖um,`(y)‖
W 1,p

0 (D) ≤ ‖um(y)‖
W 1,p

0 (D) + ‖(um − um,`)(y)‖
W 1,p

0 (D)

.
(
1 + κm(y)2−`

)
‖um(y)‖W 2,p(D).

Inserting this into the previous estimate (1.4), we finally arrive at (1.3). �

(1.5) Remark. Of course, there are similar results available for the solution um to the
uniformly elliptic problem (III.3.3). In this case, the factor κm(y) is bounded uniformly
in the parametric variable y. More precisely, it holds that

‖
(
um − um,`

)
(y)‖H1

0 (D) . 2−`‖um(y)‖H2(D)

and ∥∥(upm − upm,`
)
(y)
∥∥
W 1,1

0 (D) . 2−`‖um(y)‖pW 2,p(D)

with a constant depending on p, the domain D, a and a but not on y.

(1.6) Remark. All regularity results established in Section III.5, i.e. the regularity
results with respect to the parametric variable y, remain valid if one replaces the solution
um by its Galerkin projection um,`. This issues from the fact that the proofs can be
performed in the same way with the Galerkin projection instead of the solution itself.

2. Multilevel quadrature

Let us assume that we want to approximate the moments of the solution um to (III.3.3)
or (III.3.5) up to an accuracy εj = 2−j . This implies that the refinement level of the finite
element discretization is given by j. The crucial idea of the multilevel quadrature is a
representation of the Galerkin projection Gj(y) on the refinement level j as a telescoping
sum

(2.1) Gj(y) =
j∑
`=0

G`(y)−G`−1(y).

Notice that each summand in (2.1) corresponds to the difference between two Galerkin
projections on two consecutive levels of spatial refinement `−1 and `. Since the expectation
is a linear operator, we observe from (2.1) that

(2.2) I
(
Gj(y)v(y)

)
=

j∑
`=0

I
(
G`(y)v(y)−G`−1(y)v(y)

)
.

In contrast to the single level quadrature, which uses only one quadrature rule on the
finest spatial refinement level j, the multilevel quadrature uses quadrature rules with
different accuracies for each summand in the telescoping sum (2.2). The accuracy is
chosen contradirectional to the approximation power of the finite element level for the
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spatial domain. For the approximation in the stochastic variable y, we shall hence pro-
vide a sequence of quadrature formulae {Q`}` for ` = 0, . . . , j for the Bochner integral
(Iv)(x) =

∫
Γ v(x,y)ρ(y) dy of the form

Q` : C0
σs(Γ;X)→ X, v 7→ Q`v =

N∑̀
i=1
ω`,iv(·, ξ`,i),

where σs is given by (III.5.23) in the lognormal case and σs(y) ≡ 1 in the uniformly
elliptic case. This can be any quadrature rule analyzed in the preceeding chapters. For
our purposes, we assume that the number of points N` of the quadrature formula Q` is
chosen such that the corresponding accuracy is O(ε`) with

(2.3) ε` = 2−`.

The single level quadrature to determine the expectation of a function v ∈ C0
σs(Γ;X) up

to an accuracy of order εj is then given by

(2.4) Ev(x) ≈ Qjvj =
Nj∑
i=1
ωj,ivj

(
·, ξj,i

)
and for the higher order moments by

(2.5) Mp
v(x) ≈ Qjv

p
j =

Nj∑
i=1
ωj,iv

p
j

(
·, ξj,i

)
.

Hence, the quadrature rule with the highest accuracy is combined with Galerkin approxi-
mations on the finest refinement level for the resulting deterministic boundary value prob-
lem associated with each quadrature point. Compared with this, the multilevel quadrature
equilibrates the accuracies appropriately. For the approximation of the expectation of a
function v ∈ C0

σs(Γ;X), the multilevel quadrature is defined by

(2.6) Ev(x) ≈
j∑
`=0

Qj−`(v` − v`−1)(x,y) =
j∑
`=0

Nj−`∑
i=0

ωj−`,i(v` − v`−1)
(
x, ξj−`,i

)
.

The higher order moments are approximated in complete analogy by

(2.7) Mp
v(x) ≈

j∑
`=0

Qj−`
(
vp` − vp`−1

)
(x,y) =

j∑
`=0

Nj−`∑
i=0

ωj−`,i
(
vp` − vp`−1

)(
x, ξj−`,i

)
.

Since the multilevel quadrature (2.6) and (2.7) can be interpreted as a sparse-grid
approach, cf. [HPS13a], it is known that mixed regularity results of the integrand have to
be provided. Thus, we present the necessary regularity estimates of the solution um to
(III.3.3) or to (III.3.5) and its powers in the following section. Afterwards, we investigate
the regularity of the differences between two successive Galerkin approximations um,` and
um,`−1 and their powers upm,` and upm,`−1 which then allows us to apply the error estimates
established in the previous chapters.
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3. Mixed regularity in the spatial and the parametric
variable

In Section III.5, we provided bounds on the derivatives of the solution um and of its powers
upm when the spatial regularity is measured in H1

0 (D) and in W 1,1
0 (D) for p ≥ 2, respec-

tively. We now present a result from [HS14] in the lognormal case and from [CDS10] in
the uniformly elliptic case which establishes estimates on ∂αy um when the spatial regular-
ity is measured in the space W := H2(D) ∩ H1

0 (D). These results guarantee the mixed
regularity which is necessary for the sparse-grid construction between the spatial and the
stochastic variable. To that end, we shall recall that the corresponding eigenfunctions of
the Karhunen-Loève expansion (III.2.2) belong to W 1,∞(D) by (III.2.5).

We start now with the lognormal case and define in analogy to (III.3.10) and
(III.3.13)

(3.1) ãm(y) := exp
(
−

m∑
k=1

γ̃k|yk|
)
, ãm(y) := exp

(
m∑
k=1

γ̃k|yk|
)
, κ̃m(y) := ãm(y)

ãm(y) .

Furthermore, we will employ the spaces C0
σ̃s(R

m;X), see Definition (III.5.22) and also
Definition (III.5.23), with the auxiliary weight σ̃s defined with respect to γ̃ instead of γ.
Since for convex or sufficiently smooth domains a norm on W is given by

‖v‖W := ‖∇v‖L2(D) + ‖∆v‖L2(D),

cf. [CDS10, HS14], it only remains, in view of the results of Section (III.5.3), to analyze
the term

∥∥∆∂αy um(y)
∥∥
L2(D) in order to establish estimates on the derivatives of um(y)

with respect to the stochastic variable y measured in H2(D). Along the lines of [HS14],
we have the following result.

(3.2) Proposition ([HS14]). For all y ∈ Rm, the solution um(y) ∈ H1
0 (D) to prob-

lem (III.3.5) satisfies∥∥∥√am(y)∆∂αy um(y)
∥∥∥
L2(D)

. |α|!
( 2γ̃

log 2

)α(∥∥∥√am(y)−1f
∥∥∥
L2(D)

+ 2g(y)
∥∥∥√am(y)∇um(y)

∥∥∥
L2(D)

)

with g(y) := 1 + 2
∑m
k=1 |yk|

√
λk‖∇φk‖L∞(D) <∞.

Proposition (3.2) implies the estimate

∥∥∆∂αy um(y)
∥∥
L2(D) .

√
κm(y)|α|!

( 2γ̃
log 2

)α(
‖f‖L2(D) + 2g(y)‖um(y)‖H1

0 (D)

)
,

which can be further bounded by

∥∥∆∂αy um(y)
∥∥
L2(D) . κm(y)g(y)|α|!

( 2γ̃
log 2

)α
‖f‖L2(D)
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due to (III.3.10) and (III.3.11). It follows together with Lemma (III.5.3) and with

(3.3)
κm(y)g(y) = exp

(
2

m∑
k=1

γk|yk|
)(

1 + 2
m∑
k=1
|yk|

√
λk‖∇φk‖L∞(D)

)

≤ exp
(

2
m∑
k=1

γk|yk|
)

exp
(

2
m∑
k=1
|yk|

√
λk‖∇φk‖L∞(D)

)
= κ̃m(y)

that

(3.4)
∥∥∂αy um(y)

∥∥
H2(D) .

∥∥∂αy um(y)
∥∥
W . κ̃m(y)|α|!

( 2γ̃
log 2

)α
‖f‖L2(D).

This establishes the following proposition:

(3.5) Proposition. The solution um to (III.3.5) is contained in C0
σ̃s

(
Rm;H2(D)

)
for

all s ≥ 2 and it holds for any multi-index |α| ≥ 0 that

(3.6)
∥∥∂αy um∥∥C0

σ̃s
(Rm;H2(D)) . |α|!

( 2γ̃
log 2

)α
‖f‖L2(D).

In the uniformly elliptic case, we refer to [CDS10] where the next result is proven.

(3.7) Proposition ([CDS10]). The solution um to (III.3.3) belongs to the space
C0([−1/2, 1/2]m;H2(D)

)
and satisfies for any multi-index |α| ≥ 0 that

‖∂αy um‖C0([−1/2,1/2]m;H2(D)) . |α|!
(2γ̃
a

)α
‖f‖L2(D)

with a constant which depends on a and on supy∈[−1/2,1/2]m ‖∇a(y)‖L∞(D).

(3.8) Remark. In [CDS10], even a stronger result on the derivatives is proven, namely
that ∥∥∂αy um∥∥C0([−1/2,1/2]m;H2(D)) . |α|!b(ε)α‖f‖L2(D),

where bk(ε) = γk/a + ε
(√

λk‖∇ϕk‖L∞(D) + c‖ϕ‖L∞(D)
)
. Thus, the involved constant

depends on ε and a. Since the focus of our regularity results is on the lognormal case, we
will not work with this stronger result in the sequel.

With the previous two propositions, we can establish error estimates for the
multilevel quadrature of the first and second moment, see Section 4. For the higher order
moments, we have additionally to establish estimates of the derivatives ∂αy um(y) with
respect to the Sobolev space W 2,p(D) which are the Lp-extensions of Proposition (3.4)
and Proposition (3.7), respectively. The proof of the Lp-extension of (3.4) is very similar
to that of (3.2) in [HS14]. We will exploit the norm equivalence

(3.9) ‖v‖W 2,p(D) h ‖v‖W 1,p
0 (D) + ‖∆v‖Lp(D)

for functions v ∈W 2,p(D)∩W 1,p
0 (D), where D is a sufficiently smooth or convex domain.

Since estimates for the first term on the right-hand side in (3.9) are provided in Section
(III.5.3), it suffices, analogous to the case p = 2, to consider bounds of

∥∥∆∂αy u∥∥Lp(D).
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(3.10) Lemma. Let f ∈ Lp(D) and let D be a sufficiently smooth or convex domain.
Then, the derivatives of the solution um to (III.3.5) satisfy

(3.11)
∥∥∂αy um(y)

∥∥
W 2,p(D) . |α|!

(2C(p,D)γ̃
log 2

)α
κ̃(y)3/2‖f‖Lp(D).

Proof. It holds with the definition vα(x,y) := div
(
am(x,y)∇x∂

α
y um(x,y)

)
that

am(x,y)∆x∂
α
y um(x,y) = vα(x,y)−∇xam(x,y)∇x∂

α
y um(x,y).

Additionally, we have that

∇xam(x,y) =
(

m∑
k=1

√
λk∇xϕk(x)yk

)
am(x,y).

Hence, we get for all y ∈ Rm that

(3.12)

∥∥am(y)∆∂αy um(y)
∥∥
Lp(D) ≤ ‖vα(y)‖Lp(D)

+
m∑
k=1

√
λk|yk|‖∇ϕk‖L∞(D)

∥∥am(y)∇∂αy um(y)
∥∥

[Lp(D)]d .

In view of (III.5.5), we obtain that

vα(x,y) = −
∑
β<α

(
α

β

)[
∇x∂

α−β
y am(x,y)∇x∂

β
yum(x,y)

+ ∂α−βy am(x,y)∆x∂
β
yum(x,y)

]
.

With Φ(x) :=
[√
λ1ϕ1(x), . . . ,

√
λmϕm(x)

]
, we derive that

(3.13)
∇x
(
∂αy am(x,y)

)
= ∇x

(
Φ(x)αam(x,y)

)
= ∇x

(
Φ(x)α

)
am(x,y) + Φ(x)α

m∑
k=1

yk
√
λk∇xϕk(x)am(x,y).

We deduce from (3.13), from ∇x
(
Φ(x)α

)
=
∑m
k=1 αk

√
λk∇xϕk(x)Φ(x)α−ek , where ek

denotes the k-th unit vector, and from the estimate

γ̃α =
∑
β≤α

(
α

β

)
γα−β

m∏
k=1

(√
λk‖∇ϕk‖L∞(D)

)βk
≤ γα +

m∑
k=1

(
αk
1

)
γα−ek

√
λk‖∇ϕk‖L∞(D)

that

∥∥am(y)−1∇x
(
∂α−βy am(y)

)∥∥
L∞(D) ≤ γ̃

α−β
(

1 +
m∑
k=1

√
λk|yk|‖∇ϕk‖L∞(D)

)
.



