
Context-aware workflow management in
eHealth applications

Inauguraldissertation

zur
Erlangung der Würde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel
von

NADINE FRÖHLICH
aus Wolfen, Deutschland

Basel, 2016

ii

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
auf Antrag von

Prof. Dr. Heiko Schuldt, Universität Basel, Dissertationsleiter
Prof. Dr. Andreas Meier, Universität Freiburg, Korreferent

Basel, den 16. September 2014

Prof. Dr. Jörg Schibler, Dekan

Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz
(CC BY-NC-ND 3.0 CH)

Sie dürfen: Teilen — den Inhalt kopieren, verbreiten und zugänglich machen

Unter den folgenden Bedingungen:

Namensnennung — Sie müssen den Namen des Autors/Rechteinhabers
in der von ihm festgelegten Weise nennen.

Keine kommerzielle Nutzung — Sie dürfen diesen Inhalt nicht für
kommerzielle Zwecke nutzen.

Keine Bearbeitung erlaubt — Sie dürfen diesen Inhalt nicht bearbeiten,
abwandeln oder in anderer Weise verändern.

Wobei gilt:

 Verzichtserklärung — Jede der vorgenannten Bedingungen kann aufgehoben werden,
sofern Sie die ausdrückliche Einwilligung des Rechteinhabers dazu erhalten.

 Public Domain (gemeinfreie oder nicht-schützbare Inhalte) — Soweit das Werk, der
Inhalt oder irgendein Teil davon zur Public Domain der jeweiligen Rechtsordnung gehört,
wird dieser Status von der Lizenz in keiner Weise berührt.

 Sonstige Rechte — Die Lizenz hat keinerlei Einfluss auf die folgenden Rechte:

o Die Rechte, die jedermann wegen der Schranken des Urheberrechts oder aufgrund
gesetzlicher Erlaubnisse zustehen (in einigen Ländern als grundsätzliche Doktrin
des fair use bekannt);

o Die Persönlichkeitsrechte des Urhebers;

o Rechte anderer Personen, entweder am Lizenzgegenstand selber oder bezüglich
seiner Verwendung, zum Beispiel für Werbung oder Privatsphärenschutz.

 Hinweis — Bei jeder Nutzung oder Verbreitung müssen Sie anderen alle
Lizenzbedingungen mitteilen, die für diesen Inhalt gelten. Am einfachsten ist es, an
entsprechender Stelle einen Link auf diese Seite einzubinden.

Quelle: http://creativecommons.org/licenses/by-nc-nd/3.0/ch/ Datum: 12.11.2013

Contents

Abstract vii

Zusammenfassung viii

Acknowledgement x

1 Introduction 1

1.1 Major contribution . 3

1.2 Application scenario . 4

1.3 Outline . 5

2 Fundamentals 7

2.1 Context . 7

2.2 Context-awareness . 12

2.3 Workflow management . 14

2.3.1 Workflows . 16

2.3.2 Managing static workflows . 21

2.3.3 Strengths of the usage of workflows in WfMSs 25

2.3.4 Weaknesses of the usage of workflows in WfMSs 27

2.3.5 Discussion of static workflows . 27

2.4 Managing dynamic Workflows . 28

2.4.1 Schema evolution . 29

2.4.2 Ad-hoc changes . 30

2.4.3 Partly defined workflows . 31

2.4.4 Discussion of dynamic workflows . 34

iv

2.5 A formal model for static and dynamic workflows 35

2.5.1 Petri nets . 37

2.5.2 Condition-Event-Nets . 38

2.5.3 Hierarchical Petri nets . 43

2.5.4 Colored Petri nets . 46

2.5.5 Hierarchical Colored Petri nets . 51

2.6 Rule-based systems . 57

2.6.1 Rules . 58

2.6.2 Forward chaining . 59

2.6.3 Backward chaining . 61

2.6.4 Discussion forward chaining vs. backward chaining 62

2.6.5 The Rete algorithm . 63

2.7 Summary . 64

3 Flexwoman — a flexible context-aware Workflow management system 67

3.1 Motivation and requirements . 68

3.2 Evaluation of flexible WfMS concerning our requirements 70

3.3 Concept of flexibility in Flexwoman . 74

3.3.1 Realization of the flexibility concept . 76

3.3.2 Formal description of the main concepts in Flexwoman 78

3.3.3 Plan of Flexwoman’s system model . 81

3.3.4 Structural change operations required of Flexwoman 83

3.4 Summary . 85

4 Architecture and Implementation 87

4.1 Architecture . 87

4.2 Implementation . 89

4.2.1 Context management . 90

4.2.2 Context filtering . 91

4.2.3 Workflow adaptation . 94

4.2.4 Correctness checks . 96

4.3 Summary . 96

v

5 Evaluation 97

5.1 Qualitative evaluation . 97

5.1.1 Evaluation setup . 98

5.1.2 Evaluation results . 104

5.2 Quantitative evaluation . 114

5.2.1 Evaluation setup . 114

5.2.2 Evaluation results . 115

5.3 Further evaluations . 118

5.3.1 Growth of the knowledge base . 118

5.3.2 Rule interdependency . 120

5.3.3 Context change interdependency . 121

5.4 Summary . 121

5.4.1 Summary of evaluation results . 121

5.4.2 Usage of Flexwoman . 122

6 Related work 123

6.1 Approaches of the workflow community aiming for flexible WfM 123

6.1.1 Dynamic WfMS . 124

6.1.2 Context-aware WfMSs . 127

6.2 AI techniques aiming for flexible workflow management 129

6.3 WfMSs in eHealth . 129

6.4 Summary . 130

7 Conclusion and Outlook 133

A Comparison of tools that implement CPNs 137

Bibliography 153

Curriculum Vitae 163

vi

Abstract

Workflows are a technology to structure work in functional, non-overlapping steps. They de-
fine not only the order of execution of the steps, and describe whether steps are executed in
parallel, they also specify who or what tool has to fulfill which step. Workflows offer the pos-
sibility to automate work, to increase the understandability of processes, and they ease the
control of process execution. The tools to manage workflows, so called workflow management
systems (WfMSs), are traditionally rigid as they separate workflow definition done at build time
from workflow execution done at run time. This makes them ill-suited for managing flexible and
unstructured workflows. In this thesis, we focus on the support of flexible processes in eHealth,
which are affected by more foreseen than unforeseen events. To bridge the gap between rigid
WfMSs and flexible workflows, we developed a concept for dynamic and context-aware work-
flow management called Flexwoman. Although our focus lies on flexible eHealth processes,
Flexwoman is a generic approach that can be applied to several different application domains.
Flexwoman supports the usage of context information to adapt processes automatically at run
time to foreseen events. Processes can also be manually adapted to handle unforeseen events.
To achieve this flexibility, context information from different sensors is unified and thus can be
analyzed in the same way. The analysis and adaptation of workflows is executed with a rule en-
gine. A rule engine can store, reason about and apply knowledge automatically and efficiently.
Rules and application logic are separated, thus, rules can be changed during run time without
affecting application logic or process description. Workflows are internally described by Hierar-
chical Colored Petri nets (HCPNs) and executed by a HCPN execution engine. HCPNs allow for
a deterministic execution of workflows and can represent workflows on different levels of detail.
In summary, in Flexwoman, significant context changes (events) trigger automated adaptations
that replace parts of the workflow by sub workflows, which can in turn be adapted. The adap-
tations and the rules for context-aware adaptation are saved in the organizational memory for
later reuse. Flexwoman’s event based behavior facilitates proactive adaptations instead of only
allowing for adaptations while entering or leaving a task. Replacements are not bound to special
places defined at build time but each part of the workflow, which has not been executed yet, can
be replaced at run time. We implemented and evaluated the concept. The evaluations show
i) that all required functionality is available, ii) that the system scales with a growing number of
rules, and iii) that the system correctly handles failure situations.

vii

Zusammenfassung

Workflows strukturieren einen Arbeitsablauf in funktional nicht überlappende Aktivitäten. Da-
bei definieren sie nicht nur die Ausführungsreihenfolge dieser Schritte, sondern beschreiben
zusätzlich, ob diese Schritte nebenläufig ausgeführt werden und wer oder welches Werkzeug
eine bestimmte Aktivität ausführt. Workflows ermöglichen eine Automatisierung des Arbeits-
ablaufs, verbessern die Verständlichkeit von Prozessen und erleichtern die Überwachung der
Prozessausführung. Workflow-Management-Systeme (WfMS) sind eine Software zur Definiti-
on, Ausführung und Überwachung von Workflows. Herkömmliche WfMS sind starr, denn sie
trennen die Workflow-Definition, die zur Definitionszeit erstellt wird, strikt von der Ausführung
der Workflows zur Laufzeit. Dadurch sind diese Systeme ungeeignet für das Management
flexibler und unstrukturierter Workflows. In dieser Arbeit wollen wir flexible eHealth-Prozesse
unterstützen, die von mehr vorhersehbaren als unvorhersehbaren Ereignissen betroffen sind.
Um die Lücke zwischen starren WfMS und flexiblen Workflows zu schliessen, haben wir mit
Flexwoman ein Konzept zum dynamischen und kontextabhängigen Workflow-Management ent-
wickelt. Flexwoman wird in der Arbeit zwar auf eHealth-Prozesse angewandt, ist aber ein gene-
rischer Ansatz, der in vielen unterschiedlichen Anwendungsdomänen eingesetzt werden kann.
Flexwoman benutzt Kontextinformationen zur automatischen Laufzeitanpassung von Prozes-
sen an vorhergesehene Ereignisse. Flexwoman erlaubt zusätzlich eine manuelle Anpassung
von Workflows an unvorhergesehene Ereignisse. Um eine solche Flexibilität zu erreichen, wer-
den die Kontextinformationen, die von verschiedenen Sensoren kommen, intern vereinheitlicht.
Somit können sie auch auf einheitliche Weise analysiert werden. Die Analyse der Kontextin-
formationen und die Anpassung der Workflows werden mit einer Rule-Engine ausgeführt, die
vorhandenes Wissen nicht nur speichern kann, sondern auch automatisch und effizient über
dieses Wissen schliessen kann. Da Regeln und Anwendungslogik separiert werden, können
Regeln zur Laufzeit geändert werden, ohne die Anwendungslogik oder die Prozessbeschrei-
bung zu beeinflussen. In Flexwoman werden Workflows intern durch hierarchische gefärbte Pe-
trinetze (HCPN) beschrieben. Sie werden von einer HCPN Execution-Engine ausgeführt. Wir
haben HCPN für die interne Darstellung gewählt, weil sie eine deterministische Ausführung von
Workflows erlauben und Workflows auf verschiedenen Detailebenen repräsentieren können.
Zusammenfassend stossen signifikante Kontextänderungen (Ereignisse) automatische Anpas-
sungen der Workflows an. Dabei werden Teile des Workflows durch Subworkflows ersetzt, die

viii

wiederum angepasst werden können. Die Anpassungen (Subworkflows) und die Regeln für
diese kontextabhängigen Anpassungen stellen Lösungen und Expertenwissen dar, die für die
spätere Wiederverwendung dokumentieren werden. Flexwoman ermöglicht eine vorausschau-
ende Anpassung von Workflows und führt Anpassungen nicht nur beim Starten oder Beenden
von Aktivitäten durch. Anpassungen sind nicht an bestimmte Stellen des Workflows gebunden,
die zur Laufzeit festgelegt worden sind, sondern Anpassungen sind zur Laufzeit an jeder Stelle
des Workflows möglich, vorausgesetzt, sie ist noch nicht ausgeführt worden. Wir haben das
Konzept implementiert und in einer Evaluation konnten wir zeigen, dass die benötigte Funktio-
nalität im Prototypen vorhanden ist und das System auch bei einer wachsenden Anzahl von
Regeln skaliert.

ix

Acknowledgement

It was a long way to finish this work. I want to thank the people who supported me by encour-
agement, friendship or love on this journey.

First, I want to thank my supervisor Prof. Heiko Schuldt for his guidance and his support,
for encouraging and pushing me to finish my work and for the family friendly atmosphere he
established in the DBIS group. I would like to thank my co-supervisor Prof. Andreas Meier for
taking the time to review this work. Additionally, I want to thank Prof. Georg Paul from the Otto
von Guericke University Magdeburg who gave me the opportunity to start a Ph.D. and believed
in my abilities as a researcher.

My gratitude goes to Marcel Lüthi, Christoph Langguth and Thorsten Möller for proof reading
and helpful comments. I would like to thank the former DBIS team for the discussions and col-
laborations but also for the social time we shared together. My special thanks goes to Thorsten
Möller, Christoph Langguth, and Laura Voicu. I wish to thank our project partners from the
University Fribourg for the great collaboration in the LoCa project.

I want to thank Anita Lerch, Julia Vogt, Melina Inderbizin, Roman Troyer, Elke Schlote and
Susanna Parikka-Hug for their friendship and their moral support.

Finally, I want to thank my family. I thank my parents for always believing in my abilities. I want
to thank Marcel Lüthi for always supporting and encouraging me. I thank Nathalie and Maggie
for showing me that there are other things in life than this thesis.

x

Chapter 1

Introduction

Our world changes frequently and fast. Increased competition especially on the global market
results in technological and procedural advances and consequently in processes that under-
lie continuing revolution. Traditionally, processes that make use of computerized support are
stable, structured and often repeated. Consequentially, tools, so called workflow management
systems (WfMSs), developed to handle such processes fit perfectly the requirements of these
processes. However, processes that are dynamic and have to deal with frequent or unforeseen
changes, unstructured or less structured processes as well as rarely executed processes are
not or insufficiently supported by traditional WfMSs.

One typical domain affected by these problems is healthcare. Exceptions such as emergencies,
unexpected reactions on treatments, new insights that require new treatment methods, are day-
to-day business. Thus, many of the processes in healthcare are characterized by dynamic
changes, often they are only partly structured to deal with the dynamics. Also for dynamic
processes it is advantageous, when work is modeled with WfMSs as well as coordinated and
controlled by WfMSs. An important advantage of this approach is that common procedures
and their execution are documented and the expertise about these processes is captured. This
allows an easy understanding and reused of expertise, avoids errors in treatments and eases
work. But conventional WfMSs cannot manage and execute dynamic processes as they occur
in real life. These WfMSs lack the possibility to react on unforeseen events as well as to handle
not completely specified workflows. When using conventional WfMSs for handling dynamic
processes, dynamic processes have to be defined as static. For handling dynamic changes
that characterize dynamic processes, conventional WfMSs have to be bypassed. Consequently,
dynamic processes and their process executions are not completely documented when modeled
using conventional WfMSs. For processes that are only partly structured it is similar. When
using conventional WfMSs for their management, they have to be designed as structured ones.
The option to use unstructured process parts to react flexible to exception is lost.

A specific kind of software, which was developed to overcome the above described problems,
are dynamic workflow management systems. The concepts of dynamic workflow management

1

2 Chapter 1. Introduction

are diverse and have different foci. Some concepts aim at supporting changes of the workflow
definition, others at supporting changes of the workflow instance. Some concepts require a
definition of the complete workflow at build time and apply changes at run time. Other concepts
require only a partial definition of the workflow at build time. In the latter case, process parts
known at build time and place holders for the at build time unknown process parts have to be
defined. At run time unknown process parts have to be specified. All approaches of dynamic
workflow management have in common that adaptations do not cause interruptions of the work-
flow execution. Existing dynamic workflow management tools often require manual input to
adapt the workflow. In some application domains, such as healthcare, mistakes can be fatal.
In these domains adaptations that are not known in advance can only be applied manually by
an expert. Nevertheless, in healthcare there are often adaptations that are routine jobs that are
known in advance. For these adaptations automated adaptations are beneficial as they save
time and are less error prone than manual adaptations.

Automatic adaptation requires the usage of additional knowledge. It requires knowledge about
the situation and environment of the user, the so called user context. Examples of context are
location, time, or physical parameters of a user such as blood pressure. The usage of context
does not come for free. Context data has to be captured and analyzed before it can be used for
workflow adaptation. This requires time and resources. The time needed for context capturing
and extraction should not be higher than the time needed for manual input, otherwise the appli-
cation will not be accepted. Thus, a big challenge, which will be addressed, in this work is the
automatic and frequent acquisition and processing of context data and context data changes in
a way that hides needed expenditure of time and resources from the user. This is even more
challenging in mobile settings where context changes more often. Such settings are typical
in eHealth as software meaningful for physicians often runs on mobile devices. Fortunately,
today’s mobile devices are powerful enough to acquire and use context, in contrast to mobile
devices some years ago.

In summary, this work makes use of context to adapt processes automatically and flexibly to
frequently changing user context. We focus on users of mobile devices in a healthcare envi-
ronment which are faced with frequent context changes. We developed a concept for context-
aware workflow management. For realization of this concept we developed an architecture
and implement it. We call the resulting system Flexwoman, which stands for flexible workflow
management. Flexwoman is qualitatively evaluated to check whether the required functionality
is correctly implemented. Additionally, Flexwoman is quantitatively evaluated to prove that the
system scales with a growing number of rules in the rule base and correctly handles failure
situations.

The following sections will present the main contributions of this thesis and introduce our appli-
cation scenario that is located in the healthcare sector.

1.1. Major contribution 3

1.1 Major contribution

The major contribution of this thesis is the development of a general concept and system, called
Flexwoman that makes it possible to use context to adapt (mobile) workflows automatically to
their environment. Flexwoman focuses at the adaptation of workflows and the handling of not
only foreseen, but also unforeseen context changes. The management of unforeseen changes
differentiates Flexwoman from conventional WfMSs. The option of pre-planning of adaptations
that are known at build time in combination with the possibility to execute workflow adaptation at
every point of the running workflow that is not executed differentiates Flexwoman from current
dynamic WfMSs.

We made the following detailed contributions to realize the development of Flexwoman:

• We developed a general concept for context-aware and dynamic workflow management.

• We analyzed existing approaches for dynamic and context-aware workflow management.

• We developed an architecture that realizes our concept based on the well known work-
flow reference model. We extended this model with components that enable the dynamic
and context-aware adaptation of workflows. Our concept of dynamics is partly based on
the open-point approach, an approach for dynamic workflow management. It retains the
advantages of the open-point approach and improves its weaknesses.

• We analyzed which methods are convenient to realize our architecture and designed a
system based on Colored Petri nets (CPNs) and Rule-based systems (RBSs). CPNs are
the base for workflow execution and run time adaptation of workflows. RBSs are used for
analyzing the relevance of context changes and trigger the adaptation of the workflows by
using rules.

• We formally described the main concepts of Flexwoman using Colored Petri nets.

• We prototypically implemented Flexwoman based on two kinds of components (i) compo-
nents that are developed from the scratch and (ii) components that reuse and extend tools
we evaluated before for their suitability.

• We successfully evaluated the implementation of our concept with a qualitative and a
quantitative evaluation. The qualitative evaluation showed that all required system func-
tionality is available within Flexwoman. The quantitative evaluation proves that the system
scales when the number of used rules grows.

4 Chapter 1. Introduction

1.2 Application scenario

As described before we develop in this work a general concept for the adaptation of workflows
in dynamic environments. This concept can be applied in various domains. It is especially
of benefit in domains where information has to be adapted fast and correct to a frequently
changing situation, such as fire fighting and emergency management. The concept can also
support users with information about the nearest shopping mall or museum.

For the illustration of our concepts, we use an application scenario from the healthcare sector
or more precisely, we use an eHealth scenario1. It describes the daily life of a person suffering
from diabetes who applies the Intensified Conventional Therapy (ICT). In this scenario we model
the most frequently occurring exceptional circumstances that can happen in the daily life of a
diabetic. We have taken this scenario because it is a manageable and realistic scenario that
makes use of context2 and it shows our idea of adaptable software based on Flexwoman.

We shortly explain the most important concepts and terms needed in our scenario: Diabetes
mellitus is a metabolic disease. A person suffering from this disease has too much glucose in
the blood plasma (hyperglycemia). There are several therapies for the different types of this
disease. Our application scenario is a simplified detail of the daily routine of a diabetic who
applies the Intensified Conventional Therapy. This therapy imitates the insulin secretion of a
healthy pancreas. This allows the diabetic to live a nearly normal life with few constraints. It is
the recommended therapy for diabetics suffering from diabetes mellitus type 1.

We will consider the following scenario: Bob is a 30 year old diabetic suffering from diabetes
mellitus type 1. Before breakfast he measures his blood sugar level. Then he thinks about what
he wants to eat and determines how many carbohydrates the meal has. By using the value of
the blood sugar and the carbohydrates he calculates the dosage of insulin to inject. Thereby,
he uses an application running as a Flexwoman process. Then he injects short acting insulin
and has breakfast. For lunch and dinner Bob follows the same procedure. Additionally, Bob
injects long acting insulin in the morning before breakfast and in the evening before lunch. The
reminder for that comes from the application running on Flexwoman. This application shows
him also the dosage he needs to inject.
One summer day, Bob does not feel well. He feels dizzy and sweats, he is thirsty and has a
blurred vision. Thus, he measures his blood sugar - 8.9 mmol/L, and realizes that it is too high.
The application advises him to inject 1/5 of his daily dosage of insulin and to drink water. After
two hours he does not feel better. He asks his wife to meter his blood sugar level. The blood
sugar level is 17 mmol/L. Now the application informs Bob’s physician and calls automatically
an ambulance. In the hospital his blood sugar level is stabilized.

1EHealth is the use of information and communication technology to support healthcare [BCF+08].
2The facts used in our application scenario are taken from http://de.wikipedia.org/wiki/Insulintherapie,

http://www.diabetologieportal.de/Therapieformen/Intensivierte-konventionelle-Insulin-Therapie-(ICT).htm?ID=42,
http://en.wikipedia.org/wiki/Hypoglycemia

1.3. Outline 5

One year later he feels tired, cannot concentrate and shivers. He measures his blood sugar.
It is too low: 2.4 mmol/L. The application advises him again what to do. He takes 15g of
carbohydrate. Slowly he feels better and recovers completely during the day.

1.3 Outline

In Chapter 2 we describe the fundamentals of this work. We develop a context-aware WfMS,
thus we introduce the concepts context and context-awareness, as well as we describe and
compare conventional and dynamic workflow management. As context-aware workflow man-
agement is a special kind of dynamic workflow management, we examine formal models of
dynamic workflow management, to find out whether they can be used for Flexwoman. The fo-
cus of the examination lays on the different kinds of Petri nets. In our work we use rules to react
on context changes with adaptations of workflows. Rule based systems are also presented in
this chapter.
In Chapter 3, we describe the motivation and concept of dynamic context-aware workflow man-
agement with our system Flexwoman. The realization of Flexwoman, that is the architecture with
its components and the implementation, are described in Chapter 4. In Chapter 5 we evaluate
the overall system qualitatively as well as quantitatively. Chapter 6 introduces related work and
compares systems related with our work – Flexwoman. Chapter 7 concludes with conclusion
and outlook on future work directions.

6 Chapter 1. Introduction

Chapter 2

Fundamentals

The goal of this work is to develop an approach that allows an adaptation of the structure of
workflows, (i) manually for unknown events (context changes), and (ii) to the greatest possible
extent automatically, based on context information for known events. Our focus lies in the sup-
port of mobile environments where context changes frequently but individually for every mobile
user. That is, we will care about structural changes of workflow instances and not about work-
flow definitions. This chapter describes the fundamentals needed as foundation of this work and
it is structured as follows:

Firstly, we clarify the terms context and context-awareness in the area of application devel-
opment in Section 2.1 and 2.2. Afterwards, we take a look at workflows in general and we
will review structural adaptations to workflows, so called flexible or dynamic adaptations. The
adaptation techniques usually do not act on the assumption of automatic adaptation. They
assume that manual interaction is necessary. Context-aware workflows aim to overcome the
dependency on manual input by using automatically acquired context instead of manual input.
Section 2.3 will discuss general workflow topics. Section 2.4 will introduce dynamic workflow
management. A discussion of Petri nets in Section 2.5 will conclude this chapter. We decided
to take Petri nets as the description language for our approach because Petri nets have a strong
mathematical foundation, and are well documented. Models can be analyzed by simulation and
formal analysis methods. On the other hand, Petri nets can easily be mapped to workflows and
they offer a graphical notation to describe processes, which eases the understanding of Petri
nets considerably.

2.1 Context

This section will explain our point of view on the usage of context in computer applications and
discuss the relationship of context and ubiquitous computing. We will introduce some important
definitions of context in computer applications and we will explain the aspects of context related

7

8 Chapter 2. Fundamentals

to our work.

The idea of using context in computer applications is related to the idea of ubiquitous comput-
ing. Ubiquitous computing is a technology that makes many computers available throughout
the physical environment but effectively these computers are invisible to the users [Wei93].
In [Wei93] Weiser complains, that the computer often remains the focus of user attention in-
stead of being a working tool, disappearing from the user’s awareness. In the following text we
will explain how context helps to improve this situation and which further advantages the usage
of context has.

According to the The American Heritage Dictionary [Dic09], Context are the circumstances in
which an event occurs; a setting. Or in slightly different words [LLC]: Context is the set of
circumstances or facts that surround a particular event, situation, etc..

A particular situation can be a talk of two persons. The relationship of these people is context
that influences their talk essentially. For instance, the relationship of the people will influence the
topics and the directness of their talk. A person, suffering from diabetes, will talk about urgent
problems regarding this disease with the physician in charge and not with unknown persons he
meets in the coffee break of business meeting. With foreign persons he will do small talk and
not discuss current health states. The human to human interaction is heavily affected by the
context of the interaction (see also [DA00]) and it is of high importance for humans to react on
context in the right way. Therefore, humans are well trained in using context and calculate the
position usually extremely well.

Also in human computer interaction (HCI) it is of great advantage when computers can use
context to influence the application in a way valuable for the user. For instance, it can be useful
when the application shows information which is important for the user in the current context
or when the application adapts itself to the context. An example for context use in HCI is an
application that gets blood sugar values of a patient via WIFI or bluetooth. This application
could visualize the value or it could automatically compute whether the patient is hyperglycemic
or hypoglycemic. The application could propose actions to take by the patient such as sending
a text message (SMS) to the physician in charge or call the physician. Furthermore, it could
execute these actions in critical situations automatically without human interventions.

To achieve such a behavior, computers have to detect context, to choose important context,
to process the context and to react in a convenient way on the processed context information.
When the computer fulfills these tasks as far as possible automatically the user is freed from
doing these tasks himself/herself. The user can concentrate on his/her core tasks respectively
real goals. The attention of the user is no longer focused to the computer, just like Weiser de-
mands. Therefore, the automated usage of context in applications is a means to come closer to
ubiquitous computing. Based on that fact, the idea of context quickly spread to other application
areas.

However, when people started to think about applications that use context, and tried to imple-

2.1. Context 9

ment them, they realized that they could not describe what context exactly is. The problem was
that context is a moving target, every situation has its own context and for different applica-
tions used in the same situation different kinds of context can be important. But without a clear
and applicable definition of context in the application area of human computer interaction it was
difficult to apply the concept. People started by describing context by synonyms and by exam-
ples [DA00]. Examples of context are only of limited usefulness. They can give an idea what
context can be, but no more. As a side effect, location, which was identified as an example for
context, was extensively used in context-aware applications. Schmitt et al. [SBG99] described
this as a shortcoming and presented a variety of further examples of context. But they also did
not give a definition of context. Afterwards, many attempts were made to find a general defini-
tion of context. Dey and Abowd [DA00] formulated one of the most commonly used and most
convincing definition of context:

”Context is any information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves.”

In other words, context is something that characterizes the situation in which user-application-
interaction happens. Therefore, it is only a part of the whole situation. Winograd [Win01] criti-
cizes the above definition as including too much information which is irrelevant for an application
developer. He limits context to that part of the environment, that is effectively used by the appli-
cation.

”something is context because of the way it is used in interpretation not due to its inherent
properties [...] Features of the world become context through their use.”

Consider the example in which a person suffering from diabetes measures the blood sugar level.
Context, according to Deys and Abowds definition, can be the time of measurement, circum-
stances of measurement, such as, was the person exercising before, or is the person traveling
at the moment. But also persons nearby are context. In reality, persons nearby during mea-
surement are irrelevant. The irrelevant context data are excluded by Winograd. In practice, both
definitions are relevant. The first definition explains what can be used as context data and the
second definition describes that only a part of this data should be used for application develop-
ment. This exclusion of irrelevant information reduces the amount of context data that has to be
acquired and stored. This is especially important in conjunction with the usage of context in re-
source limited mobile environments. Thereby, it is not always trivial for the application designer
to decide which part of the context is relevant for an application. This kind of context relevant to
an application will be called relevant context in the following text.

Another problem the application developer is faced with is that the acquisition of relevant context
is sometimes not possible, extremely difficult (complex) or extremely expensive. For instance,
the blood sugar value of a diabetic and the carbohydrates he/she wants to eat decide on the

10 Chapter 2. Fundamentals

insulin dose he/she has to take1. The estimation of carbohydrate from a picture of the meal is
technically difficult. The more exact estimation from tables with meal components and belonging
carbohydrates is time consuming. Also the application based version of this proceeding is time
consuming as it requires a manual selection of all components of the meal. Therefore, the
diabetics usually estimate the carbohydrates based on experiences and input the estimated
value directly to the application. Another example is the acquisition of emotions. Emotions,
especially emotions leading to mental pressure, influence the blood sugar level. To acquire
emotions, to find reasons for blood sugar variability, can be done by capturing and analyzing
physical values such as blood pressure or heart rate. A frequent monitoring of these values to
capture emotions is usually too expensive.

When the cost of acquisition slows down the execution of an application, or the acquisition
requires that many resources that the target device cannot handle the application in a user
friendly way, the application developer has to decide about the necessity of that value for the
application. Is this value highly relevant, alternative ways for acquisition have to be found,
for instance manual input, or the application can not be implemented. Is the value not highly
relevant for the application, the context value can be omitted. That is, the application should run
smoothly on the target devices of the application, e.g., mobile devices. The context that is really
used in an application is called used context in the reminder of the text.

A formal description of our understanding of context, explained in detail before, is inscribed in
the following definitions:

Definition 1 (Context [DA00]) . Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications themselves.
�

Definition 2 (Relevant Context) . Relevant Context is a part of the context of a specific applica-
tion. Relevant context includes only that part of the application context, that can be meaningful
used to reach the application goal. �

Definition 3 (Used Context) . Used context is that part of relevant context that a specific appli-
cation uses to reach its goal. �

Figure 2.1 illustrates our understanding of context inferred by the definitions described above.
The circle, named context, is the concept described in the definition of [DA00]. Relevant context
is the concept described as context by [Win01]. It is a smaller subset of our context definition.
Used context is that part of relevant context an application developer is able to use.2 Context
data are symbolized as points in Figure 2.1. At this point we want to stress the fact that context is

1This is a simplified point of view.
2The circles for used and relevant context do not have such a big difference in size as the circles of context and

relevant context. This is because of the fact that a very high percentage of relevant context is recognized by the
developer as relevant and is additionally technically usable and therefore used as application context. Context as a

2.1. Context 11

Context

relevant Context

used Context

Figure 2.1 – Context in a user-application-interaction (The green dots symbolize context data.)

usually a combination of several context data. It is the combination that can help to get a better
understanding of the current situation [CK00] and therefore a better adaptation of the application
to the current situation. For example, when the physician enters a sick room we can combine
his/her profile data as well as his/her time and location data to get only information about the
patients he/she is in charge of. Additionally, the above example shows that it is possible to find
context of entities by using context of other entities. For example, by knowing the location of the
physician we can explore the context of this location to find, for instance, the patients in the sick
room the physician is in charge of.

For different applications acting in the same context that are used by the one or more users
usually the relevant context differs because relevancy of context depends on the goals of the
application. This is also true for used context as a sub set of relevant context(see also Figure
2.2).

Figure 2.2 – Potential relation of used and relevant context for three parties in the same situation

Beside the introduced classification, Soylu et al. propose in [SCD09] a categorization into low

whole is extremely large compared to the relevant context and therefore the circle for context is much larger. But the
sizes of the circles have only symbolic character and do not base on numbers.

12 Chapter 2. Fundamentals

level and high level context. They describe low level context as raw context usually sensed or
given as manual input and not processed. In contrast, high level context is derived from low
level context, by operations such as conversion, for instance from mg/dL to mmol/L3, abstrac-
tion/generalization, for instance from a blood sugar value to a rough scale such as ok, hyper-
glycemic, hypoglycemic, or cleaning, for instance using the statistical quantities such as mean
or standard deviation to find erroneous values and reset them e.g. to an average. Especially a
cleaning of data can be important because context is, as pointed out in [SCD09], imperfect. The
data can be imprecise dependent on the measurement equipment, incomplete when consisting
of more than one value as GPS data, or ambiguous when computed from values measured by
more than one measurement instrument.

For practical reasons, it is of value to notice that the definitions show that context is a hetero-
geneous concept. The term context includes frequently updated and never or rarely changed
context data. Grossmann et al. [GBH+05] introduced the following classification in dynamic and
static context, which can be useful in supporting efficient context data management:
Frequently updated context, so called dynamic context, is usually automatically acquired by
sensors. This context is affected by more updates than queries. Examples for this context class
are blood sugar, time, location. In contrast, rarely changed context, such as name, and date of
birth, is manually acquired or semi-automatically acquired for instance by user profiling. This so
called static context is affected by more queries than updates.

2.2 Context-awareness

Context-awareness is a term that describes the relationship of context and application. There is
also a multitude of different definitions of the term context-aware. We will use the term synony-
mously to the terms context-dependent and context-sensitive as it is often done.

Dey and Abowd [DA00] state that:

”A system is context-aware if it uses context to provide relevant information and/or services to
the user, where relevancy depends on the user’s task.”

They do not include detection and interpretation of context in the definition but only require the
response to context as necessary property of a context-aware system. Thereby, they stress the
fact that only relevant information/services are provided to the user. They do not further discuss
relevance of context.

Chen and Kotz [CK00] have a different view on context-awareness and do not limit the definition
to a reaction on context changes. They describe context-aware computing as:

”a mobile computing paradigm in which applications can discover and take advantage of con-

3That are two different units of measurement for blood sugar, needed in different countries. mg/dL is an old unit
of measurement, mmol/L is SI-conform.

2.2. Context-awareness 13

text.”

This definition is also very general. It states that context-awareness means both recognition
and usage of context. It includes applications that only show information to the user as well as
applications that adapt automatically to context changes. This is similar to the definition of Dey
and Abowd. But Chen and Kotz explicitly include the discovery of context. The interpretation or
processing of context is not explicitly mentioned as important part of a context-aware system.
Additionally, the term context-awareness is limited to mobile systems.

Ceri [CDMF07] describes context-awareness as an

”evolution of personalization (user identity, preferences), that includes user environment”.

Ceri’s definition implies that personalization is a subset of context-awareness. Hence, context-
awareness is not only of advantage in mobile environments but also in traditional desktop en-
vironments as it evolves from personalization. This statement is partly contrary to the above
described definition of Kotz and Chen [CK00]. It is clear that the impact of context exists in
desktop environments. The customization of application by using user preferences, for instance,
can be of great advantage for the user. However, the impact is larger in mobile environments
where context changes more rapidly and manual adaptations because of context changes are
no longer manageable.

In our work the term context-awareness will be used as follows:

Definition 4 (Context-awareness) . Context-awareness is the property of a system, that:

discovers context and context changes The discovery can be an automatic process of sensing
context (including the retrieval of previously stored context data or log data) or a manual
process, where the user inputs relevant data. Context is a moving target. Also relatively
stable kinds of context such as family names can change. Therefore, context changes have
to be discovered in convenient time periods. The convenience of time periods is application
dependent.

processes context data The system stores, eventually cleans, aggregates and generalize the
context data. Thus, the system can easily analyze context and take advantage of context
information.

takes advantage of context New and updated context can be presented to the user (passive
context-awareness) or applications can be automatically adapted to context by changing the
application’s behavior (active context-awareness). Passive context-awareness requires user
activity to adapt the application, for instance, by selection of context from a selection lists
presented by the system. The selection triggers the adaptation of the application. In active
context-aware systems the user stays passive in the adaptation process (see also [CK00]).

�

14 Chapter 2. Fundamentals

After giving a definition of context and context-awareness it is necessary to state that the imple-
mentation of a context-aware application is still a big challenge. The decision which context to
use is of big importance and can limit the applicability of an application. It would be better to
adapt the human to human interaction by a learning component. Such a learning component
would learn to capture only that context important to the application and it would learn how to re-
act to context changes in a proper way. Furthermore, such an approach would imply the usage
of different kinds of context in different situations of an application. But this is an extremely chal-
lenging approach that requires interdisciplinary knowledge of, for instance, human perception
and machine learning. Such a learning approach is out of the scope of this work.

2.3 Workflow management

The workflow concept is the central concept in this thesis. Workflows in general are flows
of progress or work done by a company, industry, department or person [Dic09]. The term
workflow, as used in this thesis, is the computerized flow of work. That is, not a person or a group
of persons takes over the responsibility for workflow management, but a software. Workflows
realize two main principles:

i) structuring of work and

ii) automation of work.

