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Abstract: In imperfectly discriminating contests with symmetric valuations, equilibrium payoffs are
positive shares of the value of the prize. In contrast to a bargaining situation, players’ shares sum
to less than one because a residual share of the value is lost due to rent dissipation. In this paper,
we consider contests with two players and investigate the relationship between these equilibrium
shares and the parameters of a class of asymmetric Tullock contest success functions. Our main
finding is that any players’ shares that sum up to less than one can arise as the unique outcome of a
pure-strategy Nash equilibrium for appropriate parameters.
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1. Introduction

Contest theory deals with games in which players sink efforts in order to win some prize.
A prominent application of the theory is rent-seeking, which goes back at least to the seminal
contribution of Tullock [1]. In a rent-seeking contest, the prize consists in a political rent stemming,
e.g., from privatization, industry regulation, or protectionist trade policy, and potential beneficiaries of
that rent compete by engaging in costly lobbying activities. The literature (extensively surveyed in
Konrad [2]) has since identified numerous situations that have a similar contest structure, albeit with
different players and prizes, including electoral competition, campaign spending, committee bribing,
or militarized disputes.

In this paper, we investigate a contest with a prize of common value v > 0. The equilibrium of
such a contest gives rise to a division of the prize into positive payoff shares to the players that sum
up to less than the total prize, and a residual share that is lost due to rent dissipation. Contest theory
generally analyzes equilibrium behavior (and thus the resulting division of the prize) for a given
specification of the contest success functions—i.e., the map from the efforts of the players into their
winning probabilities. Here, we pursue the opposite approach, and ask whether any division of the
prize can be supported by the Nash equilibrium of an appropriately-specified contest success function.

To this end, we study pure-strategy Nash equilibria of imperfectly discriminating contests in which
risk-neutral players i simultaneously expend efforts xi ≥ 0 in order to increase their probability pi of
winning the single prize. We focus on contests with two players, and consider the class of asymmetric
contest success functions having the form pi = αixr

i /(α1xr
1 + α2xr

2), axiomatized in Clark and Riis [3].
We show that this class of contests is rich enough to support any positive payoffs for the players,

summing to less than the value of the prize, as the outcome of a unique pure-strategy Nash equilibrium
for appropriately chosen values of the effectiveness parameters αi > 0 and the decisiveness parameter
r > 0. The proof is constructive in the sense that for every division of the value v into payoff shares
and a dissipated share, we provide the parameter values which implement the division.
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One possible interpretation of our result is a negative one: in the absence of any specific
information about the structure of the contest, theory does not offer any prediction about equilibrium
payoffs going beyond the assertion that these must be feasible and individual rational. Our own
interpretation is more positive. We find it natural to think of contests as being embedded in
broader economic interactions (e.g., the rent at stake in a rent-seeking contest is not exogenous,
but determined by prior investment decisions). It is then convenient to describe a contest in
terms of its induced equilibrium payoffs rather than dwelling on the intricacies of the equilibrium
analysis of the embedded contest—just as it is often convenient to model bargaining situations
in terms of an asymmetric Nash-bargaining solution rather than some non-cooperative game
(cf. Chapter 1.2 in Muthoo [4]). But doing so raises the question of whether any specification of
equilibrium payoffs can be “micro-founded” through some contest. For the two-player case, our
analysis not only resolves this question, but also exhibits the one-to-one relationship between the
parameters of the contest success function and the equilibrium payoff shares obtained by the players.

