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Summary  

Background  

Malaria control remains a major public health challenge especially in sub-Saharan African countries. In 

spite of the rapid decline observed in malaria mortality in Africa over the last decade due to scaling up of 

control interventions and social/economic development, malaria mortality figures remain unacceptably 

high.   

An estimated 198 million cases of malaria worldwide led to nearly 584,000 deaths in 2013. The majority of 

the illnesses (85%) and the case fatalities (90%) occur in Africa taking its greatest toll among young 

children under five years of age. Beside the deaths toll, repeated clinical malaria episodes cast an enormous 

economic burden on households.  

Predicting the effectiveness of malaria interventions at a given place requires appropriate information on 

both mortality and transmission levels in order to ascertain the level of efforts required to achieve a 

significant reduction in morbidity as well as the number of deaths that could be prevented.  

This quantitation is needed for estimating the burden of the disease based on different transmission levels 

and for building models, which incorporate this relationship in order to predict the likely effects of malaria 

interventions on mortality. Yet, for many of the sub-Saharan countries, most severely burdened by malaria, 

these crucial estimates are lacking making it difficult to accurately predict the likely impact of malaria 

interventions on mortality.   

The Malaria Transmission Intensity and Mortality Burden Across Africa, INDEPTH-MTIMBA project was 

initiated in the 2002 in a number of Health and Demographic Surveillance Systems (HDSS) sites. HDSS 

are sites that are routinely monitor all life events in a certain area and are used for estimating mortality in 

the absence of complete registration of deaths and births in many developing countries. The MTIMBA 

project aimed at assessing the levels of malaria transmission intensity, establishing the relationship between 

all-cause, malaria-specific mortality and malaria transmission intensity taking into account the effect of 

disease control interventions. MTIMBA collected georeferenced entomological data, biweekly during a 

period of 3-4 years. One of the HDSS sites of the MTIMBA project was Nouna in Burkina Faso, however 

data have not yet been analysed. Previous studies have tried to assess the relation between malaria 

endemicity and mortality using mortality data from the Demographic Health Surveys (DHS) and malaria 

data from Malaria Indicator Survey (MIS). In Burkina Faso, the DHS-Multiples Indicator Cluster Survey 
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(BFDHS-MICS) of 2010 was the first survey that collected georeferenced data of both child mortality and 

malaria endemicity across the country. 

 

Goal and objectives  

The overall goal of the thesis is to assess the association between malaria transmission and mortality at 

different geographical scales in Burkina Faso. The specific objectives of the research are to (i) obtain time-

dependent and spatially explicit estimates of entomological inoculation rate (EIR) within the Nouna HDSS 

site; (ii) obtain spatially explicit estimates of malaria parasite risk, number of infected children and assess 

the effects of malaria interventions in Burkina Faso; (iii) assess the relation between infant and under-five 

mortality and malaria endemicity in Burkina; (iv) assess the relationship between malaria transmission and 

mortality (all-cause and malaria-specific) across different age groups in Nouna HDSS and (v) assess the 

ability of verbal autopsies to diagnose malaria as a cause of death using the malaria-transmission relation as 

a gold standard. We addressed the above objectives by employing Bayesian spatio-temporal models and 

analysing the Burkina Faso DHS (BFDHS-MICS) 2010, the MTIMBA and the mortality databases from 

the Nouna HDSS site. 

 

Methods  

 In chapter 2, the MTIMBA data were analysed to obtain surfaces of malaria transmission across the Nouna 

HDSS. In particular, Bayesian geostatistical zero-inflated binomial and negative binomial models including 

harmonic seasonal terms, temporal trends and climatic remotely sensed proxies were applied to assess 

spatio-temporal variation of sporozoite rate and mosquito density in the study area. Bayesian variable 

selection was applied to determine the most important climatic predictors and elapsing (lag) time between 

climatic suitability and malaria transmission. Bayesian kriging was used to predict mosquito density and 

sporozoite rate at unsampled locations. These estimates were converted to covariate and season-adjusted 

maps of entomological inoculation rates. The results showed that Anopheles gambiae is the most 

predominant vector (79.3%) and is more rain-dependant than its sibling Anopheles funestus (20.7%). 

Variable selection suggested that the two vector species react differently to different climatic conditions. 



Summary  
 

    vi

Prediction maps of EIR depicted a strong spatial and temporal heterogeneity in malaria transmission risk 

despite the relatively small geographical extend of the study area.  

 

In chapter 3, Bayesian geostatistical models and BFDHS-MICS 2010 survey data were used to assess the 

effects of health interventions related to insecticide-treated nets (ITNs), indoor residual spray (IRS), 

artemisinin-based combinations therapy (ACT) coverage associated with childhood malaria parasite risk at 

national and sub-national level after taking into account geographical disparities of climatic/environmental 

and socioeconomic factors. Several ITN coverage measures were calculated and Bayesian variable 

selection was used to identify the most important ones. Parasitaemia risk surfaces depicting spatial patterns 

of infections were estimated. The results showed that the population adjusted predicted parasitaemia risk 

ranges from 4.0 % in Kadiogo province to 82% in Kompienga province. The effect of ITN coverage was 

not important at national level; however, ITNs had an important protective effect in Ouagadougou as well 

as in three districts in the western part of the country with high parasitaemia prevalence and low-to-

moderate coverage. There was a large variation in ACT coverage between the districts. Although at 

national level the ACT effects on parasitaemia risk was not important, at sub-national level, 18 districts 

around Ouagadougou delivered effective treatment. 

 

In chapter 4, we used data form the Burkina Faso first nationally representative household survey focusing 

on malaria-related indicators, BFDHS-MICS 2010 and apply Bayesian geostatistical Weibull survival 

models to explore the relationship between malaria and infant/child mortality in Burkina Faso after 

adjusting for, both individual child and household or family characteristics as well as mother’s birth 

history. There is a significant relationship between malaria endemicty and child survival in urban settings. 