Workflows structure work in functional non-overlapping steps or building blocks. They define
a (partial) order of these steps and specify who (person, role) or what tool has to fulfill which
step. This structuring eases the coordination effort as processes are better understandable
— load can be better shared among resources and personnel, a better utilized capacity can
be achieved, personnel can be assigned to that step they are best suited for. Additionally, the
structuring of work produces intermediate results after every step of work. This eases controlling
of process execution.

A workflow automates work, as it is a computerized flow of work. That is, a software takes
over workflow management. For its work the software needs as input a (partial) description of
the workflow and executes according to that plan. This software is called workflow manage-
ment system (WfMS) and offers tools for the definition, execution and monitoring of workflows.
Thereby, WfMSs are not concerned with the execution of single tasks but handle the transition
between the tasks. The work is delegated to external applications or persons. The execution
state of a workflow virtually represents the actual state of work. Therefore, the automation does
not only ease coordination and frees people from routine tasks, but it is also the precondition
for an automated controlling — monitoring, error detection, error signaling, error resolving. The
tools for automated controlling are also offered by WfMSs. Thus, workflows and WfMSs ease
the coordination and controlling of work and are means to improve efficiency of work execution.

2.3. Workflow management 15

This make them especially beneficial for large and long running processes with many people
involved in their execution. For these processes the coordination and controlling effort is espe-
cially high and costs for expensive and resource consuming WfMSs can be fast amortized.

Furthermore, the way workflows are handled by WfMSs — structuring of work in building blocks
with a predefined (partially) order of execution, description and execution according to that de-
scription — make WfMSs especially suitable for the management of highly structured and often
repeated workflows that are rarely subject to changes. For highly structured workflows it is
a good way to predefine the order of execution because checks for correctness of workflows
can be done in advance and will not disturb the maybe critical execution. For these workflows
it is not only no problem but a demand that the workflow execution is rigid and cannot devi-
ate from the workflow definition because such an approach avoids errors. Today’s WfMSs are
suitable for often repeated workflows because the time-consuming definition of workflows es-
pecially pays off when the workflow is executed several times. Additionally, today’s WfMSs are
appropriate for managing rarely changed workflows as modeling concepts for the modeling of
expected changes exist, but with an increasing number of exceptions the workflows loses clarity.
Unexpected changes cannot be handled.

Despite the advantages of workflows and WfMSs, the functionality, today’s WfMSs offer — coor-
dination and controlling of work — is no longer sufficient to support WfMS users appropriately.
Laws and prescription are subject to changes. Companies try to improve their processes fre-
quently. Therefore, workflows have to be changed frequently and WfMSs have to be able to
support these frequent changes. Additionally, there is a trend to individual product solutions,
product customization and flexible reactions to changes of the mobile environment. WfMSs
have to handle rarely repeated workflows and have to support the flexible reaction to customer
wishes and context changes. A WfMS has to offer strategies to manage exceptions that were
not expected, that is, exceptions that were not pre-defined. And there is the request for WfMSs
that are able to handle less structured workflows. Thus, today WfMSs have to handle more
flexible, unstructured and rarely repeated workflows. To handle these kinds of workflows is the
objective of this thesis. A challenge of this work is the fact that the need for controlling is es-
sential and remains. Unfortunately, controlling and flexibility are conflicting goals [Nar04]. Thus,
while focusing in this work on flexibility of workflows, we have to deal with balancing controlling
and flexibility.

In this section we aim to explain the notion of workflows as well as terms relevant to this topic, in
detail. We will explain how workflows are handled in traditional WfMSs. Additionally, the strength
and weaknesses of the conventional WfMSs are shown, and it is explained why conventional
WfMSs fail to meet today’s requirements of dynamic workflow management. Subsequently, we
introduce several different approaches of dynamic workflow management that aim to overcome
the weaknesses of traditional WfMSs. The main focus of this section is on dynamic workflow
management.

16 Chapter 2. Fundamentals

2.3.1 Workflows

Workflows are abstractions of real world processes. They define what has to be done in which
order by whom or by which application. Workflows abstract from details not needed for process
execution. WfMSs offer all tools needed for the handling and automated execution of workflows:
tools for the definition, execution and monitoring of workflows. That is, workflows and WfMSs
are means to structure and automate work and therefore improve work efficiency.

Workflows and their management are the core topics of this thesis. To discuss the problems and
current challenges of workflow management, we have to use a precise and unambiguous base
of workflow terminology and definitions. Unfortunately, although workflow technology is not a
new technology, workflow terminology and definitions lacks a commonly used base and are
often used conflictingly, that is, terms are homonymously and synonymously used. Therefore,
in this section we introduce the workflow terminology used in this thesis in detail. Additionally,
we give a detailed and formal introduction to workflows. We refer to the work of the Workflow
Management Coalition (WfMC)4. The WfMC aimed to provide a standardized basis for workflow
terminology and definitions. But we differ in naming when their naming is not commonly used
and we aim to give more detailed and formal definitions than they do.

The most important term that has to be defined in this section is the term workflow. This term is
strongly related with the term business process since workflows automate business processes.

Definition 5 (Business Process (WfMC)) . A business process represents a real world pro-
cess. Work to be done by this process is structured into logical steps. The linkage of the steps
represents the order of work execution. The steps are realized to achieve a common objective.
The outputs after process completion are defined. �

Business processes are real world processes. An example for such a process is the Insulin
injection of a diabetic before a meal (see Figure 2.3), a business process with the goal to find
the right dose for an insulin injection before a meal. Business processes are structured as
sequences of logical steps of work, that are executed one after the other or in parallel to reach
a common goal. The steps are called tasks or activities.

Definition 6 (Task) . A Task is a logical step of work in a process. This step can require manual
intervention for completion of process execution or it is fully automated. �

Tasks are units of work. Tasks are manually executed by humans or automated by computer
programs. For example, the business process Compute insulin for injection before each meal
(see Figure 2.3(a)) consists of the tasks (i) Metering of blood glucose level, (ii) Input of estimated
carbohydrates of a meal and (iii) Compute insulin. Tasks are atomic units such as task (i) and (iii)

4The WfMC is an organization of companies and research groups engaged in workflows and business process
management (BPM), founded in 1993. The WfMC defines standards and reference models in the area of workflow
management and BPM.

2.3. Workflow management 17

or in turn processes, so called sub processes, such as task (ii). Sub processes are processes
that are initiated by another process.

Definition 7 (Sub process) . A sub processes is a business process that is part of a larger
business process, the initiating process. The initiating process calls the sub process during
process execution. Sub processes can act as initiating processes of other sub processes. �

Sub processes are described as business processes that belong to or are part of larger busi-
ness processes, the so called initiating processes. Sub processes, described separately from
the definition of the initiating process, are reusable components and may be applied by other
initiating business processes. In contrast, embedded sub processes are dependent of the larger
process and cannot be reused.

(a) Process - Compute insulin for injection before each meal. This process is the initi-
ating process for (b). The +-symbol of the second step denotes a sub process.

(b) Sub process - Input of estimated carbohydrates of a meal.
This is the sub process of process (a).

Figure 2.3 – Process - Injection of insulin before each meal for a simplified diabetes example (ac-
cording to Intensified Conventional Therapy (ICT)). Process (a) and sub process (b) are depicted.

During life time a business processes is several times enacted. A single enactment is called
process instance. The initiation of new process instances is triggered by conditions, such as
the wish of a diabetic to eat something. The outputs after process completion are defined, e.g.,
the dose of insulin to inject. Thereby, the output value can differ for every executed process
instance. When business processes are automated, they are called workflows:

Definition 8 (Workflow) . Workflows are the computerized facilitation or automation of a busi-
ness process, in whole or part [Hol95]. A workflow W is defined as W = (T,<) , where:

• T is a finite set of tasks.

• < is a partial order on T (control flow).

�

Definition 9 (Workflow graph) . A Workflow (W) can be represented by a directed graph,
the workflow graph (WFG). The WFG of workflow W , WFG(W), consist of nodes (N) and
directed edges (E) that connect the nodes. There are following kinds of nodes [Nar04]:

18 Chapter 2. Fundamentals

• work nodes (NWork) that represent the tasks of a workflow, that is: f: NWork → W.T is
a bijection (one-to-one correspondence). Therefore, the cardinality of the work nodes is
equal to the cardinality of the tasks of a workflow (card(NWork) = card(W.T)).

• route notes (NRoute) that evaluate boolean conditions to decide about the direction of
control flow to a specific work node or route node.

• one start node (nStart) that represents the start of a workflow, that is, the start node has
no predecessor (̸ ∃n ∈ N \ {nStart} : (n, nStart) ∈ E) and

• one end node (nEnd) that represents the end of a workflow, that is, the end node has no
successor (̸ ∃n ∈ N \ {nEnd} : (nEnd, n) ∈ E) .

Thus, a workflow graph is a two tuple WFG(W) = (N,E), where:

• N is a finite set of nodes, with N = NWork ∪NRoute ∪ nStart ∪ nEnd.

• E is a finite set of edges, where E ⊆ (N ×N).

– In case of a sequence of nodes the partial order < over the elements of W.T (and
therefore NWork) is represented by an edge E that connects two work nodes. That
is:
ti < tk ⇔ (nWorki , nWorkk) in E, whereby ti is represented by nWorki and tk is
represented by nWorkk .

– In case of non sequential routing the partial order < over the elements of W.T (and
therefore NWork) is represented by edges E incoming and outgoing to a route node
nRouter . Thereby, more than two work nodes are connected via edges incoming and
outgoing to a route node. To describe the partial order in case of non sequential
routing it is sufficient to consider pairs of two work nodes, one node is connected via
an incoming edge with the route node and the other is connected via an outgoing
edge with the route node. That is:
ti < tk ⇔ ∃ nRouter ∈ NRoute : (nWorki , nRouter) ∈ E ∧ (nRouter , nWorkk) ∈ E,
whereby ti is represented by nWorki and tk is represented by nWorkk .

There are two conditions a workflow graph has to obey [Nar04]:

• There is a path from the start node nStart to every other node in the graph.

• There is a path to the end node nEnd from every other node in the graph.

�

Workflows are designed to automate business processes. For workflow specification work-
flow languages are used. Workflow languages are computer understandable languages. The

2.3. Workflow management 19

workflow description in such a language is the precondition for automated process execution.
Naturally, the concepts underlying business processes are strongly related to that concepts
underlying workflows and both concepts follow the same basic idea. Workflows are also repre-
sented by a set of partially ordered tasks. The tasks represent logical units of work, that have
to be executed to reach a common goal. Tasks are executed manually by users or automated
by applications.

Figure 2.3(a) shows a graphical representation of a workflow. This figure is, as all figures in this
section, depicted in the Business Process Model and Notation Version 2.0 (BPMN2).5 In Figure
2.3(a) we see a directed graph that represents a workflow, with nodes that represent tasks, and
directed edges that represent the order in which the tasks are executed. Every workflow starts
with a start node and finishes with an end node. Start node and end node are nodes without
equivalent in the workflow definition. They have been added in the workflow graph to signal or
visual mark start and end. On the other hand, these nodes can be important for (distributed)
workflows that have to synchronize their execution (e.g. synchronized initialization or end).

The order of task execution, also known as control flow of workflows, can be described by
Control Flow Patterns delineated by the Workflow Patterns Initiative [vdAtHR11], [vdAtHKB03],
[RHM06]6. The so called Basic Control Flow Patterns are fundamental building blocks of work-
flows that capture elementary aspects of process control. These basic patterns are available in
all current WfMSs. [vdAtHKB03] Because we use the Basic Control Flow Patterns frequently in
our figures, we show an overview of them in Figure 2.4 and describe them briefly7:

Sequence (see Figure 2.4(a)) is a pattern which describes that a task is enabled after the
completion of the preceding task. Tasks are executed one after the other.

Parallel Split (see Figure 2.4(b)) is a pattern that describes the divergence of a branch into
parallel branches whereby each of them executes concurrently. This pattern depicts the
concurrent execution of tasks.

Exclusive choice (see Figure 2.4(c)) is the basic pattern describing the divergence of a branch
into multiple branches. Once the incoming branch is enabled, the thread of control is immedi-
ately passed to one of the outgoing branches based on a selection mechanism. This pattern
is also known as conditional routing. Variables determine the routing.

5We use BPMN2, maintained by the Object Management Group (OMG), for several reasons: BPMN2 is (i) a
standard for business process modeling, (ii) it is a visual modeling language and (iii) it aims to be a notation that is
understandable by all business users — business analysts, technical developers, business people. BPMN2 bridges
the gap between the business process design and process implementation [OMG11].

6The Workflow Patterns Initiative describes recurring fundamental requirements, that arise during business pro-
cess modeling, in an imperative way as patterns. The patterns are called Workflow Patterns and cover besides
control flow patterns, workflow data patterns, workflow resource patterns and exception handling patterns.

7The WfMC also describes these patterns and label them differently. We decided to refer to the presentation of
the Workflow Patterns Initiative because of the more precise description.

20 Chapter 2. Fundamentals

Synchronization (see Figure 2.4(d)) is a pattern, where multiple branches converge into a single
subsequent branch. The thread of control is passed to the subsequent branch when all input
branches have been enabled.

Simple merge (see Figure 2.4(e)) is a pattern where multiple branches converge into a single
subsequent branch. Each activation of an incoming branch results in the thread of control
being passed to the subsequent branch.

(a) Sequence: a task is enabled after the completion
of a preceding task.

(b) Parallel split: split of a branch into parallel
branches which execute concurrently.

(c) Exclusive choice: split of a branch into
multiple branches. Is the incoming branch
enabled, the thread of control is immediately
passed to one of the outgoing branches based
on a selection mechanism.

(d) Synchronization: convergence of multiple
branches into a single subsequent branch.
The thread of control is passed to the sub-
sequent branch when all input branches have
been enabled.

(e) Simple merge: convergence of multiple
branches into a single subsequent branch.
Each activation of an incoming branch results
in the thread of control being passed to the
subsequent branch.

Figure 2.4 – Basic Control Flow Patterns [RHM06].

Beside the Basic Control Flow Patterns, the Workflow patterns initiative describes Advanced
Branching and Synchronization Patterns. As the name implies, the advanced patterns describe
more complex branching and synchronization concepts. The by these patterns described con-
cepts are in practice commonly used but not always directly supported by WfMSs. The expla-
nation of that pattern is out of scope of this thesis. For further reading see [vdAtHR11].

2.3. Workflow management 21

2.3.2 Managing static workflows

WfMSs provide tools for computerized definition, execution, and controlling of workflows. One
of the most important characteristic of a WfMS is, that its run time components (Workflow En-
actment Service and Admin & Monitoring Tools) does not focus on the execution of individual
tasks, but focus on the process itself — the flow of work through an organization, its monitoring
and execution. The responsibility of the execution of a task is delegated to applications or peo-
ple. Work is decoupled, and pieces of work to be done become independent of the workflow
and independent of each other (see [vdA98]). Therefore, programming of workflows can be
seen as programming in the large. The term programming in the large was coined by DeRemer
and Kron in [DK76]. They proposed to make a distinction between the programming of compo-
nents — programming in the small — and the programming with components — programming
in the large. Programming in the small describes the traditional way of (structured) program-
ming. Programming in large describes the structuring and integration of large collections of
reusable components to compose a larger system. Workflows integrate different applications
which share the same application type or belong to different classes of applications, such as
Desktop Applications or Web Services. Each of these applications implements a task of the
workflow.

Definition 10 (workflow management system) . A workflow management system is the soft-
ware that is concerned with the definition, controlling and execution of workflows. �

The WfMC [Hol95] described a reference model of WfMSs. This reference model is a specifica-
tion for the implementation of WfMSs and should enable the interoperability between WfMSs of
different vendors as well as it aims to improve the ability of workflow applications to interact with
other applications such as email and document management [Hol95]. In the following sections
we will discuss two views on the reference model. Firstly, we will have a look at the components
and interfaces of the workflow reference model. Afterwards, we will give a detailed description
of the functionality a WfMS offers to build and execute workflows.

Workflow reference model: Components and interfaces a WfMS has to offer

According to the workflow reference model a WfMS should offer well-defined interfaces that al-
low interoperability between the components that constitute the WfMS. Furthermore, a WfMS
should offer well-defined interfaces between the component responsible for the enactment of the
workflows and components outside the scope of the WfMS, that is, the enactment components
of other WfMSs, applications invoked by the enactment service to execute tasks, and workflow
client software. Such an architecture enables the compatibility of components. Consequen-
tially it offers the possibility to freely combine components of different vendors to customize the
WfMS. Therefore, WfMSs that follow the reference architecture defined by the WfMC are vendor
independent.

22 Chapter 2. Fundamentals

In the following section, we will have a detailed view on the components defined in the workflow
reference model. Additionally, Figure 2.5 shows the workflow reference model and distinguishes
internal modules (Definition, Enactment, Admin & Monitoring), from external modules outside
the control of the WfMSs (Client Applications, Invoked Applications, Enactment of other WfMSs).

Figure 2.5 – WfMS components and interfaces [Hol95]

Process Definition Tools allow users to define workflows or more precise: to create process
definitions. WfMSs often offer graphical modeling tools for process definition since WfMS
users are usually domain experts with no programming experience. The graphical tools are
more intuitive and help to avoid modeling errors.

The Workflow Enactment Service is the core of the WfMS. It contains one or more Workflow
Engines that execute the workflow definitions, specified with the Process Definition Tools at
run time. This module offers well-defined interfaces to all other modules of the reference
model.

Admin and Monitoring tools control workflow execution conducted by the Workflow Enactment
Service. While the Administration tools attend to security, control and authorization, the
monitoring tools view the status of work flowing through the organization.

Workflow client applications are applications, that work on the workflows managed by the Work-
flow Enactment Service. These applications offer an interface for end users to interact with
the WfMS when manual interaction is required to perform tasks.

Invoked applications are applications, that are invoked by the WfMS to execute tasks of the
workflow. The communication between invoked application and WfMS covers functionality
such as notification of task completion by the application and data passing to and from the
application.

Other workflow enactment services are workflow enactment services of other WfMSs. The
interface between enactment services of different WfMSs is intended to allow a work passing

2.3. Workflow management 23

from one WfMS to the other WfMS. This work passing ranges from simple task passing to
a full workflow application interoperability with a complete interchange of process definition,
workflow relevant data and a common look and feel.

Workflow reference model: Functionality a WfMS has to offer

In addition to the component view described before, we depict a view of the functionality of
WfMSs to understand the design proposed by the reference model and to understand the in-
terplay of the components. A WFMS works according to the workflow reference model at three
levels (see Figure 2.6):

Process Design: At build time the workflow is designed and defined. The design phase starts
with the analysis of the real world business process. The analysis serves as the basis for
the process design. WFMS usually offer graphical user interfaces to support process design.
The graphically designed business process is translated into a formal, computer process-
able definition [Hol95]. The WfMC [Hol95] describes that WfMSs may allow changes to the
workflow definition from the run time operational environment. But this functionality is rarely
realized in WfMSs.

Process Instantiation and Control: The workflow definition is interpreted at run time. A start
event triggers the creation of a workflow instance by the workflow enactment service. More
precisely, the workflow enactment service consists of one or more workflow engines that are
concerned with the creation of workflow instances, and additionally, manage and execute
workflow instances [Hol95]. This includes task scheduling within an operational process
and interaction with application tools and human resources. Workflow engines have to deal
with processes, operation over a wide geographical basis and are therefore often distributed
across a number of computer platforms.

Interaction: The control software of WfMSs, the workflow engines, interacts at run time with
human users and IT applications to process task instances. The interaction covers, among
others, passing control between tasks instances, determination of the process status, invo-
cation of application tools and passing of appropriate data [Hol95]. Users interacting with the
WfMS maybe use other software tools to process their tasks.

The description of the functionality of the WfMS shows, that an important concept applied by
WfMSs is the concept of build time modeling and run time execution. At build time the workflow
definition is modeled, can be analyzed and simulated [EKR95]. At run time several workflow
instances can be created, executed and monitored. It is important to point out that the workflow
definition is also known in literature as workflow specification, workflow model, or workflow
schema. The terms workflow and workflow definition are used synonymously. The workflow
instance is often referred to as case.

24 Chapter 2. Fundamentals

Figure 2.6 – WfMS characteristics as described in [Hol95] decorated by an example process: At
build time the workflow process is defined. At run time the process is instantiated and controlled.
Some WfMSs may allow dynamic changes to the process definition (replacement of task b by task e
in the example). During enactment, WfMSs interact with users or applications that execute various
tasks.

Definition 11 (Workflow definition) . The definition of a workflow (see Definition 8) is created at
build time. Thereby, the tasks of the process, information about these tasks, such as associated
data, start and termination criteria of the process as well as the relationships of the tasks are
specified. The workflow definition describes all possible execution paths a workflow instance
can take at run time. A workflow is usually represented by a workflow graph (see Definition 9).
�

Definition 12 (Workflow instance) . A Workflow instance that is based on the workflow defini-
tion, is created, executed and eventually terminated by one (or more) workflow engines at run
time. Each workflow instance uses its own data and has an individual behavior. Task instances
represent tasks at run time. In workflow definitions the pattern exclusive choice is used to de-
fine alternative paths of routing a instance can take at run time. At run time a workflow instance
always follows exactly one of these execution paths. During execution, a workflow instance has
a defined state. The state is characterized by already executed task instances, just executing
task instances and task instances still to be executed. According to [Hol95] there are following
basic states of a workflow instance:

• initiated : the workflow instance is created but not yet started.

• running: the workflow instance has started execution and any of its tasks may be started.

• active: one or more of the tasks of the instance have been started (one or more task

2.3. Workflow management 25

instances exist).

• suspended : the workflow instance is quiescent. No tasks will be started until the workflow
gets a resume command and returns to the state running.

• completed : the workflow instance is completed and will be destroyed.

• terminated : the workflow instance stopped before its normal completion and is destroyed.

�

Figure 2.7 visualizes the execution states of two different workflow instances (I1, I2) that share
a common workflow definition. Both workflow instances have been initiated, and are neither
suspended nor terminated or finished. I1 has executed task a and is executing task b, I2 is
executing task a. Thus, the state of both is active and not only running.

Figure 2.7 – At build time different execution paths are modeled. At run time workflow instances
(I1, I2) follow exactly one path. I1 executes b, a is already executed. I2 executes a, c is still to be
executed.

2.3.3 Strengths of the usage of workflows in WfMSs

As described before, workflows are (partly) automated business processes. Before we describe
the advantages of workflows managed by WfMSs, we will point out, that already the specifying
of a business process has many advantages. A process specification defines which work is
executed in which order by whom. That is, it captures process knowledge, it ensures that the
process matches the process requirements and it documents the process. Knowledge about
the process is disclosed and no longer only available in the head of some experts. Knowledge
capturing and documentation can trigger business process optimization and business process

26 Chapter 2. Fundamentals

improvement activities. Working with the process, visualizing and thinking about the process
are preconditions for the detection of errors and conflicts.

Managing workflows by a WfMS enables process automation. Thereby, the management sys-
tem automates the process itself and passes the work to people or computer applications. The
advantages of automated over non automated business process management can be described
as follows:

• Computer aided process specification: The WfMS allows for a specification of a workflow
in a computer understandable form. This allows for a computer aided simulation, execu-
tion, administration and monitoring of the workflow.

• Computer aided process execution: The workflow execution by a WfMS according to a
predefined workflow definition avoids that process steps are forgotten, that process steps
are executed in a wrong order, and that the same work is done several times. It ensures
that work is executed in the right order by the right person at the right time.

• Computer aided process monitoring: Problems while process execution are detected and
can be easily identified by the monitoring tools. It is no longer possible, that deadlines are
exceeded because the agent in charge is sick. Additionally, some systems have the ability
to take measures to solve the problems.

Beside the advantages over non automated business process management, workflow manage-
ment proceeded by a WfMS has advantages over workflow management done by means of
scripts or done directly in the application code. Important advantages of workflow management
by WfMSs are:

• Process logic and task logic are decoupled. This decoupling of process and task makes
the execution of the tasks independent of the process logic and it makes tasks indepen-
dent of each other.

• Data flow is separated from control flow. State and location of data can be determined
during workflow execution.

• Build time modeling is separated from run time execution. This allows for a more efficient
run time execution.

• Monitoring/Tracking of process execution of process instances. The separation of con-
cerns described before allow for monitoring of process execution.

• Integration and coordination of heterogeneous applications as well as manual and auto-
mated activities. Existing software can be reused and has not to be rewritten. For the
users a holistic view on business processes is offered.

2.3. Workflow management 27

• Modeling tools and languages are convenient for domain experts. Workflow management
systems usually offer easy to understand workflow modeling languages and often graph-
ical modeling tools. Hence, modeling is supported in a way suitable for domain experts
with no software programming skills.

• Workflow management offers a lot of additional functionality. The software offers not only
the modeling, execution and tracking of workflows but also provides functionality such as
error handling and automated enactment of workflows.

2.3.4 Weaknesses of the usage of workflows in WfMSs

Despite the large number of advantages, the usage of workflow technology offers, there are
some disadvantages with a high impact on their usability:

• Large run time system: The large run time system enlarges applications that build up on
workflows. An application developer has to balance whether the underlying process logic
justifies the use of a workflow system. This consideration is especially important for mobile
applications, where application size and footprint are critical parameters.

• Inflexibility: Traditionally, workflows are rigid plans predefined at build time and executed
as predefined at run time. This is done to allow for a more efficient execution (see Section
2.3.3). This strategy is problematic when unexpected events occur that require changes
to workflow instances. Unexpected events that require changes to all workflow instances
of a workflow definition, entail a change of the workflow definition. When the system has
no tools to handle these changes flexibly, running workflow instances are suspended or
aborted to avoid undesirable side effects. Afterwards changes to the workflow definition
can be applied. [EKR95] The handling of unexpected events that require changes of only
some workflow instances is not foreseen in traditional WfMSs. Thus, users try to bypass
the system for the affected workflow instances. The exception handling is not documented
and cannot easily be reused. Inconsistencies of the workflow instance caused by such an
exception handling cannot be detected.

• Confusing presentation: When a workflow has a lot of known alternative execution paths
(expected changes), the presentation of the workflow becomes more confusing and less
readable with a growing number of alternatives. The workflow definition explodes [KLB+08].

2.3.5 Discussion of static workflows

The separation in build time definition and run time execution allows a process execution in line
with the workflow definition and prohibits unwanted changes in workflow instances. To react
on events that require structural adaptations of the workflow, traditional WfMSs offer conditional

28 Chapter 2. Fundamentals

routing. This control flow pattern allows different routing of work for one workflow definition. That
is, every workflow instance follows its own execution path, depending on different conditions
(see Figure 2.7). The approach of conditional routing is not flexible enough to handle events
that require changes to workflow instances and are unforeseen or foreseen but the time of
their occurrence is not known. Originally, workflow management systems were developed to
enable process automation of business processes. Business processes were traditionally highly
structured and long living. Once designed, these processes were valid for a long time span. That
is, a small number of workflow definitions were defined and a high number of instantiations were
created of them. Thereby, the specification was made in a very prescriptive way. There was
little scope left to the users and it was tried to capture every possible execution path [KLB+08].
Traditional WfMSs work well for these processes, they are designed for. But today, business
processes are subject to a lot of changes resulting from the necessity to improve products and
business processes to stay competitive on the market. Therefore, using traditional WfMSs, a
high number of workflow definitions is created and only a view times instantiated. Additionally,
business processes are less structured because of business trends like business-on-demand
and in general the trend to offer an increasing product and service variability.

In summary, workflows have to be much more flexible today, as they are applied to less struc-
tured and less predictable processes. For traditional WfMSs with their rigidity caused in build
time modeling and run time execution, it is difficult to reach the needed degree of flexibility. With
this work we aim to develop an approach that overcomes the inflexibility of traditional WfMSs
and makes WfMSs more flexible regarding the structural adaption to foreseen or unforeseen
events. A way to deal with this problem is to apply dynamic workflows instead of conventional
workflows. Additionally, this kind of workflows avoid confusing presentations as they do not ap-
ply conditional routing to offer a higher flexibility. But they also usually need a large run time
system. Dynamic workflows are described in detail in the following section.

2.4 Managing dynamic Workflows

As explained before, dynamic workflows offer the possibility to deal with evolutionary and tem-
porary structural changes of workflows. This capability of dynamic workflows is getting more
and more important as business processes are subject of frequent modifications and workflows
are used for less structured scenarios today, characterized by foreseen or unforeseen events
that lead to changes of workflows.

There are different kinds of dynamic workflows. Sadiq et al. [SSO01] classify dynamic workflows
in dynamic, adaptive, and flexible workflows. In our opinion, this denotation is not intuitive
as the words dynamic and flexible can be used synonymously and all dynamic changes are
adaptations to occurring events. Han et al. [SHB98] classify the same concepts in meta-model
approaches (dynamic and adaptive workflows for Sadiq) and open-point approaches (flexible

2.4. Managing dynamic Workflows 29

workflows for Sadiq). The term meta-model approaches combines two completely different
classes of dynamic workflows in one class. For a better understanding these classes should
not be combined. In contrast, the term open-point approach is easy to understand and clear.
Weber et al. [WRR07] classify flexibility in process-aware systems (PAIS)8 and use the terms
process adaptation (dynamic and adaptive workflows) and built-in flexibility (flexible workflows).
Additionally, they denote dynamic workflows as schema evolution and adaptive workflows as ad-
hoc changes. The definition of built-in flexibility is a superset of the concepts covered by flexible
workflows. As also built-in flexibility is an adaptation of the process to occurring events, the
term process adaptation is in our opinion not sufficiently self-describing. For us it is important to
point out that the three levels described in the subsection about the functionality of the WFMS
(see Section 2.3.2) guide us in making a WFMSs flexible. A WFMS can be made flexible on
all three levels: At the workflow definition level, the workflow instance level and the interaction
level. Whereby, in the strict sense, making the execution of tasks flexible is out of the scope of
a WFMS.
Because the above introduced terminology for the types of workflow flexibility is not always
clear, we defined our own one. Essentially, with this terminology we aim to be precise and
intuitive. Thus, we decided to use the terms schema evolution (dynamic workflows), ad-hoc
changes (adaptive workflows), and partly defined workflows (flexible workflows plus concepts
introduced additionally in built-in flexibility). In the following we describe our understanding of
this classification and refer to the explanations of [SSO01], [SHB98], and [WRR07].

2.4.1 Schema evolution

Schema evolution are evolutionary changes of the workflow definition9 resulting from real world
changes such as process improvements, innovations, and reengineering [SSO01]. These modi-
fications are long term changes, that do not affect individual cases but all process instances of a
process definition (see Figure 2.8). Therefore, the modifications have to be applied on process
type/process definition level [SSO01].

According to Casati et al. [CCPP96] schema evolution consists of two parts: i) the modification
of the workflow definition, and ii) the management of running instances. The WfMS has to
provide tools for a refinement of the workflow definition without having to rewrite the workflow
from the scratch and it must guarantee the syntactically correctness of the new version of the
workflow. A more difficult issue is the management of running instances. Casati et al. describe
three main policies for handling the changes of running instances:

• Abort of all workflow instances following the old workflow definition and start all new work-
flow instances according to the new workflow definition. This implies a loss of useful work
since existing instances are aborted.

8Process-aware systems are a super class of workflow management systems.
9As mentioned before, workflow schema is another name for workflow definition.

30 Chapter 2. Fundamentals

Figure 2.8 – Schema evolution: build time changes (removal of task a) affect all instances. Two in-
stances that were started after schema modification are shown. What happens to running instances
depends on the change policy.

• Flush means that it is waited until all existing instances belonging to the old workflow def-
inition are terminated. Only after the termination of all running instances, new instances,
following a new definition, can be started. This policy does not imply a loss of work but of
productivity because of the waiting period. In some cases this policy cannot be applied,
e.g., when a law is changed, offenses against the new law are not tolerated.

• Progressive is a policy that allows for making different decisions for different instances.
The decision is made according to instance state or history. For instance, such policies al-
low for concurrent completions of workflow instances acting according to different workflow
versions, which avoids the latency of the flush policy. Another example is the migration
of running instances to the new workflow version. Whether a migration of the workflow
instance is useful depends on the compliance of the versions of the workflow definition
and the state of the workflow instance execution. For further readings see [CCPP96].

2.4.2 Ad-hoc changes

Ad-hoc changes are short term changes, that are needed to react fast and convenient on known
and unknown exceptions or events, e.g., a diabetic is allergic to insulin or concomitant sub-
stances, or a female diabetic conceives a child. The specific events effect only one or maybe
few instances of a workflow definition. Thus, the changes have to be done on instance level.
If the same ad-hoc change has to be applied several times to instances of the same workflow
definition, this can be an advice that this change is a evolutionary change. Such changes have
to be handled by a schema evolution.

Typical change operations are adding, removing and swapping tasks. Thereby, it is important
that the guarantees, checked at build time, are not violated and the system stays consistent.
This can be done by pre- and postconditions for change operations. Additionally, the complexity

2.4. Managing dynamic Workflows 31

of adaptations of workflow instances such as re-mapping of input and output parameters should
be hidden to a large degree to the users. [RRD03]

Figure 2.9 – Ad-hoc changes: a change of instance I1 (removal of task a) does not influence other
instances such as I2 and the workflow definition is also not touched.

2.4.3 Partly defined workflows

The term partly defined workflows covers the (i) open-point approach, and (ii) further very differ-
ent ideas that aim to avoid a complete specification of the workflow at build time to reach a higher
flexibility of workflows at run time. That is, the term refers to underspecified workflows [KLB+08].

Open-point approach

Open-point approaches offer the ability to execute workflow instances basing on partly defined
workflow definitions, e.g., the patient visit in hospitals follows a routine but the treatment cannot
be exactly pre-defined as it depends on too many different parameters (patient record, physical
parameters, disease). At build time the workflow is defined as follows: Parts of the workflow
unknown at build time are defined as open points (abstract tasks), parts known at build time
are defined as normal tasks. At run time the model is completely defined and the open points
are specified by including predefined (or at run time defined) fragments. Fragments are atomic
tasks or sub processes composed of more than one task. Maybe there are no similar workflow
instances of a workflow definition. [SSO01]

Weber et al. identified in [WRR07] four patterns for predefined changes. Two of them fit in the
category open-point approach:

• Late Selection of Process Fragments is an approach, where at build time placeholders

32 Chapter 2. Fundamentals

(abstract tasks) mark points in the workflow definition for which several alternative imple-
mentations exist. All alternatives are known at build time and implemented as fragments.
For the selection of the convenient implementation at run time, information which is only
available at run time, is required. When the workflows are automatically executed prede-
fined rules are used to select the implementation (see Figure 2.10(a)).

• Late Modeling of Process Fragments is an approach similar to Late Selection. Late model-
ing offers more flexibility compared to Late Selection. This approach is used when it is not
possible to specify all alternative implementations in advance at build time. Late modeling
allows for the modeling of fragments at run time. The only constraint is that a fragment
has to be modeled before it can be used as choice for an open-point implementation (see
Figure 2.10(b)).

(a) Late Selection: At build time predefined fragments
(d, e-f, g) can replace the abstract task a at run time.
The instances I1 and I2 depict two possible workflow
instances.

(b) Late Modeling: At build time predefined fragments
(d, e-f, g) and at run time defined fragments (h, i-j) can
replace the abstract task a at run time. The instances
I1 and I2 depict two possible workflow instances.

Figure 2.10 – Two variants of open-point approaches

Further approaches to improve workflow dynamic

In this section we describe approaches that base on the idea of incompletely defined workflows
and that are not covered under the term open-point approach. Multi Instance Activity and Late
Composition are two patterns for predefined changes (see [WRR07]) that do not fit into the cat-
egory open-point approach. Generic Interface is an approach noted in [SHB98]. Multi Instance
Activity is a very limited approach while Late Composition and Generic Interface are complex
and powerful approaches.

2.4. Managing dynamic Workflows 33

• Multi Instance Activity is an approach used when a task has to be executed more than
once and at build time it is not clear how often it has to be executed. Thus, at run time the
number of created task instances is determined [WRR07] (see Figure 2.11).

Figure 2.11 – Multi Instance Activity: several instances of a marked task (a) can be created at run
time.

• Late Composition of Process Fragments10 is an approach applied when there exist several
possible compositions of process fragments. The approach is used to reduce the number
of process definitions to be specified at build time. At build time process fragments are
created. At run time the process fragments are dynamically selected and control depen-
dencies are added on the fly to compose dynamically a process instance [WRR07] (see
Figure 2.12). An automated late composition requires the formalization of process goals to

Figure 2.12 – Late Composition: At build time defined fragments are composed at run time. The
instances I1 and I2 depict two possible workflow instances.

determine fragments and their execution order [GOR11]. Planning techniques are used to

10It is possible to see Late Composition as a special open-point approach where the partly defined workflow
consists of start and end task and exclusively one open point (abstract task) and no other tasks.

34 Chapter 2. Fundamentals

implement this goal-based approach, that is, to dynamically adapt the workflow when the
process goal changes or a failure occurs and the workflow has to be repaired [GOR11].

• Generic Interface is an approach that proposes to build for every task in a workflow a
generic open interface to apply dynamic changes more flexible at individual tasks [SHB98]
(see Figure 2.13).

Figure 2.13 – Generic interface: for every task a generic open interface for applying changes is offered.