114 Chapter VI. Multilevel quadrature

Then, it follows that

‖vα(y)‖Lp(D) ≤
∑
β<α

(
α

β

)[
γ̃α−β

(
1 +

m∑
k=1

√
λk|yk|‖∇ϕk‖L∞(D)

)

·
∥∥am(y)∇∂βyum(y)

∥∥
[Lp(D)]d + γ̃α−β

∥∥am(y)∆∂βyum(y)
∥∥
Lp(D)

]
.

Inserting (3.12) into the above inequality yields

‖vα(y)‖Lp(D) ≤
∑
β<α

(
α

β

)
γ̃α−β

[
g(y)

∥∥am(y)∇∂βyum(y)
∥∥

[Lp(D)]d + ‖vβ(y)‖Lp(D)
]
,

where g(y) = 1 + 2
∑m
k=1
√
λk|yk|‖∇ϕk‖L∞(D) is given as in Proposition (3.2). From the

proof of (III.5.18), we deduce that

∥∥am(y)∇∂αy um(y)
∥∥

[Lp(D)]d ≤ C(p,D)
∑
β<α

(
α

β

)
γα−β

∥∥am(y)∇∂βyum(y)
∥∥

[Lp(D)]d .

Thus, we observe from C(p,D) ≥ 1 and γk ≤ γ̃k that

g(y)−1‖vα(y)‖Lp(D) +
∥∥am(y)∇∂αy um(y)

∥∥
[Lp(D)]d

≤
∑
β<α

(
α

β

)
2C(p,D)γ̃α−β

[∥∥am(y)∇∂βyum(y)
∥∥

[Lp(D)]d + g(y)−1‖vβ(y)‖Lp(D)
]
.

Now, one can show by the same arguments as in (III.5.3) that

g(y)−1‖vα(y)‖Lp(D) + ‖am(y)∇∂αy um(y)‖[Lp(D)]d

≤ |α|!
(2C(p,D)γ̃

log 2

)α(
g(y)−1‖v0(y)‖Lp(D) + ‖am(y)∇um(y)‖[Lp(D)]d

)
.

Especially, this implies in combination with v0 = f and (III.5.18) that

(3.14) ‖vα(y)‖Lp(D) ≤ |α|!
(2C(p,D)γ̃

log 2

)α(
‖f‖Lp(D) + g(y)‖am(y)∇um(y)‖[Lp(D)]d

)
.

Inserting this estimate into (3.12) leads to

‖am(y)∆∂αy um(y)‖Lp(D)

≤ |α|!
(2C(p,D)γ̃

log 2

)α(
‖f‖Lp(D) + 2g(y)‖am(y)∇um(y)‖[Lp(D)]d

)
.

With (3.3) and (III.5.14), it follows that

‖∆∂αy um(y)‖Lp(D) . |α|!
(2C(p,D)γ̃

log 2

)α
κm(y) g(y)

am(y)‖f‖L
p(D).

Thus, we conclude with (3.3) that

‖∆∂αy um(y)‖Lp(D) . |α|!
(2C(p,D)γ̃

log 2

)α κ̃m(y)
am(y)‖f‖L

p(D).

The assertion is finally obtained from am(y) ≥ ãm(y) and from estimate (III.5.15). �
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From Lemma (3.10), we derive that ∂αy um is an element of C0
σ̃s(R

m;W 2,p(D)) for
all s ≥ 3. Especially, it holds that

(3.15)
∥∥∂αy um∥∥C0

σ̃s
(Rm;W 2,p(D)) . |α|!

(2C(p,D)γ̃
log 2

)α
‖f‖Lp(D).

4. Analysis of the multilevel quadrature
We shall next have a closer look at the different impacts of the error of the moment
computation. In the single level quadrature method, we can split the error into three
parts

(4.1) ‖Mp
u−Qju

p
m,j‖X ≤ ‖M

p
u −Mp

um‖X︸ ︷︷ ︸
I

+ ‖Mp
um −M

p
um,j‖X︸ ︷︷ ︸

II

+ ‖Mp
um,j −Qjum,j‖X︸ ︷︷ ︸

III

,

where the truncation error, the first term on the right-hand side of (4.1), can be con-
trolled by the number of terms in the Karhunen-Loève expansion, see Theorems (III.2.12),
(III.2.10) and (III.2.14). The second term on the right-hand side of (4.1) describes the
finite element discretization error and can be estimated by Lemma (1.1). In the Chapters
IV and V, the third term on the right-hand side of (4.1), which characterizes the quadra-
ture error, is analyzed for various quadrature rules. The Galerkin projection provides the
required regularity with respect to the parametric variable y, see also Remark (1.6). In
case of the Monte Carlo quadrature, we have of course to consider the RMSE instead of
the error measured in X. Notice that this affects only the error term III, since the terms I
and II are independent of the integration error in the parametric variable y. We perform
here the further error analysis only for the lognormal case. In the uniformly elliptic case,
the proofs can be straightforwardly transferred from the lognormal case. In particular,
the appearing constants are easier to handle since they are independent of the parameter
y.

In the multilevel quadrature, we aim at equilibrating the approximation error in
the spatial and in the stochastic variable. Thus, the error contributions II and III cannot
be estimated separately and we have to investigate

(4.2)

∥∥∥∥∥Mp
um −

j∑
`=0

Qj−`
(
upm,` − upm,`−1

)∥∥∥∥∥
X

≤ ‖Mp
um −M

p
um,j‖X +

j∑
`=0
‖(I−Qj−`)

(
upm,` − upm,`−1

)∥∥
X︸ ︷︷ ︸

IV

.

The first part here coincides with the finite element error term II in (4.1). Hence, we
have to estimate each summand IV in (4.2) for the different types of quadrature formulae.
For equilibrating the approximations in the spatial and parametric variable, the aim is to
obtain the error bound

(4.3)
∥∥(I−Qj−`)

(
up` −up`−1

)
(y)
∥∥
X
. εj−`2−`‖f‖p

Lp+δ1,p (D)
with δ1,p =

{
1, if p = 1,
0, if p ≥ 2.
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Herein, we have X = H1
0 (D) if p = 1 and X = W 1,1

0 (D) if p ≥ 2, respectively.
For the Monte Carlo quadrature, we know that (4.3) is bounded in the root mean

square sense by

(4.4)

√
E
∥∥(I−Qj−`)

(
up` − up`−1

)
(y)
∥∥2
X
. εj−`

∥∥(up` − up`−1
)
(y)
∥∥
L2

ρ(Rm;X)

. εj−`2−`‖f‖p
Lp+δ1,p (D)

.

The last inequality is obtained by using the estimate (1.2) if p = 1 and by using the
estimate (1.3) if p ≥ 2. Then, we apply for |α| = 0 the estimate (3.4) if p = 1 and the
estimate (3.11) if p = 2. By the integrability of κ̃m(y)s for arbitrary s > 0, we arrive at
(4.4). Notice that it is important here, for the dimension-independent convergence, that
the value of the integral of κ̃m(y)s is independent of the dimensionality m, see (III.5.26).
With the bound (4.4), we can estimate the error of the multilevel Monte Carlo quadrature.
(4.5) Theorem. Let um be the solution to (III.3.5) and let {Q`}` be a sequence of
Monte Carlo quadrature rules where the number of quadrature points N` of Q` is chosen
in accordance with (2.3).

Then, the error of the multilevel Monte Carlo method (MLMC) defined in (2.6)
for the expectation and in (2.7) for the moments is bounded in the root mean square sense
by

(4.6)

√√√√√E
∥∥∥∥∥Mp

um −
j∑
`=0

Qj−`
(
upm,` − upm,`−1

)∥∥∥∥∥
2

X

. 2−jj‖f‖p
Lp+δ1,p (D)

,

where X = H1
0 (D) if p = 1 and X = W 1,1

0 (D) if p ≥ 2.

Proof. For MLMC, we have the multilevel splitting of the error

(4.7)

√√√√√E
∥∥∥∥∥Mp

um −
j∑
`=0

Qj−`
(
upm,` − upm,`−1

)∥∥∥∥∥
2

X

≤
√
E
∥∥Mp

um −M
p
um,j

∥∥2
X

+
j∑
`=0

√
E
∥∥(I−Qj−`)

(
upm,` − upm,`−1

)∥∥2
X

=
∥∥Mp

um −M
p
um,j

∥∥
X

+
j∑
`=0

√
E
∥∥(I−Qj−`)

(
upm,` − upm,`−1

)∥∥2
X
.

The inequality in (4.7) is valid since the Monte Carlo quadrature is unbiased and the cross
terms therefore vanish. The equality follows sinceMp

um −M
p
um,j is a function of x which

is independent of the random parameter y.
The accuracy of the quadrature method Q` is, according to (2.3), given by

ε` = 2−`. Hence, the sum on the right-hand side of (4.7) is, with the help of (4.4),
estimated by

(4.8)

j∑
`=0

√
E
∥∥(I−Qj−`)

(
upm,` − upm,`−1

)∥∥2
X
.

j∑
`=0

2−(j−`)2−`‖f‖p
Lp+δ1,p (D)

. j2−j‖f‖p
Lp+δ1,p (D)

.
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The first term in (4.7) is bounded in the following way. For p = 1, due to (1.2)
and the continuity, with continuity constant independent of m, of I in C0

σ̃s(R
m, H2(D))

for σ̃s with s ≥ 3, there holds

(4.9) ‖Eum − Eum,j‖H1
0 (D) . 2−j sup

y∈Rm
σ̃s(y)

√
κm(y)‖um(y)‖H2(D) . 2−j‖f‖L2(D).

For p ≥ 2, we use (1.3) and the continuity, with dimension-independent continuity con-
stant, of I in C0

σ̃s(R
m,W 2,p(D)) for σ̃s with s ≥ 5p to obtain

(4.10)
∥∥Mp

um −M
p
um,j

∥∥
W 1,1

0 (D) . 2−j sup
y∈Rm

σ̃s(y)κm(y)p‖um(y)‖pW 2,p(D) . 2−j‖f‖pLp(D).

Inserting (4.9) or (4.10) and (4.8) into (4.7) yields the desired estimate√√√√√E
∥∥∥∥∥Mp

um −
j∑
`=0

Qj−`
(
upm,` − upm,`−1

)∥∥∥∥∥
2

X

. 2−j‖f‖p
Lp+δ1,p (D)

+ j2−j‖f‖p
Lp+δ1,p (D)

. j2−j‖f‖p
Lp+δ1,p (D)

. �

For deterministic multilevel quadrature rules which satisfy (4.3), we can establish
analogously the following error estimate.

(4.11) Theorem. Let um be the solution to (III.3.5) and let {Q`} be a sequence of
quadrature rules which satisfy (4.3). Moreover, let the number of quadrature points N` of
Q` be chosen in accordance with (2.3), which means that ε` = 2−`.

Then, the error of the multilevel quadrature method defined in (2.6) for the
expectation and in (2.7) for the moments fulfills the estimate

(4.12)
∥∥∥∥∥Mp

um −
j∑
`=0

Qj−`
(
upm,` − upm,`−1

)∥∥∥∥∥
X

. 2−jj‖f‖p
Lp+δ1,p (D)

where X = H1
0 (D) if p = 1 and X = W 1,1

0 (D) if p ≥ 2.

Proof. We apply the multilevel splitting (4.2) of the error for deterministic quadrature
rules. The first term on the right-hand side of (4.2) is estimated in (4.9) for the mean or
in (4.10) for the higher order moments. In addition, the sum on the right-hand side of
(4.2) is bounded with (4.3) and with the choice ε` = 2−`. This implies the assertion in the
same way as in the proof of (4.5). �

(4.13) Remark. The logarithmic factor j in (4.6) and (4.12) can be removed, if we
choose the accuracy of the quadrature rule on level j − ` in such a way that it has an
accuracy `−1−η2−(j−`) for some η > 0, see [BSZ11]. In that case, the `-th summand in
(4.2) and (4.7) is scaled by `−1−η and, thus, we get a summable series times 2−` in the
error estimate.
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It remains to establish the estimate (4.3) for the deterministic quadrature rules
under consideration. As we have seen, the error analysis in case of the quasi-Monte Carlo
quadrature, the anisotropic Gaussian quadrature and the sparse anisotropic Gaussian
quadrature is based on the derivatives of the integrand. Hence, we shall show that the
derivatives of the term

(
upm,`− upm,`−1

)
(y) exhibit a behaviour similar to the derivatives of

upm(y) and provide in addition the factor 2−`. This will then lead to the estimate (4.3) for
the quasi-Monte Carlo quadrature, the Gaussian quadrature and the sparse anisotropic
Gaussian quadrature, respectively.