Children living in the urban settings with endemicity level above 75% are at higher mortality hazards. 

Other predictors of infants and child survival are those related to biological (birth size, mother age at birth), 

demographic socioeconomic and antenatal care factors. 

 

In chapter 5, we used entomological data, which, were collected biweekly from 2001-2004, and mortality 

data extracted from the Nouna HDSS database. We address spatial misalignment between the two data 

sources by obtaining EIR estimates at the mortality locations using Bayesian spatio-temporal models. 

Analyses were adjusted for socioeconomic status (SES) and ITN coverage. Time to death was treated at 
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monthly interval and Bayesian geostatistical logistic regression approximating Cox proportional hazard 

model and incorporating the predicted EIR as covariate with measurement error were fitted. The mortality 

rates were highest in 2001, 17 (95% CI: 15.1, 19.1) and 2003, 13.8 (95% CI: 12.95, 14.8). The overall 

mortality rate over the study period was 11.3 (95% CI: 10.8, 11.7). The highest mortality rates were 

observed in children and old age groups with the respective rates of 23.9 (95% CI: 22.4, 25.4) and 81.9 

(95% CI: 75.8, 88.5). A positive log-natural relationship between mortality and EIR was found among 

children (1-4 years), while a protective effect was found among adolescents/adults (15-59 years). The 

highest mortality risk associated with EIR was observed among children (5%). 

 

In chapter 6, we used the same approach as in the previous chapter however focusing the interest on 

malaria specific mortality in order to assess the relationship between malaria specific mortality and EIR 

within the Nouna MTIMBA-HDSS site. The sensitivity and specificity of the physician-certified verbal 

autopsy (PCVA) were also assessed. Results showed that malaria mortality rates were highest in years 

2001, 5.4 (95% CI: 4.4, 6.6) and 2003, 4.1 (95% CI: 3.6, 4.7). A significant positive natural logarithmic 

relationship was found between malaria exposure and mortality among children, with hazard ratio (HR) of 

1.06 (95% CI: 1.03, 1.08).  The percentage of deaths assigned-malaria as cause in VA was highest in children 

and adults with respectively 45% and 35.3%. The percentage of deaths attributable to malaria exposure was 

in old-age group (93.9%). The overall specificity of the PCVA is 0.70  

 

Conclusion/ significance 

Results of this work contribute to a better understanding of the interplay between environmental/climatic 

conditions and malaria transmission, which is important not only for delivering interventions at the right 

time but also for developing predictive models to support early warning systems (EWS).  

The estimated risk and intervention effect maps are valuable tools for identifying high-risk areas and areas 

with less effective interventions in order to improve malaria control in Burkina Faso. These outputs can 

serve as benchmarks to evaluate the effectiveness of future control interventions and progress of the efforts 

towards disease control.  

Results from the mortality-malaria transmission analyses improve our understanding of the relationship 

between malaria transmission, all-cause and malaria specific mortality in Nouna region.   
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Chapter 1: Introduction  

1.1 Malaria Burden  
Malaria control remains a major public health challenge.  An estimated 198 million CI [124; 283] cases of 

malaria worldwide led to nearly 584,000 CI [367,000; 755,000] deaths in 2013. The majority of illnesses 

(85%) and case fatalities (90%) occur in Africa taking its greatest toll among young children under five 

years of age (“WHO | 10 Facts on Malaria” 2015). About 3.2 billion people, almost half of the world’s 

population apportioned in about 105 countries mainly in the tropics and subtropical regions are at risk of 

infection. Figure 1.1 shows the global distribution of malaria risk.  

Malaria represents the leading cause of medical consultation in Burkina Faso. Among children under five 

years of age, malaria accounted for 61.4% of medical consultations, 77.7% of hospitalizations, and was 

responsible for almost 80% of deaths in 2011 (INSD 2012).  

According the national health statistics, 8,278,408 malaria cases were recorded in the country in 2014, of 

which 463 774 were severe malaria cases leading to 5632 deaths (“Conseil National de La Statistique” 

2016). The overall prevalence of infection in children aged 6-59 months is estimated at 46 % (microscopy 

test) (“Burkina Faso - Enquête Sur Les Indicateurs Du Paludisme 2014” 2016).  

The Disability-adjusted life years (DALYs) quantify both premature mortality (YLLs) and disability 

(YLDs) within a population. In Burkina Faso, the top three causes of DALYs in 2015 were malaria, 

diarrheal diseases, and lower respiratory infections (“Global Burden of Disease (GBD)” 2016). Malaria 

however accounted for the highest premature death in the country with YLLs estimated at 7,623.3 in 2013 

(“Global Burden of Disease (GBD)” 2016).   

Beside the deaths toll, repeated clinical malaria episodes cast an enormous economic burden on 

households. Burkina Faso ranks among the world’s poorest countries and the food production system relies 

on rain-fed agriculture. The farming system is still rudimentary and requires massive manpower just to 

ensure minimum production. The peak of malaria transmission occurs during the rainy season where 

maximum manpower is needed, therefore casting every year a huge uncertainty on the food security.   
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Figure 1.1. Global Plasmodium falciparum endemicity    

1.2 Malaria disease and transmission  
Malaria is a vector-borne infectious disease caused by protozoan parasites of the genus Plasmodium 

transmitted by a bite from an infective mosquito. There are four malaria parasite species (plasmodia) that 

cause malaria in humans, namely Plasmodium falciparum, P. vivax, P. malariae and P. ovale, with P. 

falciparum being the most common species in the tropics including sub-Saharan Africa (SSA) (Rogerson 

and Carter 2008). The parasite develops into two phases, the asexual phase within the human host and the 

sexual phase taking place within the mosquito (John C. Beier 1998). Figure 1.2 shows the life cycle of 

malaria parasite.  