2.4.4 Discussion of dynamic workflows

Dynamic workflows are important concepts since assumptions made at build time can be wrong
at run time [RM03]. Furthermore, there are processes that are too dynamic to be predictable at
build time, that is, there is a lack of a priori knowledge [KLB+08]. Additionally, a high flexibility
of processes can lead to too large and confusing workflow definitions.

Workflow management systems that handle dynamic changes have to cope with following chal-
lenges [RM03]: They have to:

• recognize changes relevant for workflows definitions and workflow instances they manage,

• support or automatically process dynamic adaptations, and

• verify the proposed adaptation.

We introduced the three main categories of dynamic workflows described in the literature. The
approaches differ in the time when the adaptation is applied (build time or run time) and there-
fore their influence on workflow definition and workflow instances. Schema evolution is applied
at build time and influences all workflow instances. Ad-hoc changes are applied at workflow
instances at run time and influence only one instance. In the open-point approach the points of
possible adaptation are fixed in advance in the workflow definition and can be filled individually
at run time. That makes them inflexible to react to changes at tasks not foreseen for changes.
Changes are applied to one instance. A short overview of the properties of dynamic workflows
is shown in Table 2.1.

2.5. A formal model for static and dynamic workflows 35

Approach Schema
evolu-
tion

Ad-hoc
changes

Open-point
approach

Multi
instance
activity

Late
composition

Generic
inter-
face

time of
adapta-
tion

build
time

run time run time run time run time run time

affected
instances

all in-
stances

one
instance

one instance one instance one instance one in-
stance

location
of adapta-
tion

at every
task of
wf defi-
nition

at every
task
instance
of wf
instance

at abstract
tasks, in
instances;
addition of
fragments

at marked
tasks, in
instances

the whole
instance

at every
task in-
stance

kind of
adapta-
tion

change
of wf
defini-
tion

change
of wf
instance

completion
of wf
instance

adaptation
of wf
instance

composition
of wf instance

change
of wf in-
stance

convenient
for kind of
wfs

all kinds
of wfs

rarely
pre-
dictable
wfs

partly
structured
wfs

wfs where
number of
repeated
elements not
known until
run time

wfs with fixed
set of tasks
but until run
time unknown
order of tasks

partly
struc-
tured
wfs

challenges
of adapta-
tion

running
in-
stances

consist-
ency
check of
changes
at run
time

changes of
instances at
not abstract
tasks; find
fitting
fragment at
run time

abort of
iteration

find fitting
fragment at
run time

find
fitting
frag-
ment at
run time

Table 2.1 – Overview of dynamic workflow properties

2.5 A formal model for static and dynamic workflows

For dynamic adaptations of workflows that can be defined and executed in correct and con-
sistent way we want to define a formal model. Thus, the formal model supports the definition,
verification and execution of workflows.

There are many different frameworks and languages that support the specification of formal
models. We are faced with the problem that frameworks and languages suited to specify formal

36 Chapter 2. Fundamentals

models for the definition of workflows and those suited to specify formal models for the verifica-
tion and execution of workflows have conflicting goals.
For the definition of workflows, that is, the mapping of real-world processes into a workflow,
the knowledge of domain experts is required. Domain experts need a language for workflow
definition that is intuitive, easy to learn and easy to understand. Such a language needs many
modeling constructs and few modeling restrictions. These language properties are not only
important because it eases the correct definition of workflows, but also because the defined
workflow models are used for discussions (e.g. with further domain experts, software develop-
ers or the management) resulting in problem detection and process improvements.
In contrast, frameworks and languages that are easy analyzable, to verify workflow models and
check them for properties such as reachability, liveness, and boundness requires a restricted
structure with few modeling constructs, and a strong mathematical basis. This is also true for
process execution languages.

The graphical modeling language BPMN, that we use in this thesis for drawing workflows, is a
de facto standard for process modeling. BPMN does not focus on technically realizing business
processes, that is, it does not focus on process execution [DDDG08]. Business processes can
be defined as well by languages such as the Web Service Choreography Description Language
(WS-CDL), a non executable modeling language; the Business Execution Language (BPEL) and
the XML Process Definition Language (XPDL) – both languages focus on process execution
and offer a precise execution semantics. For both the BPMN standard defines a translation
from BPMN. An alternative to BPEL and XPDL is Yet Another Workflow Language (YAWL) that
offers, other than the former two, direct support for (almost) all Workflow Patterns described by
the workflow patterns initiative [vdAADtH04]. This language also focuses on process execution
and a mapping tool from BPMN to YAWL (BPMN2YAWL) exists [DDDG08]. The combination
of graphical and user focused modeling languages with textual and execution focused modeling
language is a solution implemented in many modern WfMS.

Execution focused languages need a precise execution semantics. Therefore, they are usually
based on frameworks such as Petri nets [vdAADtH04] (YAWL), or the frameworks are directly
used as modeling and/or execution language [vdA98]. In conjunction with the search for frame-
works that allow a more flexible and dynamic process execution, frameworks such as process
algebras e.g. π-Calculus [PW05] and monadic combinator libraries in functional programming
languages [PAK+11] are proposed. Beside the usage of existing frameworks, the creation of
proprietary frameworks, especially for handling the specialties of dynamic workflows, is pro-
posed. Reichert and Dadam [RD98] suggest a formal model that represents the control flow as
a directed, structured graph.

In our work we will use Petri nets as framework for process execution. Workflows are easy
to map to Petri nets and Petri nets support a lot of control flow patterns directly [vdAADtH04].
On the other hand, there are many different kinds of Petri nets, some of them allow for a high
flexibility during process execution. In the following we will describe different kinds of Petri nets

2.5. A formal model for static and dynamic workflows 37

and we will have a look at their suitability for workflow execution and their flexibility regarding
structural changes.

2.5.1 Petri nets

Petri nets were developed by Carl Adam Petri and they were introduced in Petri’s thesis ”Kom-
munikation mit Automaten” (Communication with automata) in 1962 [Pet62]. These nets are
often used to model and analyze concurrent processes, which are typical for distributed sys-
tems. Petri nets are a visual language, a mathematical theory, and a formal language. There
are many advantages of using Petri nets as a basis for workflow modeling, execution and con-
trolling (see [vdA98]):

• Petri nets have a formal mathematical definition.

• Petri nets can be visualized by an intuitive graphical notation.

• Petri net elements can easily be mapped to workflow elements. Furthermore, there are
kinds of Petri nets that support all routing constructs used by workflow systems.

• Petri nets are well researched and documented.

• There are a lot of analysis techniques for Petri nets, such as, techniques to find out
whether a Petri net is bounded, live, deadlock free, or whether a marking M of a net
N can be reached from the initial marking M0 of N (for more information see [EN94]).

• Simulations can be used for model checks.

• Petri nets are vendor and tool independent.

Since the first publication a lot of different kinds of Petri nets were developed, such as Predicate
Transition nets [GL81], Continuous Petri nets [DA93] and Colored Petri nets [Jen81, Jen89].
One motivation to develop new kinds of Petri nets was that simple forms of Petri nets tend to get
very large when large processes are modeled. The size of processes can be reduced by using
distinguishable tokens and by transferring aspects of the model into parameters [GL81], e.g. arc
expressions. That is, such nets represent processes usually tighter, and better understandable
than simple nets because of the usage of more abstract representations. The extended Petri
nets are called high level Petri nets. Petri nets with indistinguishable tokens are called low level
Petri nets.

We will start with the description of the classic and commonly used form of Petri nets - Condition-
Event-Nets. This kind of Petri nets is easy to understand and suitable for an introduction.

38 Chapter 2. Fundamentals

2.5.2 Condition-Event-Nets

Condition-Event-Nets (CEN) are low level Petri nets, their tokens are not distinguishable from
each other. A Condition-Event-Nets is defined as follows:

Definition 13 (Condition-Event-Net) . A Condition-Event-Net is a four tuple CEN = (P, T, F,M0),
where:

• P is a finite set of places (conditions).

• T is a finite set of transitions (events), whereby P ∩ T = ∅.

• F is a set of directed arcs, where F ⊆ (P × T) ∪ (T × P).

• M0 is the start marking, where M0 : P → {0, 1} .

�

Places are passive components and represent states. They are graphically denoted by a cycle.
Transitions are active components. They describe actions and are represented by a rectangle.
Petri nets in general are bipartite graphs: directed arcs connect places and transitions and vice
versa, but never places with places and transitions with transitions. Places, transitions and

Figure 2.14 – Condition-Event-Net: places P = {s1,s2,s3}, transitions T = {t1,t2,t3}, connecting
arcs e.g. f1 = (s1,t1) and start marking M0(s1)=1, M0(s2)=0, M0(s3)=0.

arcs constitute the static and non changeable part of Petri nets. Tokens, residing in places and
representing objects, are the dynamic components of Petri nets. An example of a Condition-
Event-Net is shown in Figure 2.14.

Tokens constituting the marking of a Petri net. In Condition-Event-Nets tokens are represented
by black dots in places, so called anonymous tokens. Every place has at most one token, in
other words: the places in a Condition-Event-Net have the capacity one. The initial distribution
of tokens over the net is called start marking and denoted by M0. By firing transitions, a new
marking (a new distribution of tokens) is created.

Definition 14 (Firing rule) . Firing is the consumption of tokens from the input places of a
transition and the production of tokens in the output places of the same transition. �

2.5. A formal model for static and dynamic workflows 39

A place p is an input place to a transition t when it is connected with transition t by an arc from
p to t. A place p is an output place to a transition t when it is connected with transition t by an
arc from t to p. The precondition for firing is the enabling of transitions.

Definition 15 (Enabling rule) . A transition is said to be enabled, if:

i) the input places of a transition •t := {p ∈ P |(p, t) ∈ F} have enough tokens for consumption
by the transition t and

ii) the output places t• := {p ∈ P |(t, p) ∈ F} have enough space for the production of tokens.

�

This means, in case of Condition-Event-Nets, that before firing every input place must have
exactly one token and the output places must not have tokens. While firing the transition con-
sumes the tokens of the input places and produces one token per output place. After enabling,
a condition can but does not have to fire (immediately) — this is the case for all kinds of Petri
nets in which tokens reside.

Definition 16 (Conflict) . Two (or more) transitions are in (forward) conflict if they have a com-
mon input place11 and are enabled. The firing of one transition would cause the disabling of the
other. �

When two or more transitions with a common input place are enabled then a firing of one of
them would cause that the remaining transition are no longer enabled as there is no longer a
token in their input place (see [GT00, DA05]). This situation is called conflict and one example
of a conflict is shown in 2.15(a).

Definition 17 (Backward conflict) . Two (or more) enabled transitions are in backward conflict
(contact) when they have a common output place [Mat96]. �

In CENs the firing of two or more enabled transitions with a common output place at the same
time would cause more than one tokens in the output place. That is not allowed for CENs (see
Definition 13). Thus, one transition will fire and it is not in advance clear which. None of the
remaining enabled transitions can fire as long as the output place has a token. This situation is
called backward conflict and it is shown in 2.15(b).

Petri-Nets are non-deterministic. Therefore, in case of a conflict or backward conflict any of the
transitions fires and it is not clear in advance which of them will be fired. In other words: in
conflict situations there are not enough information to determine the subsequent control flow
[Mat96].

11The situation of more than one transitions sharing a common input place is also called structural conflict [DA05].

40 Chapter 2. Fundamentals

(a) Conflict: t1 and t2 are in con-
flict. The firing of t1 would disable
t2 and vise versa.

(b) Backward conflict: t1 and t2
are in backward conflict. In ad-
vance it is not clear whether t1 or
t2 fires.

Figure 2.15 – (Forward) conflict and backward conflict situation in Condition-Event-Nets.

Mapping of Workflow concepts to Petri nets

The mapping of workflow management concepts to Petri nets, and hence CENs, is straightfor-
ward: tasks are mapped to transitions, conditions are mapped to places and workflow instances
are modeled by (one or more) tokens [vdA98]. Figure 2.16 visualizes this mapping.

Figure 2.16 – Mapping from workflow w to Petri net p: tasks are mapped to transitions e.g. metering
of blood glucose level; conditions are mapped to places e.g. ready for input to s1; an instance of
workflow w is mapped to the token in p

Of course, routing constructs of workflows have to be mapped to Petri nets. Workflow patterns
(see Section 2.3.1) describe building blocks of workflows that are used to model routing. There
are four main types of routing: (a) sequential — one after the other execution of task instances,
(b) parallel — task instances can be executed simultaneously or in any order, (c) selective (or
conditional) — when there is a choice (dependent on some variables) between tasks and (d)
iterative — a task instance is executed more than once in a process instance until a condition is
met [vdAvH04]. Because these four basic routing constructs have to be supported by workflows
there has to be an adequate mapping of them to Petri nets. In the following text we will describe
the mapping of that constructs according to [vdA98]. Figure 2.17 shows on the left hand side
routing constructs of workflows. On the right hand side their mapping into Petri nets is depicted.

2.5. A formal model for static and dynamic workflows 41

(a) Sequential routing: uses the
sequence pattern

(b) Parallel routing: uses the patterns parallel
split and synchronization

(c) Conditional routing: uses the patterns ex-
clusive choice and simple merge

(d) Iterative routing: uses the pat-
tern exclusive choice

(e) Sequential routing: workflows can be
correctly mapped to CENs

(f) Parallel routing: workflows can be cor-
rectly mapped to CENs

(g) Conditional routing: Non-deterministic
choice — incorrect mapping!

(h) Iterative routing: Non-
deterministic choice — incorrect
mapping!

Figure 2.17 – Routing: on the left the routing constructs of workflows are shown and on the right
their mapping into Petri nets according to [vdA98] is depicted.

Sequential routing As explained before, tasks are mapped to transitions and conditions are
mapped to places (see Figure 2.16 as well as Figures 2.17(a) and 2.17(e)).

Parallel routing (Figures 2.17(a) and 2.17(e)) is a kind of routing where a branch of a work-
flow is split into several branches that are executed concurrently. A concurrent execution
of branches means that the order of execution of the branches is not important or arbitrary,
that is, it does not matter which branch is executed first or if the execution of these tasks
really overlaps in time. The branches have to be synchronized before the thread of control
is passed to the subsequent branch. Parallel routing of workflows is modeled by the basic
control flow patterns Parallel Split and Synchronization (see Figure 2.4). Both patterns can
be mapped to ordinary transitions of Petri nets. The execution of the ’Split’-transition enables
the subsequent branches and the execution of the ’Synchronization’- transition synchronizes
the branches.

Conditional routing (Figures 2.17(c) and 2.17(g)) is modeled if there is a choice between two
workflow branches. The patterns exclusive choice and simple merge are used to model that
kind of routing. The problem is that CENs are non-deterministic (see Figure 2.15). CENs
can model a choice as a place that is a common input place of multiple following transitions

42 Chapter 2. Fundamentals

and a simple merge as a place that is a common output place of multiple transitions. Only
one of the branches is executed. But because of the non-determinism an arbitrary branch
is chosen for execution. It cannot be defined which branch is chosen, that is, CENs do not
support deterministic choices. Later on we will show that high level Petri nets can solve this
problem.

Iterative routing (Figures 2.17(d) and 2.17(h)) can be modeled by the pattern exclusive choice.
Iterative routing has the same problem as conditional routing it is not possible to make deter-
ministic choices with CENs.

Usually there is more than one workflow instance for a workflow definition. To each workflow
instance belong one or more tokens. When tokens of more than one workflow instance reside
in the same Petri net then token could get mixed. To avoid this, for every workflow instance a
unique instance of the Petri net is used.

Are Condition-Event-Nets suitable for the definition and verification of static workflows?

As explained before, distributed static workflows with sequential routing, parallel routing and
non-deterministic choices can be mapped to Condition-Event-Nets. Deterministic choices are
not supported by CENs. Therefore, also iterations, that build on deterministic choices cannot
mapped correctly. Beside this insufficiency in mapping workflow definitions, Condition-Event-
Nets are getting large when they are used for the description of large systems. Such large
nets are difficult to understand and to use. Thus, (non hierarchically) CENs are only suitable
for the definition of a subclass of static workflows, namely small workflows without deterministic
choices and iterations, that are not hierarchically organized.

Are Condition-Event-Nets suitable for the definition and verification of dynamic work-
flows?

Dynamic workflows are workflows that are created to facilitate changes to their structure not only
at build time but also at run time. In Section 2.4 we described different ways to adapt workflows
dynamically. In this thesis, we concentrate on the support of partly defined workflows. There
are several different approaches to implement partly defined workflows. The approaches of this
class of workflows have in common, that they consist of building blocks (tasks or sub workflows)
that are defined at build time and assembled at run time. Condition-Event-Nets do not offer
the possibility to assemble building blocks at run time. Therefore, CENs are not suitable to
adequately support dynamic workflows.

2.5. A formal model for static and dynamic workflows 43

2.5.3 Hierarchical Petri nets

When Petri nets are used to model real-world systems, the models tend to be complex and
large [ZB97]. That makes it difficult to get an overview of the model [JK09] and hence it compli-
cates both understanding and use. Thus, a mechanism is needed that allows for comprehending
the model without studying the whole model. Hierarchical Petri nets are instruments to simplify
models by structuring them in different levels of abstraction. That is, at the topmost level Hierar-
chical Petri nets will give an overview of the model, exact enough to get a rough understanding
of the system. The level below will refine the topmost level and explain hidden details (see
Figure 2.18). The level below the topmost level can also be refined by another level and so
on. Every level can be further refined. The refinement, described here, is also called node re-

Figure 2.18 – Hierarchical Petri net with two levels: refinement of transition t1

finement. Thereby, simple elements (places or transitions) are replaced by more detailed nets,
so called subnets (static refinement), or simple elements are associated with subnets (dynamic
refinement) [ZB97]. Dynamic refinement allows the reuse of subnets, that is, a subnet can
be associated with more than one simple element. This view describes a top-down approach,
starting with a general process that is stepwise refined. Besides, a bottom-up approach exists
that starts with a large process that has to be generalized by identifying subnets and replacing
them by simple elements. In summary, Hierarchical Petri nets offer the possibility: to inspect the
model at different levels of abstraction, to visualize the refinement of selected parts of the net
and, in case of dynamic refinement, to reuse parts of the model [Feh93].

Definition 18 (Subnet) . A net N ′ = (P ′, T ′, F ′,M ′
0) is a subnet of a net N = (P, T, F,M0),

when:

• P ′ ⊆ P and

• T ′ ⊆ T and

• F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)) and

• ∀p ∈ P ′ : M0(p) = M ′
0(p).

�

44 Chapter 2. Fundamentals

That is, a Petri net N ′ is a subnet of Petri net N when all elements of N ′ are elements of
N . In this case, the initial marking of all places in N ′ is equal to the marking of the places in
N [CMP08] (see Figure 2.19).

Figure 2.19 – Subnet: The dashed box marks a subnet of the shown net.

There are several approaches of refining of nodes in Petri nets. Different properties of Petri nets
are preserved by different approaches. One common approach states that places of higher
levels can be replaced by place bordered subnets, and transitions can be replaced by transition
bordered subnets [Lak97, Lak00] (Figure 2.18 shows the replacement of a transition.) For the
understanding of the concept place/transition bordered subnet we have to define the concepts:
preset, postset and border :

Definition 19 (Preset [BGV91]) . In Petri nets, all elements x(x ∈ P ∪ T), with the exception of
the start place, have a nonempty preset •x, where:
•x := {y ∈ P ∪ T | (y, x) ∈ F}. �

That is, the preset •x of an element x is a set of elements y. For every element y there exists
an arc f ∈ F outgoing of y and incoming in x (see Figure 2.20).

Definition 20 (Postset [BGV91]) . All elements x, with the exception of the end element, have
a non empty postset x•, where:

x• := {y ∈ P ∪ T | (x, y) ∈ F}. �

The postset x• of an element x is a set of elements y. For every element y there exists an arc
f ∈ F outgoing of x and incoming in y (see Figure 2.21).

Figure 2.20 – Preset •x of x Figure 2.21 – Postset x• of x

2.5. A formal model for static and dynamic workflows 45

Definition 21 (Border) . A border x of a subnet N ′ (of a net N) is defined as: {x ∈ P ′ ∪ T ′ |
(•x ∪ x•)\(P ′ ∪ T ′) ̸= ∅}. That is, preset •x and postset x• can lay outside the subnet N ′ but
inside N in case of border elements. �

That is, a border of a subnet N ′ are places or transitions of the subnet. Thereby, border elements
have a preset or postset outside the subnet in the net N , or in case the border element is a start
element or an end element of N , it has no preset or postset.

If the border only consists of places {p ∈ P ′ | (•p ∪ p•)\T ′ ̸= ∅}, the subnet is called place
bordered (see Figure 2.22). If the border only consists of transitions {t ∈ T ′ | (•t ∪ t•)\P ′ ̸= ∅}
the subnet is called transition bordered (see Figure 2.23).

Figure 2.22 – Place bordered subnet N’ Figure 2.23 – Transition bordered subnet N’

Are Hierarchical Petri nets suitable for the definition and verification of static workflows?

Hierarchical Petri nets were created to ease the understanding and use of Petri nets by intro-
ducing levels of abstraction. By introducing abstraction levels a significant improvement of the
net presentation respectively structuring and thus usability can be achieved. They do not add
constructs for the improvement of the mapping from workflows to non-hierarchical Petri nets, but
they introduce the mapping from hierarchical workflows to hierarchical Petri nets. Hierarchical
Petri nets support different kinds of Petri nets — from low level to high level Petri nets — thereby,
the supported net determines the supported routing constructs of Hierarchical Petri nets.

Are Hierarchical Petri nets suitable for the definition and verification of dynamic work-
flows?

As described before non hierarchical CEN have no means to support a dynamic assembly of
workflows. Hierarchical CEN support the refinement of nodes. Places can be replaced by place
bordered subnets and transitions by transition bordered subnets. In higher levels the subnets
are hidden and a user has to look at a lower level of abstraction to see the whole workflow even
though the whole workflow is always executed. If there was not only one sub workflow but a
set of sub workflows that could be chosen dynamically at run time, Hierarchical Petri nets would
support dynamic workflows. But this is not the case, therefore, Hierarchical Petri nets are not
directly suitable for the definition of dynamic workflows.

46 Chapter 2. Fundamentals

2.5.4 Colored Petri nets

Colored Petri nets (CPNs) (see [JKW07, JK09]) were developed as a graphical modeling lan-
guage for concurrent systems and the analysis of their properties. CPNs combine the capabili-
ties of Petri nets with that of a high-level programming language. It adds to the above described
properties of Petri nets the definition of data types (colors), and the description of data manip-
ulation. CPNs use the programming language in net inscriptions such as initial markings, arc
expressions and guards, in internal algorithms that calculate the enabling and occurrence of
bindings, and in code segments belonging to transitions [Cor93]. In principle CPNs can use
many different programming languages [Jen92]. The original literature uses the functional pro-
gramming language CPN ML12. The combination of Petri nets and CPN ML makes CPN models
compact and parameterizable but also more complex.

The most important contribution of CPNs is that tokens are attached with data values. The data
values are called token colors. For each place the set of possible data types, the so called color
set, has to be specified. In a place can only reside tokens of the specified color set.

In the following text let:

• EXPR denote a set of expressions provided by the inscription language of the CPNs.
(The inscription language is the programming language used in the CPNs.)

• Type[e] denote the type of an expression e ∈ EXPR.

• V ar[e] denote the set of free variables in an expression e, where free variables are vari-
ables not bound in the local environment of the expression.

• EXPRV be the set of expressions e ∈ EXPR such that V ar[e] ⊂ V , where V is the set
of variables.

Then Colored Petri nets are defined as follows:

Definition 22 (Colored Petri net) . CPNs are nine tuples CPN = (P, T, F,Σ, V, C,G,E, I).

• P is a finite set of places.

• T is a finite set of transitions (P ∩ T = ∅).

• F is a set of directed arcs, where F ⊆ (P × T) ∪ (T × P).

• Σ is a finite set of non-empty color sets (data types).

• V is a finite set of typed variables (when v ∈ V then Type[v] ∈ Σ).

• C: P → Σ is a color set function that assigns a color set to each place.
12CPN ML bases on Standard ML [JK09].

2.5. A formal model for static and dynamic workflows 47

• G: T → EXPRV is a guard function that assigns a guard to each transition (Type[G(t)] =

Bool).

• E: F → EXPRV is an arc expression function that assigns an arc expression to each arc
f(Type[I(p)] = C(p)MS and p = place connected to f).

• I: P → EXPR∅ is an initialization function that assigns an initialization expression to each
place p such that Type[I(p)] = C(p)MS .

�

Just like all kinds of Petri nets, Colored Petri nets have an easily understandable graphical
notation. The most important graphical concepts are shown in Figure 2.24.

Figure 2.24 – Visual presentation of CPN concepts

Places represent the state of the modeled system [JK09] and are depicted by circles. For every
place the color set (data type) of tokens that mark this place must be specified, e.g., INT
for place Wait. If there is enough space, the color set is written below the place. Places
can optionally have a name inscription and an initial mark inscription that specifies the initial
tokens for this place. For a marked place, the number of tokens is shown in a small circle that
is attached to the place. The detailed token colors (data values) are shown in a rectangle
next to the small circle. This representation makes colored tokens visual distinguishable and
allows to instantly grasp markings. In Figure 2.24 initial and actual marking of place Start is
shown.

Transitions describe the actions in a net. They are represented by rectangles with optional
inscriptions that determine bindings, such as guards, time, code segments. These inscrip-
tions add extra constraints for the enabling of transitions. For instance, guards are Boolean
expressions that are used to implement deterministic choices. Guards have to evaluate to
true for enabling a transition. They are written in square brackets and positioned near to the
transition. The transition Get history by id has the guard contains tid list 2 [tid]. Transitions
with a thick border represent enabled transitions.

48 Chapter 2. Fundamentals

Arcs connect places and transitions. Arcs have one inscription, whereby the color set of the arc
expression has to match that of the attached place. In other words, arc inscriptions describe
the colors of tokens that are fired. Arc inscriptions can be variables, constants, operators, and
functions. The arc expressions decide about the enabling of a transition in a given marking.

After having introduced the concepts of CPNs we need to take a closer look at the example
depicted in Figure 2.2513. The example reuses the diabetes scenario of Figure 2.3 and Figure
2.16 (dotted background) but adds the management of a metering history. In the following text
we will focus on the scenario extension consisting of the components: data storing and data
querying.

Storing data After the estimation of carbohydrates we will store the blood glucose level, the
carbohydrates and the timestamp of storing, together with the id of the diabetic. We will store
these values in a list, that stores records consisting of uid and a list of metered values. In
Colored Petri nets, tokens may overtake each other. Thus, it may happen that a person wants
to query the print history but this history is not up to date. Therefore, every token gets an id that
is stored in a tid list when the token values are stored in the history. This values in the tid list can
be easily compared to the requesting tid (see Figure 2.26). This tid is generated in the subnet
as shown in 2.30. Thereby we used the ID Manager pattern described in [MvdA05].

Querying data For data inquiry we implemented the pattern Synchronous Transfer which is
described in [MvdA05]. Thereby the sender is blocked until the requested data become available
(see Figure 2.25 and 2.27).

Mapping of Workflow concepts to Colored Petri nets

Colored Petri nets are high level Petri nets with typed, and therefore distinguishable, tokens.
In a CPN tokens represent a workflow instance. The token color represents the workflow at-
tributes [vdA98] and the color values represent the attributes values of a case. By means of col-
ored tokens deterministic choices can be exactly represented. Van der Aalst [vdA98] introduces
two alternatives to model a deterministic choice basing on workflow attributes: (i) adding pre-
conditions to each transition subsequent to the place representing the exclusive choice. A pre-
condition is an additional enabling requirement that bases on one or more workflow attributes.
This precondition allows that only one of the subsequent transitions are enabled. Figure 2.17(c)
shows that case. The second case (ii) uses a transition as deterministic choice. The transition
with more than one output place produces a token in one of the subsequent places (see Figure
2.28(a)). Van der Aalst points out that the difference between both cases is the moment of

13We modeled and simulated this example with CPN Tools, the quasi standard tool for modeling CPNs. For more
information see http://cpntools.org/documentation/start.

2.5. A formal model for static and dynamic workflows 49

Figure 2.25 – Colored Petri net that illustrates a simplified detail of a form of therapy for diabetes
(ICT). It describes the metering process (dotted background) plus the archiving of metered data and
shows the initial marking of the net.

choice. In case (i) the choice is made as late as possible in the moment when the transitions
with preconditions are executed. In case (ii) the choice is made earlier when the transition rep-
resenting the choice is completed. For the modeling of iterations basing on workflow attributes
the same both variants of mapping exist (see Figure 2.17(d) and 2.28(b)).

Are Colored Petri nets suitable for the definition and verification of static workflows?

In addition to the mapping of routing constructs CENs support, Colored Petri nets support also
deterministic choices and iterations based on deterministic choices. Therefore, they are able

50 Chapter 2. Fundamentals

Figure 2.26 – Picture detail of 2.25: storing metered data in history.

Figure 2.27 – Picture detail of 2.25: reading data from history.

to map all routing constructs that can be used for building static workflows. On the other hand,
nets, modeled by Colored Petri nets are much smaller than the same net modeled with a CEN
because of the usage of token colors (data types). Additionally, when we analyzed CENs we
found that we have to take care that different workflow instances are not getting mixed. To avoid
this, for every workflow instance a unique instance of the Petri net is used. In case of CPNs
there is another option to avoid the mixing of instances [vdA98]: In Colored Petri nets the usage
of token colors makes it possible that tokens can contain information about the identity of the
corresponding workflow instance. A way to check the identity of tokens is to use preconditions
in transitions that inspect and compare tokens. Beside these significant advantages Colored
Petri nets have the drawback of a higher complexity than Condition event nets. Additionally, non
hierarchical CPNs are not able to express hierarchies of workflows.

2.5. A formal model for static and dynamic workflows 51

(a) Conditional routing: uses the patterns ex-
clusive choice and simple merge

(b) Iterative routing: uses the pattern exclusive
choice

(a1) Conditional routing 1: deterministic choice
with preconditions for the transitions b and c

(a2) Conditional routing 2: deterministic
choice, transition a is an exclusive choice

(b1) Iterative routing 1: deterministic choice
with preconditions

(b2) Iterative routing 2: deterministic choice,
transition a is an exclusive choice

Figure 2.28 – Routing: on the left routing constructs of workflows, not supported by CENs, are
shown. On the right the mapping of these constructs into CPNs according to [vdA98] is depicted.

Are Colored Petri nets suitable for the definition and verification of dynamic workflows?

For the ability to define dynamic workflows Colored Petri nets have to be extended. The dy-
namic cannot be expressed directly, even though Colored Petri nets offer the possibility to carry
information in their tokens.

2.5.5 Hierarchical Colored Petri nets

When modeling large systems as non hierarchical CPNs, the models become very large. It is
difficult to handle and to understand these models [JK09]. Jensen et al. propose the use of
Hierarchical Colored Petri nets (HCPNs) to manage this problem. Just like Hierarchical Petri

52 Chapter 2. Fundamentals

nets (see Section 2.5.3), Hierarchical CPNs offer modelers the possibility to work on different
levels of abstraction. Each level of a net can be refined by a subnet. A higher level of abstraction
offers a more abstract view on the behavior of the net than a lower level. A high level view is
less detailed. The modeler can abstract from details that are not needed for the current work
and can have a more detailed view on the net if necessary. A further advantage HCPNs offer is
the fact that subnets can be reused, which eases net maintenance.

A HCPN is a net, which can always be transformed into an equivalent non-hierarchical CPN.
In turn, a non-hierarchical CPN can always be transformed into an equivalent Place/Transition
net [JK09]. Therefore, HCPNs add no expressive power to Place/Transition nets although they
have the above described advantages in practical use.

Language constructs

HCPNs divide a CPN in modules laying in different layers. The most relevant information can
be found in the higher levels. The higher levels abstract from details. The lower levels hold
the detailed information. In the following we explain the most important constructs of HCPNs
referring to the publication [JK09]. Thereby, we use Figure 2.29 to explain the constructs.

Figure 2.29 – Simple hierarchical colored Petri net with module module1 and submodule module2.

An important construct for implementing HCPNs is the Substitution transition. Substitution tran-
sitions generalize more detailed parts of the CPN. They act on higher levels of abstraction as
placeholders for detailed transition bordered nets on lower levels. In a graphical model a rect-
angular with double-lined borders marks a substitution transition. The substitution tag attached
to the double-lined rectangular contains the name of the substituting submodule. In Figure
2.29 there is only one substitution transition in module1: Tsub(module1) = {subst trans1}. The
substituting submodule to this substitution transition is module2.

Definition 23 (Substitution transition) . Substitution transitions are a subset of all transitions
in the CPN: Tsub ⊆ T . They can be substituted by a transition bordered subnet on a lower level
of abstraction. Substitution transitions show a less detailed view on the behavior of the net than
represented by corresponding subnets. �

2.5. A formal model for static and dynamic workflows 53

Substitution transitions and substituting subnets (modules) are two different views on the same
part of the CPN. Jensen et al. [JK09] propose to relate them by using socket places and port
places. Socket places are the places that are connected by an arc with the substitution transi-
tion. Socket places are the interface of the substitution transition. Port places are the interface of
the transition bordered subnet and they are usually equivalent to the interface of the substitution
transition. In graphical models, port places are attached by a port-type tag. The tag describes
whether a port belongs to a socket that is a In-, Out-, or I/O-node. In Figure 2.29 we have the
following sets of port and socket places:
Pport(module1) = {}, Psock(module1) = {socket1, socket2},
Pport(module2) = {port1, port2}, Pport(module2) = {}.

Definition 24 (Socket place) . Socket places immediately surround the substitution transition.
They are the interface of the substitution transition and can be of following type: input, output
and input/output. Referring to the definition of subnet borders only consisting of transitions in
Section 2.5.3, as: {t ∈ T ′ | (•t ∪ t•)\P ′ ̸= ∅}, we define socket places as follows: {p ∈ P | ∃t ∈
T ′ : (•t ∪ t•)\P ′ ̸= ∅ ∧ p ∈• t ∨ p ∈ t•}. �

Definition 25 (Port place) . Port places constitute the interface of the subnet to the environ-
ment. They are added to transition bordered subnets. �

Port-socket relations bind a substitution transition and the belonging subnet by relating belong-
ing port and socket places. In Figure 2.29 the port-socket relations are (socket1, port1) and
(socket2, port2).

Definition 26 (Port-socket relation) . Port-socket relations relate port place (p′) and belonging
socket place (p) and constitute two different views of a single place.14 The port-socket relations
describes how the environment of the substitution transition interacts with the subnet. �

The port-socket relations of a single substitution transition are grouped in a port-socket relation
function. For Figure 2.29 this function is PS(module1) = {(socket1, port1), (socket2, port2)}:

Definition 27 (Port-socket relation function) . A Port-socket relation function PS assigns port-
socket relations to substitution transitions.

PS(t) = {(p, p′)}, whereby: p is a socket place of the substitution transition t, and
p′ is a port place of submodule SM(t) assigned to t. �

Corresponding ports and sockets have to have the same type (input, output, input/output).
Socket and port type functions assign types to this places. For Figure 2.29 we see the socket
type function:

ST (module1) :

⎧⎪⎨⎪⎩
socket1 ↦→ IN

socket2 ↦→ OUT

∅ ↦→ I/O

14Hence, related port and socket places share the same marking.

54 Chapter 2. Fundamentals

and the port type function:

PT (module2) :

⎧⎪⎨⎪⎩
port1 ↦→ IN

port2 ↦→ OUT

∅ ↦→ I/O

Definition 28 (Type function) . Socket type functions assign a socket type to each socket place.
Port type functions assign a port type to a port place.

Hierarchical Colored Petri nets are a composition of colored petri net modules. Thereby, places
and transitions of different modules have to be disjoint. Figure 2.29 shows the modules module1
and module2.
Colored Petri Net Modules are defined as follows [JK09]:

Definition 29 (Colored Petri Net Module (CPN Module)) . A Colored Petri Net Module CPNM

is a four-tuple: CPNM = (CPN, Tsub, PPort, PT)15, where:

1. CPN = (P, T, F,Σ, V, C,G,E, I) is a Colored Petri Net.

2. Tsub ⊆ T is a set of substitution transitions.

3. PPort ⊆ P is a (possibly empty) set of port places.

4. PT : PPort → IN,OUT, I/O is a port type function that assigns a port type to each port
place.

�

A substitution transition is mapped into a submodule via a submodule function. For our example
in Figure 2.29 this means: SM : subst trans ↦→ module2.

Definition 30 (Submodule function) . A submodule function SMF assigns a submodule to
each substitution transition:
SMF : Tsub → SM . �

In summary, HCPNs are defined as follows (see [JK09])16. HCPNs are composed of CPN
modules. Modules are hierarchically organized by relating substitution transition and belonging
sub modules by submodule functions. Thereby, port-socket relations (pairs of socket places of a
substitution transition and port places of belonging sub modules) are assigned to the substitution
transition by port-socket relation functions.

15 [JK09] did not explicitly define socket places as part of the CPN Module as they are implicitly given because
arcs connect socket places with substitution transitions.