There is an extensive literature discussing the existence and uniqueness of pure-strategy Nash
equilibria in n-player contests. Most closely related to our paper are Pérez-Castrillo and Verdier [5],
Szidarovszky and Okuguchi [6], and Cornes and Hartley [7]. Pérez-Castrillo and Verdier [5] consider
contest success functions of the form pi = xr

i /(∑n
j=1 xr

j ). For n = 2, this is the special case of our model
with a symmetric contest success function (α1 = α2). For this case, it is immediate apparent from
the results in Pérez-Castrillo and Verdier [5] that any division in which both players obtain identical,
positive equilibrium payoffs summing to less than the prize can be supported by an appropriately
chosen decisiveness parameter r. Our analysis generalizes this observation by allowing for asymmetric
effectiveness parameters. Szidarovszky and Okuguchi [6] establish a sufficient condition for the
existence of a unique pure-strategy Nash equilibrium for contest success functions of the ratio-form
pi = fi(xi)/ ∑n

j=1 f j(xj). For the two-player contests with fi(xi) = αixr
i we consider, their sufficient

condition is satisfied if and only if the decisiveness parameter satisfies r ≤ 1. We point out a more
permissive sufficient condition on r that is also necessary. The condition is crucial for our main result,
because it allows us to show that the set of feasible dissipated shares includes all positive shares up to
one. Our necessary and sufficient condition for the existence and uniqueness of pure-strategy Nash
equilibrium could be inferred using the tools developed in Cornes and Hartley [7], who generalize
Szidarovszky and Okuguchi [6] in a number of directions. We offer a simpler direct proof for the
two-player case. Further related papers are Baik [8] and Nti [9], who discuss the comparative statics of
pure-strategy Nash equilibria in asymmetric contests. Similar to Szidarovszky and Okuguchi [6], these
authors impose assumptions on the contest success functions which amount to imposing r ≤ 1 in our
setting, making their results inapplicable for our purposes.

2. Model

Risk-neutral players i = 1, 2 simultaneously choose efforts xi ≥ 0 at cost xi. Both players assign
value v > 0 to winning the prize and value 0 to not winning the prize. Player i’s payoff function is

Ui(x1, x2) = pi(x1, x2) · v− xi, (1)

where the probability pi(x1, x2) that player i wins the prize is given by the contest success function

pi(x1, x2) =


αixr

i
α1xr

1 + α2xr
2

if x1 + x2 > 0

αi
α1 + α2

if x1 = x2 = 0
, (2)

with αi > 0 and r > 0. (Our main result, Proposition 1, remains unchanged for any specification of
pi(0, 0) ≥ 0 satisfying p1(0, 0) + p2(0, 0) ≤ 1.) As the payoff functions are homogeneous of degree
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zero in α1 and α2, it is without loss of generality to assume α1 + α2 = 1, and we will do so throughout
the following. Let

P = {(α1, α2, r) ∈ R3
++ : α1 + α2 = 1} (3)

denote the corresponding set of feasible parameters for the contest success function. The parameters
of the contest are then given by the quadruple (α1, α2, r, v) ∈ P × R++. A pure-strategy Nash
equilibrium (or simply equilibrium) of such a contest is a strategy profile (x∗1 , x∗2) ∈ R2

+ satisfying

x∗1 ∈ argmax
x1≥0

U1(x1, x∗2) and x∗2 ∈ argmax
x2≥0

U2(x∗1 , x2). (4)

Every equilibrium (x∗1 , x∗2) gives rise to a division of the value of the prize into equilibrium payoffs
u∗i = Ui(x∗1 , x∗2) for the two players, and a rent-dissipation term d∗ = v− u∗1 − u∗2 . Each player i can
assure a positive payoff by choosing the strategy xi = 0, and for any strategy combination (x1, x2),
the sum of the two players’ payoffs is less than v. Hence, for every equilibrium (x∗1 , x∗2), there exist
(s∗1 , s∗2 , s∗3) ∈ ∆, where

∆ = {(s1, s2, s3) ∈ R3
+ : s1 + s2 + s3 = 1}, (5)

such that u∗1 = s∗1 · v, u∗2 = s∗2 · v, and d∗ = s∗3 · v. That is, we can view any equilibrium (x∗1 , x∗2)
of the contest as inducing a division of the value of the prize into payoff shares s∗1 and s∗2 for
the two contestants, and a dissipated share s∗3 . We refer to these shares as equilibrium shares.
We find it convenient to phrase our analysis and results in terms of equilibrium shares rather than
equilibrium payoffs.