(4.14) Lemma. For the error δm,`(y) := (um,` − um)(y) of the Galerkin projection of
the solution um of (III.3.5), there holds the estimate

(4.15)
∥∥∂αy δm,`(y)

∥∥
H1

0 (D) . 2−`|α|!κ̃m(y)2
( 3γ̃

log 2

)α
‖f‖L2(D) for all |α| ≥ 0.

Therefore, we have for the detail projections θm,`(y) := (um,` − um,`−1)(y) the estimate

(4.16)
∥∥∂αy θm,`(y)

∥∥
H1

0 (D) . 3 · 2−`|α|!κ̃m(y)2
( 3γ̃

log 2

)α
‖f‖L2(D) for all |α| ≥ 0.

Proof. Since the Galerkin projection satisfies
(
am(y)∇xδm,`(y),∇xv

)
L2(D) = 0 for all

v ∈ S1
` (D), it follows by differentiation that

−
∫
D
am(y)∇x∂

α
y δm,`(y)∇xv dx =

∑
06=β≤α

(
α

β

)∫
D
∂βyam(y)∇x∂

α−β
y δm,`(y)∇xv dx

for all v ∈ S1
` (D). For an arbitrary function v ∈ S1

` (D), we therefore obtain that∥∥∥√am(y)∇∂αy δm,`(y)
∥∥∥2

L2(D)
=
∫
D
am(y)

∣∣∇x∂
α
y δm,`(y)

∣∣2 dx

=
∫
D
am(y)∇x∂

α
y δm,`(y)

[
∇x∂

α
y δm,`(y)−∇xv

]
dx

+
∑

0 6=β≤α

(
α

β

)∫
D
∂βyam(y)∇x∂

α−β
y δm,`(y)

[
∇x∂

α
y δm,`(y)−∇xv

]
dx

−
∑

06=β≤α

(
α

β

)∫
D
∂βyam(y)∇x∂

α−β
y δm,`(y)∇x∂

α
y δm,`(y) dx.

With
∥∥∂βyam(y)/am(y)

∥∥
L∞(D) ≤ γ

β, we can further estimate that∥∥∥√am(y)∇∂αy δm,`(y)
∥∥∥2

L2(D)

≤
∫
D
am(y)∇x∂

α
y δm,`(y)

[
∇x∂

α
y δm,`(y)−∇xv

]
dx

+
∑

0 6=β≤α

(
α

β

)
γβ
∫
D
am(y)

∣∣∇x∂
α−β
y δm,`(y)

[
∇x∂

α
y δm,`(y)−∇xv

]∣∣ dx

+
∑

0 6=β≤α

(
α

β

)
γβ
∫
D
am(y)

∣∣∇x∂
α−β
y δm,`(y)∇x∂

α
y δm,`(y)

∣∣ dx.
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The Cauchy-Schwarz inequality yields that

(4.17)

∥∥∥√am(y)∇∂αy δm,`(y)
∥∥∥2

L2(D)

≤
∥∥∥√am(y)∇∂αy δm,`(y)

∥∥∥
L2(D)

∥∥∥√am(y)∇
(
∂αy δm,`(y)− v

)∥∥∥
L2(D)

+
∑

0 6=β≤α

(
α

β

)
γβ
∥∥∥√am(y)∇∂α−βy δm,`(y)

∥∥∥
L2(D)

∥∥∥√am(y)∇
(
∂αy δm,`(y)−v

)∥∥∥
L2(D)

+
∑

0 6=β≤α

(
α

β

)
γβ
∥∥∥√am(y)∇∂α−βy δm,`(y)

∥∥∥
L2(D)

∥∥∥√am(y)∇∂αy δm,`(y)
∥∥∥
L2(D)

.

Since v ∈ S1
` (D) can be chosen arbitrarily, the bound holds also for the infimum∥∥∥√am(y)∇∂αy δm,`(y)

∥∥∥2

L2(D)

≤ inf
v∈S1

`
(D)

(∥∥∥√am(y)∇∂αy δm,`(y)
∥∥∥
L2(D)

∥∥∥√am(y)∇
(
∂αy δm,`(y)− v

)∥∥∥
L2(D)

+
∑

0 6=β≤α

(
α

β

)
γβ
∥∥∥√am(y)∇∂α−βy δm,`(y)

∥∥∥
L2(D)

∥∥∥√am(y)∇
(
∂αy δm,`(y)−v

)∥∥∥
L2(D)

)

+
∑

0 6=β≤α

(
α

β

)
γβ
∥∥∥√am(y)∇∂α−βy δm,`(y)

∥∥∥
L2(D)

∥∥∥√am(y)∇∂αy δm,`(y)
∥∥∥
L2(D)

.

The expression containing the infimum is now estimated in two different ways.
On the one hand, the approximation property of the finite element space S1

` (D) implies
that

inf
v∈S1

`
(D)

∥∥∥√am(y)∇
(
∂αy δm,`(y)− v

)∥∥∥
L2(D)

≤ c2−`
√
am(y)‖∂αy um(y)‖H2(D).

On the other hand, due to 0 ∈ S1
` (D), we find that

inf
v∈S1

`
(D)

∥∥∥√am(y)∇
(
∂αy δm,`(y)− v

)∥∥∥
L2(D)

≤
∥∥∥√am(y)∇∂αy δm,`(y)

∥∥∥
L2(D)

.

Dividing (4.17) by
∥∥∥√am(y)∇∂αy δm,`(y)

∥∥∥
L2(D)

leads in combination with both estimates
to ∥∥∥√am(y)∇∂αy δm,`(y)

∥∥∥
L2(D)

≤ c2−`
√
am(y)‖∂αy um(y)‖H2(D)

+ 2
∑

0 6=β≤α

(
α

β

)
γβ
∥∥∥√am(y)∇∂α−βy δm,`(y)

∥∥∥
L2(D)

.

In view of (3.4), we obtain that

(4.18)

∥∥∥√am(y)∇∂αy δm,`(y)
∥∥∥
L2(D)

≤ c̃2−`
√
am(y)κ̃m(y)|α|!

( 2γ̃
log 2

)α
‖f‖L2(D)

+ 2
∑

0 6=β≤α

(
α

β

)
γβ
∥∥∥√am(y)∇∂α−βy δm,`(y)

∥∥∥
L2(D)

.
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We conclude now by induction that

(4.19)
∥∥∥√am(y)∇∂αy δm,`(y)

∥∥∥
L2(D)

≤ 2c̃2−` am(y)√
am(y)

κ̃m(y)(3γ̃)αB|α|‖f‖L2(D).

Herein, Bk denotes the k-th ordered Bell-number as defined in (III.5.8). For |α| = 0, the
inequality (4.19) is simply obtained by estimate (3.4) and (1.2). Let now the induction
hypothesis holds for all β < α. Inserting this hypothesis into (4.18) yields that∥∥∥√am(y)∇∂αy δm,`(y)

∥∥∥
L2(D)

≤ c̃2−` am(y)√
am(y)

κ̃m(y)‖f‖L2(D)

·
(
|α|!

( 2γ̃
log 2

)α
+ 4γ̃α

∑
0 6=β≤α

(
α

β

)
3|α−β|B|α−β|

)
.

With

∑
0 6=β≤α

(
α

β

)
3|α−β|B|α−β| ≤ 3|α|−1

|α|−1∑
k=0

Bk
∑
β<α
|β|=k

(
α

β

)
= 3|α|−1

|α|−1∑
k=0

Bk

(
|α|
k

)

= 3|α|−1B|α|

and the estimate Bk ≤ k!(log 2)−k, cf. [BNTT12], we get that∥∥∥√am(y)∇∂αy δm,`(y)
∥∥∥
L2(D)

≤ c̃2−` am(y)√
am(y)

κ̃m(y)‖f‖L2(D)|α|!
(
γ̃

log 2

)α(
2|α| + 4 · 3|α|−1

)
.

Additionally, since 2|α|+4·3|α|−1 ≤ 2·3|α| for |α| ≥ 1, am(y) ≤ ãm(y) and am(y) ≥ ãm(y),
we conclude that∥∥∥√am(y)∇∂αy δm,`(y)

∥∥∥
L2(D)

≤ 2c̃|α|!2−`
(
ãm(y)

)2(
ãm(y)

)3/2
( 3γ̃

log 2

)α
‖f‖L2(D),

which implies (4.19) and finally, by dividing by
√
am(y), the assertion. �

To get an error estimate for the multilevel computation of the p-th moment, we
also need the Lp(D)-extension of the previous lemma. The proof is performed in a similar
way to that of Lemma (4.14). Hence, we present only the changes in detail and refer to
the combinatorial estimates in Lemma (4.14).

(4.20) Lemma. Let f ∈ Lp(D) for p > 2 and um be the solution of (III.3.5). Then, the
error δm,`(y) of the Galerkin projection, fulfills the estimate

(4.21)
∥∥∂αy δm,`(y)

∥∥
W 1,p

0 (D) . 2−`|α|!κ̃m(y)2
(3C(p,D)c1γ̃

log 2

)α
‖f‖Lp(D) for all |α| ≥ 0.

Furthermore, the detail projections θm,`(y) satisfy the estimate

(4.22)
∥∥∂αy θm,`(y)

∥∥
W 1,p

0 (D) . 3·2−`|α|!κ̃m(y)2
(3C(p,D)c1γ̃

log 2

)α
‖f‖Lp(D) for all |α| ≥ 0.
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Proof. Since the Galerkin projection satisfies
(
am(y)∇xδm,`(y),∇xv

)
L2(D) = 0 for all

v ∈ S1
` (D), it follows by differentiation as in the proof of (4.14) that

−Bm,y
(
∂αy δm,`(y), v

)
=
∑

0 6=β≤α

(
α

β

)∫
D
∂βyam(y)∇x∂

α−β
y δm,`(y)∇xv dx

for all v ∈ S1
` (D). Moreover, there exists for all q ≥ 1 a Clément interpolation operator

P` : W 1,q
0 (D)→ S`,d(D), cf. [BS08], such that

(4.23) ‖P`v‖W 1,q
0 (D) ≤ c1‖v‖W 1,q

0 (D), ‖v − P`v‖Lq(D) ≤ c22−`‖v‖
W 1,q

0 (D)

with constants c1, c2 ≥ 1. We show now by induction that

(4.24)
∥∥am(y)∇∂αy δm,`(y)

∥∥
[Lp(D)]d ≤ 8 ·2−`C(p,D)2c2B|α|

(
3C(p,D)c1γ̃

)α
κ̃m(y)‖f‖Lp(D)

with the ordered Bell numbers Bk as in the proof of Lemma (4.14). The assertion is
obvious for |α| = 0, see the proof of inequality (III.5.14). For |α| > 0, we calculate in the
same way as in the proof of (III.5.15) that

(4.25)

‖am(y)∇∂αy δm,`(y)‖[Lp(D)]d

≤ C(p,D) sup
06=v∈W 1,p′

0 (D)

Bm,y
(
∂αy δm,`(y), v

)
‖v‖

W 1,p′
0 (D)

= C(p,D) sup
0 6=v∈W 1,p′

0 (D)

1
‖v‖

W 1,p′
0 (D)

[
Bm,y

(
∂αy δm,`(y), v − P`v

)

+
∑

0 6=β≤α

(
α

β

)∫
D
∂βyam(x,y)∇x∂

α−β
y δm,`(x,y)∇xP`v(x) dx

]
.

Herein, we denote the dual exponent to p by p′ ≥ 1. The first term on the right-hand side
of (4.25) can be estimated as follows. From Green’s formula and since v−P`v vanishes at
the boundary of D, we obtain that

Bm,y
(
∂αy δm,`(y), v − P`v

)
=−

∫
D

divx
(
am(x,y)∇x∂

α
y δm,`(x,y)

)
(v − P`v)(x) dx.

As in the proof of Lemma (3.10), we use the notation vα = div(am∇∂αy um) and
recall that

‖vα(y)‖Lp(D) ≤ |α|!
(2C(p,D)γ̃

log 2

)α(
‖f‖Lp(D) + g(y)‖am(y)∇um(y)‖[Lp(D)]d

)
.

With the estimate∥∥am(y)∇um(y)
∥∥

[Lp(D)]d ≤ C(p,D)‖f‖Lp(D),

which can be obtained from the proof of (III.5.14), and with g(y) ≤ κ̃m(y), we arrive at

‖vα(y)‖Lp(D) ≤ 2|α|!C(p,D)
(2C(p,D)γ̃

log 2

)α
κ̃m(y)‖f‖Lp(D).
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Since um and um have the same regularity with respect to the parametric variable y, we
obtain that∥∥div

(
am(y)∇∂αy δ`,m(y)

)∥∥
Lp(D) ≤ 4|α|!C(p,D)

(2C(p,D)γ̃
log 2

)α
κ̃m(y)‖f‖Lp(D).