16We will skip the definition of fusion sets because they are irrelevant for our work.

2.5. A formal model for static and dynamic workflows 55

Definition 31 (Hierarchical Colored Petri nets (HCPNs)) . Hierarchical Colored Petri Nets are
a tuple CPNH = (SM,SMF,PS):

1. SM is a finite set of CPN Modules sm, whereby:
sm = ((P sm, T sm, F sm,Σsm, V sm, Csm, Gsm, Esm, Ism), T sm

sub , P
sm
port, PT sm).

It is required that (P sm1 ∪ T sm1) ∩ (P sm2 ∪ T sm2) = ∅ for all sm1, sm2 ∈ SM such that
sm1 ̸= sm2.

2. SMF is a submodule function, that assigns submodule and substitution transition:
SMF : Tsub → SM .

3. PS is a port-socket relation function that assigns a port-socket relation PS(t) ⊆ Psock(t)×
P

SM(t)
port to substitution transition t. It is required that ST (p) = PT (p′), C(p) = C(p′), and

I(p)⟨⟩ = I(p′)⟨⟩ for all (p, p′) ∈ PS(t) and all t ∈ Tsub.

�

Figure 2.30 shows a more complex example of a HCPN that is a part of Figure 2.25. The
example focuses on the hierarchical components. We call the CPN module that is a detail of
Figure 2.25 ICT simplified. ICT simplified contains the substitution transition Input of estimated
carbohydrates of meal that can be substituted by the more detailed submodule Estimation.
As explained before, a CPN module is connected with its submodules by equating places in
module and submodule. These places are called socket places in the module and port places
in its submodule. In our example net AICT simplified, BICT simplified, and EICT simplified and
AEstimation, BEstimation, and EEstimation are such places. In our example places have the same
name in different modules. In this case the module name is superscript to the place name:
placemodule.

Mapping of Workflow concepts to Hierarchical Petri nets

Because HCPNs build on Colored Petri nets, the mapping to workflows works in the same way
as described for CPNs (see Section 2.5.4). Additionally, HCPNs offer the possibility to map
hierarchies in workflows. A sub process without start and end node corresponds to a subnet (a
sub module without port transitions) of a HCPN.

Are Hierarchical Colored Petri nets suitable for the definition and verification of static
workflows?

HCPNs build on CPNs. CPNs support also deterministic choices and iterations that base on
deterministic choices. Therefore, they are able to map all routing constructs that can be used for
building static workflows. Additionally, hierarchical constructs can be expressed. HCPNs offer

56 Chapter 2. Fundamentals

Figure 2.30 – Example of a HCPN (a part of Figure 2.25)

more modeling constructs and are therefore more compact and a bit more complex than CPNs.
HCPNs can also avoid the mixing of instances [vdA98] by tokens that contain information about
the identity of the corresponding workflow instance.

Are Hierarchical Colored Petri nets suitable for the definition and verification of dynamic
workflows?

We described that the possibility to have a set of subnets that could be chosen at runtime would
support dynamic workflows. HCPNs support subnets (submodules). Colored Petri nets offer the
possibility to carry information in their tokens. The colors could carry information that allow for
finding the convenient subnet. HCPNs can be used for the definition and verification of dynamic
workflows but it is necessary to extend the concept with a component for dynamic binding of
submodules to a substitution transition at run time. Colored Petri nets offer the possibility to
carry information in their tokens. The colors could carry information that allow for finding the
convenient subnet. HCPNs can be used for the definition and verification of dynamic workflows
but it is necessary to extend the concept with a component for dynamic binding of submodules
to a substitution transition at run time.

2.6. Rule-based systems 57

2.6 Rule-based systems

There are different ways to select a subnet in line with the current context, such as: manual
selection, writing a new computer application to select a subnet, semantic (ontology based)
selection, or a selection by Rule-based systems (RBSs). In our work we develop an automated
approach, which is flexible, but avoids complex computation and a large footprint. To achieve
this, we have chosen Rule-based systems to select subnets. RBSs allow for a separation of
rules from the process description and thus rules can be changed at run time without changing
the process description. In this section we describe RBS in detail.

Figure 2.31 – rule engine: The knowledge base stores the knowledge of the rule engine, that is, the
rules are stored in the rule base and the facts in the fact base. The inference engine is the core of a
rule engine. Its tasks are the matching of facts against conditions of rules, processed by the pattern
matcher and the ordering of the result of the pattern matching, processed by the Conflict resolution.
(see [Neg11,GR05])

Rule-based systems were developed as a means to imitate the problem solving process of hu-
man experts electronically. That is, these automated experts are, just like a human expert, able
to store, reason about and apply knowledge automatically. The foundation for these systems
were developed by Newell and Simon in the 60th and 70th of the last century (see [NS63]).
Such a system is shown in Figure 2.31 and consists of:

The knowledge base, that stores the expert knowledge. It consists of rule base and fact base:

• The rule base stores the domain knowledge. This knowledge is represented by rules.
That is, by adding new rules to the rule base, knowledge is added to the RBS [Neg11].
It is possible to remove rules from the rule base. This allows to keep the knowledge in
the rule base up to date. Rules are written in a rule language in a declarative way.

• The fact base stores the data (facts) about the current situation [Neg11]. These facts
are matched against the rules.

58 Chapter 2. Fundamentals

The inference engine, that is the core of the rule-based system. It matches rules against facts
and infers new facts. That is, it uses the available knowledge to generate new conclusions
[AB92] respectively new knowledge. It has the following components:

• The pattern matcher, that matches facts against the condition-part of rules17. To fasten
up pattern matching of many rules against many facts, algorithms such as Rete [For79]
and Leaps [Bat94] were created. The result of the pattern matching is the conflict set,
an unordered list of rules with satisfied conditions.

• The conflict resolution, that prioritizes the conflict set by applying strategies such as:
priority first, specific rules first [San87]. The output of conflict resolution is an ordered
list of rules with satisfied conditions, called agenda.

The (rule) execution engine executes the rule with the highest priority in the agenda. After
execution, the execution engine adds the resulting new facts to the fact base.

In analogy with the human brain, the rule base is also called long term memory. Rules are
usually valid for a long time span. The fact base is also called short term memory [Neg11].
Facts are currently valid data, they are valid only for a short time span. The inference engine
which matches facts against rules and infers new facts is also called reasoning engine.
This consequent implementation of the analogy results in a clear separation of knowledge and
its processing. Thus, building and maintaining of the system is facilitated [Neg11] and the quality
of problem solving is improved. For instance, the rule base is easy to maintain since changes to
the rule base (adding and removing of facts) are easy to accomplish [Neg11]. Additionally, just
like the human brain, a Rule-based system can deal with incomplete, uncertain and fuzzy data
and allows for inexact reasoning [Neg11].

2.6.1 Rules

Rules, that give rule-based systems their name, are a commonly known and used way of human
experts to represent knowledge. Rules can represent relations, heuristics, recommendations,
directives and strategies. They are characterized by a comparatively simple structure, consist-
ing of an if-part called condition (premise or antecedent) and a then-part is called conclusion
(consequent):

IF <condition>

THEN <conclusion>

The condition (pattern) is a fact, consisting of an object and a value combined by an operator
(= ,< ,> ,...).

17Pattern matching in Rule-based systems differs from string pattern matching algorithms, such as the Boyer-
Moore algorithm. String pattern matching algorithms search for a string, the pattern, in a text, that is, in another
string [Gal79]. Rule pattern matching algorithms, search for facts that satisfy the conditions of a rule.

2.6. Rule-based systems 59

IF <object operator value>

THEN ...

An example is:

IF blood sugar level(x) < 3,9 mmol/L

THEN x has hypoglycemia

A rule can have more than one condition. Multiple conditions are connected by conjunction
and/or disjunctions. The conclusion can consist of multiple parts that share the same condi-
tion(s).

IF <condition1> AND/OR <condition2>

THEN <conclusion1> AND <conclusion2>

That is, a rule is a piece of knowledge that declares, which conclusion(s) can be inferred when
a certain condition/certain conditions are known [RODS78].

When the then-part describes an action, then the rule is of type of production rule. Production
rules are often used in the controlling of production systems, e.g., in automotive industry. When
the condition of the rule is satisfied (true), the rule can be fired, that is, the conclusion can
be executed. The firing of a (production) rule may change the fact base by adding a new
fact [Neg11].

Rules are determined as well as selected by an inference engine and they are executed by an
execution engine to solve problems. Thereby, determining means that patterns are matched
against facts. From the resulting list of rules usually one rule is selected for execution (acting,
firing). This problem solving process is an iterative process and is also known as recognize-act
cycle [MBLG90].

The inference engine can use different inference rules to produce new knowledge, that is, to add
new facts to the rule base, such as modus ponens and modus tollence [AS10]. This production
of new facts from rules by means of inference rules is called inference.

The pattern matching needed to reach a conclusion, produces inference chains. This chains
show how rules are applied to reach a conclusion [Neg11] or in other words: an inference chain
is a group of multiple inferences that connects a problem with its solution [GR05]. Basically,
there are two problem solving strategies: forward chaining and backward chaining. In the next
sections, we will have a closer look at these both inferencing methods used for problem solving.

2.6.2 Forward chaining

Forward chaining is data directed inference. It is the reasoning from facts to the conclusion.
The chain of inferences is traversed from the problem to solution [GR05]. In forward chaining

60 Chapter 2. Fundamentals

Figure 2.32 – Forward chaining: At time t1, the pattern matcher matches rules and facts to compute
a conflict set of applicable rules. The conflict resolution creates from the conflict set the agenda, an
ordered list of rules. The first rule of the list (A → D) is fired by the execution engine and a new fact
(D) is added to the fact base. At time t2 the fact base contains D and the next rule to be fired is
searched. (The figure refers to [AB92,Neg11].)

first the rules which can be applied are determined by the pattern matcher. The result of this
process is the so called conflict set. The conflict set is ordered in the conflict resolution process.
There exist different strategies to order the list, e.g., prefer more specific rules, prefer newer
rules, prefer rules with a higher priority, use meta rules [San87]. The agenda is the result of
conflict resolution. The first item of the agenda is executed by the execution engine. This leads
to a new entry in the fact base. The steps, pattern matching, conflict resolution and firing are as
long executed as no rule is in the agenda or if exit is specified by the fired rule. The principle of
forward chaining is depicted in Figure 2.32.
We will sketch an extremely simplified example of the diabetes scenario, with an empty fact
base and the following rule base18:

#1 RULE hypoglycemia

IF blood_sugar_level(x) < 2,78 mmol/L AND

(being_hungry(x) OR being_pale(x) OR sweat(x))

THEN x has hypoglycemia

#2 RULE hyperglycemia

IF blood sugar level(x) > 6,9 mmol/L AND

(frequent hunger OR frequent thirst OR frequent urination)

18The values for hypoglycemia and hyperglycemia differ in the literature. The values we use are
preprandial plasma glucose levels for adults with diabetes and we refer to The American Diabetes Asso-
ciation http://www.diabetes.org/living-with-diabetes/treatment-and-care/blood-glucose-control/checking-your-blood-
glucose.html .

2.6. Rule-based systems 61

THEN x has hyperglycemia

#3 RULE handle_hypoglycemia

IF hypoglycemia(x)

THEN take carbohydrate

#4 RULE handle_hyperglycemia

IF hyperglycemia(x)

THEN take insulin

Now suppose, that Jane suffers from diabetes and uses a RBS with the rule base introduced
before. She measures her blood sugar value. Additionally, she inputs in the system that she is
pale. The value of measurement is 8,1 mmol/L. This value is added to the fact base. Now the
system searches in the rule base for rules whose conditions are getting true now. The condition
of rule 2 matches the fact (8,1 mmol/L > 6,9 mmol/L and being pale). The conclusion of rule
2 (Jane has hyperglycemia) is added to the fact base. Now rule 4 is getting true and the result
and advice for Jane is: take insulin.

2.6.3 Backward chaining

Backward chaining is hypothesis driven or goal directed inference; it is the reasoning from the
hypothesis back to the facts. To accomplish a goal, the process of backward chaining sets up
sub goals and tries to satisfy them [GR05]. The goal or hypothesis is formulated by the user
of the Rule-based system. First, backward chaining searches in the rule base for rules whose
THEN-part matches the goal. Is such a rule found, and the IF-part of this rule matches facts in
the fact base, the rule is fired. Usually the matching facts are not found in a first step. When
the needed facts are not in the fact base, the inference engine has to stack the goal, that is,
it has to put the goal aside. It sets up a new goal respectively a sub-goal to prove the IF-part
of the rule. The inference engine searches for rules that can prove the sub-goal. This process
is iteratively repeated until the goal is fired or no rules are found to prove the current sub-goal.
This description and the illustration of backward chaining in Figure 2.33 is based on [Neg11].
We also want to give an example from the diabetes scenario. Thereby, we use the rule base
introduced in Section 2.6.2 and add to the fact base: blood sugar level(Paul) = 2,1 mmol/L. Now
we ask: ”Who has to take carbohydrate?” First the system searches for a fact that answers the
query directly. But there does not exist one. Then it searches the rule base for rules that would
answer the question when their conclusion would be true. The system finds rule 3. Now the
system looks for a fact that would fulfill the conclusion of rule 3 (hypoglycemia(x)). It does not
find a fact, thus, it searches again for a rule that would give the answer to the question who has
hypoglycemia, if its conclusion would be fulfilled. The system finds rule 1. When it searches for
a fact, it finds the fact blood sugar level(Paul) = 2,1 mmol/L. Now rule 1 can be fired and the fact

62 Chapter 2. Fundamentals

Figure 2.33 – Backward chaining: The inference engine aims to infer fact Z. It searches in the rule
base for rules with Z in its THEN part. It finds C v D → Z. Fact C and D have to be established. C
is in the fact base. Sub goal D is set up. D is not in the fact base but there are two rules with D
in the THEN-part (A → D and S & B → D). The conflict resolution determines A → D to be used
first. A is in the fact base. A → D is fired. D is inferred and now available in the fact base. The
inference engine returns to goal Z. C v D → Z can be fired and Z can be established. (The figure
refers to [AB92,Neg11].)

hypoglycemia(Paul) is added to the fact base. Thus, the initial question can be answered.

2.6.4 Discussion forward chaining vs. backward chaining

Forward chaining matches facts against rules and thereby generates new facts. Backward
chaining starts with a goal. It looks backwards for facts that matches rules and therefore satisfy
the goal. If needed, it looks for rules that generate the needed facts (satisfying of sub goals).
Forward chaining is executed when a new fact is added to the fact base.
Luger [Lug05] states, that the question whether to use forward or backward chaining is deter-
mined by the problem itself. Forward and backward chaining have exponential complexity. But
dependent on the complexity of the rules, the nature and availability of the problem data, and

2.6. Rule-based systems 63

the shape of the state space19 it can be more efficient and therefore faster to use one or the
other reasoning strategy.
Luger [Lug05] proposes to use forward chaining in three situations: (i) when it is difficult to for-
mulate a goal, (ii) for solving interpretation problems, when all or most data are given in the
initial problem statement and no data have to be acquired, (iii) when the number of potential
goals is large but there are only a few ways to use facts of the problem instance. Otherwise
forward chaining can cause the generation of a lot of facts that are never needed. Furthermore,
according to [Lug05] backward chaining should be applied (i) when a goal is given or can easily
be formulated, (ii) when the problem data are not given but have to be acquired to solve the
problem, because backward chaining can efficiently guide the acquisition, (iii) when there is a
large number of rules that match the facts of the problem. In this case, an early selection of
goals can decrease data that have to be searched.
That is, backward chaining uses knowledge of the desired goal to guide the search and reduce
the search space. Backward chaining is executed when a goal is formulated. Therefore, there
are no superfluous inferences drawn and facts generated. The algorithms used by backward
chaining are more complex and causes higher execution costs than that of forward chaining
(see [AB92]).

2.6.5 The Rete algorithm

The pattern matcher of the rule engine matches facts against the condition-part of rules and cre-
ates the conflict set. Usually, the conflict set has to be recomputed several times. For forward
chaining the recomputation has to be done every time a fact is added to or deleted from the fact
base. For backward chaining every formulation of a new goal causes a recomputation of the
conflict set. Because the process of pattern matching is the heart of the Rule-based system, its
efficient execution is extremely important.
The simplest way to recompute the conflict set, is to iterate over rules and facts and to compare
the conditions of rules to facts one by one. This approach performs extremely bad for large
collections of rules and facts. To efficiently execute pattern matching, pattern matching algo-
rithms, such as Rete [For79, For82], TREAT [Mir87], LEAPS [MBLG90] and Matchbox [Per89]
were created. Today, Rete (respectively its successors) is a de facto standard for pattern match-
ing algorithms, used in many established rule-based systems. This is the case although e.g.
LEAPS is significantly faster and less memory consuming than Rete [MBLG90]. The problem
with LEAPS is that it is difficult to comprehend (and therefore to implement) its data structures
and algorithms [Bat94]. Here we will only describe Rete because it is the most commonly used
algorithm.

19The state space is a graph that models a deeper structure of the problem. The nodes represent stages of a
problem solution, the arcs represent steps in problem solution e.g. inferences. Solving a problem is the search in
the state space for a path to the solution. [Lug05]

64 Chapter 2. Fundamentals

Rete was developed in the 1970th for use in production systems. It compares large collections
of patterns with large collections of objects. The Rete algorithm is very fast because it is based
on two empirical observations [GR05,For79]:

1. Temporal Redundancy: Only a few facts are changed by firing of a rule and only a few
rules are affected by these changes of facts.

2. Structural Similarity: Often, the same pattern appears in the left-hand side of multiple
rules.

Rete limits the effort for recomputing the conflict set after a rule is fired. Rete avoids a one to one
comparing of facts and rules by maintaining the internally state information equivalent to that in
the fact base. That is, for each pattern, matching facts are stored in a list. When a fact enters
the fact base, matches and partial matches are computed and added to the list. This information
is stored until the facts leave the fact base. Thus, the pattern matcher using Rete never has to
touch the rule base, but it computes changes to the conflict set out of the small set of recently
changed facts.20 The iteration over the rule base is avoided by using a tree-structured sorting
network for rules. (For details see [For82].)

2.7 Summary

In this section we have explained the fundamentals of this work. Today, business processes
have to be dynamic as today’s business processes are subject to frequent changes. Thus, busi-
ness processes have to adapt fast, easily but consistently to new situations. Today’s workflow
management systems do not offer the required flexibility. This work aims to develop dynamic
and context-aware workflows that fit the requirements of today’s businesses.

A workflow is flexible, if it can adapt its structure to its context. Thus, we started this chapter
by explaining the terms context and context-awareness. Afterwards we described and defined
workflows in general and explained how workflows are specified and executed by means of
workflow management systems. We discussed dynamic workflow management and classified
dynamic WfMSs.
WfMSs need computer understandable descriptions of workflows as input to execute the work-
flows. These descriptions have to be written in a form that can be easily and efficiently analyzed.
Petri nets are a modeling language for the description of distributed systems that is specially
suited to describe workflows in the needed form. Petri nets have an intuitive graphical notation.
They are a formal language and a mathematical theory. Thus, Petri net models can be ana-
lyzed by simulation and formal analysis methods. Furthermore, workflows can be easy mapped
to Petri nets and are well researched. Therefore, we conclude the chapter by a detailed descrip-
tion of Petri nets, especially Condition Event Nets, Hierarchical Petri nets, Colored Petri nets,

20The facts have be changed in the last recognize-act cycle.

2.7. Summary 65

and Hierarchical Colored Petri nets.
We analyzed, whether the introduced kinds of Petri nets are suitable for the definition and verifi-
cation of static and dynamic workflows. Colored Petri nets have the same computational power
as low level Petri nets but they add data types to Petri nets. Thus, nets modeled by Colored
Petri nets are much smaller and large workflows can be better modelled with them than with low
level nets. Hierarchical Colored Petri nets additionally add the concept of hierarchies to CPNs.
This concept allows for the mapping of hierarchical workflows. This concept can also be used
as base concept for the mapping of dynamic workflows because by adding a dynamic binding
of sub nets at run time, it supports the dynamics of workflows we want to provide. Therefore,
we decided to build our concept on Hierarchical Colored Petri nets.

Additionally, we described Rule-based systems which will be used to select the sub workflows
that adapt workflows at run time in case of context changes.

66 Chapter 2. Fundamentals

Chapter 3

Flexwoman — a flexible context-aware
Workflow management system

Traditional WfMSs offer a high degree of control over the flow of work, but their ability to react
to events that lead to run time changes of the workflow are very limited. The events and the
belonging reactions have to be predefined at build time by means of the construct conditional
routing (see Sections 2.3.4 and 2.3.5). Unforeseen events cannot be handled by traditional
WfMSs. But, usually almost all non trivial workflows are affected by events that require unfore-
seen run time changes [AEtH03]. Thus, users bypass the WfMS to handle these events. If this
is done too frequently, the workflows no longer reflect reality and are of little avail to the users.

In this work, we want to find an approach that can on the one hand handle non predictable
events and events for which the time of their appearance is non predictable. These events lead
to changes of one or few workflow instances at run time. On the other hand, we want to preserve
a large part of the control that traditional WfMSs offer. Furthermore, we focus in this work on
processes that are affected by more foreseen than unforeseen changes.

Even though our approach is a generic one, which is applicable for different application scenar-
ios, we choose as the motivating example the healthcare domain. Healthcare is an appropriate
application domain for our research, because treatments have to react flexibly to events such
as: emergencies, allergic reactions of patients, abnormal laboratory results, and frequent new
scientific findings. These special properties of healthcare influence our work.

Another goal of this work is to support workflow based applications that act on mobile devices.
In mobile environments the context changes frequently. Thus, adaptations to the current context
are especially of great benefit in mobile environments. For instance, for a traveler with diabetes
it might be a great gain if the application adapts automatically to the current location of the
traveler and gives on request immediately the telephone numbers of the nearest hospitals.

With our work we will design, develop and implement a flexible context-aware workflow manage-
ment system that automatically replaces workflow parts based on context information. There-

67

68 Chapter 3. Flexwoman — a flexible context-aware Workflow management system

fore, we call the system Flexwoman (Flexible context-aware workflow management system). In
this chapter we will give a detailed overview of our work. We will first introduce the requirements
to our work. Subsequently, we will discuss possible solutions. The ideas and concepts we de-
veloped to achieve our objective, and the challenges we were faced with while developing our
solution will be described in detail in this chapter.

3.1 Motivation and requirements

Usually, every non trivial workflow is affected by events that require non or not exactly pre-
dictable run time changes. Additionally, there is the trend to support domains by WfMSs, which
traditionally have non predictable or not exactly predictable business processes, to benefit from
the advantages of workflows such as documentation and process automation (for details see
Section 2.3.3). Not exactly predictable workflows are workflows with control flow information
that are not available until run time, for instance, workflows for which it is not clear, whether or
at which point in time a change occurs, and workflows whose structure depends on run time
results of the workflow or on external context information. Traditional WfMSs cannot handle
such workflows. This limitation results from the architecture of traditional WfMSs. This archi-
tecture follows the workflow reference model, which recommends a strict separation of process
definition at build time and process execution at run time (see Section 2.3.2). When all possi-
ble changes have to be pre-modeled at build time, only changes foreseen at build time, but no
changes that occur unexpected run time, can be supported.

When unpredictable changes cannot be handled by a system, but these changes occur, the
only way to handle them is to bypass the system. But a frequent bypassing of a WfMS makes
workflow management to a burden and in worst case no longer profitable because: (i) the
workflows do not reflect reality, (ii) the flow of work is not correctly documented and (iii) the
costs for bypassing a system are enormous.

But also the handling of foreseen changes of the workflow as suggested by traditional WfMSs
causes problems. Pre-modeling of foreseen changes implies a complete modeling of the al-
ternative routing path for every possible change. Doing this with the constructs available in
traditional workflow systems, that is, by control flow patterns such as exclusive choice and sim-
ple merge, makes modeling not only time consuming but also leads to a loss of clarity. The
lack in clarity is especially a problem, when many alternative routing paths have to be designed.
Additionally, applying these constructs means to interweave workflow and routing rules, which
complicates workflow maintenance.

The following general requirements result from these general problems:

G1: Reaction to unforeseen events: We have to bridge the gap between build time modeling
and run time execution, to allow for a flexible reaction to unforeseen events.

3.1. Motivation and requirements 69

G2: Easily understandable representation: We have to find an approach that makes the repre-
sentation of the workflow easy understandable and maintainable.

Furthermore, we do not aim to create an approach tailored for only one application scenario
or application domain. Our goal is to develop a generic approach applicable in different mo-
bile application scenarios of different application domains. Nevertheless, we have chosen the
healthcare domain as our application domain. This domain is characterized by processes that
are potentially life-saving. Thus, mistakes might cause irreparable damages of patients’ health
state and must be avoided. In critical situations it is necessary that the physician in charge has
location independent (authorized) access to the patient record to allow for flexible reactions to
unforeseen and foreseen events. This flexible reaction to events has to be added to the orga-
nizational memory1, e.g., by means of logs, to allow for i) its reuse in similar cases and ii) its
traceability to recognize problems in the process definition. Furthermore, time is a critical fac-
tor in healthcare. Therefore, the physician has to be unobtrusively and efficiently supported by
automated adaptations of the application to the current context such as location, time, or health
state of the patient.

The general requirements (G1-G2) introduced above, are relevant in the context of healthcare.
In the following, we set them in the context of healthcare.

G1: Reaction to unforeseen events is important, because in healthcare, deviations of the work-
flow occur often. Without flexibility the user has to bypass the system to perform his/her
tasks. The bypassing implies a gap in the documentation of workflows, which is not ac-
ceptable because healthcare processes have to be completely documented to understand
treatments and activities of health personnel in case of problems.

G2: Easily understandable representation is relevant in healthcare, because there is a lack of
time. In case of manual adaptations at run time, it is important that the user understands
the workflow easily and fast. Otherwise there is a serious risk to introduce errors by the
manual adaptation. Furthermore, it should be easy to identify similar cases that can be
derived from existing cases. The deriving can avoid errors.

Healthcare has special requirements we have to consider. Thus, the general requirements have
to be extended by special, healthcare specific requirements:

S1: Automatic context-aware adaptation (including automatic context acquisition and change
detection): The system has to support physicians in a time-critical environment, where
mistakes have to be avoided. Efficiently executed and automated context adaptations are
a good way to support the physician.

1See [AH98] for more information on the term organizational memory.

70 Chapter 3. Flexwoman — a flexible context-aware Workflow management system

S2: Correctness: Healthcare applications have to work correctly, also after automatic or manual
adaptations. Any mistakes have to be avoided because they can cause problems to the
health status of a patient.

S3: Efficient execution: Usually, time is a critical element in healthcare. Therefore, we have to
find an approach that is able to perform context-aware workflow adaptations efficiently and
quickly.

3.2 Evaluation of flexible WfMS concerning our requirements

In Section 2.4 we described the following approaches of flexible workflow management systems:

• Schema evolution: evolutionary changes of the workflow definition,

• Ad-hoc changes: short term changes of the workflow instance,

• Open point approach: open points of partly defined workflow definitions are completed at
run time with workflow fragments,

• Multi instance activity: makes the number of task iterations changeable,

• Late composition: workflow fragments defined at build time are composed at run time to a
workflow instance, and

• Generic interface: generic interface for dynamic changes at every workflow task.

In this section, we classify a selection of the introduced approaches and compare them regard-
ing the requirements defined in Section 3.1. As explained before, our aim is to support changes
resulting from context changes occurring at run time and affecting only one or few instances.
Therefore, Schema evolution, which handles build time changes of the workflow definition and
affects all workflow instances, is not relevant for this work. We will also exclude Multi instance
activity from our discussions as this approach solves only a limited problem of dynamic workflow
adaptation and usually, it cannot be used alone to apply workflow adaptations. The remaining
approaches can be grouped in the following classes, which will be the subject of our compari-
son:

C1. Complete workflow defined : the complete workflow is defined at build time and changed or
refined at run time (Ad hoc changes and Generic interface).

C2. Workflow partly defined : the workflow is partly defined at build time whereby placeholder
tasks mark points to be defined by fragments at run time (Open point approach).

3.2. Evaluation of flexible WfMS concerning our requirements 71

C3. Only fragments defined : workflow fragments are defined at build time and composed at run
time (Late composition).

In the following, we compare these classes (C1 - C3) regarding the requirements (G1-G2, S1-
S3) defined in Section 3.1.

C1: Complete workflow defined at build time, changed at run time:

(G1) This approach can handle foreseen and unforeseen changes. There is no limitation re-
garding the application of changes to (specially marked) parts of the workflow (so called
change regions). Every task can be changed. Manual workarounds are not needed. Thus,
a seamless documentation of the workflow can be created.

(G2) There exists a complete, readable definition of the (default) workflow at build time. Known
deviations are not pre-defined and cannot be visualized beforehand or used as template
for adaptations.

(S1) The adaptations of the workflow are usually managed manually by the user. An automation
can be reached by using a rule engine.

(S2) There exist approaches to guarantee correctness of the changed workflow instance. When
ad hoc changes are manually applied, checks have to be executed at run time and not
beforehand at build time.

(S3) To guarantee correctness, run time checks of run time changes are necessary. These run
time checks are complex and time consuming. On the other hand, the approach has the
advantage that in case of no changes the workflow is handled like a static workflow and
no additional checks have to be executed.

The definition of workflows belonging to that class have to be adapted and checked for correct-
ness only in case of context changes at run time. The approach is suitable and fast for workflows
where changes of the workflow structure are the exception rather than the rule.

C2: Workflows with placeholder tasks defined at build time, completed at runtime:

(G1) One approach of this class (Late modeling) allows for a modeling of fragments at run time.
This approach can handle foreseen and unforeseen changes. A seamless documentation
can be created for the execution of managed workflow instances. Another approach of
this class (Late selection) only allows for handling foreseen changes. Thus, the approach
Late selection should not be used when a seamless documentation is needed.
In general, the pre-definition of change regions at build time using placeholders reduces

72 Chapter 3. Flexwoman — a flexible context-aware Workflow management system

the flexibility of this approach. A way to increase flexibility is the enlargement of change
regions. But this enlargement decreases understandability and increases the effort for
correctness checks at run time significantly.

(G2) Workflows are partly defined at build time. Abstract tasks are modeled as placeholders
for possible changes. At build time only a partly specified workflow definition and not an
easily readable complete workflow definition exists.

(S1) The run time replacement of placeholder tasks can be done manually or automated by
rule engines.

(S2) There exist approaches to guarantee correctness of the changed workflow instance. If the
fragments that replace placeholder tasks at run time are already checked at build time,
these checks have not to be executed at run time. This approach saves time at run time.

(S3) Partly defined workflows and the fragments defined at build time are checked for correct-
ness at build time. In case of Late selection, the fitting fragment is chosen from a small
selection of pre-checked fragments. Therefore, the replacement algorithms are compar-
atively simple. The search for suitable fragments starts immediately if an open point is
entered, a check for exceptional cases (that causes a run time definition of fragments) can
be omitted. In case of Late modeling, the late modeled fragments and affected workflow
instances have to be checked for correctness at run time. This requires more complex
algorithms and is therefore more time consuming.

In approaches of this class, workflow parts not known at build time are modeled as placeholder
tasks, for replacement by concrete fragments at run time. Dynamic changes are only appli-
cable to placeholder tasks. Fewer placeholder tasks require less adaptation work at run time.
Therefore, this approach is efficient for workflow definitions with few placeholder tasks.

C3: Definition of fragments at build time, which are composed at run time:

(G1) This approach builds the workflow out of fragments every time it has to be executed.
Thus, an extra check for exceptional cases that change the workflow can be omitted. This
approach is designed for processes which often change the order of execution of fixed
components. Approach C3 can allow for fragment modeling a run time. When fragment
modeling at run time is allowed, foreseen and unforeseen changes can be managed, oth-
erwise only foreseen changes can be handled. But only if C3 supports also the handling
of unforeseen changes, workflows can be documented without gaps.

(G2) The approach deals with fragments that are newly combined at run time for each work-
flow execution. Thus, it lacks an easily understandable build time representation of the
workflow.

3.2. Evaluation of flexible WfMS concerning our requirements 73

(S1) The composition of the workflow can be done manually but usually an automated compo-
sition by AI planners is executed.

(S2) To guarantee correctness, correctness checks have to be executed. The correctness
checks of fragments and their combinations should be done at build time if possible. This
reduces or completely avoids time consuming correctness checks at run time. Thus, only
for unforeseen changes run time checks are necessary.

(S3) For the composition of the workflow complex and therefore time consuming algorithms
are needed. If not only the composition is executed at run time, but also the correctness
checks, this results in a large overhead at run time.

Class C3 is extremely flexible. It deals with fragments that are for each workflow execution
newly combined at run time. It is not limited by a pre-defined change region. It is suitable for
workflows where changes of the workflow structure are not the exception but the rule.

Discussion Table 3.1 summarizes the identified classes of approaches for flexible workflow
management (C1-C3) regarding their compatibility with our requirements. The classes cover
the range of approaches from complete workflows defined at build time, where changes to the
workflow structure are the exception, to approaches, where only fragments are defined at build
time, because the workflows change that often that a default version cannot be defined.

Column Flexibility shows that the flexibility of workflows with placeholder tasks (C2) is lower than
that of other approaches, because changes can only be applied to placeholder tasks. Thus, it
is the only approach, where changes are limited to pre-defined change regions.

In column Representation we analyze whether a user2 can understand the workflow at build
time. C1 (complete workflow) defines a default workflow at build time. Such a workflow is well
understandable. The problem of C1 is that also foreseen deviations of the default workflow are
not identified beforehand and have to be designed each time at run time (when changes are
manually applied). Class C2, which works with placeholders, does not explain how the default
workflow looks like, but the foreseen changes can be visualized. The most flexible approach,
C3, composes fragments. At build time, it offers only fragments of the workflow. This is difficult
to understand for a user.

The column Automation describes how the approaches are usually automated. All approaches
offer the possibility to manually configure the system. For all approaches the automation of the
adaptation is researched. While for the classes C1 and C2 rule engines are the commonly used
way to automate it, for C3 AI planners are used to compose the pre-defined fragments. Rule
engines are today well researched and optimized. They are usually at run time faster than the
AI planners, because rule engines perform the largest part of work at build time and AI planners
doing nearly all the work at run time.

2the workflow modeler or the manager of a business

74 Chapter 3. Flexwoman — a flexible context-aware Workflow management system

The column Correctness shows that for all considered workflow classes algorithms exist, which
guarantee the correctness of the workflow.

In column Efficiency the run time speed is depicted. This column shows that approaches with
placeholders (C2) and workflows completely defined at build time (C1) are faster in run time exe-
cution than approaches where only fragments are defined at build time (C3). The reason is that
the build time definition of workflows saves time consuming composition work and correctness
verifications at run time.

Class / property Flexi-
bility
(G1)

Represen-
tation
(G2)

Auto-
mation
(S1)

Correct-
ness
(S2)

Efficiency
(S3)

Complete workflow defined.
(C1)

++ + ++ +- ++

Workflow partly defined. (C2) + + ++ + ++
Only fragments defined. (C3) ++ +- ++ +- +

Table 3.1 – Comparison of classes of dynamic workflow management regarding the requirements
of our application environment defined in Section 3.1 (++ best marking, - - lowest marking)

Referring to this comparison we decided that class C3 is not convenient for our application
scenario because of its representation issues (G2) and the run time composition of fragments
(S3). Class C1 lacks predefined deviations of the workflow (G2). This shortcoming causes the
devaluation of this class. Thus, class C2 is the approach we use as base for our approach. Its
flexibility is not as high as that of C1 and C3 but we focus in this work on processes that are
affected by more foreseen than unforeseen changes. Such processes can be handled by C2.

3.3 Concept of flexibility in Flexwoman

The basis for our work is the class of dynamic workflow management that makes workflows
flexible by using placeholder tasks (C2). In the following section we derive our approach (Flex-
woman) from C2. Thereby, we keep the positive properties of C2, while additionally searching
for solutions to the weaknesses of C2. We visualize the differences of C2 and Flexwoman in
Figure 3.2.

The positive properties of C2 we will keep (see above), are the following:

• This class offers the possibility to automatically react to context changes by predefined
sub workflows that can be chosen dependent on context.

• Additionally, some approaches of this class allow for the reaction to unforeseen events by

3.3. Concept of flexibility in Flexwoman 75

the possibility to define of sub workflows at run time. In case of run time definition, sub
workflows can be derived from pre-defined sub workflows, or they can be defined from
scratch. In case of deriving of sub workflows, methods of class C1 are used for the minor
adjustments of the sub workflow (e.g. moving or swapping tasks). The deriving is less
error prone than a new sub workflow definition.

• This class reduces errors as it allows for the repeated use of sub workflows to refine dif-
ferent substitution transitions. Thus, sub workflows do not have to be redefined or copied
(what causes problems in case of changes at the sub workflow). Additionally, errors are
avoided by deriving sub workflows from existing ones in case of unforeseen events (see
above).

• This class hides details not needed on a particular level of the workflow, and it hides
details that need authorized access from workflow levels. The information can be hidden
by allowing for workflow refinement over more than one level (by using sub workflows).