The first phase of malaria transmission begins when an infective female (carrying malaria-causing 

parasites) mosquito injects the parasite (sporozoites) into a human blood stream. The sporozoites then 
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travel to the liver cells where they rapidly multiply asexually become invasive and transform into 

merozoites. The duration of this process depends on the species of Plasmodium. However some parasites 

species such as P. vivax can remain dormant for a longer period in the liver, causing relapses even several 

years after the first attack (Krotoski 1989; Cogswell 1992). The liver schizonts become mature and rupture, 

releasing the merozoites into the blood stream. The merozoites then invade the red blood cells 

(erythrocytes) after their release and evolve into ring-shaped called trophozoites, which in turn form 

schizonts where new merozoites develop and are released into the blood stream thereafter.  

The simultaneous waves of merozoites escaping and infecting more erythrocytes lead to symptomatic 

malaria disease and complication of malaria if not treated. Part of the merozoites develops into male and 

female gametocytes after going into couple of schizogonic cycles.    

When a female mosquito bites an infected human, it ingests the gametocytes, which within the mosquito 

further mature into gametes and sexual replication takes place, producing zygotes. The zygotes further 

develop into mature oocytes that burst releasing sporozoites, which migrate to salivary glands of the 

mosquito. These sporozoites are injected when the mosquito take a blood meal on another human and thus 

begins a new life cycle (Garnham 1988). The life cycles of all human plasmodia species are similar but 

only vary in the length of time required to complete a particular phase. For instance, the exoerythrocytic 

cycle takes 43 to 48, 50 and 72 hours respectively for P. falciparum and P. vivax, P. ovale and P. malariae 

infections (Garnham 1988).  
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Figure 1.2. Life cycle of malaria parasite 

1.3 Malaria vectors  

1.3.1 Vectors species  

Malaria vectors consist of about four hundred and sixty-two (462) species of Anopheles with unique 

behaviors associated with ecological factors (Lindsay, Parson, and Thomas 1998). About 50-60 species 

have the potential of transmitting human malaria (Sinka et al. 2010). From these, Anopheles gambiae 

complex (An. gambiae sensu stricto, An. arabiensis, An. quadriannulatus, An. bwambae, An. merus and 

An. melas) (Coetzee, Craig, and le Sueur 2000) and Anopheles funestus are the main vectors associated 

with malaria transmission in Africa which bears the highest burden of malaria infection. These vectors, 

which often co-occur geographically across most sub-Saharan Africa, have different behavioral 

characteristics and feeding preferences. For instance Anopheles gambiae sensu stricto, the most efficient 

malaria vector, breeds in rice fields, sunlit natural and man-made pools, and puddles. It is mainly 

endophilic (rest indooors) and endophagic (feed indoors). An. gambiae and An. arabiensis favour pools 

produced by rainfall. An. arabiensis has similar biting and breeding characteristics except that it tends to 
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prefer arid areas, bites domestic animals and rests outdoors. An. funestus prefers shaded habitats and breeds 

in permanent waters, especially with vegetation. It bites humans and domestic animals and is both 

endophilic and exophilic.  

In Burkina Faso, malaria transmission occurs throughout the year and is sustained by two sympatric sibling 

anopheles species: An. gambiae and An. funestus. It is therefore important to investigate how these species 

react to the different climatic/environmental conditions.  

 

1.3.2 Entomological inoculation rate  

The entomological inoculation rate (EIR) is a commonly used measure of the intensity of malaria 

transmission. It estimates the number of infective bites an individual receives per unit time. EIR is the 

product of the “human biting rate” and the sporozoite rate (SR). The SR is the fraction of mosquitoes with 

sporozoites in their salary glands (J. C. Beier, Killeen, and Githure 1999). The “human biting rate” refers to 

the number of mosquito bites a person receives per unit time. It is obtained by mosquito collection 

techniques such as pyrethrum sprays collection, light trap and human landing catch (HLC). The latter is 

measured by the number of mosquitoes trying to feed on an individual. Although EIR estimates may not be 

accurate as mosquito density is markedly heterogeneous and sporozoite rates are usually very low even in 

high endemic areas, it is still considered as the gold standard for estimating the transmission intensity 

(Drakeley et al. 2005; Ndebele and Musesengwa 2012).    

 

1.4 Factors influencing malaria transmission  

1.4.1 Climatic/environmental factors  

Malaria transmission and distribution is greatly influenced by environmental and climatic factors. Indeed 

both the mosquito development and survival as well as incubation period before an infected human 

develops symptoms of malaria strongly depend on prevailing climatic conditions (Y. Yé 2008; Walker et 

al. 2013; Knols 2009).   

The effects of temperature on the transmission cycle of the malaria parasite are manifold, but its specific 

effects on sporogonic duration and mosquito survival are the most important (Onori and Grab 1980; 

Targett 1990). The lower limit of temperature suitability is determined by the number of mosquitoes 
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surviving the incubation period while parasite development only ceases at 16°C, transmission below 18°C 

is unlikely because few adult mosquitoes survive the 56 days required for sporogony at that temperature, 

and because mosquito abundance is limited by long larval duration. At 22°C sporogony is completed in 

less than three weeks and mosquito survival is sufficiently high (15%) for the transmission cycle to be 

completed. Thus, temperatures below 18°C were considered unsuitable, and above 22°C, suitable for stable 

transmission (Craig, Snow, and le Sueur 1999b). 

The upper limit of temperature suitability is determined by vector survival, as sporogony takes less than a 

week. Temperatures of above 32°C have been reported to cause high vector population turnover. Thermal 

death for mosquitoes occurs around 40–42°C (Haddow 1943) and daily survival is zero at 40°C (Hay, 

Snow, and Rogers 1998). 