3. Results

We begin by stating our main result:

Proposition 1. For any (s∗1 , s∗2 , s∗3) ∈ ∆ satisfying s∗3 > 0, there exists a unique (α1, α2, r) ∈ P such that any
contest with parameters (α1, α2, r, v) has a unique pure-strategy Nash equilibrium (x∗1 , x∗2) with equilibrium
shares (s∗1 , s∗2 , s∗3).

The following two lemmas establish Proposition 1. Lemma 1 delineates the set P∗ ⊂ P of
parameters of the contest success function for which a unique equilibrium exists and determines the
equilibrium strategies and shares as functions of the parameters. Lemma 2 then completes the proof by
exhibiting—for any shares in ∆ satisfying s3 > 0—the unique parameters in P∗ yielding these shares
as equilibrium shares.

Lemma 1. A contest with parameters (α1, α2, r, v) ∈ P ×R++ has a pure-strategy Nash equilibrium if and
only if (α1, α2, r) ∈ P∗ holds, where

P∗ =
{
(α1, α2, r) ∈ P : r ≤ 1

max{α1, α2}

}
. (6)

If a pure-strategy Nash equilibrium exists, it is unique with equilibrium efforts

x∗1 = x∗2 = α1α2rv (7)

and equilibrium shares

s∗1 = α1 − α1α2r (8)

s∗2 = α2 − α1α2r (9)

s∗3 = 2α1α2r. (10)
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Most of the proof of Lemma 1 (which we have relegated to the appendix) is straightforward.
Taking the existence of equilibrium for granted, uniqueness can be established directly by considering
the appropriate first order conditions. As shown by Mills [10], these imply that the equilibrium
efforts are identical and given by (7). Equations (8) and (9) for the equilibrium payoff shares s∗1 and
s∗2 are then immediate: with equal efforts, the probability that contestant i wins the prize is αi, so
that s∗i = αi − x∗i /v. Similarly, equal equilibrium efforts imply that the dissipated rent is twice the
individual effort, yielding the expression for s∗3 in (10). Further, as equilibrium payoff shares must
be positive, it is apparent from (8) and (9) that r ≤ 1/ max{α1, α2} is necessary for the existence of
equilibrium. Showing that the same condition suffices for the existence of equilibrium is more subtle,
because for r > 1, players’ payoff functions are not concave in their own efforts. Therefore, some care
is required in showing that the effort levels (x∗1 , x∗2) solving the first order conditions are indeed an
equilibrium.

It is not difficult to see that for any shares (s∗1 , s∗2 , s∗3) ∈ ∆ satisfying s∗3 > 0, the system of
Equations (8)–(10) can be inverted to solve for uniquely determined parameter values (α1, α2, r) ∈ P
of the underlying contest success function. To establish Proposition 1 we also have to show that for
these parameter values, a pure-strategy Nash equilibrium does indeed exist. That is, we have to show
that (α1, α2, r) ∈ P∗ holds. This is accomplished in the proof of the following lemma, which we have
again relegated to the appendix.

Lemma 2. For any (s∗1 , s∗2 , s∗3) ∈ ∆ satisfying s∗3 > 0, there exists a unique (α1, α2, r) ∈ P∗, given by

α1 =
1 + s∗1 − s∗2

2
(11)

α2 =
1 + s∗2 − s∗1

2
(12)

r =
2s∗3

(1 + s∗1 − s∗2)(1 + s∗2 − s∗1)
, (13)

such that Equations (8)–(10) hold.