• An efficient execution of predefined sub workflows is offered. They can be chosen at run
time and do not have to defined at run time (C1) or composed at run time (C3).

In the comparison in Section 3.2 we found that one main drawback of using placeholder tasks
(C2), is, that the placeholders fix the change regions at build time. This limits the flexibility of this
approach, because outside the fixed change regions, changes cannot be applied. To improve
this, every task of a workflow can be replaced at run time, just like an abstract task. That is,
for every task there is a list of fragments defined which can replace this task at run time. The
fragments will be reusable by other tasks. Another problem of approaches of class C2 is the
loss of readability and understandability of the workflow when the number of placeholder tasks
grows. Therefore, we propose to inline the default sub workflows in the workflow definition at
the highest level. Thus, a default workflow or the most likely workflow is available at build time.
This eases understandability and readability at build time. The inlining of sub workflows has the
drawback that possibly details not necessary for the understandability of the workflow definition
at highest level are shown. For the handling of this case the inlining of the default sub workflow
has to be avoided, and the default sub workflow has only to be marked in the list of possible sub
workflows.

Before showing the visual comparison of Flexwoman and the class of partly defined workflows
(class C2) in Figure 3.2, we present the example used in Figure 3.2 as a conventional workflow
in Figure 3.1. The representation of the conventional workflow aims to support the understand-
ing of the following comparison. In Figure 3.1 we define a small workflow with a conditional
routing path. At run time, one branch (a or d or e,f) is executed dependent on a condition.
Afterwards b is executed independent of the branch executed before. Approaches that use
placeholder tasks avoid conditional branches. Instead of these branches fragments are defined
that can replace an abstract placeholder task (see Figure 3.2(a)). These fragments can not

76 Chapter 3. Flexwoman — a flexible context-aware Workflow management system

Figure 3.1 – The upper part of the figure shows a conventional workflow definition. The lower part
shows examples of workflow instances of this workflow definition (I1, I2). Conventional workflows
split and merge branches to define conditional routing paths. Usually, there is no way to change
the workflow definition when running workflow instances exist and the workflow instance cannot be
adapted to unforeseen changes at run time.

only be defined at build time but also at run time. Flexwoman is shown in Figure 3.2(b). In
Flexwoman every task can be replaced at run time. Thus, the fixing of the change regions is
avoided. Flexwoman explicitly supports the reuse of fragments. A fragment defined for one task
can be reused for another task as shown in Figure 3.2(b) for task b. In Flexwoman the default
workflow is defined at build time. This workflow is complete, and therefore always readable and
understandable.

The definition of workflows with Flexwoman is of similar complexity than that of other ap-
proaches that work with placeholder tasks. At build time, the following objects have to be
defined: a standard workflow, the fragments that replace tasks at run time, their interdepen-
dencies (replacement of which task by which fragment), and the rules for replacing. At run time,
the workflow is executed and adapted (to the current context), if necessary. Before a task is ex-
ecuted at run time, the modeler can change existing rules and fragments or add new fragments
and new rules that refer to this task. An automated execution of this process requires an explicit
definition of rules in a language which the tool that applies the changes understands.

3.3.1 Realization of the flexibility concept

For the realization of Flexwoman we build on a concept traditional workflow systems offer –
hierarchical workflows. Hierarchical workflows offer a multi level view on a workflow definition.
Sub workflows can detail a workflow on more than one level. Each level offers a more detailed
view on the workflow than the level in the hierarchy above it. A sub workflow is part of a larger
workflow, the so called initiating workflow (see Definition 7). In the initiating workflow the sub
workflow is represented by a single workflow element. This workflow element points to exactly
one sub workflow. At run time, the complete initiating process including the sub workflow is

3.3. Concept of flexibility in Flexwoman 77

(a) (b)

Figure 3.2 – Subfigure (a) shows the workflow from Figure 3.1 as defined in class C2. The fragments
f0-f2 are defined at build time, f3 and f4 at run time. f0-f4 are alternative replacements of the
placeholder task plhTask at run time. Task b is not marked as a placeholder. It is a concrete task.
Thus, b cannot be replaced at run time. Subfigure (b) presents the example workflow described with
Flexwoman. Flexwoman does not have placeholder tasks. The most likely fragment (a) is used to
define the workflow at build time. At run time it can be replaced by f1-f4. Additionally, for task b
fragments can be defined to replace b at run time. Thereby, fragments can be reused (f3).

executed.

We extend this idea and link the single workflow element that represents the sub workflow in
the initiating workflow to many alternative sub workflows (see Figure 3.3). That is, we have
several specifications of one sub process element of the initiating process, e.g., in Figure 3.3
task t1 of workflow wf1 has the sub workflows sub1.1 and sub1.2. This proceeding is natural,
as usually, a sub process can have different specifications dependent on the current context
of the initiating workflow. At runtime one specification is chosen dependent on the context. A
further advantage of this procedure is, that for a check, whether the attached sub workflow is
valid, the same approaches known from hierarchical workflows can be used. Our approach also
realizes two concepts introduced for hierarchical workflows (i) the usage of sub workflows for
the refinement of more than one tasks and (ii) the refinement of workflows over more than one
level. Both concepts are visualized in Figure 3.3. The usage of sub workflows for the refinement
of more than one tasks, is shown by sub workflow sub12.2 that refines task t13 and task t16.
The example for the refinement over more than one level is t1 of workflow wf1. It is refined by
sub workflow sub1.2. Sub1.2 contains task t13, which is refined by sub workflow sub12.1.

Because the flexibility concept is the key concept of this work, we visualize the main idea of this

78 Chapter 3. Flexwoman — a flexible context-aware Workflow management system

Figure 3.3 – We are allowing for attaching of several sub workflows to one workflow element on the
level of the indicating workflow, e.g. t1 of wf1 has the sub workflows sub1.1 and sub 1.2; t3 has the
sub workflow sub3.1. A sub workflow can be used to refine several elements, e.g. sub12.1 refines
t13 and t16. Sub workflows can act as indicating workflows, e.g. t13 of sub1.2 is refined by sub12.1.
Thus, we are allowing for the refinement of workflows over more than one level.

concept in Figure 3.4 with a concrete but simplified example that shows a form of therapy for di-
abetes (ICT). This example extends the example in Figure 2.3. Its initiating process is Compute
insulin for injection before each meal (a). This initiating process has two sub processes to input
the estimated carbohydrates of a meal – (b): the estimation and the input is done manually by
the user and (c): the estimation is executed automatically by a software program that analyses
a picture. Dependent on the context, the sub workflow (b) or (c) is chosen. As usually people
are not equipped with such a software, the default process is (b). We integrate the default sub
process in our initiating process for a better understanding of the process.

3.3.2 Formal description of the main concepts in Flexwoman

In this section we formally describe the concepts introduced before. The main ideas of Flex-
woman were introduced in Section 3.3 and in Subsection 3.3.1:

1. Replacement: A task, or fragment, can be replaced by several different sub workflows.

2. Reuse: A sub workflow can be used by several tasks (fragments).

3. Multiple levels: A workflow can be refined over more than one level.

4. No predefined change regions: Every task in a workflow can be replaced by a sub work-
flow.

The formal foundation for the implementation of Flexwoman are Hierarchical Colored Petri Nets
(see Section 2.5.5). We have to extend the definition of HCPNs to describe Flexwoman. We

3.3. Concept of flexibility in Flexwoman 79

(a) Process: Compute insulin for injection before each meal. This process
is the initiating process for (b) and (c). The Sub process (b) is the default
case and therefore integrated in the initiating process.

(b) Sub process of process (a): Input of estimated car-
bohydrates of a meal. This is the default sub process.

(c) Sub process of process (a): Estimation of carbohydrates of meal by an
image analysis tool.

Figure 3.4 – Process - Injection of insulin before each meal for a simplified diabetes example (ac-
cording to Intensified Conventional Therapy (ICT)). According to our concept, process (a) has several
sub processes, (b) – the default sub process, and (c).

especially refer to the concept of substitution transitions in HCPNs described in Definition 233.

As defined in Definition 23, substitution transitions are transitions, that show a less detailed
view on the behavior of the net than represented by corresponding subnets. According to idea
1 (idea replacement), we will support not only a single subnet to a substitution transition, but
more than one. The assignment from substitution transition and subnet is defined with port-
socket relations (see Definition 26). Ports are the interface of the subnet to the environment and
sockets are the interface of the substitution transition. A Port-socket relation function assigns
port-socket relations to substitution transitions (see Definition 27):

PS(t) = {(p, p′)}, whereby: p is a socket place of the substitution transition t, and
p′ is a port place of submodule SM(t) assigned to t. �

We only need to slightly extend the concept of port-socket relations to deal with different sub-
modules. We have to make sure that port-socket relations of different assignments of a substi-
tution transition should not be confused. Thus, we will define port-socket relation functions for a
substitution transition t and a sub model sm.

3The first paper describing HCPNs [HJS91] additionally introduced the concept of substitution places — places
that can be replaced by place bordered subnets. The authors expected that both substitution types can be handled
in the same way. Lakos [Lak93] disproved that and adapted the channel communication extension of CPN (see
Christensen et al. [CH94]) to handle substitution places. The graphical notation of this approach is not intuitive and
the handling seems complex. Because we do not aim to work at hierarchies of states, we will skip the discussion
about substitution places because it is not relevant for our work. We will focus on substitution transitions.

80 Chapter 3. Flexwoman — a flexible context-aware Workflow management system

Definition 32 (Port-socket relation function (t,sm)) . A port-socket relation function PS(t, sm)

assigns port-socket relations to substitution transitions (t) and a submodule (sm).

PS(t, sm) = {(p, p′)}, whereby: p is a socket place of the substitution transition t, and
p′ is a port place of a submodule sm = SM(t) assigned to t. �

Definition 33 (Port-socket relation function) . A port-socket relation function PS(t) embraces
all groups of port-socket relations that belong to one submodule or in other words, it embraces
all port-socket relation function (t,s) (PS(t, s)).

PS(t) = {PS(t, sm)}, whereby: PS(t, sm) are port-socket relation functions
that belong to the same substitution transition (t)
but to different submodules (sm). �

Additionally, there is the submodule function defined for HCPNs (see Definition 30). This func-
tion assigns a submodule to each substitution transition (SMF : Tsub → SM), and it allows for
the assignment of one submodule to several substitution transitions. For Flexwoman we need
a function that allows for the assignment of several submodules to one substitution transition,
and that one submodule can be assigned to several substitution transitions. We define the
submodule function for Flexwoman as follows:

Definition 34 (Submodule function Flexwoman) . A submodule function SMF assigns sev-
eral submodules to one substitution transition:

SMF (t) = {(t, sm)}, whereby: t is the substitution transition and sm is the submodule. �

Idea 3 (idea multiple levels) aims to support the refinement of workflows over more than one
level to hide detailed information. This information hiding is useful for a better readability and
understanding of processes. HCPNs come with this property by definition (see Definition 31).
Our extensions do not touch this property.

Idea 2 (idea reuse) aims to reuse previously defined sub modules. Such a reuse is only possible
for sub processes which are not inlined.

Idea 4 (no predefined change regions) aims to avoid the limitation of changes to special prede-
fined regions. In HCPNs every transition can be transferred to a substitution transition.

Definition 35 (Flexwoman) . Flexwoman is a tuple:
Flexwoman = (SM,SMFFlexwoman, PSFlexwoman).

1. SM is a finite set of CPN Modules sm, whereby:
sm = ((P sm, T sm, F sm,Σsm, V sm, Csm, Gsm, Esm, Ism), T sm

sub , P
sm
port, PT sm).

It is required that (P sm1 ∪ T sm1) ∩ (P sm2 ∪ T sm2) = ∅ for all sm1, sm2 ∈ SM such that
sm1 ̸= sm2.

3.3. Concept of flexibility in Flexwoman 81

2. SMFFlexwoman is a submodule function that assigns several submodules and one substi-
tution transition:
SMF (t) = {(t, sm)}.

3. PSFlexwoman is a port-socket relation function that assigns a port-socket relation PS(t, sm) ⊆
Psock(t) × P

SM(t)
port to substitution transition t. It is required that ST (p) = PT (p′), C(p) =

C(p′), and I(p)⟨⟩ = I(p′)⟨⟩ for all (p, p′) ∈ PS(t, sm) and all t ∈ Tsub.

�

3.3.3 Plan of Flexwoman’s system model

With our work we design a flexible WfMS, called Flexwoman, that adapts the structure of work-
flows flexibly and in a context-aware manner. This section gives the big picture of the impacts
of our concept on the system architecture of Flexwoman. The impacts result from our require-
ments as described in the following text and lead to additional functionality a workflow system
has to offer to be flexible and context-aware4.

Requirement S1 strives for automatic context-aware adaptation, if possible. Therefore, con-
text has to be sensed, analyzed and published if necessary. Thus, we will need (i) a com-
ponent for context management that senses and stores context and (ii) a component for
context filtering that analyzes whether context changes influence the structure of the work-
flow and publishes the changes if they influence the structure of the workflow.

Requirement G1: Reaction to unforeseen events, implies the need to change the workflow at
run time, and inform the workflow enactment about this change. Thus, we need an additional
component for workflow adaptation that (automatically) executes structural adaptations and
informs the workflow enactment about the change.

To achieve requirement S2: Correctness, we need a component that executes correctness
checks. This component checks the resulting workflow instance after applying structural
changes and before it is published, for consistency.

In parallel, the execution engine executes the workflow and has to be informed about workflow
adaptations during execution. We also offer the possibility to change/add fragments and rules
manually at run time. These changes have to be checked before usage, too. Flexwoman can
adapt the workflow until all tasks are executed and the workflow is finished.

4The requirements G2: Easily understandable representation and S3: efficient execution do not influence the
architectural concept at this level of abstraction.

82 Chapter 3. Flexwoman — a flexible context-aware Workflow management system

We can formulate a meta workflow for the context-aware adaptation done with Flexwoman,
which provides a process oriented view on Flexwoman in addition to the component oriented de-
scription shown above. There is one fact in the meta workflow that possibly needs a short expla-
nation: The iterative character of the process is designed by the task loop, as Flexwoman aims
for avoiding conditional branches in the workflow. The meta workflow is depicted in Figure 3.5.

Figure 3.5 – Meta workflow of workflow adaptation with Flexwoman

3.3. Concept of flexibility in Flexwoman 83

3.3.4 Structural change operations required of Flexwoman

Flexwoman has to support several operations of structural workflow changes to adapt the work-
flow to the current context. Thereby, we have to implement three of the main ideas of our
concept (see Section 3.3.1):

• Idea insert: A task, or fragment, can be replaced by several different sub workflows.

• Idea reuse: A sub workflow can be used by several tasks (fragments).

• Idea multiple levels: A workflow can be refined over more than one level.

In [WRR07] change patterns are identified. Change patterns describe solutions for commonly
occurring changes. We used the patterns as a guide to find the operations of structural workflow
adaptation we have to support in Flexwoman.5

With our concept, a default workflow is defined at build time and adapted to the current context
by exchanging sub workflows at run time. One of the most important operations we have to
support is the exchange of a workflow fragment with a sub workflow. Thereby, we allow for
sub workflows that do nothing, or in other words, sub workflows that process a null operation.
Additionally, we want to support the operation extract sub process. This operation transforms
a fragment of a workflow into a sub workflow, and hence structures the workflow hierarchically
to hide information, to increase understandability, and to offer the reuse of workflow parts. In
summary, the main operations we have to support are:

1. exchange of workflow fragment and sub process (exchanging of a workflow fragment with
a sub process), and

2. extract sub process (extraction of a fragment and the replacing of this fragment by a sub
process)

On the other hand, we aim to react to events that cause unforeseen changes. Unforeseen
changes are not covered by the operations described above, but require the modeling of addi-
tional sub workflows or the adaptation of existing sub workflows at run time. For the adaptation of
existing sub workflows, we have to offer ad hoc changes, or rather their generalization to adap-
tation patterns described by [WRR07]. The adaptation patterns allow for structural changes of a
process definition at type or instance level with high level change operations, operations dealing
with process fragments and not only with single tasks. In the following text we will describe
which patterns we aim to support:
In [WRR07] the following basic adaptation patterns are identified:

5The patterns are developed for the usage in flexible process-aware systems (PAISs). PAISs are a superset of
workflow systems.

84 Chapter 3. Flexwoman — a flexible context-aware Workflow management system

1. insert process fragment

2. delete process fragment

3. move process fragment

4. replace process fragment (by another process fragment)

5. swap process fragment

All these basic patterns have to be supported in our approach.

Another kind of adaptation patterns affects the levels of a workflow: beside the extraction of a
sub process introduced above (2), there is the operation:

6. inline sub process (sub process is dissolved and directly embedded in parent schema)

We will support the pattern inline sub process too. It is usually used for improving the workflow
structure, e.g., when too many hierarchical levels exist. It is not needed to manage unforeseen
events. We will support the operation for completeness, especially for handling modeling errors.

Furthermore, there are patterns concerned with the adapting of control dependencies:

7. embed process fragment in a loop (add a loop construct around existing process parts)

8. parallelize process fragments

9. embed a process fragment in a conditional branch (the process fragment should be only
executed when special conditions are met)

10. add control dependency

11. remove control dependency

With our concept we try to avoid conditional branches and therefore loops as used in tradi-
tional WfMSs. We avoid traditional conditional branches and loops by selecting sub workflows
depending on context6. The context-aware selection has to be done by manually defined or
learned rules. Patterns for adapting control dependencies (without parallelizing) can be applied
by rules. Parallelization of process fragments will be supported without using rules. We will
implement all of the control dependency patterns for sub workflows.

Furthermore, a pattern for changing transition conditions exists:

12. update condition (update transition condition)

6For the implementation of loops we use self referencing sub workflows in combination with non self referencing
sub workflows.

3.4. Summary 85

This pattern can and will be implemented by using rules.

When applying change operations to a workflow, there is the problem that errors can be in-
troduced to the workflow. The errors introduced can be syntactic errors, e.g., a task is not
connected with the rest of the workflow, or semantic errors such as while one part of the work-
flow is changed, another part of the workflow is changed in a way that results in an inconsistent
workflow, or duplication of work, skipping of tasks, deadlocks, livelocks [vdA01]. The latter errors
are much more difficult to identify. They are known as dynamic change bug ([EKR95], [vdA01])
or dynamic change problems [RRD04]. A detailed discussion of these challenges is out of focus
of this thesis but influence our decisions regarding the implementation of Flexwoman.

3.4 Summary

In many application domains a default workflow definition exists and necessary adaptations
change the workflow instances only slightly. This is also true for processes we are faced with in
our healthcare application scenario. That is, the high flexibility, WfMS of class C3 (only fragment
defined at build time) offer, is not needed. The generation of every workflow instance on the fly
at run time is an overhead. A high speed at runtime and a good representation of the workflow at
build time is preferred. Therefore, fragment composition at run time is not suitable for our work.
Workflows of class C1 either do not store workflow adaptations or use log files to trace the
adaptations. When adaptations are not traced, expertise is needed to do adaptation work and
time as well as knowledge is lost. When adaptations are traced, analysis tools are needed to
extract and reuse adaptations done before. Thus, we decided to use class C2 (Workflow partly
defined) as base approach for Flexwoman and improve it to gain better readability, flexibility and
speed.
Flexwoman allows for a replacement of every task in the workflow at runtime, just like class
C1 (Complete workflow defined). The replacement of tasks depends on context changes. The
changes trigger rules that cause context adaptations. The user models the standard workflow,
that is, the workflow that is usually executed. To handle foreseen events, alternatives for a
task are modeled at design time. To handle unforeseen events, the alternatives for a task are
modeled at runtime, before the execution of the task. During workflow execution the context of
the workflow determines whether a task is replaced and, if necessary, by which alternative. The
workflow context determines the workflow structure. We aim to acquire context information and
apply corresponding workflow changes to the greatest possible extent automatically.
For the realization of our concept we use Hierarchical Colored Petri nets. We offer the (virtual)
possibility to attach more than one subnet to a substitution transition. The selection of the
relevant subnet is described with rules and executed by a Rule-based system. The process
execution engine works with regular Hierarchical Colored Petri nets and is not affected by the
virtual attachment of more than one subnet for a substitution transition.

86 Chapter 3. Flexwoman — a flexible context-aware Workflow management system

Chapter 4

Architecture and Implementation

In this chapter we will describe the architecture of our context-aware dynamic WfMS Flex-
woman in detail. We will give insight into the implementation of the components of Flexwoman,
their interfaces and their interaction.
We start with the description of the architecture, followed by a description of the interaction be-
tween the components of our system. After this big picture, we describe the main components
in detail. Therefore, we explain which tools we use for the realization of the components, how
we choose the tools, and we explain the implementation of the components. We finish the work
with a description of the overall process, the integration and the interfaces of the components.

4.1 Architecture

This section gives an architectural overview of Flexwoman. In Section 3.3.3 we identified that
the following components have to be added to a conventional WfMS to fulfill our requirements: (i)
context management, (ii) context filtering, (iii) workflow adaptation, and (iv) correctness check.
We described the components and their interplay in a high level view. This section concretizes
the high level view of the system components and Figure 4.1 illustrates our architecture1.

The component context management takes over the tasks: i) context sensing, ii) context
storing, and iii) context change publishing. In our system we call the component Context
Collection Tool. It consists of Sensors that sense the context, Adapters that unify the
different formats of sensor data and a Context DB that stores the unified context. After
context storing, publishing of context changes is triggered by database triggers.

The tool context filtering subscribes for such context changes and analyses them by means
of a rule based system. We call this tool Context-Change Analysis Tool. In a first step,

1Figure 4.1 refers to the workflow reference model introduced in Section 2.3.2. The workflow reference model
describes the components and interfaces that should be supported by a conventional workflow management system.

87

88 Chapter 4. Architecture and Implementation

Figure 4.1 – Concept of extensions needed to make a WfMS context-aware and flexible. (The blue
color marks the components added to the workflow reference model.)

the tool filters out relevant changes that require a structural change of the workflow and
categorizes them. In a second step, the tool triggers the actions for workflow adaptation.
The actions differ dependent on their categorization.

The Workflow Adaptation component adapts the workflow by executing the actions trig-
gered by the Context-Change Analysis Tool. The adaptation to context changes comprises
i) the context-aware refinement of a task to a sub process, and ii) the context-aware ex-
change of a sub process, that is the context-aware replacement of a sub process by another
sub process.

The component Correctness Check is needed to execute correctness checks of structural
changes to the workflow before they are published to the workflow enactment. This compo-
nent checks workflows after applying foreseen and unforeseen changes. It is especially im-
portant that interfaces of refined or exchanged sub processes fit to the respective interfaces
of the initiation process. In our architecture, we call the component Controlling of runtime
changes. After finishing its work, it notifies the workflow enactment about the changes.

Beside the extension of the architecture by additional components, some of the original compo-
nents of the workflow reference model have to be extended. The Admin and Monitoring tools
have to be extended to monitor how context changes influence the workflow structure. The
Process Definition Tools have to support the run time modeling and changing of sub processes
and rules to handle unforeseen events.

Figure 4.2 shows the messages sent between the components but only for the part of the
architecture that is relevant in this thesis.

4.2. Implementation 89

Figure 4.2 – Detail of Flexwoman’s architecture with the messages sent to adapt a workflow.

4.2 Implementation

In this section we describe the implementation of the system components that implement con-
text management, context filtering, workflow adaptation, and correctness checks. Figure 4.3 is
a system overview that complements Figure 4.1 by showing which tools we used to implement
the components.

Figure 4.3 – Architecture with the tools/programming languages used for the implementation.

90 Chapter 4. Architecture and Implementation

4.2.1 Context management

Context data is data that characterizes a situation. When this data is used for a software system,
firstly, it has to be sensed by sensors. We will support different classes of sensors, hardware
sensors just like devices for blood sugar metering or cameras, software sensors like Web ser-
vices that compute the carbohydrates of a meal by a photography, and humans that input data
to the system, e.g., their individual bread exchange coefficients. The sensor outputs have a
wide range of different file formats. For an efficient analysis of the context data coming from
different sensors, the data has to be stored in a uniform way, independent of the sensor they are
sensed with, the aim they are sensed for, and independent of their complexity. After unifying,
data can be handled in the same way while publishing and querying.

For a uniform storage of the context data, we need a database schema that handles all context
data in a uniform way, and we need adapters that transform the heterogeneous sensor data into
this schema. In the LoCa-project we created a database schema (see [FMM+09]) that follows
the context definition of Dey [DA00]: Context is any information that can be used to characterize
the situation of a subject. A subject is a person, place, or object that is considered relevant to
the interaction between a user and an application.... The central entity in this schema is context
object. Context objects are the sensed data. The data can be combined of different values,
e.g., GPS data are a combination of longitude, latitude, altitude, speed, and bearing. The
relationship logical combination offers the creation of these composed context values. The
entity data generator describes where the data is coming from, and the entity mode allows
for determining the frequency of the data sensing. In this thesis, we will use a similar, slightly
optimized, schema (see Figure 4.4).

Figure 4.4 – The generic database schema of Flexwoman that implements the context definition of
Dey [DA00].

4.2. Implementation 91

The task of transforming the different sensor outputs into unified data stored in the introduced
database schema is performed by the adapters of the Context Collection Tool. For every sensor
with a proprietary file format and for every standardized format of used sensors one adapter is
needed.

Our generic database schema can be implemented for data stores of different paradigms. Flex-
woman has the following requirements that influence the choice of the database:

• Flexwoman aims for supporting applications running on mobile devices that have limited
resources.

• Flexwoman acts in a Java environment.

The LoCa project had similar requirements, thus we will rely on a benchmark we made for this
project (see [FRMS10]). The benchmark compares an object oriented data base, relational data
bases and an RDF triple store based on the database schema we developed in [FMM+09]. We
researched two different settings: i) embedded context databases directly running on a mobile
device, and ii) context databases that are accessed from a mobile device. Not all of the evalu-
ated databases support both modes. The background of the benchmark is an eHealth use case.
The test load was generated from statistical data of a medium sized hospital for the period of a
week, a quarter and a year. The queries we used in the benchmark reflect how mobile users
and context-aware applications interact with the context database in the eHealth use case. The
benchmark showed that the performance of the researched object oriented database was bad
compared to the other evaluated data stores (in embedded and in client/server mode). Addi-
tionally, the performance of the triple store (only embedded mode) is only sufficient for small
data sets. From the relational databases (H2, SQLite, mySQL) we compared, the open source
Java database H22 wins over with a good performance, default support of referential integrity,
working in embedded and client/server settings as well as least configuration problems. Fur-
thermore, the footprint is small (the jar file size is around 1,5 MB).
We decided not to use the features of semantic data. Hence, we chose the relational databases
H2 for Flexwoman. H2 has the additional advantage of supporting triggers written in Java.
The support of triggers allows for an uncomplicated recognition of (relevant) changes in the
database and a smooth integration in the Java based environment of Flexwoman. As H2 is a
SQL database, the context data adapters transform the different sensor data to SQL statements.

4.2.2 Context filtering

In a mobile environment, many kinds of context data change frequently. Not all of these changes
are relevant enough to cause workflow adaptations, e.g., context changes within a context range

2http://www.h2database.com/html/main.html

92 Chapter 4. Architecture and Implementation

or changes in too short time periods may be irrelevant. The first step for the filtering of relevant
context data is to get the information about changes of the context. We use database triggers to
inform the Context Change Analysis Tool about changes in the database. The Context Change
Analysis Tool categorizes the changes, based on rules, to allow for a sophisticated adaptation
of the workflow based on context changes. Thereby, the database trigger acts as Observerable
(observed object) and the class that fires the rules is implemented as Observer (observing
object) (see Observer Pattern in [VHJG95]).
In Flexwoman we used JBoss drools as rule-based system that categorizes context changes
and triggers context adaptations. We chose drools because this Java based system is an open
source tool that is stable, easy and intuitive to use, and has the advantage of a big and active
community. Therefore, it fits best in the Java based environment of Flexwoman. For a detailed
evaluation of Java based rule engines see [Mül11]. Drools allows us to formulate rules in a
simple format:

rule "my rule"

attribute = value

when

conditions

then

actions/consequence

end

The structure of the rule is nearly self-explanatory. The rule starts with the keyword rule fol-
lowed by the name of the rule. The name is used for a unique identification. Then optional
attributes follow. After the keyword when the conditional part of the rule is given and the last part
of the rule contains the code that will be executed. The keyword end completes the rule.
There are a lot of rule attributes that can be used in drools. We will only explain the attributes
we will use in this document (For further details see [Tea13].):

• salience: sets the priority of a rule. The priority is used in the conflict resolution of drools.

• activation-group: when multiple rules belong to one activation group, the firing of one of
these rules cancels the activation of the other rules belonging to this group.

• no-loop: no-loop=true avoids looping of rules caused by rule changes in the action/conse-
quence part of a rule.

Drools implements ReteOO, an extension of the efficient pattern matching algorithm Rete (see
Section 2.6.5), and starting with drools6 the Phreak algorithm. Drools using Rete performs well
for large data sets, but it performs even better for large data sets with Phreak.3

3Phreak takes all of the existing drools code that implements ReteOO plus its enhancements and extends this
code to address the issues of Rete. While Rete is eager and data oriented, Phreak is lazy, goal oriented, and
aggressively delays partial matching. Phreak is actually the default rule algorithm. [Tea13]

4.2. Implementation 93

Flexwoman is a generic framework for the dynamic and context-aware adaptation of workflows.
It does not come with rules that are tailored to special context data or a special application
scenario, or application. The rules for context categorization and context adaptation triggering
have to be manually created.
In the following we give an example how rules can be defined for our application scenario. We
start with a rule for the categorization of context. In our application scenario, we differentiate
between three categories of blood sugar values. Blood sugar values can be too low (<2.78
mmol/l), too high (>6.9 mmol/l and <16.65 mmol/l) or much too high (>16.65 mmol/l). We show
a rule that checks whether the new sensed context value is much too high. Is this the case the
rule sets the status of the message to MUCH TOO HIGH.

%CATEGORIZATION RULE

rule "much_too_high"

no-loop

when

m : Message(myMessage : message , Float.parseFloat(myMessage) > 16.65)

then

m.setStatus(Message.MUCH_TOO_HIGH);

update(m);

end

After categorization, the context filtering component starts the workflow adaptation process by
means of rules. The adaptation rules differ dependent on the categorization. In a simplified
example, the process could print the message that the diabetic has to take dextrose in case of
too low blood sugar, in case of too high blood sugar it could print the advice to inject insulin and
compute the needed insulin. In case of a much too high blood sugar level the process could
trigger an emergency call. The rule much too high adapt, which checks whether the status of
the message is MUCH TOO HIGH, is shown below. The rule triggers the workflow adaptation in
its action part. In our concrete example rule, the action part triggers the creation of a subnet for
the transition takeAction. The .cpn file callAmbulance.cpn contains a pre-defined sub module
that calls an ambulance. The sub module is attached to the transition takeAction.

%ADAPTATION RULE

rule "much_too_high_adapt"

no-loop

when

m1: Message(status == Message.MUCH_TOO_HIGH, myMessage : message)

then

CreateBloodsugarChange cd = new CreateBloodsugarChange();

cd.createSubNet("takeAction", "callAmbulance.cpn");

end

94 Chapter 4. Architecture and Implementation

In summary, the context filtering process is divided into two parts: i) filtering and categoriza-
tion of relevant data with categorization rules, ii) triggering of workflow adaptations dependent
on the categorization with adaptation rules. In principle both parts, and consequently the be-
longing rules, could be merged into one. In practice, the dividing of the process eases its
understandability and maintenance.

4.2.3 Workflow adaptation

The workflow adaptation component provides the methods for the adaptation of a workflow
according to a context change. The configuration of the adaptation (which substitution transition
is substituted by which sub module) is determined in the adaptation rules of the Context Change
Analysis Tool. The concepts of the methods or operations we aim to support with our workflow
adaptation component are described in Section 3.3.4. The most important operations we aim
to support are those operations which mirror the ideas of our approach. The main idea is to use
the hierarchical constructs of workflows and to attach a set of sub workflows to a fragment of
the initiating workflow. Whether the fragment or one of the attached sub workflows is executed
depends on the current context of a workflow instance. Therefore, the main operation we have to
support is the following: exchanging of a fragment in the initiating workflow and a sub workflow.
Furthermore, the “helper” operations: attaching a sub workflow to a fragment and deletion of
one or all attachments are needed to configure the sub workflows that are chosen dependent
on the context.

Tools

The implementation of the exchange operation depends on the formalism but also the tool used
for process execution. In Flexwoman the adaptations of a workflow are based on the adaptations
of Colored Petri nets. We use the CPN tool Access/CPN4 as base for our work. We choose it
based on an evaluation of Petri net tools, we conducted in this thesis (see Appendix A for the
complete evaluation). Access/CPN was created in the context of the CPNTools project5 and
depends on the simulator of CPNTools. Thus, before we describe the implementation of the
exchange operation in detail, we shortly describe CPNTools and Access/CPN.

CPNTools: The open source tool CPNTools was created in the group of the founder of CPNs
Kurt Jensen in the CPN Group at Aarhus University (Denmark). It is the standard CPN tool, now
maintained by the AIS group, Eindhoven University of Technology (Netherlands)5. CPNTools
offers the possibility to visually model, simulate and analyze hierarchical CPNs. It is stable
and has a large and active community. The CPNTools simulator is written in SML, a functional
programming language basing on Standard ML/NJ. The GUI is written in Beta.

4http://cpntools.org/accesscpn
5http://cpntools.org/start

4.2. Implementation 95

Access/CPN: The open source tool Access/CPN4 was created as a Java interface to CPNTools.
Access/CPN is targeted at developers, and not at end users. It offers the possibility to model,
simulate and analyze CPNs programmatically in the programming language Java. It is based
on the Eclipse Modeling Framework (EMF). The models generated with Access/CPN can be
imported in and visualized by CPNTools. It can also be used as stand-alone tool, without GUI
[WK09,Wes11]. In this case it also uses the simulator developed for CPNTools (see Figure 4.5).
This fact makes Access/CPN a stable and elaborated tool. On the other hand, error messages
coming from the SML simulator can be difficult to interpret.

Implementation

Access/CPN offers the functionality on which we can base the development of our dynamic and
context-aware WfMS Flexwoman. Especially important is the fact that Access/CPN allows us to
execute Colored Petri Nets and change their behavior at runtime. We can model and manipulate
all elements of a Colored Petri Net at run time, for instance, places, transitions, sub modules.
After applying changes, the syntactic correctness of the net can be checked to avoid problems
with CPN execution at run time.
Thereby, Access/CPN offers the possibility to manually apply changes to Petri nets at run time.
This is the foundation of the automatic adaptation of Petri nets with Flexwoman at run time. Ad-
ditionally, Access/CPN as a native Java tool makes it easy to react to arbitrary events that trigger
structural adaptation to a Petri net. Thus, Access/CPN offers an API for the implementation of
the exchange operations we aim to support.
We encapsulate the available methods offered by the API and offer an easier to use interface
for implementation of workflow adaptations. The interface is generic and therefore available for
every kind of fragment and every kind of sub workflow. The operations offered by the new API
can be used just like building blocks. If the interfaces for the adaptations are correct, these
building blocks can be arbitrarily combined. For instance, it is possible to replace a fragment

Figure 4.5 – The interplay of Access/CPN and CPNTools. (The figure refers to [WK09,Wes11].)

96 Chapter 4. Architecture and Implementation

with another fragment and subsequently replace the second fragment with a sub workflow.

4.2.4 Correctness checks

While manipulating workflows, many mistakes can happen (interfaces of substitution transition
and sub module do not fit, the data flow is destroyed, the past is changed, ...). Such mistakes
are especially problematic when a running workflow is changed because a broken workflow can
stop work in a company, costs time and can lead to an immense loss of money. Access/CPN
offers e.g. checks for declarations, pages and markings, that can be applied to a running Col-
ored Petri net. We apply the needed checks when implementing the adaptation functionality
of Flexwoman. For instance, for an adaptation operation that replaces a fragment with a sub
process, the interfaces of the fragment to be replaced and the sub process that replaces the
fragment must be compatible. This means the interface of the fragment (socket place) and the
sub workflow (port place) have to be compatible regarding data types and port type (input, out-
put, input/output), otherwise the checks fail and the operation is not executed. After successfully
applying these checks, the model is syntactically correct and execution will not fail. Thus, the
execution engine is informed about the changes by Access/CPN.

4.3 Summary

In principle there are two processes we have to deal with in this work. The first process is the
regular execution of the workflow instance. The second process is the adaptation process that
adapts the workflow structure to the current context.

Our work is focused on the adaptation process. The functionality used to adapt workflows is
implemented as building blocks in the programming language Java. The building blocks can
be arbitrarily combined, provided that the interfaces fit to each other. The building blocks are
implemented on the top of the Access/CPN tool and extend it by a simplified API that allows the
user to easily and intuitively apply changes at workflow run time.