There is an apparent ostensibly simple association between particular rainfall and increased abundance of 

mosquitoes. Studies have demonstrated the relationship between malaria vector abundance and rainfall (J. 

d. Charlwood et al. 1995; R 1987). Malaria transmission pattern follows the rainfall distribution. Mosquito 

population increases in the middle of the rainy season and reaches a peak in the early part of the dry 

season.  

The duration of the rainfall season is also important. In regions where temperature is high but rainfall is 

limited mosquito populations increase rapidly at the onset of rain, because of short developmental cycles 

(Craig, Snow, and le Sueur 1999b). However, where temperature is limited during the colder season, 

mosquito populations increase slowly at the onset of rain, with gradually rising temperatures, owing to long 

developmental cycles.  

Altitude also plays a role in malaria transmission. Temperature is directly related to the altitude of an area. 

Temperature decreases as altitude increases and consequently the mosquito population decreases; 

Therefore vector species and transmission intensity change with altitude (Kristan et al. 2008).    
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1.4.2 Interventions  

Vector control is the main way to prevent and reduce malaria transmission. A measure of protection is 

conferred across the community in a place with high coverage of vector control interventions. World 

Health Organization (WHO) recommended a number of interventions, which reduce malaria transmission. 

 

1.5 Malaria control interventions  

 1.5.1 Control interventions  

Ambitious new goals for control of malaria have been set and significant additional resources for malaria 

control have been mobilized over the last ten years (de Savigny and Binka 2004). This allowed rapid 

scaling-up of effective vector control interventions including insecticide-treated nets (ITNs) and indoor 

residual spraying (IRS), intermittent preventive treatment during pregnancy (IPTp) as well as the 

development of effective antimalarials in the form of artemisinin-combination therapy (ACTs).  

The main building bloc of malaria vector control is mass population coverage with insecticide-treated nets 

(ITNs). Treatment of mosquito nets with synthetic insecticides began in the 1970s and led to findings of 

dramatic reductions in mortality and morbidity where they were employed in carefully controlled trials 

(Alonso et al. 1993; Diallo et al. 2004). New tools for scaling up the impact of malaria control involved the 

introduction of long-lasting insecticide treated nets (LLINs), the rollout of rapid diagnostic tests (RDTs) in 

many countries, and the scaling-up of ACTs (Steketee et al. 2008).  

 

 1.5.2 Quantification of intervention coverage  

Roll Back Malaria Partnership together with MEASURE Evaluation, MEASURE DHS, President’s 

Malaria Initiative, UNICEF and World Health Organization developed in 2013 the household survey 

indicators for malaria control. Malaria indicator surveys (MIS) rely on household questionnaires to obtain 

information about insecticide-treated bednets, indoor residual spraying, prompt and effective treatment of 

fever in young children, prevention of malaria in pregnant women and measurement of malaria 

parasiteamia and anaemia in children younger than 5 years. This information can be used to construct key 

coverage indicators in order to quantify coverage of malaria interventions in relation to the Global Malaria 

Action Plan (GMAP) targets. For instance, the universal access to community case management (CCM) of 
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malaria can be assessed by measuring the proportion receiving any ACT or first line treatment among 

children under five years old with fever in the last two weeks. Similarly, progress towards the universal 

access and utilization of preventive measures can be quantified by measuring the proportion of population 

with access to an ITN within their household and the proportion of the population that slept under an ITN 

the night preceding the survey. The universal coverage of vector control intervention can be estimated 

through the proportion of households sprayed with IRS in the last 12 months.        

 

1.6 Malaria transmission and mortality  

A large proportion of childhood deaths in malaria endemic settings are attributed to malaria infection (T. A. 

Smith, Leuenberger, and Lengeler 2001a). However, the precise nature of the relation between malaria 

transmission intensity and mortality is still unclear (T. A. Smith, Leuenberger, and Lengeler 2001a; A. 

Gemperli et al. 2004a). Malaria interventions aim at reducing of the transmission intensity to a level where 

the disease is no more a public health challenge. However, it is hypothesized that interventions targeting 

reduction of malaria exposure might delay the acquisition of the natural immunity, thus shifting the burden 

of the disease to an older age group (Doolan, Dobaño, and Baird 2009; R. W. Snow et al. 1997). 

A better understanding of the relationship between malaria transmission intensity mortality is needed for an 

accurate prediction of the effectiveness of malaria interventions at a given place. This requires appropriate 

information on both mortality and transmission levels in order to derive the level of reduction in 

transmission to achieve a significant reduction in morbidity as well as the number of deaths that will be 

prevented. However, for many of the sub-Saharan countries, most severely burdened by malaria, this 

crucial information is lacking making it difficult to accurately predict the likely impact of malaria 

interventions on mortality.  
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1.7 Verbal autopsy (VA) 

Most of the current estimates of malaria-attributable cause of death in sub-Saharan African countries are 

derived from the verbal autopsy (VA) approaches (França et al. 2011; Byass et al. 2016). VA entails 

interviewing the main caregiver on the background characteristics of the deceased using structured filter 

questions on the specific signs and symptoms experienced by the deceased. Information from the VA forms 

are independently reviewed by at least three experienced physicians (M. Yé et al. 2011b). The underlying 

cause is defined as the disease or injury that initiated the train of events leading directly to death. Recently 

alternative computer-coded verbal autopsy (CCVA) methods have gained interest, as ways to improve 

inter-observer agreement, consistency and comparability, and to make the coding of VAs faster and 

cheaper. CCVAs can be broadly classified in two groups namely the classic Bayes classifiers and the 

automated classifiers (Miasnikof et al. 2015).  