The result that the parameters of the contest success function can be uniquely determined from
the equilibrium shares is, of course, due to our assumption that the effectiveness parameters are
normalized to satisfy α1 + α2 = 1. Without this normalization, the right side of Equation (11) equals
α1/(α1 + α2) and, similarly, the right side of Equation (12) can be used to infer the share of Player 2’s
effectiveness parameter. On the other hand, our normalization plays no role in the determination of the
decisiveness parameter r, which can always be uniquely inferred from the equilibrium shares via (13).
Similarly, the equilibrium efforts can always be inferred from knowledge of the dissipated share via
the relationship x∗1 = x∗2 = s∗3/(2v), which is a direct consequence of the equality of the equilibrium
efforts and thus does not hinge on our normalization.

4. Discussion and Conclusions

For a given value of the prize v > 0, our analysis establishes that any payoffs satisfying u∗1 ≥ 0,
u∗2 ≥ 0, and u∗1 + u∗2 < v can arise as the unique equilibrium payoffs in a two-player contest with
contest success function pi = αixr

i /(α1xr
1 + α2xr

2). Even though we have excluded the trivial cases
r = 0, α1 = 0, and α2 = 0 from our formal analysis, it is clear that allowing for these possibilities
implies that all feasible and individually rational payoffs can be obtained as equilibrium payoffs.
It is then an immediate implication that allowing for more general contest success function (e.g., of
the ratio-form pi = fi(xi)/( f1(x1) + f2(x2)) considered in [6] and [7]) does not enlarge the set of
possible equilibrium payoffs beyond what can be obtained with the simple contest success functions
we consider. This observation is reminiscent of Proposition 1 in Dasgupta and Nti [11]. These authors
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consider a class of symmetric contest success functions of the form pi = h(xi)/(s + ∑n
j=0 h(xj)), where

the introduction of the parameter s ≥ 0 allows for the possibility that none of the contestants obtains
the prize and the function h is assumed increasing and concave. Proposition 1 of their paper shows
that any equilibrium outcome arising from some contest success function in this class can also be
obtained as an equilibrium outcome of a contest in which the function h is linear.

The special form of the contest success function we consider ensures that—as indicated by
Lemma 1—for given parameters (α1, α2, r) ∈ P∗ of the contest success function, the resulting
equilibrium shares (s∗1 , s∗2 , s∗3) are independent of the value of the prize v. As a consequence of this
property, Proposition 1 may be interpreted as establishing that any linear sharing rule (in which players
receive a positive share of the prize as a payoff and a strictly positive share of the prize is dissipated)
can arise as an equilibrium outcome of the asymmetric two-person contest we consider. Given the
simplicity of incorporating linear sharing rules as a building block in more elaborate economic models,
we view this result as an attractive feature of our model. Linearity of the sharing rule holds because,
as required by Axiom A6 both in Skaperdas [12] and Clark and Riis [3], the contest success functions
we consider are homogeneous of degree zero in effort. Considering more general contest success
functions, like the ones mentioned in the previous paragraph, will destroy this feature.
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Appendix

Proof of Lemma 1. There can be no equilibrium with either or both efforts equal to zero:
Suppose, without loss of generality, that x2 = 0. Then, we have U1(x1, x2) = 1 − x1 for x1 > 0
and U1(0, x2) = α1 < 1, so that Player 1 has no best response. Hence, every equilibrium satisfies
(x1, x2) ∈ R2

++. As the payoff functions are differentiable on R2
++, the first order conditions

∂U1(x1, x2)

∂x1
=

α1α2rxr−1
1 xr

2(
α1xr

1 + α2xr
2
)2 v− 1 = 0 (14)

∂U2(x1, x2)

∂x2
=

α1α2rxr−1
2 xr

1(
α1xr

1 + α2xr
2
)2 v− 1 = 0 (15)

are then necessary for (x1, x2) to be an equilibrium. This yields x1 = x2. Substituting back
into (14) and (15), we obtain (x∗1 , x∗2) as given in (7) as the unique candidate for an equilibrium with
corresponding equilibrium utilities

u∗1 = U1(x∗1 , x∗2) = [α1 − α1α2r] v (16)

u∗2 = U2(x∗1 , x∗2) = [α2 − α1α2r] v. (17)