Furthermore, we establish from

∂βyam(x,y) =
m∏
k=1

(√
λkϕk(x)

)βk
am(x,y)

and the application of the Hölder inequality that the second term on the right-hand side
of (4.25) is bounded by

∑
0 6=β≤α

(
α

β

)∫
D
∂βyam(x,y)∇x∂

α−β
y δm,`(x,y)∇xP`v(x) dx

≤
∑

06=β≤α

(
α

β

)
γβ
∥∥am(y)∇∂α−βy δm,`(y)

∥∥
[Lp(D)]d‖P`v‖W 1,p′

0 (D).

Using the properties of P` in (4.23), we deduce that∥∥am(y)∇∂αy δm,`(y)
∥∥

[Lp(D)]d

≤ C(p,D)
[
2−`|α|!4C(p,D)

(2C(p,D)γ̃
log 2

)α
κ̃m(y)‖f‖Lp(D)

+
∑

0 6=β≤α

(
α

β

)
c1γ

β
∥∥am(y)∇x∂

α−β
y δm,`(x,y)

∥∥
[Lp(D)]d

]
.

Now, inserting the induction hypothesis (4.24) leads to∥∥am(y)∇∂αy δm,`(y)
∥∥

[Lp(D)]d

≤ 2−`4C(p,D)2c2‖f‖Lp(D)κ̃m(y)
[
|α|!

(
2C(p,D)γ̃

log 2

)α

+ 2
(
C(p,D)c1γ̃

)α ∑
06=β≤α

(
α

β

)
3|α−β|B|α−β|

]

The inequality (4.24) follows now with similar calculations as in the proof of Lemma (4.14).
Then, employing (4.24) establishes together with the estimate Bn ≤ n! log(2)−n and with

am(y)
∥∥∂αy δm,`(y)

∥∥
W 1,p

0 (D) ≤
∥∥am(y)∇∂αy δm,`(y)

∥∥
[Lp(D)]d

the inequality (4.21). This finally completes the proof. �

To prove the convergence of the multilevel quadrature in case of the higher order
moments, we need a regularity result for the derivatives of upm,`−u

p
m,`−1. With the previous

two lemmata at hand, we can obtain such a result similar to the proof of Lemma (III.5.10)
for the case p = 2 and the proof of the estimate (III.5.16) for the case p > 2.
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(4.26) Lemma. The derivatives of the difference u2
m,` − u2

m,`−1 satisfy the estimate

(4.27)
∥∥∂αy (u2

m,` − u2
m,`−1

)
(y)
∥∥
W 1,1

0 (D) . 2−`|α|!
( 6γ̃

log 2

)α
κ̃m(y)3‖f‖2L2(D).

Moreover, let f ∈ Lp(D) for p > 2. Then, for the p-th powers of two successive Galerkin
projections upm,` and upm,`−1, there holds the estimate

(4.28)
∥∥∂αy (upm,`−upm,`−1

)
(y)
∥∥
W 1,1

0 (D) . 2−`|α|!
(3pC(p,D)c1γ̃

log 2

)α
κ̃m(y)3/2p+1/2‖f‖pLp(D).

Proof. We start with the case p = 2. It holds that∥∥∂αy (u2
m,` − u2

m,`−1
)
(y)
∥∥
W 1,1

0 (D)

≤
∑
β≤α

(
α

β

)∥∥∥∂βyθm,`(y)∂α−βy (um,` + um,`−1)(y)
∥∥∥
W 1,1

0 (D)

.
∑
β≤α

(
α

β

)∥∥∂αy θm,`(y)
∥∥
H1

0 (D)

∥∥∥∂α−βy (um,` + um,`−1)(y)
∥∥∥
H1

0 (D)
.

Using the estimate (4.16), the fact that the Galerkin projection um,`(y) has the same
regularity with respect to the parametric variable as the solution itself, see Remark (1.6),
and Lemma (III.5.3), we obtain that∥∥∂αy (u2

m,` − u2
m,`−1

)
(y)
∥∥
W 1,1

0 (D)

.
∑
β≤α

(
α

β

)
2−`|β|!κ̃m(y)2

( 3γ̃
log 2

)β
(α− β)!

( 2γ
log 2

)α−β
κm(y)‖f‖2L2(D)

. 2−`|α|!
( 3γ̃

log 2

)α
κ̃m(y)3‖f‖2L2(D)

∑
β≤α

(
α

β

)

= 2−`|α|!
( 3γ̃

log 2

)α
κ̃m(y)3‖f‖2L2(D)2

|α|,

which yields the assertion for p = 2.
For the case p > 2, we proceed in a similar way as in the proof of (III.5.16), but

apply here the multivariate extension of the generalized Leibniz formula for products of
more than two factors. In order to apply this formula, we first rewrite as in Lemma (1.1)

upm,` − upm,`−1 =
(
um,` − um,`−1

)
(y)

p−1∑
i=0

uim,`(y)up−1−i
m−1,`(y).

Then, it holds by the linearity of the differential operator ∂αy and by the triangle inequality
that ∥∥∂αy (upm,` − upm,`−1

)
(y)
∥∥
W 1,1

0 (D) =
∥∥∥∥∥∂αy

(
θm,`(y)

p−1∑
i=0

uim,`(y)up−1−i
m−1,`(y)

)∥∥∥∥∥
W 1,1

0 (D)

≤
p−1∑
i=0

∥∥∥∂αy (θm,`(y)uim,`(y)up−1−i
m−1,`(y)

)∥∥∥
W 1,1

0 (D)
.
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The application of the generalized Leibniz formula yields then that

(4.29)

∂αy

(
θm,`u

i
m,`u

p−1−i
m−1,`

)
=

∑
β1,β2,...,βp≤α

β1+β2+···+βp=α

(
α

β1, . . . ,βp

)

·
[
∂
β1y θm,`∂

β2y um,` · · · ∂
βi+1
y um,`∂

βi+2
y um,`−1 · · · ∂

βp
y um,`−1

]
.

For the sake of clarity, we omit in (4.29) the dependencies of the functions θm,`, um,`
and um,`−1 on y. The Galerkin projections um,` and um,`−1 fulfill the regularity estimate
(III.5.15). This implies, in combination with Lemma (II.2.10) and estimate (4.22), that∥∥∥∂αy (θm,`(y)uim,`(y)up−1−i

m−1,`(y)
)∥∥∥

W 1,1
0 (D)

.
∑

β1,β2,...,βp≤α

β1+β2+···+βp=α

(
α

β1, . . . ,βp

)[∥∥∥∂β1y θm,`(y)
∥∥∥
W 1,p

0 (D)

∥∥∥∂β2y um,`(y)
∥∥∥
W 1,p

0 (D)
· · ·

·
∥∥∥∂βi+1

y um,`(y)
∥∥∥
W 1,p

0 (D)

∥∥∥∂βi+2
y um,`−1(y)

∥∥∥
W 1,p

0 (D)
· · ·
∥∥∥∂βpy um,`−1(y)

∥∥∥
W 1,p

0 (D)

]
. ‖f‖pLp(D)2

−`κ̃m(y)2
(
κm(y)
am(y)

)p−1 ∑
β1,β2,...,βp≤α

β1+β2+···+βp=α

(
α

β1, . . . ,βp

)
·

·
[
|β1|! · · · |βp|!

(3C(p,D)c1γ̃

log 2

)β1(C(p,D)γ
log 2

)∑p

k=2 βk
]

≤ ‖f‖pLp(D)2
−`κ̃m(y)3/2p+1/2

(3C(p,D)c1γ̃

log 2

)α
·

·
∑

β1,β2,...,βp≤α

β1+β2+···+βp=α

(
α

β1, . . . ,βp

)
|β1|! · · · |βp|!.

The assertion follows then with |β1|! · · · |βp|! ≤ |α|! and the multivariate multinomial
theorem. From this theorem, we have the identity∑

β1,β2,...,βp≤α

β1+β2+···+βp=α

(
α

β1, . . . ,βp

)
= p|α|.

This finally concludes the proof. �

Employing Lemma (4.14), we immediately derive that

(4.30) ‖∂αy θm,`‖C0
σ̃s

(Rm;H1
0 (D)) . 2−`|α|!

( 3γ̃
log 2

)α
‖f‖L2(D)

holds for all weights σ̃s with s ≥ 4. Furthermore, from estimate (4.27), we deduce that

(4.31)
∥∥∂αy (u2

m,` − u2
m,`−1

)
(y)
∥∥
C0

σ̃s
(Rm;W 1,1

0 (D) . 2−`|α|!
( 6γ̃

log 2

)α
‖f‖2L2(D)
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holds for all s ≥ 6. Finally, for the powers of higher order, estimate (4.28) implies that

(4.32)
∥∥∂αy (upm,` − upm,`−1

)
(y)
∥∥
C0

σ̃s
(Rm;W 1,1

0 (D)) . 2−`|α|!
(3C(p,D)c1pγ̃

log 2

)α
‖f‖pLp(D)

for all s ≥ 3p + 1. Hence, we can provide the regularity results which are necessary to
perform the error analysis from Chapters IV and V for the quasi-Monte Carlo quadra-
ture, the anisotropic Gaussian quadrature and the sparse anisotropic Gaussian quadra-
ture with the modified sequences {3pγ̃k/ log 2}k instead of {pγk/ log 2}k for p = 1, 2 and
{3pC(p,D)c1γ̃k/ log 2}k instead of {C(p,D)pγk/ log 2}k for p > 2.

The convergence analysis of the mentioned quadrature rules depends on the
asymptotic decay behaviour of the above sequences which is for fixed p either determined
by the decay of {γk}k in the single level case or by the decay of {γ̃k}k in the multilevel
case. Thus, the only change in comparison with the single level case is that we have to
deal with the asymptotic decay behaviour of {γ̃k}k instead of {γk}k. Therefore, the esti-
mate (4.3) follows if we choose the number of quadrature points of Qj−` with respect to
the modified sequences above and in such a way that the accuracy εj−` is achieved. This
yields, as can be seen from Theorem (4.11), that the error of the multilevel quadrature
has essentially the same rate as the error of the according single level quadrature. The
gain of the multilevel quadrature can then simply be expressed by the comparison of the
computational cost given in Section 6.

5. Computation of the stiffness matrix
In this section, we discuss the computation of the stiffness matrix on the different levels of
spatial refinement for the lognormal diffusion coefficient. To this end, we employ piecewise
linear finite elements. For the complexity analysis in the next section, we will assume that
each deterministic PDE on level ` can be solved with cost O(2d`), see Remark (6.1). Since
the stiffness matrix on level ` with piecewise linear ansatz functions has already O(2d`)
non-zero entries, each entry has to be assembled in constant time.

Therefore, we recall that S1
` (D) is the finite element space of piecewise linear

functions on the triangulation T` with meshwidth h` h 2−`. Additionally, we denote by
wi, wj ∈ S1

` (D) two elements of the nodal basis of the finite element space on level ` and
define the common support of wi and wj by supp(wi, wj) := suppwi ∩ suppwj . Since
the gradients of wi and wj are constant on each element T ∈ T`, the entry ai,j(ξ) of the
stiffness matrix A`(ξ) is for each quadrature point ξ ∈ Rm determined by

ai,j(ξ) =
∫
D
am(x, ξ)∇wi(x)∇wj(x) dx

=
∑

T∈supp(wi,wj)

∫
T
am(x, ξ)∇wi(x)∇wj(x) dx

=
∑

T∈supp(wi,wj)
∇wi(x)∇wj(x)

∫
T
am(x, ξ) dx.

The index set which contains the elements T ∈ T` in the common support of wi and
wj has, due to the compact support of wi and wj , on each level ` only O(1) elements.
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Nevertheless, the calculation of the integral over T of the diffusion coefficient am needs to
be taken into account. Since the diffusion coefficient depends on ξ ∈ Rm, each evaluation
of the diffusion coefficient needs O(m) operations, at least when the eigenfunctions of the
Karhunen-Loève expansion are globally supported. We neglect this factor m here and
assume that an evaluation of the diffusion coefficient in (x, ξ) ∈ D×Rm can be performed
in constant time, see Remark (6.1). Then, it remains to show that for each element
T ∈ T` only a constant number of function evaluations of am is required to approximate
the integral over T in order to sustain the overall accuracy of the multilevel quadrature
method. More precisely, we show that an evaluation of the diffusion coefficient at the
midpoint of each element is sufficient for this purpose. Hence, we will at first have a look
which additional error has to be estimated when we replace the diffusion coefficient am
by a piecewise constant approximation am,h` , where the value on each element T ∈ T` is
given by the evaluation at the midpoint of T .