 

1.8 Malaria spatio-temporal data 

Malaria data (i,e parasitological or entomological) are often collected at fixed locations (e.g. households, 

villages). They are known as geostatistical data and are often correlated in space because “individuals” at 

nearby locations share similar exposures and their responses vary in a similar way. Malaria data collected 

repeatedly over time are also correlated in time and are known as temporal data. Standard statistical 

methods assume independence of the outcome observations. This assumption does not hold when data are 

correlated. To avoid wrong inferences correlations should be taken into account when modelling spatio-

temporal data. Geostatistical models introduce spatial correlation by a Gaussian process on location-

specific random effects. Correlation is often taken to be a function of distance between any pair of 

locations (Banerjee et al. 2008; Banerjee, Carlin, and Gelfand 2014). These models have large number of 

parameters and Bayesian formulations are adopted to enable parameter estimation via the powerful Markov 

chain Monte Carlo (MCMC) simulation methods. Temporal correlation is taken into account by temporal 

random effects that are modelled via time series models (e.g. autoregressive). Bayesian geostatistical and 

temporal models have been used to analyse malaria survey data and produce malaria risk maps or assess 

effects of malaria interventions in space (G. D. Gosoniu 2006; Gosoniu, Veta, and Vounatsou 2010; Laura 

Gosoniu et al. 2012a; Riedel et al. 2010; Giardina et al. 2012; Giardina et al. 2014) They have been also 
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applied to entomological data to estimate malaria transmission exposure surface (Amek et al. 2013; Kasasa 

et al. 2013; Rumisha et al.  2013). 

1.9 Objectives of the thesis 

The overall goal of the thesis is to assess the association between malaria transmission and mortality at 

different geographical scales in Burkina Faso.  

Specific objectives 

1. To obtain time-dependent and spatially explicit estimates of entomological inoculation rate (EIR) 

within the Nouna HDSS site. 

2. To obtain spatially explicit estimates of malaria parasite risk, number of infected children and 

assess the effects of malaria interventions in Burkina Faso. 

3. To assess the relation between infant and under-five mortality and malaria endemicity in Burkina. 

4. To assess the relationship between malaria transmission and mortality (all-cause and malaria-

specific) across different age groups in Nouna HDSS. 

5. To assess the ability of Verbal Autopsies to diagnose malaria as a cause of death using the malaria – 

transmission relation as a gold standard. 

We addressed the above objectives by employing Bayesian spatio-temporal models and analysing known 

malaria data such as the Burkina Faso Health and Demographic Survey-Multiple Indicator Cluster Surveys 

of 2010 (BFDHS-MICS 2010), the MTIMBA and the mortality databases from the Nouna HDSS site. 

 

 

 

 
  



 
 

   11

Chapter 2: Bayesian variable selection in modelling geographical heterogeneity 
in malaria transmission from sparse data: An application to Nouna Health and 
Demographic Surveillance System (HDSS) data, Burkina Faso 

Eric Diboulo1, 2,3, Ali Sié3, Diallo D. Diadier4, Dimitrios A. Karagiannis Voules1, 2, Yazoume Yé5, Penelope Vounatsou1 §  
 

 

1Swiss Tropical and Public Health Institute, Basel, Switzerland 
2University of Basel, Basel, Switzerland  
3Centre de Recherche en Santé de Nouna, Burkina Faso  
4PATH Malaria Vaccine Initiatives, Senegal 
5IFC International, Bowie, Maryland, USA 
 
 
 
 
 
§Corresponding author 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This paper has been published in Parasites & Vectors 2015 8:118 
 



 
Chapter 2: Bayesian variable selection in modelling geographical heterogeneity in malaria transmission 
 

   12

Abstract  

Background: Quantification of malaria heterogeneity is very challenging partly because of the underlying 

characteristics of mosquitoes and also because malaria is an environmentally driven disease. Furthermore 

in order to assess the spatial and seasonal variability in malaria transmission, vector data need to be 

collected repeatedly over time (at fixed geographical locations). Measurements collected at locations close 

to each other and over time tend to be correlated because of common exposures such as environmental or 

climatic conditions. Non-spatial statistical methods, when applied to analyse such data may lead to biased 

estimates. We developed rigorous methods for analysing sparse and spatially correlated data. We applied 

Bayesian variable selection to identify the most important predictors as well as the elapsing time between 

climate suitability and changes in entomological indices. 

Data and Method: Sporozoite and mosquito density data collected over 500 locations in Nouna HDSS 

during 2001 and 2003 were extracted from the Malaria Transmission Intensity and Mortality Burden in 

Africa (MTIMBA) database. Bayesian geostatistical zero-inflated binomial and negative binomial models 

including harmonic seasonal terms, temporal trends and climatic remotely sensed proxies were applied to 

assess spatio-temporal variation of sporozoite rate and mosquito density in the study area. Bayesian 

variable selection was employed to determine the most important climatic predictors and elapsing (lag) 

time between climatic suitability and malaria transmission. Bayesian kriging was used to predict mosquito 

density and sporozoite rate at unsampled locations. These estimates were converted to covariate and 

season-adjusted maps of entomological inoculation rates. Models were fitted using Markov chain Monte 

Carlo simulation.  

Results: The results show that Anopheles gambiae is the most predominant vector (79.29%) and is more 

rain-dependant than its sibling Anopheles funestus (20.71%). Variable selection suggests that the two 

species react differently to different climatic conditions. Prediction maps of entomological inoculation rate 

(EIR) depict a strong spatial and temporal heterogeneity in malaria transmission risk despite the relatively 

small geographical extend of the study area.  

Conclusion: Malaria transmission is very heterogeneous over the study area. The EIR maps clearly depict 

a strong spatial and temporal heterogeneity despite the relatively small geographical extend of the study 

area. Model based estimates of transmission can be used to identify high transmission areas in order to 

prioritise interventions and support research in malaria epidemiology. 
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2.1 Introduction  

Malaria is endemic in the majority of sub-Saharan Africa. It is transmitted from human to human via bites 

of mosquitoes infected with malaria parasites. A favourable environment and a complex system of malaria 

vectors and parasites maintain this endemicity. The mosquito development and survival strongly depend on 

prevailing climatic and environmental factors which in turn influence malaria transmission (Y. Yé 2008). 