Flexwoman does not only cover the design and implementation of the needed adaptation func-
tionality, but offers a whole infrastructure framework for run time adaptation of workflows. It
consists of four main components: context management, context filtering, workflow adaptation
and correctness check. For the implementation of the components we used existing tools: the
database H2, the rule engine drools and the CPN tool Access/CPN. The used tools have in
common that they are open source tools that are widely used and stable. If there is imple-
mentation work to do to interconnect the tools, this is done with Java. A big challenge for the
implementation was to pay attention that the adaptation does not disturb the regular execution
(e.g., slow it up, or breaks execution).

Chapter 5

Evaluation

In this chapter we evaluate Flexwoman. We start with a qualitative evaluation that evaluates
whether our concepts are meaningful and whether Flexwoman implements our concepts cor-
rectly. For instance, the qualitative evaluation aims for showing that the flexible reaction on
foreseen and unforeseen changes is meaningful in a WfMS and it aims for proofing that Flex-
woman offers this functionality. Subsequently, we evaluate the system and its implementation
quantitatively. For this evaluation we generate rules to find out how our system manages a
growing number of rules. We finish this chapter with further evaluations that check what hap-
pens in potentially critical situations1. Quantitative and further evaluations check the system
implementation.

5.1 Qualitative evaluation

In Section 3.3 we explained the ideas and concepts of Flexwoman. In summary, the main goals
are:

• In case of foreseen changes we want to hide complexity (see Figure 5.1).

• In case of unforeseen changes Flexwoman makes it possible to model sub workflows at
run time (see Figure 5.2).

• In case of unforeseen changes we can apply run time changes to every task of the process
(see Figure 5.3)2.

1In this context, the term critical situations means adaptations that can potentially stop the execution of the
running system.

2In this figure, we do not compare Flexwoman to traditional WfMS just like we did it in the examples above as
they do not provide changes at run time. However, we can and do compare Flexwoman to open-point approaches
that fix the change region in advance at build time.

97

98 Chapter 5. Evaluation

(a) In Flexwoman choices are hidden as sub work-
flows.

(b) In traditional WfMS choices are modeled in the main workflow and can-
not be hidden.

Figure 5.1 – Figure (a) shows Flexwoman and its way to hide choices. Figure (b) shows the tradi-
tional way to model workflow choices and its implications to complexity.

In this section we will show that Flexwoman achieves these pre-set goals.

5.1.1 Evaluation setup

Quick summary of main terms needed in the evaluation

To make the understanding of the evaluation easier, we remind the reader of the following con-
cepts: task, fragment and sub process. A task is a logical step in process execution (see
Definition 6). A fragment is a sub process that is inlined in an initiating process. A sub pro-
cess is a part of a larger (the initiating) business process (see Definition 7). A sub process has
a place holder in the initiating process, the so called substitution transition that links to the sub
process.

Adaptations

There are three elements that can be changed to adapt a workflow:

• the process (with simple tasks and fragments) that should be adapted,

• the sub processes/fragments used for the adaptation, and

• the rules used for adaptation.

For a flexible adaptation to foreseen changes, it is enough to define a process partly, and the

5.1. Qualitative evaluation 99

(a) Flexwoman allows for a modeling of sub work-
flows at run time.

(b) In traditional WfMS choices are modeled at build time. A modeling of
sub workflows at run time is not provided.

Figure 5.2 – Figure (b) shows Flexwoman and that Flexwoman allows for the modeling of sub
workflows at run time and (a) shows that traditional WfMS does not offer this possibility.

sub processes/fragments and rules at build time. At run time there is no definition work to do,
the process is executed and adapted if needed.

For a flexible adaptation that reacts on unforeseen changes, the process has to be defined
partly at build time. At run time sub processes/fragments and rules have to be defined or/and
adapted. An adaptation is only possible, when the tasks/fragments of the process that undergo
a change are not already executed or are in execution.

We support the following operations for workflow adaptation and evaluate them in the remainder
of this chapter:

• substitution transition and sub processes

– replace a sub process of a net by another sub process

– delete a sub process, that is, replace a substitution transition and the corresponding
sub process by a simple task

• fragments (including simple tasks)

– replace a fragment by another fragment

– replace a fragment by a substitution transition and sub workflow

– delete a fragment

100 Chapter 5. Evaluation

(a) Flexwoman allows to replace tasks or larger parts (b,c) of the
workflow by sub workflows defined or attached at run time (f5, f3).

(b) In open-point approaches the change regions are fixed in advance at
build time. A modeling of new change regions at run time is not provided.

Figure 5.3 – Figure (a) shows that in Flexwoman every task or fragment can be replaced by a sub
workflow defined at run time just like in systems that support ad hoc changes. Figure (b) shows
that in open-point approaches change regions of a workflow are fixed at build time and cannot be
changed at run time.

• combinations of adaptations

• rules

– add a rule

– change a rule

– delete a rule.

Running example

Figure 5.4 shows our running example. The example is derived from the example used in the
chapters before. We had to adapt the original example slightly to be able to evaluate all the
adaptation operations we listed above.

5.1. Qualitative evaluation 101

In the running example the blood sugar is metered and printed, and afterwards another action
will be executed. Which action will be executed depends on the context:

In the simplest case the action react on bloodsugar is executed. This action does not more than
printing an advice.

Figure 5.4 – The running example - metering blood sugar and react on the blood sugar value.

In case the blood sugar is below 2.78 mmol/L the sub process TakeDextrose is executed. A
blood sugar level below 2.78 mmol/L means that the blood sugar is too low. The user that
meters his/her blood sugar has hypoglycemia. That is why, the user should take dextrose.
Figure 5.5 shows the sub process, that is attached to the transition react on bloodsugar in case
of hypoglycemia.

Figure 5.5 – The replacement in case of a too low blood sugar level.

In case the blood sugar is over 6.9 mmol/L the user has a hyperglycemia and sub process
InjectInsulin is executed. Is the blood sugar value between 6.9 mmol/L and 16.65 mmol/L the
situation is not extremely critical and the user has to inject insulin. The sub process that replaces
react on bloodsugar in case of such a hyperglycemia is shown in Figure 5.6.

Figure 5.6 – The replacement in case of a too high blood sugar level.

In case the blood sugar is higher than or equal to 16.65 mmol/L the user does not only have
hyperglycemia but an extremely critically hyperglycemia. The sub process to be executed in
such a case is CallAmbulance. This sub process triggers the execution of several activities. For

102 Chapter 5. Evaluation

instance, in a simplified case, the process has to call an ambulance and in parallel to compute
the insulin to inject (1/5 of the daily dose rate). Additionally, the process will print some advices
for the user such as Drink 1 L of mineral water. This sub process is shown in Figure 5.6.

Figure 5.7 – The replacement in case of a much too high blood sugar level.

For a working example we need to define rules that control the reaction on context changes.
We need rules for a too low blood sugar level, a too high blood sugar level and a much too high
blood sugar level. In the following we only show the rule ”too high”. The other rules are created
analogously.

rule "too_high"

no-loop

when

m : Message(myMessage : message, Float.parseFloat(myMessage) > 6.9

&& Float.parseFloat(myMessage) < 16.65)

then

m.setStatus(Message.TOO_HIGH);

update(m);

end

The rule reacts on context values between 6.9 mmol/L and 16.65 mmol/L. In such a case the
status of a message is set to TOO HIGH and the update command informs the fact base about
this change.

Furthermore, we need to define rules that control the adaptation of the workflow. In our case
we need to define the adaptations in case the status of our context changed to TOO LOW,
TOO HIGH or MUCH TOO HIGH. For the adaptations we defined generic methods that exe-
cutes the adaptation described in Section 5.1.1. We can choose application dependently be-

5.1. Qualitative evaluation 103

tween them. In the following, we describe the rule for a too high blood sugar level. The other
rules have to be defined analogously.

rule "too_high_adapt"

no-loop

when

m1: Message(status == Message.TOO_HIGH, myMessage : message)

then

CreateBloodsugarChange cd = new CreateBloodsugarChange();

cd.createSubNet(

"C://org.cpntools.accesscpn.model.tests//BloodSugarCtrl.cpn",

"react on bloodsugar",

"C://org.cpntools.accesscpn.model.tests//InjectInsulin.cpn");

PetriNet petriNet = cd.getPetriNet();

DOMGenerator.export(petriNet, "too_high_change.cpn");

end

Our example rule ”too high adapt” reacts on a status change to TOO HIGH. In this case a
subnet is created that attaches a pre-defined process InjectInsulin to the transition react on
bloodsugar in the process BloodSugarCtrl.

Evaluation pattern

The evaluation should be easy and fast to comprehend. Therefore, we developed and used
the following evaluation pattern, that guides through the qualitative evaluation of Flexwoman’s
adaptations to context changes:

Number : Every rule gets a unique identifier. (The identifier consists of the letter E3 and a
consecutive number n.)

Title/name: The title describes the main content of the pattern. It describes for what the pattern
is used.

Given: This part describes which elements are needed in the evaluation.

Goal : This part describes the goal of the evaluation.

Method : In this part it is described what happens during adaptation.

Evaluation result : In this part it is described whether and how the adaptation worked.

Figure: If possible, there is a figure shown that visualizes the result of the adaptation.
3E stands for evaluation.

104 Chapter 5. Evaluation

5.1.2 Evaluation results

In the following text we show nine quantitative evaluations belonging to four evaluation classes
(substitution transition and sub processes, fragments (including simple tasks), combinations of
adaptations and rules). The evaluations are described according to the pattern introduced be-
fore. In the evaluation we assume that interfaces of adapted processes and the processes used
for the adaptation of this process (sub processes and fragments) fit and the applied operation
does not change the past of workflow execution. The examples show adapted process and pro-
cesses used for adaptation which are predefined at build time. A manual change of processes
used for adaptation or a new definition of them at run time of the adapted process is possible
without any qualification.

Substitution transition and sub processes

In this section we evaluate processes refined by sub processes.

The running example has no sub processes attached. We create a sub process for the eval-
uation. This sub process is replaced during the evaluation. First we simulate a blood sugar
value below 2.78 mmol/L. In such a case the rules defined in Section 5.1.1 and the method
createSubNet are applied. The method has the parameters: the initiating net, the transition that
is changed to a substitution transition and the newly attached sub process.

cd.createSubNet(

"C://org.cpntools.accesscpn.model.tests//BloodSugarCtrl.cpn",

"react on bloodsugar",

"C://org.cpntools.accesscpn.model.tests//TakeDextrose.cpn");

The transition react on bloodsugar gets a substitution transition and the sub process TakeDex-
trose is attached to it (see Figure 5.8).

Figure 5.8 – Create a sub process for the task react on bloodsugar.

5.1. Qualitative evaluation 105

E1: Replace a sub process of a net by another sub process

Given: In this evaluation we need an initiating process, including a substitution transition that
is attached by a sub process (BloodSugarCtrl), the sub process that replaces the original sub
process (TakeDextrose), the substitution transition, which sub process is exchanged (react on
bloodsugar), and the rules that react on context changes and trigger the adaptation according
to the current context (see Section 5.1.1).

Goal : An already attached sub process is replaced by another sub process when interfaces
of substitution transition and replacing sub process match. The adaptation is triggered by a
context change.

Method : The method that we apply to execute this adaptation is called exchangeSubNet. It
has as parameters the initiating process, the substitution transition and the sub process that
replaces the original process:

exchangeSubNet(

"C://org.cpntools.accesscpn.model.tests//too_low_change.cpn",

"react on bloodsugar",

"C://org.cpntools.accesscpn.model.tests//InjectInsulin.cpn");

Evaluation result : When the context changes to a too high blood sugar value, the sub process
TakeDextrose of the Petri net too low change.cpn is exchanged by the sub process InjectInsulin.
The substitution transition react on bloodsugar now links to the sub process InjectInsulin (see
Figure 5.9).

Figure 5.9 – Exchange a sub process (TakeDextrose) by another one (InjectInsulin).

106 Chapter 5. Evaluation

E2: Delete a sub process or in other words: replace a substitution transition and the
belonging sub process by a simple task

Given: In this evaluation we need the initiating process (BloodSugarCtrl), including a substi-
tution transition that is attached by a sub process and will be transfered to a regular transition
(react on bloodsugar), the sub process that should be deleted InjectInsulin, and the rules, that
react on context changes and trigger the adaptation according to the current context (see Sec-
tion 5.1.1).

Goal : An already attached sub process is deleted. The adaptation is triggered by a context
change.

Method : The method that we apply to execute this adaptation is called deleteSubNet. It has
the parameters: initiating process, and substitution transition that will be replaced by a ”usual”
transition:

deleteSubNet(

"C://org.cpntools.accesscpn.model.tests//too_low_change.cpn",

"react on bloodsugar");

Evaluation result : A context change triggers the deletion of the sub process InjectInsulin. The
substitution transition react on bloodsugar is transfered to a ”usual” transition (see Figure 5.10).

Figure 5.10 – Delete a sub process (InjectInsulin) and replace the substitution transition by a ”usual”
transition react on bloodsugar.

Fragments (including simple tasks)

In this section we evaluate processes refined by inlining sub processes/fragments.

5.1. Qualitative evaluation 107

E3: Replace a fragment by another fragment

Given: In this evaluation we need the initiating process, the start and the end of the frag-
ment, that is replaced, the replacing sub process (fragment), and the rules that react on context
changes and trigger the adaptation according to the current context.

Goal : Replace an arbitrary fragment by another fragment provided that the interfaces of the
fragments match. The replacing of a fragment is triggered by a context change.

Method : The method that we apply to execute this adaptation is called replaceFragmentByFrag-
ment. It has as parameters the initiating process, start and end transition of the fragment to be
replaced, and the name of the file that contains the process with the replacing fragment. In
case we aim to replace a fragment with a simple fragment, that is, a transition only, the method
replaceFragmentByTransition can be used. It has the parameters, initiating process, start and
end transition of the fragment to be replaced, name of the replacing transition and code. The
code is needed when the inscriptions of the incoming and outgoing arcs of the new transition
do not match:

replaceFragmentByFragment(

"C://org.cpntools.accesscpn.model.tests//BloodSugarCtrl.cpn",

"print bloodsugar", "react on bloodsugar",

"C://org.cpntools.accesscpn.model.tests//CallAmbulance_BSC.cpn"

);

replaceFragmentByTransition(

"C://org.cpntools.accesscpn.model.tests//BloodSugarCtrl.cpn",

"print bloodsugar", "react on bloodsugar",

"react",

"input(bloodsugar); output(advice);

action (let

val advice = \"your blood sugar is\"^Real.toString(bloodsugar)

in advice

end);"

);

Evaluation result : The fragment is automatically replaced by another simple or complex frag-
ment (see Figure 5.12 and Figure 5.11).

In case the fragment starting from the transition print bloodsugar and ending with the transition
react on bloodsugar of the initiating process BloodSugarCtrl is replaced by a fragment that is
contained in the file CallAmbulance BSC.

In the simpler case the fragment starting from the transition print bloodsugar and ending with the
transition react on bloodsugar of the initiating process BloodSugarCtrl is replaced by the transi-

108 Chapter 5. Evaluation

Figure 5.11 – Replacing a fragment (from the transition print bloodsugar to react on bloodsugar in
the process BloodSugarCtrl) by the fragment contained in the file CallAmbulance BSC.

tion react. This transition is attached by source code to map the content of variable bloodsugar
of color (type) Real to the variable advice of color (type) String.

Figure 5.12 – Replacing a fragment (starting from the transition print bloodsugar and ending with
the transition react on bloodsugar of the process BloodSugarCtrl) by the transition react.

E4: Replace a fragment by a substitution transition and sub process

Given: In this evaluation we need the initiating process, including the start and the end of
the fragment that has to be replaced (in case the fragment consists only of one transition it
is enough to give the transition, that is refined to a substitution transition), the name of the
substitution transition, the sub process that replaces the fragment, and the rules that trigger the
adaptation according to the current context.

Goal : An arbitrary fragment of a process is replaced by another sub process. The interfaces of

5.1. Qualitative evaluation 109

the fragment and replacing sub process have to match. The adaptation is triggered by a context
change.

Method : The method that we apply to execute this adaptation is called replaceFragmentBy-
Subnet. It has as parameters the initiating process, the start and the end of the fragment, that is
replaced, the name of the substitution transition, and the name of the file that contains the sub
process. In case we only want to replace a transition, the method createSubNet is used. This
method is described in Section 5.1.2:

replaceFragmentBySubnet(

"C://org.cpntools.accesscpn.model.tests//BloodSugarCtrl.cpn",

"print bloodsugar", "react on bloodsugar",

"call ambulance",

"C://org.cpntools.accesscpn.model.tests//CallAmbulance_BSC.cpn"

);

Evaluation result : Simple transitions such as react on bloodsugar of the process BloodSug-
arCrtl (see Figure 5.8) and more complex fragments such as the fragment starting from the
transition print bloodsugar ending with the transition react on bloodsugar of the process Blood-
SugarCrtl (see Figure 5.13) can be replaced by an arbitrary sub process with fitting interfaces.
In the simple case the sub process TakeDextrose replaces the simple transition and in the more
complex case the sub process CallAmbulance BSC replaces the fragment.

Figure 5.13 – Replacing a fragment with more than one transition (print bloodsugar, react on blood-
sugar) of the process BloodSugarCtrl by a sub process (call ambulance).

110 Chapter 5. Evaluation

E5: Delete a fragment

Given: In this evaluation we need the initiating process, the start and the end transition of the
fragment to delete, and the rules that trigger the adaptation according to the current context.

Goal : A fragment of a process is deleted. The adaptation is triggered by a context change.

Method : The method that we apply to execute this adaptation is called deleteFragment. It has
as parameters the initiating process and the start and the end of the fragment to delete, and if
needed source code to adapt the interface of the transition that follows the replaced fragment:

deleteFragment(

"C://org.cpntools.accesscpn.model.tests//BloodSugarCrtl.cpn",

"print bloodsugar", "print bloodsugar");

deleteFragment(

"C://org.cpntools.accesscpn.model.tests//callAmbulance_BSC.cpn",

"print ambulance is called", "callAmbulance",

"input (insulin); output(advice);

action (let

val advice=\"high blood sugar level\"

in advice

end);");

Evaluation result : The fragment is deleted in simple cases (see Figure 5.15) and in complex
cases (see Figure 5.14). In the first case the transition print bloodsugar of the initiating process
BloodSugarCrtl is deleted. In the second case the whole branch starting with the transition
print ambulance is called to the transition callAmbulance of the process callAmbulance BSC is
deleted. Because in the second case the input to the following transition is no longer correct,
the source code attached to this transition is changed.

Figure 5.14 – Deleting a simple fragment consisting of only one transition print bloodsugar of the
process BloodSugarCrtl.

5.1. Qualitative evaluation 111

Figure 5.15 – Deleting a more complex fragment (a whole branch) of the process callAmbu-
lance BSC.

Combinations of adaptations

In this section we evaluate whether more than one operations, of the operations introduced
before, can be combined. All the operations we described can be thought of as building blocks.
We aim for an arbitrary combination of different building blocks with Flexwoman. That is, after
applying one of the change operations introduced above, Flexwoman can apply another of these
change operations on the result of the first operation. We tested several combinations that all
worked. That is why, we assume that all possible combinations work. We picked one clear
combination for the description in this evaluation.

E6: Combinations of adaptations

Given: In this evaluation we need at least two operations, all elements that are needed to
execute each of these operations, and rules, that trigger the adaptation.

Goal : The goal is to combine different operations just like building blocks and both operations
are successfully executed.

Method : We need two adaptation rules, whereby both are triggered at the same time. One rule
takes the output of the other rule as input. Therefore, we have to fix the execution order of the
rules by the salience attribute of the rule syntax. We have to pay attention that the interfaces
of the adaptation operations that are incrementally executed fit to each other. In our concrete
case, the first rule replaced a fragment of the CPN BloodSugarCrtl starting from transition print
bloodsugar to transition react on bloodsugar by the transition react. In the second rule, the
transition react was replaced by the subnet InjectInsulin. The following text shows the applied
rules. By way of derogation from the evaluations before we show the complete rules and not
only the adaptation operations to show how the attributes can be applied.

rule "change1"

salience 4

no-loop

112 Chapter 5. Evaluation

when

m1: Message(status == Message.Rule1, myMessage : message)

then

CreateBloodsugarChange cd = new CreateBloodsugarChange();

cd.replaceFragmentByTransition(

"C://org.cpntools.accesscpn.model.tests//BloodSugarCtrl.cpn",

"print bloodsugar", "react on bloodsugar", "react",

"input(bloodsugar); output(advice); action (

let val advice =\"your blood sugar is\"^Real.toString(bloodsugar)

in advice end);");

PetriNet petriNet = cd.getPetriNet();

DOMGenerator.export(petriNet, "change1.cpn");

end

rule "change2"

salience -50

no-loop

when

m1: Message(status == Message.Rule1, myMessage : message)

then

CreateBloodsugarChange cd = new CreateBloodsugarChange();

cd.createSubNet("C://org.cpntools.accesscpn.model.tests//change1.cpn",

"react",

"C://org.cpntools.accesscpn.model.tests//InjectInsulin.cpn");

PetriNet petriNet = cd.getPetriNet();

DOMGenerator.export(petriNet, "change2.cpn");

end

Evaluation result : The evaluation was running without problems. In Figure 5.16 the two-
stage replacement process is visualized. This result mirrors our idea of using building blocks of
operations that can be combined when interfaces fit.

Rules

In this section we evaluate whether rules can be added/changed/deleted in Flexwoman.

E7: Add a rule

Given: In this evaluation we need the initiating process, when needed sub processes or frag-
ments for the adaptation of the initiating process, and usually rules.

5.1. Qualitative evaluation 113

Figure 5.16 – The execution of two operations after the other. Firstly, a fragment of the CPN Blood-
SugarCrtl starting from transition print bloodsugar to transition react on bloodsugar is replaced by
the transition react. Secondly, the transition react was replaced by the subnet InjectInsulin.

Goal : The goal is to add a rule, which is successfully applied when a context change triggers it.

Method : The addition of this rule is manually applied by adding this rule in the rule file that is
used for building of the rule base.

Evaluation result : The rule is successfully applied. The rule should not have conditions over-
lapping with other rules, this can lead to endless loops. Are conditions equal but actions differ,
both actions (that of the old rule and that of the newly added rule) are executed.

E8: Change a rule

Given: In this evaluation we need the initiating process, when needed sub processes or frag-
ments for the adaptation of the initiating process, and the rule to be changed.

Goal : The goal is to change a rule, which is successfully applied in the changed form when a
context change triggers it.

Method : The change of this rule is manually applied by changing this rule in the rule file that is
used for building of the rule base.

Evaluation result : The change of this rule is successfully applied. The rule should not have
conditions overlapping with other rules, this can lead to endless loops. Are conditions equal but
actions differ, both actions (that of the old rule and that of the newly added rule) are executed.

114 Chapter 5. Evaluation

E9: Delete a rule

Given: In this evaluation we need the initiating process, when needed sub processes or frag-
ments for the adaptation of the initiating process, the rule to be deleted.

Goal : The goal is to delete a rule successfully, that is, this rule is no longer applied when its
condition would be true.

Method : The deletion of this rule is manually applied by deletion of this rule in the rule file that
is used for building of the rule base.

Evaluation result : The rule is no longer applied.

5.2 Quantitative evaluation

In the qualitative evaluation we usually worked with one change rule and with one, maximal two,
adaptation rules. Such an evaluation can show that the functionality is correctly implemented
but it does not show how the system works when a larger number of rules is stored in the rule
base. Therefore, we decided to have additionally a quantitative synthetic evaluation that tests
our system with a growing number of rules.

5.2.1 Evaluation setup

For the tests, we run Flexwoman with an increasing number of rules, which were automati-
cally generated. The categorization rules assign a generated state to each generated range of
values. The adaptation rules assign randomly chosen combinations of CPNs and adaptation
operations to states. That is, we use relatively simple rules: The categorization rules have two
conditions and a simple action part. The adaptation rules have only one condition but the action
part is a little bit more complex than that of the categorization rules as it triggers the adaptation
of workflows (see Section 4.2.2). The complexity of rules influences the time needed for insert,
update, and delete of them as well as the time for pattern matching.

We start our evaluation with 10 rules (5 categorization rules and 5 adaptation rules) and in-
creased the number up to 10000 rules (5000 categorization rules and 5000 adaptation rules).
The number of rules is always equally composed of categorization rules and adaptation rules.4

For every number of rules we execute five runs and compute the average run time. In each of
the five runs six randomly generated context changes are executed. These context changes
are inserted into a database and they trigger the adaptation of a CPN dependent on the rules

4In Section 4.2.2, we described that context filtering consists of categorization and triggering of adaptation, but
in principle, both steps can be merged into one. Thus, usually the cardinality of this relationship is one to one and
the number of generated categorization and adaptation rules has to be the same.

5.2. Quantitative evaluation 115

in the rule base. For each number of rules and each run the rule base and the fact base is build
up from scratch. The time needed for the first context change contains also the time for building
rule base and fact base. This time is not used for the computation of the average run time.
Summing up it contains of the steps: 1) insert into database, 2) inform (the Context Change
Analysis Tool) about a change, 3) build the rule base and insert rules a) build the rule base
and add categorization rules, b) add adaptation rules, 4) build plus enlarge the fact base, and
5) adapt the workflow. In the following text we call this first run initialization mode or shortly
initialization. This initialization should be hidden from the user. The average run time of a run is
computed of the time needed from context change two to six. We call this mode normal mode.
It consists of the steps: 1) insert into database, 2) inform (the Context Change Analysis Tool)
about a change, 3) enlarge the fact base, and 4) adapt the workflow. This is the mode the user
has to deal with when using Flexwoman.

For the evaluations we used a Notebook with Intel Core i7-4700MQ and 2.4GHz. It comes with
32GB DDR Ram, 256GB SSD plus 1TB HDD. The operating system is Windows 8.1 64 Bit.

5.2.2 Evaluation results

In this section we present the evaluation results. We start with a general view that is detailed in
the second part of the section.

General view

Table 5.1 sums up the results of the quantitative evaluation of Flexwoman. The table shows the
average run time for the adaptation of a CPN when a context value changes. The average run
time is computed from five context changes. The metering excludes the building of the database
and includes the time from the insert of the context value to the finishing of the adaptation of
the CPN file. The values without brackets show the average run time in normal mode and in
brackets the run time needed in the initialization mode is shown.

We see that the time needed in the initialization mode linearly grows with the number of rules
that the rule base contains. The time for running the rule and adapting the workflow stays nearly
constant when the number of rules grows. That is, the time needed for rule base creation grows
linearly with the number of rules. Figure 5.17 visualizes that results graphically.

Usually the rule base of an application is rarely rebuilt, therefore its growing with the number of
rules does not influence the run time characteristics of an application. That is, only the average
run times are relevant.

The results of the metering are, that the values of initialization mode increase with the number of
rules because the adding of an increasing number of rules costs more time. The time needed for
inserting the categorization rules is higher than the time needed for the insert of the adaptation

116 Chapter 5. Evaluation

number of rules 10 100 1000 2000 4000 6000 8000 10000

run1 5 (16) 7 (15) 7 (29) 7 (39) 8 (74) 7 (94) 9 (148) 9 (180)
run2 7 (6) 7 (8) 6 (13) 7 (22) 7 (78) 8 (85) 7 (136) 6 (184)
run3 5 (7) 5 (5) 6 (11) 7 (22) 8 (71) 7 (93) 8 (136) 6 (188)
run4 6 (8) 6 (7) 5 (13) 6 (21) 7 (64) 7 (97) 12 (128) 12 (160)
run5 6 (7) 6 (7) 6 (12) 6 (23) 9 (44) 8 (74) 8 (118) 8 (175)

average time 6 (9) 6 (8) 6 (16) 7 (25) 8 (66) 7 (89) 9 (133) 8 (177)

Table 5.1 – Quantitative evaluation: We show the average time in seconds needed for every run
(normal mode) and in brackets the time in seconds of the first run which also includes the building
of the rule base (initialization mode). Figure 5.17 visualizes the results.

Figure 5.17 – Chart of the run time and the run time plus time for building a rule base.

rules as it contains the building of the rule base. The time needed for the building of the fact
base is only contained in the initialization mode. The adaptation of the CPNs is a nearly constant
value as the time needed for the adaptation of a workflow stays the same independent of the
number of rules in the rule base. The adaptation time is not exactly the same as different
adaptation operations have different execution times.

Detailed view

Each context change consists of several steps. The steps to be executed differ dependent on
the mode (initialization and normal mode see Section 5.2.1). For some representative cases
we will meter the run time of each step to understand the results in detail. We will meter the
steps for an insert of 10, 100, 1000, 2000, 4000, 6000, 8000, and 10000 rules. The Tables 5.2
to 5.4 will contain the average values computed out of five measurements. Table 5.2 contains
the values of the first initialization, 5.3 contains the average values of the initialization and Table

5.2. Quantitative evaluation 117

5.4 contains the average values out of five rounds in normal mode.

number of rules 10 100 1000 2000 4000 6000 8000 10000

insert into
database

0 16 0 16 16 15 0 93

inform about a
change

31 43 62 52 91 31 55 99

add categorization
rules

4603 5443 9544 15219 25764 37438 59276 82441

add adaptation
rules

235 953 4032 6531 14344 23643 35362 47157

enlarge fact base 930 886 2080 3172 10978 14161 24181 45638
adapt CPN 7560 13416 9261 10521 13221 7883 9801 12366
run time 13359 20757 24979 35511 64414 83171 128675 187794

Table 5.2 – Quantitative evaluation: We show the time in ms needed for the steps a change operation
consists of. This table contains the values for the first round of the first run (initialization mode).
These values are significant higher than the values of the average shown in table 5.3.

number of rules 10 100 1000 2000 4000 6000 8000 10000

insert into database 1 4 0 4 1 5 4 4
inform about a
change

4 0 4 0 1 1 0 0

add categorization
rules

228 741 2514 6770 15481 27595 53016 67742

add adaptation rules 277 687 1852 5610 14057 23484 29219 37513
enlarge fact base 64 122 579 1709 4956 9680 23753 25841
adapt CPN 7317 8308 6254 8112 6826 7043 10624 7439
run time 7891 9861 11203 22204 41322 67804 116615 138538

Table 5.3 – Quantitative evaluation: We show the average time in ms needed for the steps a change
operation consists of. This table contains the values for the first round out of a run (initialization
mode). It contains times for the creation of rule base and fact base. Figure 5.18(a) visualizes the
results.

The tables and the figures show that an insert into the database and the information about a
change constitutes a very small percentage of total run time costs. The values are nearly con-
stant. Adding rules to the rule base needs more time the more values have to be inserted.The
adaptation of the CPNs needs a nearly constant time over all measurements. The differences
in the time needed for adaptation can be explained by the different CPNs adapted with different
CPNs with different change operations.

118 Chapter 5. Evaluation

number of rules 10 100 1000 2000 4000 6000 8000 10000

insert into database 3 3 0 3 8 3 3 6
inform about a change 6 0 6 0 4 2 9 3
enlarge fact base 9 22 22 63 29 107 1687 1484
adapt CPN 7934 7263 8376 8622 8387 7344 7566 8832
run time 7953 7288 8404 8688 8428 7456 9266 10326

Table 5.4 – Quantitative evaluation: We show the average time in ms needed for the steps a change
operation consists of. This table contains the normal mode. Figure 5.18(b) visualizes the results.

5.3 Further evaluations

Beside the evaluations whether Flexwoman offers the target functionality and whether it per-
forms well when the rule base is growing, we evaluated the system regarding some aspects
that influence the usability of the system. We introduced these additional aspects in the follow-
ing section.

5.3.1 Growth of the knowledge base

What happens if a rule is added on top of the rule base when the system runs? Is the
rule base completely rebuilt?

Test setting: Insert the rules from the same rule file twice (the number and the rules in the file
are identical).
Test result : The time metered after the first insert is higher than that after the second insert.
That is the first insert causes the built of the rule base and thus the metered time is a sum of
time for building the rule base and inserting the rules. The time after the second insert of the
rules is shorter as it does not contain the time for building the rule base. Thus, the rule base is
not rebuilt when new rules are inserted but it is incrementally updated.

How does the system behave when the fact base grows?

Test setting: We increase the number of facts (context changes) that have to be inserted into
the rule base and let the number of rules untouched.
Test result : There is usually a time needed to insert a fact into the database that is smaller than
one Millisecond. The first context change needs much more time (around 200 Milliseconds) that
is the time needed for building the fact base. The fact base is only built in the first run and not
rebuild when facts are inserted.

5.3. Further evaluations 119

(a) Results of the detailed quantitative evaluation of the initialization: The run time
is dominated by the time needed for creating rule and fact base. Both increases
with a growing number of rules. The time for adaptations is nearly constant.

(b) Results of the detailed quantitative evaluation of the normal mode: The run
time is dominated by the time needed for the adaptation. This time is nearly
constant. With an increasing number of rules the time needed for inserting rules
into the fact base increases.

Figure 5.18 – The results of the detailed quantitative evaluation.

120 Chapter 5. Evaluation

5.3.2 Rule interdependency

What happens when more than one rule can be fired (no salience and no activation
group)?

Test setting: A small rule base is generated with one categorization rule only that is always
triggered, and one adaptation rule that is triggered by the only categorization rule. The rule
base is manually extended by another adaptation rule. This rule will also be always triggered by
the only categorization rule.
Test result : Both rules are executed one after the other. Further tests with salience: The order
of firing the rules can be influenced by the salience attribute of the rule. Further tests with the
activation-group attribute: Only one rule within an activation-group will fire, i.e., the first one to
fire cancels any existing activations of other rules within the same group.

What happens when more than one rule can be fired and the rules are contradictory?

Test setting: We use a net that contains transition a (only once). A small rule base is generated
with one categorization rule only that is always triggered and one adaptation rule that is triggered
by the only categorization rule. This adaptation rule replaces transition a by sub module b.
The rule base is manually extended by another adaptation rule. This rule will also be always
triggered by the only categorization rule. This adaptation rule replaces transition a by sub
module c.
Test result : The system tries to execute both rules one after the other. After execution the first
adaptation rule transition a is replaced by sub module b or c (dependent on the execution order).
Afterwards the second rule is triggered. As a is no longer a transition of the net but is replaced
with the first execution of a rule by b or c, the second rule that is triggered cannot replace a.
Our system Flexwoman instead returns an error message that states that the transition to be
replaced does not exist.

What happens when Rule1 replaces a by b and Rule2 replaces b by a? (alternation)

Test setting: We use a net that contains transition a. A small rule base is generated with
one categorization rule only that is always triggered and one adaptation rule (Rule1) that is
triggered by the only categorization rule that replaces transition a by b. The rule base is manually
extended by another adaptation rule (Rule2). This rule will also be always triggered by the only
categorization rule and replaces b by a.
Test result : One rule is executed after the other (only once) if and only if the net contains
the transition that has to be replaced by the first rule that fires. The rule will not cause an
infinitive loop instead after execution the net will look like before the execution of the applied
rules. In case the net does not contain the transition to be replaced by the first rule that fires,

5.4. Summary 121

Flexwoman returns an error message because the transition to be replaced does not exist. Then
the second rule is successfully executed.

5.3.3 Context change interdependency

What happens when a context change happens while the CPN is adapted?

Test setting: We insert several generated values into the database.
Test result : The several inserts trigger adaptations that are executed one after the other.

5.4 Summary

In the following text we summarize the evaluation results and additionally give some advices
how to use Flexwoman.

5.4.1 Summary of evaluation results

In this section we evaluated Flexwoman. We started with a qualitative evaluation to test whether
the system fulfills the functional requirements. The functionality Flexwoman aims to offer is the
run time adaptation of rules and process parts as well as the combination of run time adaptations
of process parts. The qualitative evaluation worked well. Flexwoman fulfills the functional
requirements as it passed all tests.

The quantitative evaluation tested the system with a larger rule base to get an impression how
the system scales and whether it can be applied in realistic scenarios. The results show that a
running system needs a nearly constant time for handling a context change (normal mode). For
the initialization of the system, that is a non or rarely recurring scenario, the system that has to
build rule and fact base. The time needed for building rule and fact base mainly depends on
the number of rules that have to be inserted into the rule base. With a growing number of rules
the needed time for that initialization grows linearly. The times we metered show the system
behavior but the concrete times are not optimized because the topic of low run times is not in
the focus of this work.

Afterwards, we tested Flexwoman, especially the used rule base, for its run time behavior in a
sense that we checked what happens in potentially critical situations.

122 Chapter 5. Evaluation

5.4.2 Usage of Flexwoman

The evaluations showed that the system offers a proper infrastructure for the automated context-
aware adaptation of processes. That is, the system supports the developer with an infrastructure
but the developer has to do manual work to customize Flexwoman for the specific application
environment in which it is intended to be used. The system developer has to write the rules that
react on the context-changes and that adapt the processes in an application specific way. The
rules have to be implemented in a semantically consistent way. Additionally, the database we
provide is a generic database. If it is necessary to react on different kinds of context, the system
developer has to adapt the database and the corresponding trigger. In summary, the developer
has to care about the application specific functionality and the consistency of the rules.