We consider the multilevel quadrature of the solution um to (III.3.5) which is
given by

(5.1) Eum ≈
j∑
`=0

Qj−`(um,` − um,`−1)(x,y).

Applying now for the assembly of the stiffness matrix on level ` a midpoint rule yields
that we calculate a disturbed solution um,`,h` instead of um,`. Hence, our actual multilevel
quadrature method reads

(5.2) Eum ≈
j∑
`=0

Qj−`(um,`,h` − um,`−1,h`−1)(x,y).

This leads to the multilevel error splitting∥∥∥∥∥I(um)−
j∑
`=0

Qj−`
(
um,`,h` − um,`−1,h`−1

)
(x,y)

∥∥∥∥∥
H1

0 (D)

≤‖I(um)− I(um,j,hj )‖H1
0 (D)+

j∑
`=0
‖(I−Qj−`)

(
um,`,h` − um,`−1,h`−1

)
(y)
∥∥
H1

0 (D)︸ ︷︷ ︸
IV

.

Next, we use the triangle inequality and the linearity of I and Qj−` in order to
estimate IV by

(5.3)

‖(I−Qj−`)
(
um,`,h` − um,`−1,h`−1

)
(y)
∥∥
H1

0 (D)

≤ ‖(I−Qj−`)
(
um,` − um,`−1

)
(y)
∥∥
H1

0 (D)+‖(I−Qj−`)
(
um,` − um,`,h`

)
(y)
∥∥
H1

0 (D)

+ ‖(I−Qj−`)
(
um,`−1 − um,`−1,h`−1

)
(y)
∥∥
H1

0 (D).

The first term on the right-hand side has already been estimated in (4.3). Hence, it remains
to bound the second and the third term on the right-hand side of (5.3). In particular,
we have to show that both terms are, as the first one, of order 2−j . Hence, also in these
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terms, the spatial and stochastic accuracy need to multiply, i.e. we need mixed regularity
here. By the application of Strang’s Lemma, it follows that∥∥um,` − um,`,h`

∥∥
L2

ρ(Rm;H1
0 (D)) . h`‖f‖L2(D)

which is proven in [CST13] and sufficient for the convergence of the multilevel Monte
Carlo method. For the multilevel quasi-Monte Carlo quadrature or the multilevel Gaussian
quadrature, we require a stronger result which also takes into account the derivatives of
um,` − um,`,h` with respect to y. To this end, we prove the following estimate for the
derivatives of am − am,h` .

(5.4) Lemma. Let the diffusion coefficient am(y) belong toW 1,∞(D) for every y ∈ Γ.
Then, we can bound the derivatives of the difference between the diffusion coefficient am
and its piecewise constant approximation am,h` by

(5.5) ‖∂αy (am(y)− am,h`(y))‖L∞(D) ≤ h`
(
2γ̃
)α‖am(y)‖W 1,∞(D).

Proof. Let us denote by Φ = [ϕ1(x), . . . , ϕm(x)]ᵀ the collection of eigenfunctions in the
Karhunen-Loève expansion of log(am) and by Φh` = [ϕ1,h`(x), . . . , ϕm,h`(x)]ᵀ the vector
of the piecewise constant function such that ϕk and ϕk,h` coincide in the midpoints of each
element of the triangulation T`.

We consider at first only a single element T ∈ T`. It holds for each x ∈ T that

(5.6)

∂αy (am(y)− am,h`(y))

=
(√
λΦ

)α
am(y)−

(√
λΦh`

)α
am,h`(y)

=
(√
λΦ

)α(
am(y)− am,h`(y)

)
+
((√

λΦ
)α
−
(√
λΦh`

)α)
am,h`(y)

=
(√
λΦ

)α(
am(y)− am,h`(y)

)
+

m∑
k=1

k−1∏
i=1

(√
λiϕi,h`

)αi(√
λk(ϕk − ϕk,h`)

)

·
αk−1∑
j=0

(√
λkϕk,h`

)j(√
λΦ

)α−∑k−1
i=1 αiei−(j+1)ek

am,h`(y).

The last inequality follows from successively inserting summands of the form

±
k−1∏
i=1

(√
λiϕi,h`

)αi(√
λkϕk,h`

)j(√
λΦ

)α−∑k−1
i=1 αiei−jek

am,h`(y)

for k = 1, . . . ,m and j = 0, . . . , αk − 1.
From

‖am(y)− am,h`(y)‖L∞(T ) ≤ h`‖am(y)‖W 1,∞(T ),

‖am,h`(y)‖L∞(T ) ≤ ‖am(y)‖L∞(T ),

as well as

‖ϕk(y)− ϕk,h`(y)‖L∞(T ) ≤ h`‖ϕk(y)‖W 1,∞(T ),

‖ϕk,h`(y)‖L∞(T ) ≤ ‖ϕk(y)‖L∞(T ),
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it follows by inserting these estimates into (5.6) that

‖∂αy (am(y)− am,h`(y))‖L∞(T )

≤ h`γ̃α‖am(y)‖W 1,∞(T ) + h`γ̃
α‖am(y)‖L∞(T )

m∑
k=1

αk

≤ (|α|+ 1)h`γ̃α‖am(y)‖W 1,∞(T ) ≤ h`(2γ̃)α‖am(y)‖W 1,∞(T ).

This establishes the assertion since T ∈ Th can be chosen arbitrarily. �

Note that, with the identity

∇am(x,y) = am(x,y)
m∑
k=1

√
λk∇ϕk(x)yk,

the norm ‖am(y)‖W 1,∞(D) is easily calculated by

(5.7) ‖am(y)‖W 1,∞(D) ≤ a(y) + a(y)
m∑
k=1

γ̃k|yk|.

Hence, ‖am(y)‖W 1,∞(D) can be bounded when it is multiplied by σ̃s(y) for all s > 1.
With Lemma (5.4) at hand, we are able to bound the derivatives of um,`−um,`,h`

with respect to the random parameter y.

(5.8) Lemma. The derivatives of um,` − um,`,h` with respect to y fulfill the estimate

(5.9)

∥∥∂αy (um,` − um,`,h`)
∥∥
H1

0 (D)

≤ 2h`|α|!
( 3γ̃

log 2

)α
κ̃(y)a(y)‖am(y)‖W 1,∞(D)‖um(y)‖H1

0 (D).

Proof. We prove the following hypothesis

(5.10)

∥∥∥√am(y)∇∂αy (um,` − um,`,h`)
∥∥∥
L2(D)

≤ 2h`B|α|(3γ̃)ακ̃(y)‖am(y)‖W 1,∞(D)‖um(y)‖H1
0 (D)

which implies the assertion with the help of the bound Bk ≤ k!(log 2)−k on the ordered
Bell numbers.

The estimate (5.10) is proven in [CST13] for |α| = 0 with Strang’s lemma. Let
now the hypothesis be fulfilled for all β with |β| ≤ n − 1. For the induction step, we
consider that um,` and um,`,h` solve the variational formulations∫

D
am(y)∇um,`(y)∇v dx =

∫
D
fv dx ∀v ∈ S1

` (D)∫
D
am,h`(y)∇um,`,h`(y)∇v dx =

∫
D
fv dx ∀v ∈ S1

` (D).
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Hence, it follows that∫
D
am(y)∇

(
um,`(y)− um,`,h`(y)

)
∇v dx

= −
∫
D

(am(y)− am,h`(y))∇um,`,h`(y)∇v dx.

Computing the derivative ∂αy (·) via the Leibniz formula leads to

∑
β≤α

(
α

β

)∫
D
∂βyam(y)∇∂α−βy

(
um,`(y)− um,`,h`(y)

)
∇v dx

= −
∑
β≤α

(
α

β

)∫
D
∂βy (am(y)− am,h`(y))∂α−βy ∇um,`,h`(y)∇v dx.

This equation is rewritten such that all terms appear on the right-hand side except for
the summand involving ∂αy

(
um,`(y)− um,`,h`(y)

)
. This leads to

∫
D
am(y)∇∂αy

(
um,`(y)− um,`,h`(y)

)
∇v dx

= −
∑

06=β≤α

(
α

β

)∫
D
∂βyam(y)∇∂α−βy

(
um,`(y)− um,`,h`(y)

)
∇v dx

−
∑
β≤α

(
α

β

)∫
D
∂βy (am(y)− am,h`(y))∂α−βy ∇um,`,h`(y)∇v dx.

Next, we set v = ∂αy
(
um,`(y)− um,`,h`(y)

)
and exploit the bounds on the deriva-

tives of ∂βyam(y) and Lemma (5.5). As in the proof of Lemma (4.14), we employ ad-
ditionally Hölder’s inequality and divide the resulting inequality afterwards by the term
‖
√
am(y)∇∂αy (um,` − um,`,h`)‖L2(D) to conclude that

∥∥∥√am(y)∇∂αy (um,` − um,`,h`)
∥∥∥
L2(D)

≤
∑

0 6=β≤α

(
α

β

)
γα
∥∥∥√am(y)∇∂α−βy (um,` − um,`,h`)

∥∥∥
L2(D)

+
∑
β≤α

(
α

β

)
h`(2γ̃)β‖am(y)‖W 1,∞(D)a

−1(y)
∥∥∥√am(y)∇∂α−βy um,`,h`

∥∥∥
L2(D)

.

The derivatives of the approximate solution um,`,h` on level ` with respect to
the parameter y fulfill estimate (III.5.7), which bounds the derivatives of um. This is
due to the fact that the proof of (III.5.7) can be performed in a similar way when um
is replace by um,`,h` . The only change is that the L∞(D)-norm of the eigenfunctions ϕk
has to be replaced by the L∞(D)-norm of their piecewise constant approximations ϕk,h` .
Since ‖ϕk,h`‖L∞(D) ≤ ‖ϕk‖L∞(D), the bound (III.5.7) remains valid for um,`,h` . Inserting
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additionally the induction hypothesis leads to∥∥∥√am(y)∇∂αy (um,` − um,`,h`)
∥∥∥
L2(D)

≤ h`γ̃ακ̃(y)‖am(y)‖W 1,∞(D)‖um(y)‖H1
0 (D)

·
( ∑

0 6=β≤α

(
α

β

)
2B|α−β|3α−β +

∑
β≤α

(
α

β

)
2βB|α−β|

)
.

The hypothesis (5.10) follows with the identity
∑

06=β≤α
(α
β

)
B|α−β| = B|α|, cf. (III.5.9), by

∑
0 6=β≤α

(
α

β

)
2B|α−β|3α−β +

∑
β≤α

(
α

β

)
2βB|α−β|

≤ 2 · 3|α|−1B|α| +B|α| +
∑

0 6=β≤α

(
α

β

)
2βB|α−β|

≤ (2|α| + 1 + 2 · 3|α|−1)B|α| ≤ 2 · 3|α|B|α|. �

From the estimate (5.9) for the derivatives of um,`−um,`,h` , we deduce the estimate

‖(I−Qj−`)
(
um,` − um,`,h`

)
(y)
∥∥
H1

0 (D) . h`2
−(j−`)‖f‖L2(D)

if Qj−` denotes a quasi-Monte Carlo or Gaussian quadrature method which provides a
precision of εj−` = 2−(j−`), cf. (4.3). Hence, the multilevel quadrature in (5.2) provides
up to a constant the same approximation error as the multilevel quadrature (5.1) itself.

Using the same techniques as in Section 4, the result can, with the help of Lemma
(5.5), also be transferred to the moment computation.

6. Complexity
We estimate the overall complexity of the different single and multilevel quadrature meth-
ods for the moment computation of the solution um of (III.3.5). For these estimates, we
assume that each quadrature point can be generated in constant time and that for each
quadrature point the computational cost is O(2d`) for solving the resulting elliptic partial
differential equation on level `. Notice that the space S1

` (D) for D ⊂ Rd already has
O(2d`) basis elements. Hence, we assume that we are able to solve a deterministic and
elliptic partial differential equation on level ` in linear complexity.

(6.1) Remark. The construction cost of one single diffusion coefficient corresponds to
the evaluation of the discretized Karhunen-Loève expansion which cost at least m times
the number of spatial grid points. From Section 5, we know that a midpoint rule for the
computation of the entrays of the stiffness matrix is sufficient. Hence, each entry of the
stiffness matrix can be calculated in O(m) operations. This result implies that the stiffness
matrix on level ` can be assembled in O(m2d`). The linear factor m in the construction
cost of the diffusion coefficient occurs for the single level quadrature as well as for the
multilevel quadrature. Since we are interested in the comparison between the complexity
of single level quadrature and multilevel quadrature methods, this factor is neglected for
our further considerations.
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The Monte Carlo quadrature with N` sample points has a precision of order
O
(
N
−1/2
`

)
. Thus, to reach an accuracy of 2−`, we need N` = O

(
22`) sample points.