The expressions for the equilibrium shares in (8)–(10) are then immediate.
Because player i can secure a payoff of zero by choosing xi = 0, any equilibrium must satisfy

min{u∗1 , u∗2} ≥ 0. From (16) and (17), this condition is equivalent to r ≤ 1/ max{α1, α2}. To finish
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the proof, it remains to show that this condition is also sufficient for (x∗1 , x∗2) to be an equilibrium.
Towards this end, consider the second derivatives (well-defined on R2

++)

∂2U1(x1, x2)

∂x2
1

= A1(x1, x2) [α2(r− 1)xr
2 − α1(r + 1)xr

1] (18)

∂2U2(x1, x2)

∂x2
2

= A2(x1, x2) [α1(r− 1)xr
1 − α2(r + 1)xr

2] , (19)

where A1(x1, x2) = (α1α2rxr−2
1 xr

2v)/(α1xr
1 + α2xr

2)
3 > 0 and A2(x1, x2) = (α1α2rxr−2

2 xr
1v)/(α1xr

1 + α2xr
2)

3 > 0.
The signs of these derivatives are equal to the signs of the terms in square brackets in (18) and (19). For
0 < r ≤ 1, these terms are strictly negative, so that players’ payoff functions are concave in their own
efforts, ensuring that the solution to the first order conditions (14) and (15) satisfies the equilibrium
conditions (4). For r > 1, the terms in square brackets in (18) and (19) have exactly one sign change in
x1 and x2, respectively, from positive to negative, so that the same holds for the second derivatives.
Consequently, the first derivatives of players’ payoff functions are unimodal (first increasing, then
decreasing) in their own efforts. Hence, if (for given x2 > 0) the first order condition (14) has a
solution x̂1 > 0 satisfying U1(x̂1, x2) ≥ U1(0, x2) = 0, then this solution solves maxx1≥0 U1(x1, x2)

and, similarly, if (for given x1 > 0) the first order condition (15) has a solution x̂2 > 0 satisfying
U2(x1, x̂2) ≥ U1(x1, 0) = 0, then this solution solves maxx2≥0 U2(x1, x2). From this, the desired result
is immediate.

Proof of Lemma 2. First, we show that (α1, α2, r) as given by (11)–(13) is in P∗: Adding Equations (11)
and (12) yields α1 + α2 = 1. From (s∗1 , s∗2 , s∗3) ∈ ∆ and s∗3 > 0, we have |s∗2 − s∗1 | < 1, so that (11)–(13)
imply α1 > 0, α2 > 0, and r > 0. Hence, (α1, α2, r) ∈ P . Given (11) and (12), Equation (13) can be
written as

r =
s∗3

2α1α2
=

s∗3
2 min{α1, α2}max{α1, α2}

. (20)

Because
s∗3 = 1− s∗1 − s∗2 ≤ min{1 + s∗1 − s∗2 , 1 + s∗2 − s∗1} = 2 min{α1, α2} (21)

Equation (20) then implies r ≤ 1/ max{α1, α2}, yielding (α1, α2, r) ∈ P∗.
Second, we show that the parameter values given in (11)–(13) are the unique parameter values

in P∗ such that (8)–(10) hold. Replacing (α1, α2, r) in (8)–(10) by the expressions on the right sides
of (11)–(13) and simplifying shows that Equations (8)–(10) are satisfied. Vice versa, suppose that
for (α1, α2, r) ∈ P∗, Equations (8)–(10) hold. Subtracting Equation (9) from Equation (8), we find
α1 − α2 = s∗1 − s∗2 . Using α1 + α2 = 1, this yields (11) and (12). From (10), we have r = s∗3/(2α1α2).
Replacing α1 and α2 by the right sides of (11) and (12) then yields (13).
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