The species of vectors and their densities, the species of the malaria parasites, the number of infected bites 

a human received per night (a parameter known as the entomological inoculation rate, EIR) can change 

from place to place and according to the season. Therefore, malaria distribution is very heterogeneous 

within a geographical area and prone to between and within village variation (Greenwood 1989; Carter, 

Mendis, and Roberts 2000).  

 

There are two main species of malaria vector, the Anopheles gambiae and Anopheles funestus.  They differ 

in among others things, the type of water bodies in which they lay their eggs, their propensity to bite 

humans, the length of time for which they survive, the place where they rest after feeding, and time of the 

day when they bite. An. gambiae, the most efficient malaria vector, breeds in rice fields, sunlit pools both 

natural and man-made, and puddles. It is mainly endophilic (rests indoors) and also endophagic (feeds 

indoors) and favors pools produced by rainfall. An. funestus prefers shaded habitats and breeds in 

permanent waters, especially with vegetation. It bites humans and domestic animals and is both endophilic 

and exophilic (Guelbeogo et al. 2009). Understanding the vector species' behavior and their interrelation 

with the environment is of prime importance in order to develop timely and effective intervention 

programs.  

 

There is an elapsing time between climatic suitability, abundance of mosquito densities and onset of 

transmission. Changes in entomological parameters such as EIR depend on lag times and therefore it is 

important to take lag time into account in order to deliver timely and tailored interventions. A number of 

studies have used remote sensing (RS) climatic and environment proxies together to identify species-

specific climatic predictors however few rigorously incorporate lag times into the analysis. RS data are 

often summarized by a long term average over a period of time prior to entomological data collection 

which is often considered as fixed rather than estimated by the data (Rumisha et al. 2014; Amek et al. 

2012).  
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Estimating the lag times is not only important for delivering interventions but also for obtaining good 

predictive models to assess the distribution of mosquitos’ density. Entomological data are sparse and 

clustered in space and time due to spatial clustering of the environmental exposures and seasonality in 

transmission. Often the data include a large number of zeros (i.e. mosquito presence and/or infected) 

especially during the dry season. Zeros with frequencies higher than those expected by the data 

distribution, (for counts or proportions) often lead to overdispersion and poor fit if they are not taken into 

account. Zero-Inflated (ZI) models provide a flexible way to address this problem (Hall 2000) by assuming 

that only a proportion of the zeros arise from the data distribution and the remaining ones are “structural” 

(i.e. they appear with probability one). 

 

Bayesian geostatistical models have been used to take into account spatio-temporal variation and zero-

inflation in entomological data (Rumisha et al. 2014; Amek et al. 2012); however lag times in climatic 

factors have not been rigorously incorporated into the modelling. Furthermore, selection of the climatic 

predictors to be included in the model is based on standard variable selection methods, which ignore 

spatio-temporal correlation. Recently, Bayesian variable selection methods have been used in modelling 

geostatistical survey data to identify the most important predictors of disease risk (Giardina et al. 2012; 

Chammartin et al. 2013), however these methods have not been applied in modelling entomological data.  

In this study, we apply zero-inflated models and introduce Bayesian variable selection to determine the 

elapsing time between climate suitability and malaria transmission and develop predictive models of EIR 

taking into account spatio-temporal heterogeneity and seasonality in terms of mosquito density and 

infectivity (sporozoite rate) .We also determine the most important climatic predictors associated with the 

occurrence of the most predominant malaria vector species and transmission using data from the Nouna 

district in Burkina Faso.  
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2.2 Data and Methods  

The data that motivated the present work were collected at Nouna Health and Demographic Surveillance 

System as part of the International Network for the Demographic Evaluation of Populations and Their 

Health-Malaria Transmission Intensity and Mortality Burden across Africa (INDEPTH-MTIMBA) 

protocol. INDEPTH-MTIMBA was a multi-centre project during 2001-2004 aimed at studying the 

relationship between the intensity of malaria transmission and all-cause as well as malaria specific 

mortality taking into account the influence of malaria control activities in each participant site. The Nouna 

HDSS is run by the Centre de recherche en santé de Nouna (CRSN, Nouna Health Research Center) and 

located in the Nouna health district’s catchment area in northwest Burkina Faso, 300 km away from the 

capital city, Ouagadougou. Relative to the health district, the HDSS catchment area is located southeast.  

 

The Nouna HDSS area is characterized by a Sub-Saharan climate with a mean annual rainfall of 

approximately 800mm with fairly constant average daily minimum (20-28.1°C) and maximum temperature 

(29.5-37.2°C) throughout the year.  Rainfall occurs from May to September. The entire region consists of 

“Plateaux” with gentle slopes and drained by several small semi-permanent streams.  

The HDSS area is about 1,775 km2 with the specificity of covering both rural and semi-urban areas.  

The population is about 90,000 residing in 11,750 households across 58 villages and Nouna town.  

Subsistence farming is the predominant occupation. Malaria is holo-endemic and is known for a seasonal 

recrudescence during the rainy season, at which time it accounts for the main cause of fever and mortality 

in the district (Müller et al. 2008). During the dry season, in February and March, lower respiratory 

infections are the main cause of morbidity, due to the relatively cool temperatures and strong winds, which 

bring up dust and dirt. 