Therefore, the over-all cost of the single level Monte Carlo quadrature to achieve the
RMSE ε = 2−j is bounded by

costMC
(
2−j

)
. 22j2dj = 2(d+2)j .

With the multilevel quadrature, we are able to reach an accuracy j2−j when employing
quadrature methods with an accuracy of 2`−j on the level ` of spatial refinement. Hence,
the cost complexity of the MLMC can be estimated by

costMLMC
(
j2−j

)
.

j∑
`=0

22(j−`)2d` = 22j
j∑
`=0

2(d−2)` =


O(22j), if d = 1,
O(j22j), if d = 2,
O(2dj), if d > 2.

For the quasi-Monte Carlo quadrature, we employ the Halton sequence and esti-
mate the complexity under the assumption that γ̃k . k−4−η for some η > 0. Then, we have
by Theorem (IV.2.25) that the accuracy of the quasi-Monte Carlo quadrature is bounded
by O(mN−1+δ) for arbitrary δ > 0. Hence, we have at first to estimate the dimensionality
m of the domain of integration in dependence of the accuracy ε. This dimensionality
corresponds to the number of terms which are needed in the Karhunen-Loève expansion
of the random diffusion coefficient to guarantee a truncation error of order ε. In case of
the computation of the mean, the variance or higher order moments, the truncation error
can be estimated by Theorem (III.2.12). From this theorem, we know that the truncation
error is bounded by

‖Mp
u −Mp

um‖C1,α(D) .
∞∑

k=m+1
λk‖ϕk‖2C0,α(D).

Since this holds for all sufficiently small α > 0, it follows that

‖Mp
u −Mp

um‖H1
0 (D) . ‖Mp

u −Mp
um‖C1,α(D) .

∞∑
k=m+1

λk‖ϕk‖2C0,α(D)

≤
∞∑

k=m+1
λk‖ϕk‖2W 1,∞(D) ≤

∞∑
k=m+1

γ̃2
k .

The aim is to calculatem in such a way that the truncation error is of order ε = O(2−j). To
that end, the above inequalities lead in combination with the decay assumption γ̃k . k−4−η

to
∞∑

k=m+1
γ̃2
k .

∞∑
k=m+1

k−8 . m−
1
7

!
. 2−j ⇐⇒ m = O

(
2
j
7
)
.

Moreover, we can estimate the number of quadrature points which are needed to achieve
an accuracy of 2−j by Nj = O

(
2j/(1−δ)m1/(1−δ)). Therefore, the complexity of the single

level quasi-Monte Carlo quadrature is bounded by

costQMC,log
(
2−j

)
. 2

j
1−δm

1
1−δ 2jd = 2j

(
d+ 8

7(1−δ)

)
.
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The truncation length of the Karhunen-Loève expansion in the multilevel quadra-
ture method is calculated according to the accuracy of the finest grid and, thus, given
as in the single level case. There are possibilities to work with different lengths of
the Karhunen-Loève expansion on different levels of spatial refinement at least for the
MLMC, see e.g. [TSGU13]. However, it is not clear if these constructions simply transfer
to other multilevel quadrature methods. Thus, we use the same length of the Karhunen-
Loève expansion for the multilevel quadrature methods on each spatial level of refinement.
Therefore, in accordance to the complexity estimate of the single level quasi-Monte Carlo
quadrature, we determine the overall cost of the MLQMC by

costMLQMC,log
(
j2−j

)
= 2j/7

j∑
`=0

2
j−`
1−δ 2d` =


O
(
2j

8
7(1−δ)

)
, if d = 1,

O
(
2j
(
d+ 1

7(1−δ)

))
, if d ≥ 2.

Herein, we tacitly assume that δ < 1/2.
For the anisotropic Gauss-Hermite quadrature, we obtain dimension-independent

convergence rates only if the sequence {γ̃k}k satisfies γ̃k . exp(k−1−η) for arbitrary η > 0,
cf. Lemma (V.2.21). In this case, the number of quadrature points is bounded by

(6.2) cost(QG,N(ε),m) ≤ C(δ1, δ2)ε−δ1−δ2 .

Herein, δ1, δ2 > 0 can be chosen arbitrarily, but the constant in (6.2) tends to infinity
for δ1 → 0 or δ2 → 0. This leads to the cost complexity of the single level anisotropic
Gauss-Hermite quadrature

costGQ
(
2−j

)
. O

(
2j(d+δ1+δ2)

)
.

Likewise, we apply the estimate (6.2) in order to calculate the complexity of the MLGQ.
This yields that

costMLGQ
(
j2−j

)
.

m∑
`=0

2(j−`)(δ1+δ2)2`d =


O
(
2dj
)
, if d > δ1 + δ2,

O
(
j2dj

)
, if d = δ1 + δ2,

O
(
2j(δ1+δ2)

)
, if d < δ1 + δ2.

For the anisotropic sparse Gauss-Hermite quadrature, we obtain with the help of
Conjecture (V.3.32) dimension-independent convergence when γ̃k . exp(k−η) for arbitrary
η > 0, cf. Theorem (V.3.37). In this case, the estimate (V.3.40) in Theorem (V.3.37) leads
to the bound of the number of quadrature points

cost
(
AGH,w(q(ε),m)

)
= O

(
ε
− 2(δ1+δ2)

1−δ1−δ2
)

with arbitrary δ1, δ2 > 0. The estimation of the cost complexity of the anisotropic sparse
Gauss-Hermite quadrature follows then in the same way as for the anisotropic Gauss-
Hermite quadrature. Thus, we have the complexity estimate

costsGQ
(
2−j

)
. O

(
2j
(
d+ 2(δ1+δ2)

1−δ1−δ2

))
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for the single level anisotropic sparse Gauss-Hermite quadrature and the complexity esti-
mate

costMLsGQ
(
j2−j

)
.

m∑
`=0

2(j−`)
( 2(δ1+δ2)

1−δ1−δ2

)
2`n=


O(2dj), if d > 2(δ1+δ2)

1−δ1−δ2
,

O(j2dj), if d = 2(δ1+δ2)
1−δ1−δ2

,

O
(
2j
( 2(δ1+δ2)

1−δ1−δ2

))
, if d < 2(δ1+δ2)

1−δ1−δ2
,

for the MLsGQ.
Since the variables δ1 and δ2 can be chosen arbitrarily close to 0, only the first

cases in the complexity estimates of the MLGQ and the MLsGQ are asymptotically rele-
vant. Nevertheless, the choices of these variables have an immense impact on the constants.
Therefore, it seems reasonable to maintain these variables in the estimates.

decay condition quadrature spatial dimension
γk method d = 1 d = 2 d = 3

k−1−η MC 23j 24j 25j

k−4−η QMC 2j
(
1+ 8

7(1−δ)

)
2j
(
2+ 8

7(1−δ)

)
2j
(
3+ 8

7(1−δ)

)
exp

(
− k−1−η) GLQ 2j(1+δ1+δ2) 2j(2+δ1+δ2) 2j(3+δ1+δ2)

exp
(
− k−η

)
sGLQ 2j

(
1+ 2(δ1+δ2)

1−δ1−δ2

)
2j
(
2+ 2(δ1+δ2)

1−δ1−δ2

)
2j
(
3+ 2(δ1+δ2)

1−δ1−δ2

)
Table VI.1: Cost complexities of the different single level quadrature methods to get the
accuracy 2−j .

The cost complexities of the different methods are summarized for the single level
quadratures in Table VI.1. Accordingly, the results for the complexities of the multilevel
quadratures are visualized in Table VI.2. Here, we choose δ1 and δ2 for the anisotropic

decay condition quadrature spatial dimension
γ̃k method d = 1 d = 2 d = 3

k−1−η MLMC 22j j22j 23j

k−4−η MLQMC 2j
8

7(1−δ) 2j
(
2+ 1

7(1−δ)

)
2j
(
3+ 1

7(1−δ)

)
exp

(
− k−1−η) MLGHQ 2j 22j 23j

exp
(
− k−η

)
MLsGHQ 2j 22j 23j

Table VI.2: Cost complexities of the different multilevel quadrature methods to get the
accuracy j2−j for the lognormal case.

Gaussian quadrature in such a way that δ1 + δ2 < 1. For the anisotropic sparse Gaussian
quadrature, δ1 and δ2 are chosen with 2(δ1 + δ2)/(1− δ1 − δ2) < 1. This is possible since
δ1 > 0 and δ2 > 0 are arbitrary parameters. But as mentioned before, the constants hidden
in Table VI.2 are influenced by these choices. In both tables, the required assumptions on
the decay of γk or γ̃k, respectively, are written in the first columns.

(6.3) Remark. For the complexity estimates of MLGHQ and MLsGHQ, we require
a strong decay behaviour of the sequence {γ̃k}k. If this decay behaviour is violated, the
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convergence rate deteriorates for ε→ 0 since the dimensionality m tends to∞. Hence, the
cost complexity will be dominated for ε→ 0 by the quadrature complexity. Nevertheless,
within the realms of computability, algebraic convergence rates of GHQ and sGHQ are
obtained even for problems where the decay requirements on {γ̃k}k are not fulfilled, see
Section V.4. We would like to mention that the benefit of multilevel methods could then
be calculated dependent on the actually obtained algebraic rates. Additionally, we would
like to emphasize that, regardless of the convergence rate of the single level quadrature,
multilevel quadrature methods remarkably improve the performance of the corresponding
single level quadrature method.

The findings in this Chapter can immediately be transferred to the moment
computation of the solution um to (III.3.3). Of course, the better convergence result for
the quasi-Monte Carlo quadrature in the uniformly elliptic case also leads to an improved
complexity result for the MLQMC.

7. Numerical results

Figure VI.1: Computational domains with inscribed coarse grids.

In this section, we present numerical examples to validate the proposed analysis.
Since most of the analysis in this chapter was only concerned with the lognormal case, we
restrict ourselves also in the numerical examples to this setting. We study the convergence
for the mean and for the second moment of the solution to (III.3.5). To that end, we
consider two different settings. In the first case, the diffusion coefficient is represented
exactly by a Karhunen-Loève expansion of finite rank. In the second case, the diffusion
coefficient is described by a Gaussian correlation function. Hence, the Karhunen-Loève
expansion has to be appropriately truncated, where the truncation rank m tends to ∞
as the over-all accuracy increases. The domain of the spatial variable is the unit square
in both examples. For the approximation of the Karhunen-Loève expansion, we employ
the pivoted Cholesky expansion as described in [HPS12, HPS15] together with a piecewise
constant finite element discretization of the two-point correlation.

The finite element method we use is based on continuous piecewise linear ansatz
functions. The grid transfer for the solution’s second moment is thus performed via a
quadratic prolongation.
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7.1 An example with a covariance function of finite rank

In our first numerical example, we focus on a diffusion coefficient with four stochastical
sources on discs B1, . . . , B4 of diameter 0.3 equispaced in D = (0, 1)2. The associated
covariance function is given by Covb(x,x′) =

∑4
i=1 1Bi(x)1Bi(x′) and as a loading we

consider f ≡ 1. A visualization of the associated triangulation can be seen in the left
picture of Figure VI.1. Since the reference solution is not analytically known, we compute it

Figure VI.2: Solution’s mean (left) and solution’s second moment in the case of finite
dimensional stochastics.

numerically. To that end, we employ a single level quadrature, namely a quasi-Monte Carlo
quadrature on a finer spatial grid with 1 048 576 finite elements and 106 samples based on
the Halton sequence, as described in Section IV.2.3. Figure VI.2 shows the mean (on the
left) and the second moment (on the right) of this reference solution. For the multilevel
methods, we choose the respective number of samples as follows. We set N` = 10 ·4j−` for
MLMC and N` = 10 · 2(j−`)/(1−δ) for MLQMC where δ = 0, 0.25. As quadrature method
in the quasi-Monte Carlo case, we employ the quasi Monte-Carlo method based on the
Halton sequence with respect to the auxiliary density function

√
ρ(y)/ρ as presented in

Section IV.2.3. The number of samples for MLGQ is controlled by the polynomial degrees
determined from (V.1.8). We employ this estimate since each dimension is equally weighted
and the region of analyticity is described by a small τk = 1 for k = 1, . . . , 4, cf. Remark
(V.1.7). Hence, the quadrature corresponds to an isotropic tensor product quadrature.
In order to guarantee the over-all precision of ε, we scale the precision of each stochastic
dimension by the factor 1/4. The MLsGQ is computed with the combination technique
formula (V.3.5) and q is chosen in such a way that the maximal univariate quadrature rule
in each direction coincides with the quadrature rule in the tensor product formula in the
according direction. Thus, it is simply a sparsification of the full grid quadrature formula.