Chapter 6

Related work

There are two different research communities working on the challenge of making workflows
flexible. On the one hand there is the community that researches workflow management and
on the other hand there is the Artificial Intelligence (AI) community, that applies AI techniques
to make workflows more flexible. Both aim to bridge the gap between build time workflow defini-
tion and run time execution of workflow instances. Because of the different backgrounds of the
researchers the developed approaches are very different in nature. The approaches from the
workflow community focus on scenarios that do not require a very high degree of flexibility at run
time. Many approaches do not support automatic adaptations but only manual adaptation of the
workflow instances. Important goals of the workflow community are to keep the overall process
correct with respect to the control flow and to apply automated adaptations of the workflow in a
non blocking manner. The approaches from the AI community, focus on very high run time flex-
ibility and automation of workflow adaptation. Some approaches accept non optimal solutions
and a stop of the workflow execution to apply workflow adaptation. The different characteristics
of the approaches of both communities have different strengths and can be applied for different
application scenarios. Indeed, many of the new approaches of both communities successfully
integrate solutions of both communities with the goal to combine their advantages and use the
synergies of their combination.
Additionally, we have a look at approaches for dynamic workflow management used in eHealth.
We discuss which of the approaches designed by the workflow community and the AI commu-
nity are appropriate to handle which workflows in eHealth and we introduce some approaches
tailored for special scenarios in eHealth.

6.1 Approaches of the workflow community aiming for flexible WfM

In the following section we will discuss representative approaches developed by the workflow
community to achieve a flexible management of workflows. First, we discuss dynamic WfMSs

123

124 Chapter 6. Related work

and subsequently a subclass of dynamic WfMSs: context-aware workflow management sys-
tems. The difference between the two classes is that dynamic WfMSs rely on the assumption
that exceptions are the triggers for workflow adaptations and in context-aware WfMSs context
changes are the triggers for workflow adaptations.

6.1.1 Dynamic WfMS

The first concepts to solve the problem of too strict workflow definitions and too rigid WfMSs
originate naturally from the workflow community. In Section 2.4 we described three approaches
for adapting workflows, that have their origin in the workflow community: i) Schema evolution,
ii) Ad-hoc changes, and iii) Partly defined workflows.

Our work focuses at run time adaptation of workflow instances, where adaptations affect only
individual instances and not the definition of a workflow. In contrast, schema evolution han-
dles changes that affects the definition of a workflow. It does not affect an individual workflow
instance but all instances of a workflow definition. Schema evolution is only slightly related to
Flexwoman. Thus, we do not consider this approach in detail but refer to [CCPP96] for the
description of the concepts as well as to the systems WIDE [CCPP96] and WASA [Wes98], that
offer implementations for the theoretic concepts of schema evolution.

Ad-hoc changes are short term changes. Typical change operations are the deletion and inser-
tion of activities, or the change of activity sequences. They are applied at run time and allow for
a fast and convenient reaction on known and unknown exceptions or events. One of the most
important systems supporting this concept is ADEPT [RD98]1. ADEPT focuses on the develop-
ment of a system that applies dynamic and structural changes of running workflow instances in
a correct and consistent way. Pre- and post-conditions are used to assure the guarantees given
at build time. The complexity of adaptation is largely hidden from the users. ADEPT does rely
on manual intervention for choosing the activities for workflow adaptations. Flexwoman aims for
automatic adaptation of foreseen workflow adaptations.
CCBRTools [WWB04] is the conversational case-based reasoning tool of CBRFlow, a tool that
extends workflow execution with conversational case-based reasoning. For a more advanced
support of manual intervention, ADEPT and CCBRTools are combined to ProCycle [WWRD07].
The idea of ProCycle is to annotate changes of the instance with the relevant context that causes
the change and to store the resulting cases in the case base. That is, changes of the instance
are stored together with the reason of the change (context). This allows for a reuse of the
changes for other instances of the same pre-defined process affected by the same (relevant)
context changes. Additionally, frequently occurring changes are automatically analyzed and
serve as starting point for process improvements. Flexwoman also supports change operations
at run time. But we try to avoid manual intervention to apply foreseen workflow adaptations.

1ADEPT also supports schema evolution of in-progress workflows, where the change of the workflow definition
is not in conflict with the current instance state or previous ad-hoc change [RRD03].

6.1. Approaches of the workflow community aiming for flexible WfM 125

Additionally, the adaptive workflow system AgentWork bases on ADEPT [MGR04]. This sys-
tem aims for automatic adaptation of workflow instances just like Flexwoman. It also uses ECA
(event condition action) rules that detect events which cause adaptations2 of control and data
flow. Additionally, it also uses rules to trigger required adaptations. Thereby, the system offers
a predictive adaptation of not executed parts of running workflow instances, that is, the process
adaptation is done in advance. In cases predictive adaptation is not possible reactive adaptation
is applied, that is, the adaptation is executed immediately before the affected workflow part is
executed. In contrast to Flexwoman the adaptation is done by cooperating agents. Relevant
events are detected and adaptations are triggered by the event monitoring agent. The adapta-
tion is performed by the adaptation agent and has to be manually confirmed. The workflow mon-
itoring agent checks whether the assumptions of the adaptation agent are correct and triggers,
if necessary, workflow readaptations. Additionally, an inter-workflow agent determines if there
are implications to cooperating workflows. Where required, this agent informs the cooperating
workflows. The system differs from Flexwoman conceptually, because the adaptations in Agent-
Work are based on failures handling while our system is based on handling of context changes.
AgentWork uses the concept of ad-hoc changes. In Flexwoman fragments and sub workflows
are explicitly formulated. Usually, WfMSs have execution logs and change logs to reconstruct
execution and adaptations of workflow instances. But to make them visible, to analyze them3

and to reuse the solutions, extra tools have to be developed. The approach of Flexwoman au-
tomatically offers and visualizes alternative solutions for reuse. Thus, in Flexwoman the reuse
of adaptations is easier than in AgentWork. At implementation level AgentWork uses an agent
based architecture while Flexwoman uses a component architecture.

A further concept for dynamic workflow management are partly defined workflows. With this
approach short time changes and less structured workflows can be handled. There are three
patterns that can be used to implement this concept: i) late selection, ii) late modeling and iii)
late composition. The first pattern allows at build time only for applying pre-defined adaptations
and not unforeseen adaptations. We explicitly want to react to unforeseen changes, thus we
cannot apply this pattern. Late modeling offers the possibility to react to unforeseen changes.
A representative for a WfMS applying this concept is Pockets of Flexibility [SSO01]. The idea
of this concept is that there are parts of the workflow that are not affected by changes. These
parts can be fixed at build time. The tasks in the fixed workflow parts are defined as conven-
tional workflow tasks. Parts of the workflow unknown at build time are defined as open points
(pockets of flexibility). Pockets of flexibility are associated with i) a set of workflow fragments
and ii) a special workflow activity, the so called build activity, that provides rules to specify the
pocket. The build activity takes care of a valid composition of fragments based on rules. The
assembled fragments are of different complexity and range from single activities to larger sub
processes. Additionally, the approach allows for fragment definition at run time and therefore it

2They call the events failures.
3Event logs can be analyzed and knowledge can be extracted from them with process mining techniques as

described in [vdA11].

126 Chapter 6. Related work

can react to unexpected events. The composition of the fragments is done successively at run-
time while the workflow is executed. After finishing process building, the instance specification
is called instance template. This instance template acts like the process model for a particular
instance.
Another tool working according to the concept of late modeling is Weak dependencies [KLB+08].
The idea of this approach is to replace strong dependencies between process activities by weak
dependencies. A strong dependency is a dependency, where a node (activity) A is predecessor
of node (activity) B and no additional nodes can be added between them. Activity A is called
source node and B destination node. For strong dependencies the following requirements hold:
(i) The source node is precondition of the destination node and the destination node is not en-
abled until the source node is terminated. (ii) The destination node is enabled immediately after
the source node is terminated. Weak dependencies relax the requirements and support only
requirement (i). In other words, weak dependencies allow for adding activities or groups of ac-
tivities between source and destination node. This approach acts on the assumption of manual
workflow execution. The authors aimed for a non complex approach, convenient to support non
experts in the adaptation of workflows. They kept the approach simple and avoided the support
of many different adaptation operations.
Late modeling fixes workflow parts at build time that cannot be changed at run time. On the one
hand, this can be seen as an advantage because that parts cannot be destroyed by accident or
by lack of knowledge. On the other hand, in the real world unforeseen events happen that can
lead to changes that affect fixed workflow parts. Flexwoman avoids to fix parts of workflows at
build time.

The most flexible sub category of partly defined workflows is late composition. In this approach
process fragments are created at build time. The fragments are at run time dynamically se-
lected and completed by control dependencies to compose process instances [WRR07]. The
flexibility comes at the cost of run time performance. These concepts shift the work of workflow
composition from build time to run time to avoid as many changes to the workflow instances as
possible. Although this is a concept describe by the workflow community, this pattern is predom-
inantly implemented by the AI community. The AI approaches which use planners and which
are explained in Section 6.2 are implementations of this pattern.
In Flexwoman, we do not need to support the flexibility this pattern offers and we aim for a fast
behavior of the workflow at run time. Thus, we do not follow this concept.

A modern approach aiming for dynamic process management is Control Flow Intervention
(CFI) [MS10]. CFI is an approach that allows for a flexible and semantic failure handling for
composite services. It supports a dynamic replacement of failed services in processes at run
time. The failed services of a process specification are replaced by dynamically selected, se-
mantically equivalent or semantically similar services (optimistic forward recovery). To find se-
mantically equivalent or similar services the semantics of those services have to be available.
The availability of the semantics allows for a reasoning with the goal to find equivalent or similar

6.1. Approaches of the workflow community aiming for flexible WfM 127

services. Therefore, the services have to be described in terms of functional (input data, output
data, preconditions, effects) and eventually in terms of non-functional properties (performance,
costs, reliability, etc.). After failure and recovery, the execution of the process continues with a
modified specification. The new specification has the same goal as the original specification but
uses different services to achieve the goal. Apart from the completely different techniques used
by CFI and its focus on composite services, one difference to Flexwoman is that CFI reacts or
intervenes after the occurrence of a failure. Flexwoman does not wait for a failure but reacts
proactively and adapts the process according to relevant context changes. Thus, we usually do
not have to interrupt process execution for process adaptation.

6.1.2 Context-aware WfMSs

Dynamic WfMSs offer the possibility to flexible react to exceptions: e.g., errors, and adapt
workflows according to these exceptions. In contrast, context-aware WfMSs offer the possibility
to react to context changes with the adaptation of a workflow. The difference is the point of view.
In principle we can see exceptions as a result of a context change. Thus, context-aware WfMSs
are dynamic WfMSs which use context to find the right workflow execution path. Context-aware
systems need to sense context to be aware of a context changes and to adapt the workflow
according to it. The additional requirements are reflected in the architecture of context-aware
systems that additionally need components for sensing and analyzing context changes. Another
difference of dynamic and context-aware systems is that context-aware systems usually apply
context changes automatically and traditional dynamic WfMSs use manual intervention.

The CAWE (Context Aware Workflow Execution) framework (see [AFG+07] and [AFG+12]) is
a system for managing of context-aware applications, whose business logic is implemented by
context-aware workflows. CAWE aims at context-aware adaptation of workflows and user in-
terfaces. It is a flexible workflow adaptation approach as for the implementation of dynamics in
workflows it uses partly defined hierarchical workflows where unknown parts are modeled as
abstract activities. The abstract activities are associated with one or more sub workflow that is
context-dependently chosen to complete the abstract activities. For sub workflows, interfaces
are defined that have to match with those of the abstract activity and that fit to the current con-
text. The conditions for selection of the most convenient sub workflow are declaratively specified
in rules. That is, a rule engine is used to evaluate the adaptation policies. The approach does
not require changes to the workflow engine but embeds executable code in the definition of
abstract activities. The embedded code calls the CAWE framework to find a convenient sub
workflow dependent on context. The proof of concept prototype of CAWE was implemented on
the top of the WfMS jBPM and uses the rule engine Jess. Just like in Flexwoman, in CAWE con-
venient sub workflows that replace activities are selected based on context. The specification of
the replacement is done in rules, just like in Flexwoman. The difference of both system is, that
Flexwoman does not rely on abstract activities for adaptations but every task can be replaced

128 Chapter 6. Related work

by a sub workflow/fragment. In CAWE there is executable code embedded in the abstract ac-
tivities. This limits the flexibility of the system because it limits the possibility to react to context
changes in advance. It is expected that the current context is not requested in advance and the
adaptations are done when the workflow execution encounters an abstract activity. This can
slow down the workflow execution time. Additionally, the embedding of code avoids changes
to the workflow engine but creates a dependency to the WfMS jBPM. From an implementation
point of view we do not base on jBPM and Jess but on CPNTools and drools.

One of the most well known WfMS dealing with dynamic workflow execution is called YAWL
[AtHVDAE07]. This system was developed to support the workflow language YAWL (Yet an-
other Workflow Language) [vdAADtH04]. From a dynamic and context-aware WFMS point of
view, YAWL offers the Worklet Service that consists of the two sub services: i) Selection Service
and ii) Exception Service [Ada10]. The Selection Service allows for replacing a work item4 with
a dynamically selected worklet (a small, discrete workflow process) at run time. The selection
is based on context data. It is possible to design a worklet and invoke it at run time of a process
instance. Each task of a workflow specification has an extensible repertoire of worklets. The
Exception Service handles expected and unexpected processes at run time. The exception han-
dling is done by a combination of so called exlets (self-contained exception handling processes)
and worklets. Exlets are selected at run time when an exception occurs. The selection depends
on the workflow instance and the context of the exception. For an efficient selection process (of
the Selection and the Exception Service), modified Ripple Down Rules (RDR) are used5. RDR
are hierarchical organized rules with associated exceptions. The advantage of RDR is that the
defined rules can be easily refined later. This allows for starting with general rules that can be
e.g. refined by learning. YAWL supports context-aware exception handling and avoids a mixing
of business logic and exception handling to ease their verification and modification. The con-
cepts and ideas of making YAWL flexible are similar to ours. The differences of our work and
YAWL are that YAWL extends CPNs while Flexwoman uses standard CPNs. YAWL requires
from the workflow designer the handling of a complex tool, and learning of how to specify e.g.
exlets. In Flexwoman the designer only has to deal with CPNs and easily understandable rule
definitions. While the sub processes Flexwoman uses to react to unforeseen events are con-
nected and handled by the CPN tool, a worklet in YAWL and its parent process are unrelated
cases. The Worklet Service handles relationships, data mappings and synchronization between
cases [Ada10]. YAWL does not come automatically with tools to acquire and analyze context
from outside the WfMS. Therefore, interfaces of YAWL have to be extended and the needed
tools have to be created and implemented. Thus, YAWL is not out of the box context-aware in
the sense as used in this work.

4In YAWL, a task instance is referred to as work item [Fou14].
5RDR were introduced in [CJ90].

6.2. AI techniques aiming for flexible workflow management 129

6.2 AI techniques aiming for flexible workflow management

Beside the concepts that have their origin in the workflow community, there are concepts that
have their origin in the AI community. The idea to use AI techniques is not new (see [JMS+99])
and their application created big expectations [RMBCO07]. AI techniques applied to workflow
management are planning and scheduling task but also learning techniques.

Workflow planning with AI techniques requires a modeling of the domain, that is, following ele-
ments: i) tasks, and ii) a model of the problem (initial state and goals) [RMBCO07]. The modeled
elements are the input of a planning tool that creates the plan for process execution. In case
the process has to be adapted, a new plan can be created by updating the problem model.
Certainly, with the application of planners, a WfMS can achieve a degree of automation that is
much higher than that reached without applying planning techniques. Often, the high flexibility
is reached at the expense of time.
Approaches such as [FF06] and [RMBCO07] have to stop workflow execution when an excep-
tion occurs (see Marrella et al. [MMR11]). After stopping the planner is invoked. The planner
generates a new process taking the current process state as initial state. After the new plan is
generated process execution is resumed. With such a procedure time is lost because the com-
plete process execution is stopped when an exception occurs and the planning is done at run
time. Additionally, the domain modeling used as base for applying planning techniques is more
difficult to understand for humans than the modeling of processes with a WfMS. Dynamic and
context-aware WfMSs, and thus Flexwoman, aim for easing the usage of them and minimizing
the time needed for adaptations at run time.

Marella et al. [MMR11] introduces a solution to the unwanted time loss for workflow adaptation.
Their approach changes only the process parts that have to be adapted and keep the other
parts stable. Additionally, it does not stop every task of the process while computing a new plan.
It is a non blocking approach.

6.3 WfMSs in eHealth

Most of the approaches for dynamic workflow adaption are generic and can be applied in diverse
application areas. Nevertheless, their different properties imply a usage for different application
scenarios. In this work we are dealing with processes in eHealth. EHealth is a broad field. The
character of the processes is usually dynamic, but ranges from non complex and static, such as
the process of making an appointment with a physician, to complex and highly dynamic, such
as the patient treatment processes. In this work we focus on dynamic processes in eHealth.
Especially, the highly dynamic processes in eHealth have to be correct and do not allow for long
interruptions needed for process adaptations. Thus, it is often not meaningful to apply planner
based techniques for the dynamic process adaptation to new context information. Further, it

130 Chapter 6. Related work

is often difficult to find the right approach of dynamic workflow adaptation for the respective
eHealth scenario. In [RRvdGK10] a framework is developed that supports to take the decision,
which approach to use6. Their work shows that there is the request to use dynamic workflows
in eHealth but it exists a uncertainty of what approach and which tool is to use.

Workflow systems that explore the applicability of dynamic workflow management in eHealth,
introduced before are e.g.: ADEPT [RRD03] that researched amongst others how hospital pro-
cesses in a Women’s hospital can be supported by dynamic workflows, AgentWork [MGR04]
that aims for supporting workflows for cancer treatment, CAWE [AFG+07], that aims for sup-
porting home assistance (monitoring) of patients that are affected by heart diseases and treated
with blood thinners.

Additionally, there is e.g. the Perikles Project that aims for dynamic handling of operating room
management [SMBH12]. This project bases on YAWL and extends it with observer tasks that
monitor data changes and generator tasks that combine so called bricklets (building blocks
consisting of tasks) to build subnets according to so called construction rules. The system
supports late modeling and handles anticipated changes, for which no strategies can be defined
at design time. In this project additional modeling constructs are added to an existing modeling
language to achieve more flexibility. For execution, a mapping from the extended language to
YAWL is needed. In Flexwoman we do not touch modeling constructs.
Mans et al. describe in [MRvdA+10] how so called Proclets can be used in gynecological
oncology healthcare processes. Proclets are lightweigth processes that interact via channels
to transport messages from one Proclet to another Proclet. Proclets support environments
characterized by fragmented processes that have to interact. They can be used to dissolve
complex and interlaced processes into simple fragments to emphasis aspects related to the
interaction of workflows. [vdAMR09] This work focuses on different aspects and different kinds
of workflows than we do.

6.4 Summary

In this chapter we discussed work related to Flexwoman. We explained that there are two com-
munities that are working at overcoming the problem of inflexibility of workflows caused by a
strong differentiation between build time modeling and run time execution. The workflow com-
munity strives for flexible processes that are correct and do not need much time for planning at
run time. The degree of run time flexibility they want to reach is at medium level, and they do not
necessarily aim for a completely automated adaptation process. In contrast, the AI community
aims for a very high degree of run time flexibility. But they accept that the complete planning and
replanning work is done at run time what can cause a blocking of the overall process execution
at run time, and what can slow down the run time performance.

6They rely in their work on a different classification of approaches than we do.

6.4. Summary 131

We pointed out that our application area eHealth is diverse and the flexibility of eHealth pro-
cesses can range from static to highly dynamic. We described that we focus on flexible pro-
cesses, with special attention being paid to flexible processes in the eHealth area that are
characterized by a pressure of time. The time needed at run time for planning and replanning
has to be as short as possible. Thus, approaches developed by the workflow community are
usually more convenient for that special application area. On the other hand, eHealth is also
characterized by routine work that influences the health state of patients. Routine work done by
humans increases the risk of errors. Thus, an automation of workflow adaptations is desirable
for routine work. By means of methods developed by the AI community incorporated in modern
approaches of the workflow community such an automation can be achieved.

132 Chapter 6. Related work

Chapter 7

Conclusion and Outlook

Today many application domains, such as emergency management and eHealth, have con-
stantly to deal with processes that are not completely plannable in advance. That is, they have
to deal with processes characterized by: (i) unforeseen changes, or (ii) changes from which it
is not clear when they arise (flexible processes), or (iii) an in advance unknown or only partly
known order of execution (unstructured processes).
Other application domains, such as automobile industry and banking, have to offer customized
solutions today. Thus, they have to manage (partly) rare or never repeated processes.
Applications from the above mentioned areas benefit of processes that can automatically be
adapted to a changed or a not until run time known environment. That is, they benefit of context-
aware processes. This is especially true for processes underlying mobile applications, because
mobile applications are affected by frequent changes of the environment.

But when looking at WfMSs, the traditional tools to handle processes, it is getting clear that these
systems cannot manage processes that are not completely plannable in advance. The handling
of customized processes generates too large and complex process definitions. Additionally,
WfMSs cannot change processes according to changes in the environment. Traditional WfMSs
are created for and are effective in the handling of highly structured processes, which are rarely
changed, not affected by unforeseen changes and not affected by foreseen changes from which
the time of occurrence is unpredictable.

On the other hand, WfMSs have advantages, flexible, unstructured and context-aware pro-
cesses can benefit from. WfMSs allow for the (i) automation of processes as they coordinate
process execution. Process models, specified by the modeling components of WfMSs, are not
only the prerequisite for process execution but also (ii) process documentation and a mean to
improve (iii) process understandability. The controlling component of WfMSs allows for the (iv)
controlling of the correct process execution. WfMSs explicitly represent managed processes
and separate them from the application logic. The separation is an advantage over problem
specific proprietary applications [RMBCO07] as it eases the understanding of the process logic
as well as it simplifies problem detection and (v) process optimization. Consequently, the usage

133

134 Chapter 7. Conclusion and Outlook

of WfMSs can significantly increase the quality of processes and therefore the competitiveness
of organizations that manage their processes with WfMSs.

Consequently, in this work we developed the tool Flexwoman. Flexwoman is a generic concept
for a flexible and context-aware WfMS. It supports (i) the manual adaptation of processes that
are not completely in advance plannable and (ii) the automated context-aware adaptation of
processes. Flexwoman keeps the advantages of conventional WfMSs and adds the flexibility
to react on context changes with workflow adaptations. It is a generic tool that can be used to
support all kinds of application domains. We decided to use an application scenario from the
eHealth domain to explain our work because it illustrates the functionality of Flexwoman partic-
ularly well.

Flexwoman uses RBSs to make WfMSs context-aware and CPNs to make them flexible. The de-
velopment of Flexwoman covers the formal description of the main concepts of Flexwoman with
HCPNs, the design of an architecture, the prototypically implementation of the architecture, and
the evaluation of the functionality the prototype offers as well as the evaluation of the scalability.

The main problem of handling flexible and unstructured processes in traditional WfMSs is the
gap between build time modelling and run time execution. Parts of the workflow that are not de-
signed at build time cannot be executed at run time. One class of approaches that aims to solve
this problem are flexible workflow systems. Our work ties in with the work about flexible workflow
systems. Instead of using an existing concept we selected the concept of the so called open-
point approach and extended it to reach an independence of changes to predefined change
regions and to support context-aware workflow adaptations. Additionally, Flexwoman realizes a
refinement of workflows over more than one level, the option to replace a workflow part by a sub
workflow that is selected out of a set of several different sub workflows with the same interface
as the replaced part of the workflow, and the reuse of sub workflows for the replacement of
different workflow parts.

The architecture we designed bases on the well known workflow reference model and extends
it by following components: (i) the context collection tool for capturing and storing context, (ii)
the context analysis tool for analyzing context changes of their relevance, (iii) the workflow
adaptation component for adapting the workflow instances to relevant context changes, and (iv)
controlling of runtime changes to check the correctness of the applied changes.
The context collection tool does not only sense and store context but it unifies the context
data collected from different sources and thus allows for a unified analysis of the context data.
For context data analysis as well as workflow adaptation we use a rule-based system. The
rules can be changed during run time, they are easy understandable for users that have to
apply run time changes and they can be executed automatically and efficiently by rule-based
systems. The correctness checks of the adapted workflows are executed by a Hierarchical
Colored Petri net tool. We also use this HCPN tool to executed workflows, which are internally
in Flexwoman described by HCPNs. We have chosen HCPNs as internal representation for the
workflows as they offer a deterministic execution of workflows and can represent workflows on

135

different levels of detail.

In a qualitative evaluation the prove of concept prototype Flexwoman has been successfully
checked for the correct implementation of the concepts of Flexwoman. We could show that our
concepts are meaningful and that Flexwoman is a flexible WfMS that supports the management
of foreseen and unforeseen events. In a quantitative evaluation we successfully checked the
scalability of the system when the rule base increases. We could show that the system performs
in complex application scenarios.

136 Chapter 7. Conclusion and Outlook

Outlook

We evaluated existing approaches of dynamic workflow management in this work. In the evalu-
ation we argued that our application scenario eHealth does not need the flexibility the approach
late composition needs. Furthermore, we aimed for avoiding the possible run time overhead of
late composition as eHealth is time critical. However, late composition can be seen as AI plan-
ning problem. In this area there have been a lot of advances in the last years. Planning (and
re-planning) is getting faster and faster. Thus, future work could research the use of late compo-
sition for workflow adaptation in Flexwoman. Additionally, late composition in combination with a
learning component that learns from earlier workflow adaptations can increase the automation
of workflow adaptation. Hence, workflow improvement and maintenance can be simplified.

In this work we rely on the assumption that the interfaces of the replaced and the replacing
workflow parts are in accordance. For the user it would be meaningful if Flexwoman would
support appropriate interface adaptations of data types automatically or if Flexwoman would
offer a graphical support for interface adaptations.

In this work we learned that visualization plays an important role for the modeling of workflows
and for the understanding of problems in workflow adaptation. Flexwoman is a tool that has to
be adapted to the special scenarios it is applied to. Users have to adapt (i) the database when it
is not enough to react on the given context types, (ii) the database trigger that filters the relevant
context changes if needed, (iii) the rules that categorize context changes and trigger adapta-
tions. Additionally, users have to create and maintain the workflows needed for the adaptation
work. For evaluation work, in case of error messages and for illustration of our thesis we rely on
the graphical user interface of CPNTools to visualize the adapted processes. But for practical
use it would be meaningful to design an IDE that allows an easy and uncomplicated adaptation
of the tool Flexwoman to another application scenario. In case of adaptation errors such an
IDE would avoid a loss of time. The IDE could abstract from CPNs and use the slightly easier
syntax of workflows. Additionally, a graphical visualization of the workflow execution like offered
by CPNTools could be provided.

In this work we focused on functionality and not on performance. When we consider the results
of the quantitative evaluations we see that the adaptation of the CPNs dominates the run time
of change operations in normal mode. Thus, it could be meaningful, to optimize the adaptation
of the CPNs.

Appendix A

Comparison of tools that implement
CPNs

There is a large set of tools that were developed to implement Colored Petri Nets. The approach
to find such a tool is to use an existing comparison or to make an own comparison. A well done,
but outdated comparison of high level Petri net tools is [Stö98]. We borrowed some ideas
regarding the structure of the comparison from this paper. We could not find any up-to-date
comparison or list of CPN tools. Therefore, at first we had to compile a representative list of CPN
tools, more precisely a list of Hierarchical Colored Petri Net tools, as the support of hierarchies
is necessary for implementing our concept. The starting point for our search was the Petri Net
Tools Database1. This database aims to give an overview of existing Petri nets tools. It does
not focus on Colored Petri nets but on Petri nets in general. This database is comprehensive
collection and well done. The main problem is, that the data base is partly outdated. It contains
fresh entries from 2013, but older entries are not maintained. Some of the older entries no
longer exist. Thus, the database entries are not reliable and have to be checked. The database
has a public available WWW interface. This interface only allows for the search of high level
petri nets but not for HCPNs. Thus, we compiled a list of high level petri nets from the Petri Net
Tools database. We extended this list with tools found by internet search.
In summary, we used following tools in our comparison:

Access/CPN, ALPHA/Sim, AlPiNA, Artifex, Coopn Builder, COSA BPM, CPN-AMI, CPN Tools
(former Design/CPN), ePNK, ExSpect, F-net, GDToolkit, Geist3D, GreatSPN, Helena, HiQPN-
Tool, HISIm, INA, Income Suite, JFern, JPNDE, Kontinuum, LoLA, Maria, MISS-RDP, MISTA,
The Model-Checking Kit, P3, PACE, PEP, Petri Net Kernel, Petruchio, PnetLab, PNMLFrame-
work, PNSim, PNtalk 2.0 (former PNtalk), Poses++ (former Poses), Predator, PROD, ProM
framework, PROTOS, QPME, Renew, SEA, Sepia, Simulaworks, SNAKES, Snoopy, SPNP, Stp-
nPlay, SYROCO, TimeNET, YAWL

1http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html

137

138 Appendix A. Comparison of tools that implement CPNs

First iteration: From the tools we found we excluded in a first iteration step:

• tools that are no more available or do not run on current systems,

• tools that do not support both, modeling and simulation of CPNs,

• tools where CPNs are only a base and their focus are e.g. workflows,

• tools that are no longer maintained, and

• commercial tools (also that are free for non commercial use).

After the first round of the comparison our list only contains tools, that offer means to model
and simulate HCPNs as we aim to build on the top of a HCPN tool to implement our ideas. We
limit the comparison to tools, that are open source, because this allows us to understand the
source code and to apply changes and/or extensions to the source code that are needed to
implement our ideas. The systems have to be ready to use, to avoid spending too much time
with installation work or bug fixing.

The following box shows the tools that pass the first round of our comparison.

Access/CPN, CPN-AMI, CPN Tools, ePNK, JFern, JPNDE, PnetLab, PNtalk 2.0, QPME, Re-
new, Sepia, SNAKES, Snoopy

Second iteration: With the first round, we could exclude a lot of tools, but there are almost 20
tools left. Thus, in a second step we looked whether the tools meet following requirements, to
offer a good background for Flexwoman:

• The programming language should be Java because that makes it easier to build applica-
tions on the top of it that run on mobile devices.

• They should support ISO/IEC-15909 (PNML).

• They should be well documented.

• They should have a community working with it.

In this second round we wanted to find out whether it is possible to use the left CPN tools as
base for a flexible workflow system. We compared the tools according to the above require-
ments, because: A Java based system has advantages in mobile settings. A support of PNML
(Petri Net Markup Language) – the standard interchange format for Petri net tools – allows e.g.
for a cooperation with other tools and a reuse of available petri net models. A good documenta-
tion (manuals, Javadoc,..) is meaningful to understand the code. In case of questions, a large
and active community is desirable. A large community makes a tool future-proof.
To rank the tools we give points for fulfilling the requirements as follows: 2 points for Java as PL

139

(because this fact eases implementation work in mobile settings a lot), 1 for PNML implemen-
tation, 1 for documentation and 1 of an active community. In table A.1 the points given for each
tool are summarized in brackets after the name of the tool. In the columns the concrete points
given per tool and property are listed in brackets.

Tools PL Java PNML Documentation Community

Access/CPN
(3.5)

Java (2) yes (1) small technical
documentation, few
code documentation,
good examples,
benefits from
documentation of
CPNTools (0.5)

forms for support,
bugs, feature
requests, benefits
from CPNTools (0)

CPN-AMI (3) Ada, C, Java
and more (1)

yes (1) web site, user
manual, videos,
examples, but not
sufficient for this
large tool (0.5)

bug report, FAQ
(0.5)

CPNTools (3) simulator:
Standard ML,
gui: Beta (0)

yes (1) excellent user
documentation at the
web site, video
tutorials, examples
(1)

forms for support,
bugs, feature
requests,
newsletter,
facebook, twitter (1)

ePNK (5) Java (2) yes (1) website, manual,
examples (1)

email for
comments,
suggestions, error
reports (1)

JFern (3.5) Java (2) no (0) manual in download,
examples, video,
good code
documentation (1)

mailing list, bug
report (no activities
on both) (0.5)

JPNDE (3) Java (2) yes (1) no documentation (0) no community (0)
PnetLab (2) simulation

engine: C++,
gui: Java
(0.5)

yes (1) basic web site, user
manual (0.5)

no community (0)
support

PNtalk 2.0
(2.5)

Smalltalk (0) yes? (1) website,
documentation in
download (1)

email for feedback
(0.5)

140 Appendix A. Comparison of tools that implement CPNs

Tools PL Java PNML Documentation Community

QPME (4) Java (2) XML
schema
based on
PNML (0.5)

web site, user
documentation (0.5)

Mailing List, News,
Forum, Bug
Tracker, Feature
Requests (1)

Renew (4.5) Java (2) yes (1) small web site, user
documentation, FAQ,
good code
documentation (1)

email for contact
with developers
(0.5)

Sepia (3) Java (2) PNML
parsing
(0.5)

good code
documentation, tests,
no user manual (0.5)

no community
support (0)

SNAKES (1.5) Python (0) only correct
handled for
low-level
nets (0.5)

reference manual
(0.5)

small wiki, few
entries to issue
tracker (0.5)

Snoopy (2) C++ (0) only export
(0.5)

web site, manuals
and tutorials, FAQ (1)

mailing list, bug
report (0.5)

Table A.1 – Second round of comparison of CPN tools

Third iteration: In a third step we evaluated only the most interesting tools (>=3.5 points).
We compared the following systems in detail:
Access/CPN, ePNK, JFern, QPME, Renew

• The tool has to be stable/robust.

• The tools should be resource preserving because it should be used in mobile settings.

• The tools should be easy to install and intuitive in usage.

• A well known and easy to use inscription language is an advantage.

Tools re-
sources

stable easy in-
stallation

intuitive
usage

inscription
language

miscella-
neous

Access/CPN 210 MB
eclipse
+ 320
MB Ac-
cess/CPN

yes yes yes SML —

141

Tools re-
sources

stable easy in-
stallation

intuitive
usage

inscription
language

miscella-
neous

ePNK simulator
is not
stable

yes partly (tree
view as
starting
point not
intuitive)

proprietary,
syntax
resembles
that of
CPNTools

simulator is
in an
experimental
state

JFern 7.9 MB
Disk

reset,
exam-
ples,
hierar-
chies do
not work

yes no, and
very short
manual, but
a video

Java,
Kawa,
BeanShell
and Clojure

hierarchies
imple-
mented but
bugs avoid a
usage out of
the box

QPME 41.9 MB
Disk

yes yes mainly yes no
step-to-step
simulation,
not so
suitable for
usual CPNs

Renew 5.9 MB
Disk

yes yes yes Java hierarchies
are not im-
plemented
as expected

Table A.2 – Third round of comparison of CPN tools

The third round of the comparison shows that JFern is a smart little tool that would perfect fit our
purpose when it would be stable and well documented. It supports Java as inscription language
and it is small. Unfortunately, it does not work out of the box: The biggest problem we found (for
our work) is that the hierarchy concept cannot be used because of bugs in the implementations.
Furthermore, examples belonging to the tool documentation are not working and the resetting
of a simulation is not possible. The documentation is extremely small and not sufficient.
Renew is the smallest tool in our comparison and it supports Java as inscription language. But
our evaluation showed that hierarchies are implemented in an unexpected way. After folding of
a net to a transition or place, the unfolded net is no longer available. A refinement of a place is
a splitting of the place into two (similar for transitions). The old version of the net is no longer
available.
QPME is adapted to a usage for Queuing Petri nets and difficult to use for conventional CPNs.
It does not support a step-by-step simulation. Therefore, we cannot use it.
ePNK is a tool with a large footprint. It is a Petri net platform and all needed functionality can be

142 Appendix A. Comparison of tools that implement CPNs

plugged in. Unfortunately, the offered simulator is in an experimental state. Because we rely on
a good working simulator we have to exclude this tool.
The last tool we evaluated is Access/CPN. It was developed as Java interface to CPNTools but
it can be used without the graphical interface of CPNTools. The most important disadvantage is
the footprint of this tool, that bases on eclipse. Another disadvantage is the inscription language
SML. The main advantages are stability, the easy installation and usage. Additionally, it benefits
from the usage of the elaborated simulator of CPNTools and thus the well done documentation
of CPNTools.
We decided to use Access/CPN for our work mainly because of its stability and its stable imple-
mentation of hierarchies.