 

2.2.1 Entomological data  

Entomological data were collected using the Center for Disease Control and Prevention (CDC) light traps 

from 10 randomly selected compounds (from the HDSS database) over two consecutive nights every two 

weeks during the study period (September 2001- December 2003). In each house, a light trap was hung at 

about 1.5 m above the floor next to the bed of an index person and mosquitoes were collected for two 

consecutive nights. The sleeping place was covered with a bed net to protect the index person from 



 
Chapter 2: Bayesian variable selection in modelling geographical heterogeneity in malaria transmission 
 

   17

mosquito bites. Other people in the same room without bed nets were also provided with untreated nets for 

these specific nights. Light traps were operated from dawn to dusk. All Anopheles mosquitoes captured 

were identified morphologically (Wirtz et al. 1987), stored and dried in vials with silica gel until they could 

be transported to the laboratory for further testing. The head and thorax of each anopheline was tested 

singly for P. falciparum sporozoites using a standard enzyme-linked immunosorbent assay (ELISA) (Wirtz 

et al. 1987). To assess the seasonal pattern, data were summarized by location and calendar month. This 

implied that all surveys data collected within the same calendar month from a specific location (compound) 

were collapsed (mosquito density/tested and positive) into a single observation resulting in 160 and 285 

unique locations respectively for sporozoite data of An. funestus and An. gambiae and 550 unique locations 

for density data for both species. 

 

2.2.2 Environmental and climatic data  

Remote sensing data were used as proxies of climatic and environmental conditions. The predictors used, 

sources extracted and their spatio-temporal resolution are given in table 2.1.  

To account for the environment-lagged effects on changes in mosquito density and infectivity, 

environmental factors were extracted up to three months prior to the month of mosquito collection for each 

surveyed location. Based on the biological plausibility (latent periods in the mosquito and parasite life 

cycle), six lag variables were constructed for each environmental factor (i.e. normalized difference 

vegetation index (NDVI), day land surface temperature (LST), night LST and rainfall) by averaging its 

values over the following periods: current month of the mosquito collection (Lag0), one and two month(s) 

prior to collection (Lag1, Lag2, respectively), average during the current and one previous month (Lag3), 

average during three months prior to the current one (Lag4) and average during the current and the two 

previous months (Lag5). 
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Table 2. 1: Sources of environmental and climatic predictors 

Source Predictor Period 
Spatial 
Resolution 

Temporal 
Resolution 

Moderate Resolution Imaging 
 Spectroradiometer (MODIS) Terra 

Day & Night Land Surface 
Temperature (LST)  2001-2003 1×1km2 8 days 

      
     
  Moderate Resolution Imaging 
 Spectroradiometer (MODIS) Terra  

Normalized Difference 
Vegetation Index (NDVI)  2001-2003 0.25×0.25km2 16 days 

     
     

Africa Data Disseminating Services Rainfall  2001-2003 8×8km2 10 days 
     
     

Health Mapper 
Water Bodies (Permanent 
&semi-permanent)  -  1×1km2 na 

 
 

2.3 Description of methods 

We followed the approach by (Rumisha et al. 2014) and developed zero-inflated binomial (ZIB) and zero-

inflated negative binomial (ZINB) models to model sporozoite rate (proportion of infected mosquitoes) and 

mosquitoes’ densities, respectively. We extended the methodology by introducing Bayesian variable 

selection to identify the most important climatic factors related to malaria transmission and take into 

account lag times between climatic suitability and malaria transmission. Four models were fitted separately 

to An. funestus and An. gambiae data to obtain species-specific surfaces of mosquito density and sporozoite 

rate within the study area. The overall EIR estimate at a given location and month is based on the mean 

number of infected mosquitoes (from both species) multiplied by the conversion factor. Modelling details 

are given bellow.  

 

2.3.1 Modeling sporozoite rate using zero-inflated binomial (ZIB)  

Let (1), it tiN Y  be the number of tested and number of positive mosquitoes, respectively at location , 1,...i i n=  

and month t and  is the set of predictors. We consider that (1)
itY  arises from a ZIB distribution, that is 

(1) (1)~ ( , , )it it it itY ZIB N p π  where itp  is the proportion of infected mosquitoes known as the sporozoite rate. 
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Malaria seasonality introduces a large number of zero infected mosquitoes. The ZIB distribution assumes 

that a proportion (1)
itπ (i.e. mixing proportion) of those zeros are “structural” (not random) and the 

remaining ones are present in the data with the frequency defined by the binomial distribution(Hall 2000). 

We model the relation between the sporozoite rate itp  and the environmental predictors via the logistic 

regression equation,  where  is the set of regression coefficients. We also assume that 

the mixing proportion of zeros is also influenced by climatic factors which we introduce into the 

modelling by the equation , where is the set of corresponding coefficients. 

 

2.3.2 Modeling mosquito’s densities using zero-inflated negative binomial (ZINB) 

Let (2)
itY be the number of mosquitoes trapped at location i  and time t. We assume that (2)

itY  

arises from a ZINB distribution, Yit
(2) ~ ZINB(µit ,r,π it

(2) )   with µit  and r corresponding to the mean 

mosquito count and variance of the negative binomial distribution (Vounatsou et al. 2009). (2)
itπ  

corresponds to the mixing proportion modelling the “excess zeros”. As defined above it is considered that a 

proportion of the zero mosquito counts is “structural” and the remaining (2)1 itπ− arise from the negative 

binomial distribution. We model the relation between the mean mosquito densityµit , mixing proportion of 

zeros (2)
itπ and climatic predictors by the equations  and where  

and 
 the regression coefficients. 