A comparison of the number of samples for each of the methods is depicted on
the left hand side of Figure VI.4. Here, the different colors refer to the samples on each
particular level sorted in decreasing order from left to right, i.e. ` = 6, 5, . . . , 0. Note that,
for the MLMC, we compute the RMSE based on five realizations of the Multilevel Monte-
Carlo estimator. This fact is not taken into account in the visualization in Figure VI.4
where the number of quadrature points is presented.

The error plots found in Figure VI.3 indicate that the four methods, i.e. MLGQ,
MLsGQ, MLMC, and MLQMC, provide the theoretic order of convergence of j2−j of the
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Figure VI.3: Error of the mean (left) and error of the second moment (right) in the finite
dimensional stochastics case.

approximate mean with respect to the H1-norm (picture on the left) and of the approx-
imate second moment with respect to the W 1,1-norm (picture on the right). Indeed, it
seems that the logarithmic term j which stems from the summation of the multilevel error
does not occur. Moreover, the choice of δ = 0, i.e. a linearly increasing number of samples,
seems to be sufficient in the MLQMC to maintain the optimal rate of convergence.

In Table VI.3, the total cost of the different methods are stated in terms of the
cost for a sample on the finest grid. We determine these numbers by summing up the
scaled number of samples in Figure VI.4 on the different levels. According to Section 6,
the scale factor on level ` is 2−d(j−`). As we see from the table, the MLQMC with δ = 0
or δ = 0.25 requires only a cost of 20 or 25 fine grid samples, respectively, to recover the
convergence rate. It is, therefore, superior to the MLMC method which yields essentially
the same convergence rate with a cost of 60 fine grid samples. We recommend the use of
MLQMC with δ = 0.25 for this example since the overhead of the MLQMC with δ = 0.25
in comparison to MLQMC with δ = 0 is low and the error plots of the MLQMC with
δ = 0.25 are preferable to that of the MLQMC with δ = 0. In comparison, the cost of
the MLGQ are much higher, approximately eight times as high as the cost of the MLMC
and 95 times as high as the cost of the MLQMC. Since the method provides a higher
convergence rate for the second moment, it seems that the finite element error for the
computation of the second moment converges with a higher rate than expected in Lemma
(1.1). In addition, this suggests that the MLGQ heavily overestimates the quadrature
error. The same effect occurs for the MLsGQ. This method preserves essentially the same
convergence plot as the MLGQ while the complexity is considerably reduced. Indeed the
cost of MLsGQ is only 835 fine grid samples instead of 2371 for the MLGQ. Nevertheless,
the cost still significantly surpasses the cost of the MLQMC. This can be explained since
the a priori knowledge, which is used to determine each order qj−` for the MLGQ and
the MLsGQ, substantially underestimates the performance of the Gaussian quadrature
method. Hence, a lot of quadrature points are used for MLGQ and MLsGQ which would
not be necessary to cover the proven convergence rates.
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Figure VI.4: Number of samples for each of the methods for the first example (left) and
for the second example (right).

MLMC MLQMC(δ = 0.25) MLQMC(δ = 0) MLGQ MLsGQ
Example 1 60 25 20 2371 837
Example 2 80 26 19 267749 5

Table VI.3: Cost of each method for both examples in terms of fine-grid samples.

7.2 An example with a covariance function of infinite rank

For our second example, we consider the covariance function

Covb(x,x′) = 0.5 exp
(
− 2‖x− x′‖22

)
.

The loading is again f ≡ 1 on the computational domain D = (0, 1)2. The unit square is
triangulated as seen in the right picture of Figure VI.1. The Karhunen-Loève expansion
is approximated with a trace error of 10−6 which results in m = 72 terms. As a reference
solution, we compute again a single level quasi-Monte Carlo solution on a finer spatial grid
with 1 048 576 finite elements and 106 samples based on Halton points. Instead of working
with an auxiliary density function as in the previous example, we exploit the results of
Subsection IV.2.4 and map the points of the Halton sequence from the unit cube [0, 1]m
to Rm by the inverse Gaussian distribution function. Since the sequence {γk}k decays
sufficiently fast for this example, we expect nearly dimension-independent convergence.
Nevertheless, we emphasize that, in case of a relatively low-dimensional stochastics where
the different dimensions are equally important like in the previous example, the QMC
approach with auxiliary density performs better. In Figure VI.5 the mean (picture on the
left) and the second moment (picture on the right) of the reference solution are visualized.

In order to preserve the approximation order of 2−j , the Karhunen-Loève expan-
sion is truncated after m = 21 terms on the finest level of computation j = 8. The number
of samples for MLMC and MLQMC is chosen as in the previous example. The degrees in
MLGQ are computed with respect to formula (V.2.12). Although, the results of Section
4 imply that we have to choose τk with respect to 3γ̃k/ log 2, for reasons of computability
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Figure VI.5: Solution’s mean (left) and solution’s second moment in the case of infinite
dimensional stochastics.

of the tensor-product Gaussian formula, we set τk = log 2/γk and scale the function h in
(V.2.12) additionally by

√
2. The anisotropic sparse Gaussian quadrature is chosen as a

sparsification of the respective tensor product quadrature.
The number of samples for the different methods are shown on the right-hand

side of Figure VI.4. The related computational errors are depicted in Figure VI.6.
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Figure VI.6: Error of the mean (left) and error of the second moment (right) in the infinite
dimensional stochastics case.

We achieve similar results to the example in Subsection 7.1 for the computation
of the mean. All methods provide the expected error rates and the logarithmic factor j
does not occur. For the computation of the second moment, the results differ to those
obtained for the example in Subsection 7.1. Except for the MLQMC with δ = 0, whose
convergence rate for the second moment stagnates on level 6, 7 and 8, all methods provide
the expected error rates. In contrast to the previous example, the rate for the second
moment for the MLGQ and the MLsGQ is not significantly higher anymore. This implies
that the chosen quadrature settings on level ` of the MLGQ and the MLsGQ yield the
required accuracy O(2−`), but not drastically overestimate the quadrature error anymore.
Nevertheless, we observe that the MLGQ and the MLsGQ still provide slightly better
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convergence rates than the MLMC or the MLQMC.
The computational cost in terms of fine grid samples, cf. Table VI.3, are essen-

tially the same for QMC with δ = 0 and δ = 0.25, respectively, and multiplied by a factor
4/3 for MLMC compared to the cost in the previous example. In contrast to this, for
the MLsGQ, the computational cost for this example are much lower than in the previous
example. The MLsGQ requires only 5 fine grid samples for this example instead of 837
fine grid samples which are required for the example in Subsection 7.1. The cost of the
MLGQ, however, are much higher as in the previous example. This is not surprisingly
since a tensor product quadrature in 21 dimensions is not competitive at all.

Hence, we recommend for this example the application of MLsGQ since the
performance is outstanding. With computational cost of just five fine grid samples, the
MLsGQ is able to approximate the mean with an error of 7.9 · 10−4 measured in the
H1(D)-Norm and the variance with an error of 1.1 · 10−4 measured in the W 1,1(D)-
Norm. Nevertheless, the MLQMC with δ = 0.25 works also very well for this example.
This method requires only 26 fine grid samples to obtain an error of 8.9 · 10−4 for the
computation of the mean and an error of 1.9 · 10−4 for the computation of the variance.

To summarize, the numerical results corroborate our theoretical findings and
demonstrate that arbitrary quadrature methods can significantly be accelerated by mul-
tilevel techniques.





Appendix

We provide in this appendix the proof of Conjecture (V.3.32) for m = 3, 4, 5. To that end,
we first recall the statement of the conjecture:

(0.1) Conjecture. For an ascendingly ordered weight vector w = [w1, . . . , wm] ∈ Rm+
and q ∈ N, the cardinality of the set

Xw(q,m) =
{

0 ≤ α ∈ Nm :
m∑
n=1

αnwn ≤ q
}

is bounded by

(0.2) #Xw(q,m) ≤
m∏
k=1

q
wk

+ k

k
.

The conjecture is obviously fulfilled for m = 1 and it was shown in Section V.3.5
that it is also true for m = 2. The cardinality of the set Xw(q,m) can recursively be
calculated by

#Xw(q,m) =

⌊
q
w1

⌋∑
k=0

Xw2:m(q − kw1,m− 1)

(since w1 ≤ wi) = 1 +

⌊
q
w1

⌋
−1∑

k=0
Xw2:m(q − kw1,m− 1)

(by induction) ≤ 1 +

⌊
q
w1

⌋
−1∑

k=0

1
(m− 1)!

∏m
j=2wj

m−1∏
`=1

(q − kw1 + `w`+1)

(
δ := q −

⌊ q
w1

⌋)
= 1 +

⌊
q
w1

⌋∑
k=1

1
(m− 1)!

∏m
j=2wj

m−1∏
`=1

(kw1 + δ + `w`+1).
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With θ` := δ + `w`+1 for ` = 1, . . . ,m− 1, it follows that

(
#Xw(q,m)− 1

)
m!

m∏
j=1

wj ≤

⌊
q
w1

⌋∑
k=1

mw1

m−1∏
`=1

(kw1 + θ`)

=

⌊
q
w1

⌋∑
k=1

mw1

m−1∑
`=0

(kw1)m−1−` ∑
‖α‖∞≤1,
|α|=`

θα.

Herein, α ∈ Nm−1 denotes a multi-index. Moreover, it holds with β ⊂ Nm that
m∏
k=1

(q + kwk) = m!
m∏
k=1

wk +
m−1∑
`=0

qm−`
∑

‖β‖∞≤1,
|β|=`

m∏
j=1

(jwj)βj .

Thus, it remains to show

(0.3)

⌊
q
w1

⌋∑
k=1

mw1

m−1∑
`=0

(kw1)m−1−` ∑
‖α‖∞≤1,
|α|=`

θα ≤
m−1∑
`=0

qm−`
∑

‖β‖∞≤1,
|β|=`

m∏
j=1

(jwj)βj .

With the notation

E
(m)
` :=

∑
‖β‖∞≤1,
|β|=`

m∏
j=1

(jwj)βj and F
(m−1)
` :=

∑
‖α‖∞≤1,
|α|=`

θα,

the left-hand side in (0.3) can be rewritten by⌊
q
w1

⌋∑
k=1

mw1

m−1∑
`=0

km−1−`wm−1−`
1 F

(m−1)
` =

m−1∑
`=0

mwm−`1 F
(m−1)
`

⌊
q
w1

⌋∑
k=1

km−1−`.

Now, it holds with the Faulhaber formula and the Bernoulli numbers Bj , cf. [Knu93], that

m−1∑
`=0

mwm−`1 F
(m−1)
`

⌊
q
w1

⌋∑
k=1

km−1−`

=
m−1∑
`=0

mwm−`1 F
(m−1)
`

[
1

m− `

m−1−`∑
j=0

(−1)j
(
m− `
j

)
Bj
⌊ q
w1

⌋m−`−j]

=
m−1∑
k=0

(⌊ q
w1

⌋)m−k k∑
j=0

wm−k+j
1

m

m− k + j

(
m− k + j

j

)
(−1)jBjF (m−1)

k−j

=
m−1∑
k=0

(q − δ)m−k
k∑
j=0

mwj1
m− k + j

(
m− k + j

j

)
(−1)jBjF (m−1)

k−j

=
m−1∑
k=0

m−k∑
`=0

(
m− k
`

)
(−1)`qm−k−`δ`

k∑
j=0

mwj1
m− k + j

(
m− k + j

j

)
(−1)jBjF (m−1)

k−j .
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We would like to consider the parts which contain δ and the parts without δ separately.
Therefore, we split up the first summand in the second summation and obtain

(0.4)

m−1∑
`=0

mwm−`1 F
(m−1)
`

⌊
q
w1

⌋∑
k=1

km−1−`

=
m−1∑
k=0

m−k∑
`=1

(
m− k
`

)
(−1)`qm−k−`δ`

k∑
j=0

mwj1
m− k + j

(
m− k + j

j

)
(−1)jBjF (m−1)

k−j

+
m−1∑
k=0

qm−k
k∑
j=0

mwj1
m− k + j

(
m− k + j

j

)
(−1)jBj

(
F

(m−1)
k−j −G(m−1)

k−j

)

+
m−1∑
k=0

qm−k
k∑
j=0

mwj1
m− k + j

(
m− k + j

j

)
(−1)jBjG(m−1)

k−j ,

where

G
(m−1)
k−j =

∑
‖α‖∞≤1,
|α|=k−j

m−1∏
i=1

(iwi+1)αi .