List of Definitions

1: Context [DA00] . 10

2: Relevant Context . 10

3: Used Context . 10

4: Context-awareness . 13

5: Business Process (WfMC) . 16

6: Task . 16

7: Sub process . 17

8: Workflow . 17

9: Workflow graph . 17

10: workflow management system . 21

11: Workflow definition . 24

12: Workflow instance . 24

13: Condition-Event-Net . 38

14: Firing rule . 38

15: Enabling rule . 39

16: Conflict . 39

17: Backward conflict . 39

18: Subnet . 43

19: Preset [BGV91] . 44

20: Postset [BGV91] . 44

21: Border . 45

22: Colored Petri net . 46

23: Substitution transition . 52

143

144 List of Definitions

24: Socket place . 53

25: Port place . 53

26: Port-socket relation . 53

27: Port-socket relation function . 53

28: Type function . 54

29: Colored Petri Net Module (CPN Module) . 54

30: Submodule function . 54

31: Hierarchical Colored Petri nets (HCPNs) . 55

32: Port-socket relation function (t,sm) . 80

33: Port-socket relation function . 80

34: Submodule function Flexwoman . 80

35: Flexwoman . 80

List of Tables

2.1 Overview of dynamic workflow properties . 35

3.1 Comparison of classes of dynamic workflow management regarding the require-
ments of our application environment defined in Section 3.1 (++ best marking, - -
lowest marking) . 74

5.1 Quantitative evaluation: We show the average time in seconds needed for every
run (normal mode) and in brackets the time in seconds of the first run which also
includes the building of the rule base (initialization mode). Figure 5.17 visualizes
the results. 116

5.2 Quantitative evaluation: We show the time in ms needed for the steps a change
operation consists of. This table contains the values for the first round of the first
run (initialization mode). These values are significant higher than the values of
the average shown in table 5.3. 117

5.3 Quantitative evaluation: We show the average time in ms needed for the steps
a change operation consists of. This table contains the values for the first round
out of a run (initialization mode). It contains times for the creation of rule base
and fact base. Figure 5.18(a) visualizes the results. 117

5.4 Quantitative evaluation: We show the average time in ms needed for the steps
a change operation consists of. This table contains the normal mode. Figure
5.18(b) visualizes the results. 118

A.1 Second round of comparison of CPN tools . 140

A.2 Third round of comparison of CPN tools . 141

145

146 List of Tables

List of Figures

2.1 Context in a user-application-interaction (The green dots symbolize context data.) 11

2.2 Potential relation of used and relevant context for three parties in the same situation 11

2.3 Process - Injection of insulin before each meal for a simplified diabetes exam-
ple (according to Intensified Conventional Therapy (ICT)). Process (a) and sub
process (b) are depicted. 17

2.4 Basic Control Flow Patterns [RHM06]. 20

2.5 WfMS components and interfaces [Hol95] . 22

2.6 WfMS characteristics as described in [Hol95] decorated by an example process:
At build time the workflow process is defined. At run time the process is instan-
tiated and controlled. Some WfMSs may allow dynamic changes to the process
definition (replacement of task b by task e in the example). During enactment,
WfMSs interact with users or applications that execute various tasks. 24

2.7 At build time different execution paths are modeled. At run time workflow in-
stances (I1, I2) follow exactly one path. I1 executes b, a is already executed. I2
executes a, c is still to be executed. 25

2.8 Schema evolution: build time changes (removal of task a) affect all instances. Two
instances that were started after schema modification are shown. What happens
to running instances depends on the change policy. 30

2.9 Ad-hoc changes: a change of instance I1 (removal of task a) does not influence
other instances such as I2 and the workflow definition is also not touched. 31

2.10 Two variants of open-point approaches . 32

2.11 Multi Instance Activity: several instances of a marked task (a) can be created at
run time. 33

2.12 Late Composition: At build time defined fragments are composed at run time.
The instances I1 and I2 depict two possible workflow instances. 33

2.13 Generic interface: for every task a generic open interface for applying changes is
offered. 34

147

148 List of Figures

2.14 Condition-Event-Net: places P = {s1,s2,s3}, transitions T = {t1,t2,t3}, connecting
arcs e.g. f1 = (s1,t1) and start marking M0(s1)=1, M0(s2)=0, M0(s3)=0. 38

2.15 (Forward) conflict and backward conflict situation in Condition-Event-Nets. 40

2.16 Mapping from workflow w to Petri net p: tasks are mapped to transitions e.g.
metering of blood glucose level; conditions are mapped to places e.g. ready for
input to s1; an instance of workflow w is mapped to the token in p 40

2.17 Routing: on the left the routing constructs of workflows are shown and on the
right their mapping into Petri nets according to [vdA98] is depicted. 41

2.18 Hierarchical Petri net with two levels: refinement of transition t1 43

2.19 Subnet: The dashed box marks a subnet of the shown net. 44

2.20 Preset •x of x . 44

2.21 Postset x• of x . 44

2.22 Place bordered subnet N’ . 45

2.23 Transition bordered subnet N’ . 45

2.24 Visual presentation of CPN concepts . 47

2.25 Colored Petri net that illustrates a simplified detail of a form of therapy for diabetes
(ICT). It describes the metering process (dotted background) plus the archiving
of metered data and shows the initial marking of the net. 49

2.26 Picture detail of 2.25: storing metered data in history. 50

2.27 Picture detail of 2.25: reading data from history. 50

2.28 Routing: on the left routing constructs of workflows, not supported by CENs,
are shown. On the right the mapping of these constructs into CPNs according
to [vdA98] is depicted. 51

2.29 Simple hierarchical colored Petri net with module module1 and submodule mod-
ule2. 52

2.30 Example of a HCPN (a part of Figure 2.25) . 56

2.31 rule engine: The knowledge base stores the knowledge of the rule engine, that is,
the rules are stored in the rule base and the facts in the fact base. The inference
engine is the core of a rule engine. Its tasks are the matching of facts against
conditions of rules, processed by the pattern matcher and the ordering of the
result of the pattern matching, processed by the Conflict resolution. (see [Neg11,
GR05]) . 57

List of Figures 149

2.32 Forward chaining: At time t1, the pattern matcher matches rules and facts to
compute a conflict set of applicable rules. The conflict resolution creates from the
conflict set the agenda, an ordered list of rules. The first rule of the list (A → D)
is fired by the execution engine and a new fact (D) is added to the fact base. At
time t2 the fact base contains D and the next rule to be fired is searched. (The
figure refers to [AB92,Neg11].) . 60

2.33 Backward chaining: The inference engine aims to infer fact Z. It searches in the
rule base for rules with Z in its THEN part. It finds C v D → Z. Fact C and D have
to be established. C is in the fact base. Sub goal D is set up. D is not in the fact
base but there are two rules with D in the THEN-part (A → D and S & B → D).
The conflict resolution determines A → D to be used first. A is in the fact base.
A → D is fired. D is inferred and now available in the fact base. The inference
engine returns to goal Z. C v D → Z can be fired and Z can be established. (The
figure refers to [AB92,Neg11].) . 62

3.1 The upper part of the figure shows a conventional workflow definition. The lower
part shows examples of workflow instances of this workflow definition (I1, I2).
Conventional workflows split and merge branches to define conditional routing
paths. Usually, there is no way to change the workflow definition when running
workflow instances exist and the workflow instance cannot be adapted to unfore-
seen changes at run time. 76

3.2 Subfigure (a) shows the workflow from Figure 3.1 as defined in class C2. The
fragments f0-f2 are defined at build time, f3 and f4 at run time. f0-f4 are alter-
native replacements of the placeholder task plhTask at run time. Task b is not
marked as a placeholder. It is a concrete task. Thus, b cannot be replaced at run
time. Subfigure (b) presents the example workflow described with Flexwoman.
Flexwoman does not have placeholder tasks. The most likely fragment (a) is
used to define the workflow at build time. At run time it can be replaced by f1-f4.
Additionally, for task b fragments can be defined to replace b at run time. Thereby,
fragments can be reused (f3). 77

3.3 We are allowing for attaching of several sub workflows to one workflow element
on the level of the indicating workflow, e.g. t1 of wf1 has the sub workflows
sub1.1 and sub 1.2; t3 has the sub workflow sub3.1. A sub workflow can be used
to refine several elements, e.g. sub12.1 refines t13 and t16. Sub workflows can
act as indicating workflows, e.g. t13 of sub1.2 is refined by sub12.1. Thus, we
are allowing for the refinement of workflows over more than one level. 78

3.4 Process - Injection of insulin before each meal for a simplified diabetes example
(according to Intensified Conventional Therapy (ICT)). According to our concept,
process (a) has several sub processes, (b) – the default sub process, and (c). . . 79

150 List of Figures

3.5 Meta workflow of workflow adaptation with Flexwoman 82

4.1 Concept of extensions needed to make a WfMS context-aware and flexible. (The
blue color marks the components added to the workflow reference model.) . . . 88

4.2 Detail of Flexwoman’s architecture with the messages sent to adapt a workflow. . 89

4.3 Architecture with the tools/programming languages used for the implementation. 89

4.4 The generic database schema of Flexwoman that implements the context defini-
tion of Dey [DA00]. 90

4.5 The interplay of Access/CPN and CPNTools. (The figure refers to [WK09,Wes11].) 95

5.1 Figure (a) shows Flexwoman and its way to hide choices. Figure (b) shows the
traditional way to model workflow choices and its implications to complexity. . . . 98

5.2 Figure (b) shows Flexwoman and that Flexwoman allows for the modeling of sub
workflows at run time and (a) shows that traditional WfMS does not offer this
possibility. 99

5.3 Figure (a) shows that in Flexwoman every task or fragment can be replaced by a
sub workflow defined at run time just like in systems that support ad hoc changes.
Figure (b) shows that in open-point approaches change regions of a workflow are
fixed at build time and cannot be changed at run time. 100

5.4 The running example - metering blood sugar and react on the blood sugar value. 101

5.5 The replacement in case of a too low blood sugar level. 101

5.6 The replacement in case of a too high blood sugar level. 101

5.7 The replacement in case of a much too high blood sugar level. 102

5.8 Create a sub process for the task react on bloodsugar. 104

5.9 Exchange a sub process (TakeDextrose) by another one (InjectInsulin). 105

5.10 Delete a sub process (InjectInsulin) and replace the substitution transition by a
”usual” transition react on bloodsugar. 106

5.11 Replacing a fragment (from the transition print bloodsugar to react on bloodsugar
in the process BloodSugarCtrl) by the fragment contained in the file CallAmbu-
lance BSC. 108

5.12 Replacing a fragment (starting from the transition print bloodsugar and ending
with the transition react on bloodsugar of the process BloodSugarCtrl) by the
transition react. 108

5.13 Replacing a fragment with more than one transition (print bloodsugar, react on
bloodsugar) of the process BloodSugarCtrl by a sub process (call ambulance). . 109

List of Figures 151

5.14 Deleting a simple fragment consisting of only one transition print bloodsugar of
the process BloodSugarCrtl. 110

5.15 Deleting a more complex fragment (a whole branch) of the process callAmbu-
lance BSC. 111

5.16 The execution of two operations after the other. Firstly, a fragment of the CPN
BloodSugarCrtl starting from transition print bloodsugar to transition react on
bloodsugar is replaced by the transition react. Secondly, the transition react was
replaced by the subnet InjectInsulin. 113

5.17 Chart of the run time and the run time plus time for building a rule base. 116

5.18 The results of the detailed quantitative evaluation. 119

152 List of Figures

Bibliography

[AB92] Doris E. Altenkrüger and Winfried Büttner. Wissensbasierte Systeme: Architek-
tur, Entwicklung, Echtzeit-Anwendungen. Vieweg, 1992. [in German].

[Ada10] Michael Adams. The Worklet Service. In Arthur H. M. Hofstede, Wil M. P. Aalst,
Michael Adams, and Nick Russell, editors, Modern Business Process Automa-
tion, pages 291–326. Springer Berlin Heidelberg, 2010.

[AEtH03] Michael J. Adams, David Edmond, and Arthur H.M. ter Hofstede. The Applica-
tion of Activity Theory to Dynamic Workflow Adaptation Issues. In The 7th Pacific
Asia Conference on Information Systems (PACIS 2003), pages 1836–1852, Ade-
laide, Australia, 2003.

[AFG+07] Liliana Ardissono, Roberto Furnari, Anna Goy, Giovanna Petrone, and Marino
Segnan. A framework for the management of context-aware workflow systems.
In Proc. of WEBIST 2007 - Third International Conference on Web Information
Systems and Technologies, pages 80–87, Barcelona, Spain, 2007.

[AFG+12] Liliana Ardissono, Roberto Furnari, Anna Goy, Giovanna Petrone, and Marino
Segnan. The context aware workflow execution framework. Int. J. Auton. Adapt.
Commun. Syst., 5(1):58–76, January 2012.

[AH98] Mark S. Ackerman and Christine Halverson. Considering an Organization’s
Memory. In Proceedings of the 1998 ACM Conference on Computer Supported
Cooperative Work, CSCW ’98, pages 39–48, New York, NY, USA, 1998. ACM.

[AS10] R. Akerkar and P. Sajja. Knowledge-Based Systems. Jones & Bartlett Learning,
2010.

[AtHVDAE07] Michael Adams, Arthur H. M. ter Hofstede, Wil M. P. Van Der Aalst, and David Ed-
mond. Dynamic, extensible and context-aware exception handling for workflows.
In On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE,
GADA, and IS, pages 95–112. Springer, 2007.

[Bat94] Don Batory. The LEAPS Algorithms. Technical report, Department of Computer
Science, University of Texas at Austin, Austin, TX, USA, 1994.

153

154 Bibliography

[BCF+08] Gert Brettlecker, Cesar Caceres, Alberto Fernandez, Nadine Fröhlich, Ari Kin-
nunen, Sascha Ossowski, Heiko Schuldt, and Matteo Vasirani. CASCOM: Intel-
ligent Service Coordination in the Semantic Web, chapter Technology in Health-
care, pages 125–139. Birkhäuser, 2008.

[BGV91] Wilfried Brauer, Robert Gold, and Walter Vogler. A survey of behaviour and
equivalence preserving refinements of petri nets. Springer-Verlag, London, UK,
UK, 1991.

[CCPP96] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. In Data and
Knowledge Engineering, pages 438–455. Springer Verlag, 1996.

[CDMF07] Stefano Ceri, Florian Daniel, Maristella Matera, and Federico M. Facca. Model-
driven development of context-aware web applications. ACM Trans. Inter. Tech.,
7:2, 2007.

[CH94] Søren Christensen and Niels Damgaard Hansen. Coloured Petri Nets Extended
with Channels for Synchronous Communication. In Robert Valette, editor, Appli-
cation and Theory of Petri Nets 1994, Proc. of 15th Intern. Conference, volume
815 of Lecture Notes in Computer Science, pages 159–178. Springer, 1994.

[CJ90] P. Compton and R. Jansen. Knowledge in context: A strategy for expert system
maintenance. In Christopher J. Barter and Michael J. Brooks, editors, AI ’88,
volume 406 of Lecture Notes in Computer Science, pages 292–306. Springer
Berlin Heidelberg, 1990.

[CK00] Guanling Chen and David Kotz. A Survey of Context-Aware Mobile Computing
Research. Technical report, Dept. of Computer Science, Dartmouth College,
Hanover, NH, USA, 2000.

[CMP08] Christine Choppy, Micaela Mayero, and Laure Petrucci. Experimenting Formal
Proofs of Petri Nets Refinements. Electronic Notes in Theoretical Computer Sci-
ence, 214:231–254, June 2008.

[Cor93] Meta Software Corporation. Design/CPN Reference Manual for X-Windows.
Meta Software Corporation, 1993.

[DA93] René David and Hassane Alla. Autonomous and timed continuous petri nets.
Advances in Petri Nets 1993, pages 71–90, 1993.

[DA00] Anind K. Dey and G. D. Abowd. Towards a better understanding of context
and context-awareness. In Computer Human Interaction 2000 Workshop on the
What, Who, Where, When, Why and How of Context-Awareness, 2000.

Bibliography 155

[DA05] René David and Hassane Alla. Discrete, Continuous, and Hybrid Petri Nets.
Springer-Verlag, 2005.

[DDDG08] Gero Decker, Remco Dijkman, Marlon Dumas, and Luciano Garcı́a-Bañuelos.
Transforming BPMN Diagrams into YAWL Nets. In Proceedings of the 6th Inter-
national Conference on Business Process Management, BPM ’08, pages 386–
389, Berlin, Heidelberg, 2008. Springer-Verlag.

[Dic09] Editors Of The American Heritage Dictionaries, editor. The American Heritage
Dictionary of the English Language, volume 4. Houghton Mifflin Company, 2009.

[DK76] F. DeRemer and H.H. Kron. Programming-in-the-Large Versus Programming-in-
the-Small. IEEE Transactions on Software Engineering, 2:80–86, 1976.

[EKR95] Clarence Ellis, Karim Keddara, and Grzegorz Rozenberg. Dynamic change
within workflow systems. In COCS ’95: Proceedings of conference on Orga-
nizational computing systems, pages 10–21, New York, NY, USA, 1995. ACM.

[EN94] Javier Esparza and Mogens Nielsen. Decidability Issues for Petri Nets - a survey.
Elektronische Informationsverarbeitung und Kybernetik, 30(3):143–160, 1994.

[Feh93] Rainer Fehling. A Concept of Hierarchical Petri Nets with Building Blocks. In
Papers from the 12th International Conference on Applications and Theory of
Petri Nets: Advances in Petri Nets 1993, pages 148–168, London, UK, UK, 1993.
Springer-Verlag.

[FF06] Hugo M. Ferreira and Diogo R. Ferreira. An integrated life cycle for workflow
management based on learning and planning. International Journal of Coopera-
tive Information Systems, 15(04):485–505, 2006.

[FMM+09] Nadine Fröhlich, Andreas Meier, Thorsten Möller, Marco Savini, Heiko Schuldt,
and Joël Vogt. LoCa–Towards a Context-aware Infrastructure for eHealth Ap-
plications. In Proceedings of the 15th International Conference on Distributed
Multimedia Systems (DMS09), Redwood City, San Francisco Bay, USA, 9 2009.

[For79] Charles L. Forgy. On the efficient implementation of production systems. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1979. AAI7919143.

[For82] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19:17–37, 1982.

[Fou14] The YAWL Foundation. YAWL - User Manual, version 3.0, 2014. http://www.

yawlfoundation.org/manuals/YAWLUserManual3.0.pdf.

http://www.yawlfoundation.org/manuals/YAWLUserManual3.0.pdf
http://www.yawlfoundation.org/manuals/YAWLUserManual3.0.pdf

156 Bibliography

[FRMS10] Nadine Fröhlich, Steven Rose, Thorsten Möller, and Heiko Schuldt. A Bench-
mark for Context Data Management in Mobile Context-Aware Applications. In
Proceedings of the 4th International Workshop on Personalized Access, Profile
Management, and Context Awareness in Databases (PersDB 2010), Singapur, 9
2010.

[Gal79] Zvi Galil. On improving the worst case running time of the boyer-moore string
matching algorithm. Commun. ACM, 22(9):505–508, September 1979.

[GBH+05] Matthias Grossmann, Martin Bauer, Nicola Honle, Uwe-Philipp Kappeler, Daniela
Nicklas, and Thomas Schwarz. Efficiently Managing Context Information for
Large-Scale Scenarios. In PERCOM ’05: Proceedings of the Third IEEE In-
ternational Conference on Pervasive Computing and Communications, pages
331–340, Washington, DC, USA, 2005. IEEE Computer Society.

[GL81] Hartmann J. Genrich and Kurt Lautenbach. System Modelling with High-Level
Petri Nets. Theoretical Computer Science, 13:109–136, 1981.

[GOR11] Gregor Grambow, Roy Oberhauser, and Manfred Reichert. Contextual injection
of quality measures into software engineering processes. International Journal
on Advances in Software, 4(1 and 2):76–99, 2011.

[GR05] Joseph C. Giarratano and Gary D. Riley. Expert Systems: Principles and Pro-
gramming. Brooks/Cole Publishing Co., Pacific Grove, CA, USA, fourth edition,
2005.

[GT00] Ataeddin Ghassemi-Tabrizi. Realzeit-Programmierung. Springer-Verlag, 2000.

[HJS91] Peter Huber, Kurt Jensen, and Robert M. Shapiro. Hierarchies in coloured Petri
nets. In Advances in Petri Nets 1990, pages 313–341. Springer, 1991.

[Hol95] David Hollingsworth. Workflow Management Coalition - The Workflow Reference
Model. Technical report, Workflow Management Coalition, January 1995.

[Jen81] Kurt Jensen. Coloured Petri Nets and the Invariant-Method. Theoretical Com-
puter Science, 14:317–336, 1981.

[Jen89] Kurt Jensen. Coloured petri nets: A high level language for system design and
analysis. In Grzegorz Rozenberg, editor, Applications and Theory of Petri Nets,
volume 483 of Lecture Notes in Computer Science, pages 342–416. Springer,
1989.

[Jen92] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Prac-
tical Use. Volume 1, Basic Concepts. Springer-Verlag, 1992.

Bibliography 157

[JK09] Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets - Modelling and
Validation of Concurrent Systems. Springer, 2009.

[JKW07] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured Petri Nets and
CPN Tools for Modelling and Validation of Concurrent Systems. In International
Journal on Software Tools for Technology Transfer, pages 213–254, 2007.

[JMS+99] Peter Jarvis, Jonathan Moore, Jussi Stader, Ann Macintosh, Andrew Casson
du Mont, and Paul Chung. Exploiting AI Technologies to Realise Adaptive Work-
flow Systems. In Proceedings of the Workshop on Agent Base Systems in the
Business Context, held during AAAI-99., pages 342–416, 1999.

[KLB+08] Marek Kowalkiewicz, Ruopeng Lu, Stefan Bäuerle, Marita Krümpelmann, and
Sonia Lippe. Weak dependencies in business process models. In Business
Information Systems, pages 177–188. Springer, 2008.

[Lak93] C. A. Lakos. The Role of Substitution Places in Hierarchical Coloured Petri Nets.
Technical Report TR93-7, Computer Science Department, University of Tasma-
nia, August 1993.

[Lak97] Charles Lakos. On the Abstraction of Coloured Petri Nets. In Proceedings of
Petri Net Conference 97, pages 42–61. Springer-Verlag, 1997.

[Lak00] Charles Lakos. Composing Abstractions of Coloured Petri Nets. In Mogens
Nielsen and Dan Simpson, editors, Application and Theory of Petri Nets 2000,
volume 1825 of Lecture Notes in Computer Science, pages 323–342. Springer
Berlin / Heidelberg, 2000.

[LLC] Dictionary.com LLC. context. http://dictionary.reference.com/browse/context.
[Online; accessed 27-August-2012].

[Lug05] G. F. Luger. Artificial Intelligence: Structures and Strategies for Complex Prob-
lem Solving. Pearson education. Addison-Wesley, fifth edition, 2005.

[Mat96] R. Mattmann. Rapid-Prototyping eingebetteter Systeme. TIK-Schriftenreihe. vdf,
Hochschulverlag AG an der ETH Zürich, 1996.

[MBLG90] Daniel P. Miranker, David A. Brant, Bernie Lofaso, and David Gadbois. On the
performance of lazy matching in production systems. In Proceedings of the
eighth National conference on Artificial intelligence - Volume 1, AAAI’90, pages
685–692. AAAI Press, 1990.

[MGR04] Robert Müller, Ulrike Greiner, and Erhard Rahm. AGENT WORK: a workflow sys-
tem supporting rule-based workflow adaptation. Data Knowl. Eng., 51(2):223–
256, 2004.

158 Bibliography

[Mir87] Daniel P. Miranker. TREAT: A Better Match Algorithm for AI Production Systems;
Long Version. Technical report, University of Texas at Austin, Austin, TX, USA,
1987.

[MMR11] Andrea Marrella, Massimo Mecella, and Alessandro Russo. Featuring Automatic
Adaptivity through Workflow Enactment and Planning. In CollaborateCom 2011,
pages 372–381. IEEE, 2011.

[MRvdA+10] R. S. Mans, Nick C. Russell, Wil M. P. van der Aalst, Piet J. M. Bakker, Arnold J.
Moleman, and Monique W. M. Jaspers. Proclets in healthcare. Journal of
Biomedical Informatics, 43(4):632–649, 2010.

[MS10] T. Möller and H. Schuldt. OSIRIS Next: Flexible Semantic Failure Handling for
Composite Web Service Execution. In Semantic Computing (ICSC), 2010 IEEE
Fourth International Conference on, pages 212–217, Sept 2010.

[Mül11] Sarah Müller. Evaluating Rule Engines and Implementing a Context-sensitive
Application for Mobile Platforms. Bachelor’s thesis, University of Basel, Basel,
Switzerland, January 2011.

[MvdA05] N. A. Mulyar and W. M. P. van der Aalst. Patterns in Colored Petri Nets. BETA
publicaties. Beta, Research School for Operations Management and Logistics,
2005.

[Nar04] N. C. Narendra. Flexible Support and Management of Adaptive Workflow Pro-
cesses. Information Systems Frontiers, 6(3):247–262, September 2004.

[Neg11] M. Negnevitsky. Artificial intelligence: A guide to intelligent systems. Pearson
Education, Limited, third edition, 2011.

[NS63] A. Newell and H. A. Simon. GPS, a program that simulates human thought.
In E. A. Feigenbaum and J. Feldman, editors, Computers and Thought, pages
279–293. McGraw-Hill, New York, 1963.

[OMG11] OMG. Business Process Model and Notation (BPMN) Version 2.0.
http://www.omg.org/spec/BPMN/2.0, January 2011. formal/2011-01-03.

[PAK+11] Rinus Plasmeijer, Peter Achten, Pieter Koopman, Bas Lijnse, Thomas van Noort,
and John van Groningen. iTasks for a Change: Type-Safe Run-Time Change in
Dynamically Evolving Workflows. In Proceedings of the 20th ACM SIGPLAN
workshop on Partial evaluation and program manipulation, PEPM ’11, pages
151–160, New York, NY, USA, 2011. ACM.

[Per89] Mark W. Perlin. The match box algorithm for parallel production system match.
Paper 1895, Computer Science Department, Carnegie Mellon University, 1989.

Bibliography 159

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Darmstadt Univer-
sity of Technology, Germany, 1962. [in German].

[PW05] Frank Puhlmann and Mathias Weske. Using the π-calculus for formalizing work-
flow patterns. In Proceedings of the 3rd international conference on Busi-
ness Process Management, BPM’05, pages 153–168, Berlin, Heidelberg, 2005.
Springer-Verlag.

[RD98] Manfred Reichert and Peter Dadam. ADEPTflex: Supporting Dynamic Changes
of Workflow without Loosing Control. Journal of Intelligent Information Systems,
10:93–129, 1998.

[RHM06] Nick Russell, Arthur H. M. Ter Hofstede, and Nataliya Mulyar. Workflow Con-
trolFlow Patterns: A Revised View. Technical Report BPM-06-22, BPM Center,
2006.

[RM03] Erhard Rahm and Rolf Müller. Lecture: Workflow-Management und
E-Services, Chapter 5: Flexibles Workflow-Management. dbs.uni-
leipzig.de/skripte/WMES/PDF4/kap5-1.pdf, 2003. [Online; accessed 29-
August-2012; in German].

[RMBCO07] Marı́a Dolores R-Moreno, Daniel Borrajo, Amedeo Cesta, and Angelo Oddi. In-
tegrating planning and scheduling in workflow domains. Expert Systems with
Applications, 33(2):389 – 406, 2007.

[RODS78] N. J. Nilsson R. O. Duda, P. E. Hart and G. L. Sutherland. Semantic Network
Representations in Rule-Based Inference Systems. In Pattern-Directed Infer-
ence Systems, pages 203–221. Academic Press, New York, 1978.

[RRD03] Manfred Reichert, Stefanie Rinderle, and Peter Dadam. ADEPT Workflow man-
agement system: Flexible support for enterprise-wide business processes: Tool
presentation. Lecture notes in computer science, pages 370–379, 2003.

[RRD04] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Correctness criteria for
dynamic changes in workflow systems—a survey. Data & Knowledge Engineer-
ing, 50(1):9–34, 2004.

[RRvdGK10] Hajo A. Reijers, Nick Russell, Simone van der Geer, and Gertruud A. M. Krekels.
Workflow for Healthcare: A Methodology for Realizing Flexible Medical Treat-
ment Processes. In Stefanie Rinderle-Ma, Shazia Sadiq, and Frank Leymann,
editors, Business Process Management Workshops, volume 43 of Lecture Notes
in Business Information Processing, pages 593–604. Springer Berlin Heidelberg,
2010.

160 Bibliography

[San87] James C. Sanborn. A Modifiable Approach to Expert Systems Development. In
Applications of Artificial Intelligence V, pages 99–106. International Society for
Optics and Photonics, 1987.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is more to con-
text than location. Computers and Graphics, 23(6):893–901, 1999.

[SCD09] Ahmet Soylu, Patrick De Causmaecker, and Piet Desmet. Context and Adaptiv-
ity in Pervasive Computing Environments: Links with Software Engineering and
Ontological Engineering. JSW, pages 992–1013, 2009.

[SHB98] Amit Sheth, Yanbo Han, and Christoph Bussler. A Taxonomy of Adaptive Work-
flow Management. In CSCW-98 Workshop, Towards Adaptive Workflow Sys-
tems, 1998.

[SMBH12] Sebastian Schick, Holger Meyer, Markus Bandt, and Andreas Heuer. Enabling
YAWL to Handle Dynamic Operating Room Management. In Florian Daniel,
Kamel Barkaoui, and Schahram Dustdar, editors, Business Process Manage-
ment Workshops, volume 100 of Lecture Notes in Business Information Process-
ing, pages 249–260. Springer Berlin Heidelberg, 2012.

[SSO01] Shazia W. Sadiq, Wasim Sadiq, and Maria E. Orlowska. Pockets of Flexibility in
Workflow Specification. In Proceedings of the 20th International Conference on
Conceptual Modeling: Conceptual Modeling, ER ’01, pages 513–526, London,
UK, UK, 2001. Springer-Verlag.

[Stö98] H. Störrle. An evaluation of high-end tools for petri nets. Bericht 9802, Institut
für Informatik, Ludwig-Maximilians-Universitat München, Munich, Germany, June
1998.

[Tea13] The JBoss Drools Team. Drools Documentation, Version 6.0.1.Final. JBoss,
http://docs.jboss.org/drools/release/6.0.1.Final/drools-docs/pdf/drools-docs.pdf,
2013.

[vdA98] Wil van der Aalst. The application of petri nets to workflow management. Journal
of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[vdA01] Wil M. P. van der Aalst. Exterminating the dynamic change bug: A concrete
approach to support workflow change. Information Systems Frontiers, 3(3):297–
317, 2001.

[vdA11] Wil M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. Springer Publishing Company, Incorporated, 1st
edition, 2011.

Bibliography 161

[vdAADtH04] Wil M. P. van der Aalst, Lachlan Aldred, Marlon Dumas, and Arthur H. M. ter Hof-
stede. Design and Implementation of the YAWL System. In Anne Persson and
Janis Stirna, editors, Advanced Information Systems Engineering, 16th Interna-
tional Conference, CAiSE 2004, Riga, Latvia, June 7-11, 2004, Proceedings,
volume 3084 of Lecture Notes in Computer Science, pages 142–159. Springer,
2004.

[vdAMR09] Wil M. P. van der Aalst, R. S. Mans, and Nick C. Russell. Workflow Support
Using Proclets: Divide, Interact, and Conquer. IEEE Data Eng. Bull., 32(3):16–
22, 2009.

[vdAtHKB03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Al-
istair P. Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–
51, 2003.

[vdAtHR11] Wil van der Aalst, Arthur ter Hofstede, and Nick Russell. Workflow patterns home
page. http://www.workflowpatterns.com/, 2011. [Online; accessed 19-October-
2012].

[vdAvH04] Wil van der Aalst and Kees van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, Cambridge, MA, USA, 2004.

[VHJG95] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. Design pat-
terns: Elements of reusable object-oriented software. Reading: Addison-Wesley,
49:120, 1995.

[Wei93] Mark Weiser. Some computer science issues in ubiquitous computing. Com-
mun. ACM, 36(7):75–84, July 1993.

[Wes98] Mathias Weske. Flexible modeling and execution of workflow activities. In Sys-
tem Sciences, 1998., Proceedings of the Thirty-First Hawaii International Con-
ference on, volume 7, pages 713–722. IEEE, 1998.

[Wes11] Michael Westergaard. Access/CPN 2.0: a high-level interface to coloured petri
net models. In Applications and Theory of Petri Nets, pages 328–337. Springer,
2011.

[Win01] Terry Winograd. Architectures for Context. Human-Computer Interaction, 16(2-
4):401–419, 2001.

[WK09] Michael Westergaard and Lars Michael Kristensen. The Access/CPN Frame-
work: A Tool for Interacting with the CPN Tools Simulator. In Applications and
Theory of Petri Nets, pages 313–322. Springer, 2009.

162 Bibliography

[WRR07] B. Weber, S. B. Rinderle, and M. U. Reichert. Identifying and Evaluating Change
Patterns and Change Support Features in Process-Aware Information Systems.
Technical Report TR-CTIT-07-22, Centre for Telematics and Information Technol-
ogy, University of Twente, Enschede, March 2007.

[WWB04] Barbara Weber, Werner Wild, and Ruth Breu. CBRFlow: Enabling Adaptive
Workflow Management Through Conversational Case-Based Reasoning. In Ad-
vances in Case-Based Reasoning: 7th European Conference, ECCBR 2004,
Madrid, Spain, August 30-September 2, 2004, Proceedings, volume 7, page 434.
Springer, 2004.

[WWRD07] Barbara Weber, Werner Wild, M. U. Reichert, and Peter Dadam. ProCycle–
Integrierte Unterstützung des Prozesslebenszyklus. KI Journal, 12(4/20):9–15,
2007. [in German].

[ZB97] W. M. Zuberek and I. Bluemke. Hierarchies Of Place/transition Refinements In
Petri Nets. In Proceedings of the 5th IEEE International Conference on Emerging
on Technologies and Factory Automation, pages 355–360. IEEE, 1997.

Curriculum Vitae

Personal Information

Name: Nadine Fröhlich

Date of Birth: 7. September 1975

Place of Birth: Wolfen, Germany

Citizenship: German

Education

2005- 2014 Doctor of Philosophy in Computer Science: Doctor of Philosophy
Thesis: ”Context-aware workflow management in eHealth applications”

2002 Diploma in Computer Science: Dipl. - Inf.
Thesis: ”Datenintegration am Beispiel der Produktentwicklung”

1999- 2002 Study of Computer Science at Otto von Guericke University Magde-
burg, Germany

1999 Diploma in Architecture: Dipl.-Ing. (FH)
Thesis: ”Sanierungsplanung und Umnutzung eines 1609 in
Tangermünde erbauten Pfarrhauses in Fachwerkkonstruktion”

1994-1999 Study of Architecture at Anhalt University of Applied Sciences, Ger-
many

1990-1994 Gymnasium Gräfenhainichen, Germany, Abitur

163

Work Experience

Since 11/05 Research Assistant Databases and Information Systems Group, De-
partment of Mathematics and Computer Science, University of Basel,
Switzerland

• Research area: Context-Aware Workflow Management Systems

• Research projects: Cascom (Context-aware Business Application
Service Co-ordination in mobile Computing Environments) and
LoCa (A Location & Context-aware eHealth Infrastructure)

• Teaching Assistant in ”Datenbanken”

07/03 - 11/05 Saxony-Anhalt Postgraduate scholarship candidate

• Research areas: Pattern oriented software development, proto-
typing, generative programming

• Teaching Assistant in ”Entwicklung technischer Informationssys-
teme”

04/02 - 06/03 Research Assistant Rechnerunterstützte Ingenieursysteme Group, De-
partment of Technical and Business Information Systems, Faculty of
Computer Science, Otto von Guericke University Magdeburg, Germany

• Research area: Federated databases

• Research project ”Workbench für die Informationsfusion”

• Teaching Assistant in ”Datenbanken 1” and ”Entwicklung technis-
cher Informationssysteme”

	Abstract
	Zusammenfassung
	Acknowledgement
	Introduction
	Major contribution
	Application scenario
	Outline

	Fundamentals
	Context
	Context-awareness
	Workflow management
	Workflows
	Managing static workflows
	Strengths of the usage of workflows in WfMSs
	Weaknesses of the usage of workflows in WfMSs
	Discussion of static workflows

	Managing dynamic Workflows
	Schema evolution
	Ad-hoc changes
	Partly defined workflows
	Discussion of dynamic workflows

	A formal model for static and dynamic workflows
	Petri nets
	Condition-Event-Nets
	Hierarchical Petri nets
	Colored Petri nets
	Hierarchical Colored Petri nets

	Rule-based systems
	Rules
	Forward chaining
	Backward chaining
	Discussion forward chaining vs. backward chaining
	The Rete algorithm

	Summary

	Flexwoman — a flexible context-aware Workflow management system
	Motivation and requirements
	Evaluation of flexible WfMS concerning our requirements
	Concept of flexibility in Flexwoman
	Realization of the flexibility concept
	Formal description of the main concepts in Flexwoman
	Plan of Flexwoman's system model
	Structural change operations required of Flexwoman

	Summary

	Architecture and Implementation
	Architecture
	Implementation
	Context management
	Context filtering
	Workflow adaptation
	Correctness checks

	Summary

	Evaluation
	Qualitative evaluation
	Evaluation setup
	Evaluation results

	Quantitative evaluation
	Evaluation setup
	Evaluation results

	Further evaluations
	Growth of the knowledge base
	Rule interdependency
	Context change interdependency

	Summary
	Summary of evaluation results
	Usage of Flexwoman

	Related work
	Approaches of the workflow community aiming for flexible WfM
	Dynamic WfMS
	Context-aware WfMSs

	AI techniques aiming for flexible workflow management
	WfMSs in eHealth
	Summary

	Conclusion and Outlook
	Comparison of tools that implement CPNs
	Bibliography
	Curriculum Vitae