In view of (0.3), the assertion follows if we can show that the first two summands
in (0.4) are non-negative, and if it holds

m−1∑
k=0

qm−k
k∑
j=0

mwj1
m− k + j

(
m− k + j

j

)
(−1)jBjG(m−1)

k−j
!
≤

m−1∑
k=0

qm−kE
(m)
k .

Since q and E(m)
k are positive, it suffices to compare the coefficients for k = 0, . . . ,m− 1,

i.e.

(0.5)
k∑
j=0

mwj1
m− k + j

(
m− k + j

j

)
(−1)jBjG(m−1)

k−j
!
≤ E(m)

k .

Both sides of this equation are equal to 1 for k = 0 and every m ∈ N since B0 = 1.
Furthermore, the inequality reads for k = 1 with B1 = −1/2:

m

m− 1

m−1∑
i=1

iwi+1 + m

2 w1
!
≤

m∑
i=1

iwi ⇐⇒
m−1∑
i=1

(
i+ 1− m

m− 1 i
)
wi+1

!
≥
(m

2 − 1
)
w1.

From wi ≥ w1, we conclude
m−1∑
i=1

(
i+ 1− m

m− 1 i
)
wi+1 ≥ w1

(
m− 1−

m−1∑
i=1

i

m− 1

)
=
(m

2 − 1
)
w1.

Thus, we have only to elaborate on (0.5) for k = 2, . . . ,m− 1.
Next, we simplify the first two summands in (0.4). At first, we notice that

F
(m−1)
0 = G

(m−1)
0 = 1.
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Hence, the two summands can be rewritten by

(0.6)

m−1∑
k=0

m−k∑
`=1

(
m− k
`

)
(−1)`qm−k−`δ`

k∑
j=0

mwj1
m− k + j

(
m− k + j

j

)
(−1)jBjF (m−1)

k−j

+
m−1∑
k=1

qm−k
k−1∑
j=0

mwj1
m− k + j

(
m− k + j

j

)
(−1)jBj

(
F

(m−1)
k−j −G(m−1)

k−j

) !
≤ 0.

The first term herein is rearranged according to the transform k 7→ k + ` and ` 7→ k in
order to compare the first and the second term in (0.6). This means that the ` in (0.6) is
now represented by k − ` and k by `. This leads to

(0.7)
m∑
k=1

qm−k
k−1∑
`=0

(
m− `
k − `

)
(−1)k−`δk−`

∑̀
j=0

mwj1
m− `+ j

(
m− `+ j

j

)
(−1)jBjF (m−1)

`−j .

We show next that it holds for k ≥ 1 that

(0.8)

−
k−1∑
`=0

(
m− `
k − `

)
(−1)k−`δk−`

∑̀
j=0

mwj1
m− `+ j

(
m− `+ j

j

)
(−1)jBjF (m−1)

`−j

=
k−1∑
j=0

mwj1
m− k + j

(
m− k + j

j

)
(−1)jBj

(
F

(m−1)
k−j −G(m−1)

k−j

)
.

Thus, all terms in (0.6) would vanish except for the term in (0.7) where k = m. This
would imply that the expression simplifies to

(0.9)
m−1∑
`=0

(−1)m−`δm−`
∑̀
j=0

mwj1
m− `+ j

(
m− `+ j

j

)
(−1)jBjF (m−1)

`−j
!
≤ 0.

The left-hand side of (0.8) is rewritten by

−
k−1∑
j=0

mwj1(−1)jBj
k−1∑
`=j

(
m− `
k − `

)
(−1)k−`δk−` 1

m− `+ j

(
m− `+ j

j

)
F

(m−1)
`−j .

Hence, it remains to show that

(0.10)
−
k−1∑
`=j

(
m− `
k − `

)
(−1)k−`δk−` 1

m− `+ j

(
m− `+ j

j

)
F

(m−1)
`−j

= 1
m− k + j

(
m− k + j

j

)(
F

(m−1)
k−j −G(m−1)

k−j

)
.

To that end, we exploit the identity

(0.11) F (m−1)
s =

s∑
`=0

(
m− 1− `
s− `

)
δs−`G

(m−1)
` .
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Inserting this identity into the right-hand side of (0.10) yields on the one hand that

1
m− k + j

(
m− k + j

j

)(
F

(m−1)
k−j −G(m−1)

k−j

)

= 1
m− k + j

(
m− k + j

j

)([ k−j∑
`=0

(
m− 1− `
k − j − `

)
δk−j−`G

(m−1)
`

]
−G(m−1)

k−j

)

= 1
m− k + j

(
m− k + j

j

) k−j−1∑
`=0

(
m− 1− `
k − j − `

)
δk−j−`G

(m−1)
`

r=k−j= 1
m− r

(
m− r
j

)
r−1∑
`=0

(
m− 1− `
r − `

)
δr−`G

(m−1)
` .

On the other hand, inserting identity (0.11) into the left-hand side of (0.10), gives

(0.12)

−
k−1∑
`=j

(
m− `
k − `

)
(−1)k−`δk−` 1

m− `+ j

(
m− `+ j

j

)
F

(m−1)
`−j

= −
r−1∑
`=0

(
m− `− j
r − `

)
(−1)r−` δ

r−`

m− `

(
m− `
j

)∑̀
i=0

(
m− 1− i
`− i

)
δ`−iG

(m−1)
i

=
r−1∑
i=0

δr−iG
(m−1)
i

r−1∑
`=i

(−1)r−`−1

m− `

(
m− `− j
r − `

)(
m− `
j

)(
m− 1− i
`− i

)
.

The identity (0.8) follows then from

r−1∑
`=i

(−1)r−`−1

m− `

(
m− `− j
r − `

)(
m− `
j

)(
m− 1− i
`− i

)

=
(
m− r
j

)
1

m− r

r−1∑
`=i

(−1)r−`−1

m− `
(m− r) (m− `)!

(r − `)!(m− r)!

(
m− i− 1
`− i

)

=
(
m− r
j

)
1

m− r

r−1∑
`=i

(−1)r−`−1(m− 1− i)!
(r − `)!(m− r − 1)!(`− i)!

=
(
m− r
j

)
1

m− r

(
m− i− 1
r − i

)
r−1∑
`=i

(−1)r−`−1
(
r − i
`− i

)

together with the identity

r−1∑
`=i

(−1)r−`−1
(
r − i
`− i

)
= −

r−i−1∑
`=0

(−1)r−i−`
(
r − i
`

)
= −(−1) = 1.

It remains to successively show for m = 3, 4, 5 that inequality (0.5) holds for
k = 2, . . . ,m − 1 and that (0.9) is not positive. The second assertion is satisfied for
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m = 3, 4, 5 since we can rearrange (0.9) with the same arguments as above in (0.12) by

(0.13)

m−1∑
`=0

(−1)m−`δm−`
∑̀
j=0

mwj1
m− `+ j

(
m− `+ j

j

)
(−1)jBjF (m−1)

`−j

= −
m−1∑
j=0

mwj1(−1)jBj
m−j−1∑
i=0

δm−j−iG
(m−i)
i

(
m− 1− i

j

)
1

m− j − i
!
≤ 0.

This inequality is fulfilled for all m ≤ 6 since (−1)jBj ≥ 0 for j = 1, . . . , 5 and all other
quantities in the sum in (0.5) are positive as well.

Due to B2 = 1
6 , the expression (0.5) reads for k = 2 as

(0.14)
m

m− 2

m−2∑
i=1

m−1∑
j=i+1

ijwi+1wj+1+m

2 w1

m−1∑
i=1

iwi+1+m(m− 1)
12 w2

1
!
≤

m−1∑
i=1

m∑
j=i+1

ijwiwj .

In view of w1 ≤ w2, this leads for m = 3 to

6w2w3 + 3
2w1(w2 + 2w3) + 1

2w
2
1

!
≤ 2w1w2 + 3w1w3 + 6w2w3

⇐⇒ 2w2
1

!
≤ 2w1w2.

Analogously, for m = 4, we arrive at

2(2w2w3 + 3w2w4 + 6w3w4) + 2w1(w2 + 2w3 + 3w4) + w2
1

!
≤ 2w1w2 + 3w1w3 + 4w1w4 + 6w2w3 + 8w2w4 + 12w3w4

⇐⇒ w1w3 + 2w1w4 + w2
1

!
≤ 2w2w3 + 2w2w4.

The latter inequality is fulfilled due to w1w4 ≤ w2w4 and w2
1 ≤ w1w3. Inserting m = 5

into (0.14), leads to
5
3(2w2w3 + 3w2w4 + 4w2w5 + 6w3w4 + 8w3w5 + 12w4w5)

+ 5
2w1(w2 + 2w3 + 3w4 + 4w5) + 5

3w
2
1

!
≤ 2w1w2 + 3w1w3 + 4w1w4 + 5w1w5 + 6w2w3 + 8w2w4

+ 10w2w5 + 12w3w4 + 15w3w5 + 20w4w5

⇐⇒ 1
2w1w2 + 2w1w3 + 7

2w1w4 + 5w1w5 + 5
3w

2
1

!
≤ 8

3w2w3 + 3w2w4 + 10
3 w2w5 + 2w3w4 + 5

3w3w5.

This is valid since 5w1w5 ≤ 10w2w5/3 + 5w3w5/3, 7w1w4/2 ≤ 3w2w4 + w3w4/2 and
2w1w3 + w1w2/2 + 5w2

1/3 ≤ 3w3w4/2 + 8w2w3/3.
With the Bernoulli number B3 = 0, inserting k = 3 into (0.5) leads to

m

m− 3G
(m−1)
3 + m

2 G
(m−1)
2 + m(m− 2)

12 w2
1G

(m−1)
1

!
≤ E(m)

3 .
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Accordingly, we obtain for k = 4 and B4 = −1/30 the inequality

(0.15) m

m− 4G
(m−1)
4 + m

2 w1G
(m−1)
3 + m(m− 3)

12 w2
1G

(m−1)
2 −

(
m

4

)
w4

1
30

!
≤ E(m)

4 .

The calculations for k = 3 are very similar to the calculations for k = 2 and
therefore omitted here. The case k = 4 is a bit different since there is for the first time a
negative summand on the left-hand side in (0.15). Thus, we also present the verification
of inequality (0.15) for m = 5:

5G(4)
4 + 5w1

2 G
(4)
3 + 5w2

1
6 G

(4)
2 −

5w4
1

30
= 120w2w3w4w5 + 5w1

2 (6w2w3w4 + 8w2w3w5 + 12w2w4w5 + 24w3w4w5)

+ 5w2
1

6 (2w2w3 + 3w2w4 + 4w2w5 + 6w3w4 + 8w3w5 + 12w4w5)− w4
1

6
!
≤ 24w1w2w3w4+30w1w2w3w5+40w1w2w4w5+60w1w3w4w5+120w2w3w4w5.

This is equivalent to

w2
1

(5
3w2w3 + 5

2w2w4 + 10
3 w2w5 + 5w3w4 + 10

3 w3w5 + 10w4w5

)
− 1

6w
4
1

!
≤ 9w1w2w3w4 + 10w1w2w3w5 + 10w1w2w4w5

⇐⇒ 5
2w1w2w4(w3−w1)+5w1w3w4(w2−w1)+ 3

2w1w2w3(w4−w1)+ 10
3w1w2w5(w3−w1)

+ 20
3 w1w3w5(w2 − w1) + 10w1w4w5(w2 − w1)− 1

6w
2
1(w2w3 − w2

1)
!
≥ 0.

Since the weights are positive and ordered ascendingly, we have that the second, third,
fifth and sixth term in the last inequality are not negative. Moreover, we deduce from
1
6w

2
1(w2w3 − w2

1) ≤ 1
6w

2
1(w3 − w1)(w3 + w1) that the left hand side of the last inequality

is bounded from below by
5
2w1w2w4(w3 − w1) + 10

3 w1w2w5(w3 − w1)− 1
6w

2
1(w3 − w1)(w3 + w1) ≥

(w3 − w1)
(5

2w1w2w4 + 10
3 w1w2w5 −

1
6w

2
1(w3 + w1)

)
≥ 0.

This establishes (V.3.32) for m = 3, 4, 5.
(0.16) Remark. In this section, we have validated Conjecture (V.3.32) for m = 3, 4, 5.
Moreover, we have shown that the successive verification of the inequalities (0.5) and (0.13)
is sufficient to prove the conjecture. Unfortunately, the induction step is still not trivial.
Nevertheless, as mentioned in Remark (V.3.34), the conjecture is not only of interest for
the estimation of index sets in anisotropic sparse grids, but also since it can be applied
in various other mathmatical research fields. Especially, since the conjecture is, to the
best of our knowledge, superior to all existing estimates in the literature for this kind of
problem, it would be important to prove it in arbitrary dimension and, hopefully, some of
the ideas in this appendix can be useful for that.
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