 

2.3.3 Modeling spatio-temporal heterogeneity  

We extend the above formulation to include seasonality, spatial and temporal correlation on the sporozoite 

rates as well as the mosquito density, that is,  and 

, where ( ) ( )kf t captures seasonal patterns, ( ) ( ),k k
i tφ ε  model spatial and 

temporal correlation respectively. The values of the index k  correspond to the sporozoite models for An. 

funestus ( 1)k = , An. gambiae ( 2)k = and mosquito density models for An. funestus ( 3)k = and 

An.gambiae ( 4)k =  respectively. We assume a stationary Gaussian spatial process that is, spatial 
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correlation is considered to be a function of distance only and not of the locations themselves” an 

autoregressive process of order assuming that temporal correlation is present only between  successive time 

points to capture temporal correlation.  Seasonal trends ( ) ( )kf t are modelled via a trigonometric function 

with a period 12T = months, ( ) 1 2
2 2( ) cos sin , 1,...,12k k kf t a t a t t
T T
π π

= + = . The peak months of the 

wet and dry season are calculated by 1 2arctan( / ) ( / 2 )k k kt a a T π= ×  and ( / 2)kt T+ , respectively (Stolwijk, 

Straatman, and Zielhuis 1999).  

 

2.3.4 Determining important predictors and lag times using variable selection  

Bayesian variable selection was carried out to determine the most important climatic factors including 

distance to water bodies and lag variables for each climatic factor (NDVI, day LST, night LST, Rainfall) 

using a variable selection approach known as stochastic search (George and McCulloch 1993b). In 

particular, for each predictor we introduce a binary indicator parameter pI suggesting presence ( 1pI = ) 

or absence ( 0pI = ) of the predictor from the model. Furthermore, we assume a mixture prior for the 

corresponding regression coefficient pβ  that is β p ~ (1− I p )N (0,υ0τ p
2 ) + I p N (0,τ p

2 )  proposing a non-

informative prior for pβ in case is included in the model and an informative normal prior with a 

variance close to zero (i.e. 3
0 10υ −= ) shrinking pβ  to zero if is excluded from the model. A Bernoulli 

prior is assumed for the indicator, I p ~ Be(0.5) . For climatic variables with lag effects we introduce a 

multivariate binary indicator with categories corresponding to the six lag periods and an additional 

category to allow exclusion of that variable. In this case we consider a multinomial prior for the indicator 

with equal probabilities among the categories. Variable selection was applied on the climatic factors 

included in both parts of the models, i.e. the mixing proportion of zeros and the mean parameters of the 

data distributions. The predictors that are identified as important are those with posterior inclusion 

probability greater than or equal to 50% (Barbieri and Berger 200406). 

Model fit was carried out using Markov chain Monte Carlo simulation. We ran a two-chain Gibbs sampler 

over 100,000 iterations using a burn-in of 5000 iterations. Convergence was assessed by the Gelman and 

Rubin diagnostic (Brooks and Roberts 1998) and kernel density plots using the coda routine in R. 
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Details on remaining prior distribution and implementation are given in the Appendix. The analysis was 

carried out in OpenBUGS version 3.2.3 (Imperial College and Medical Research Council, London, UK).  

 

2.3.5 Entomological inoculation rate (EIR) 

Bayesian kriging (Diggle, Tawn, and Moyeed 1998) was used to predict the mosquito density and the 

number of infected mosquitoes for each species  over a regular grid of 33 605 pixels at 250 x 250m2 spatial 

resolution covering the study area. The entomological inoculation rate (EIR) is defined as the product of 

human biting rate and the sporozoite rate. The human biting rate is the mean number of bites received per 

host and per night. It is approximated by mosquitoes captured using human landing catches (host-seeking 

mosquitoes).  We used a conversion factor of 1.605 (Lines et al. 1991) to transform light trap catches 

densities into human landing catches. The light trap density was calculated by dividing the number of 

mosquitoes caught using the CDC light traps by the number of trap-nights. At a specific pixel i and month 

t, a sample of size 1,000 was drawn from the predicted posterior distribution of the species-specific 

mosquito densities using the zero-inflated negative binomial data distribution. In addition, a sample of the 

number of infected mosquitoes (from each species) was simulated from the predictive posterior distribution 

of sporozoite rates based on the zero-inflated binomial with a binomial count equal to the predicted 

mosquito density. The overall EIR estimate at a given location and month is based on the sample-based 

mean number of infected mosquitoes (from both species) multiplied by the conversion factor. Bayesian 

kriging was done in Fortran 95 (Digital Equipment Corporation) using standards numerical libraries 

(Numerical Algorithms Group Ltd.). 

 

2.3.6 Model validation  

Model fit was carried out on a randomly selected locations subset (85%) of the dataset (training set). The 

remaining 15% was used for model validation (testing test). These subsets were selected by assigning a 

uniform distribution on the locations. The predictive performance of the models was assessed by 

calculating the proportion of test locations with the outcome variable included in the credible intervals (CI) 

with varying probability coverage ranging from 5% to 95% of the posterior predictive distribution and the 

mean square error between the observed and predicted data (Gosoniu et al. 2006). 
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2.4 Results  

2.4.1 Vectorial density  

A total of 13,132 anopheline mosquitoes were trapped in 550 unique locations over the study period. 

An.°gambiae was the predominant vector species representing 79% of the total Anopheles mosquitoes 

collected. The remaining 21% consisted of An. funestus. About 35% of the survey locations had no 

An.gambiae mosquitoes. This percentage reaches 41% for An. funestus. The peak collecting period for An. 

gambiae species coincided with the peak of the rainy season (August) while for An. funestus it was in 

September. However the density of An. funestus remained comparatively low throughout the study period. 

The distributions of the species-specific densities and rainfall throughout the study period are given in 

Figure 2.1. 

 

 
 Figure 2. 1: The distributions of the species-specific densities and rainfall throughout the study period 
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2.4.2 Mosquitos’ infectivity  

A total of 5,668 mosquitoes were tested for the presence of circumsporozoite antigens out of which 4,230 

(74.64%) were An. gambiae species. The overall sporozoite rate (SR) was 7.64% (95% CI 7.63-7.65). 

Plasmodium falciparum infection was detected in 9.24% of An. gambiae species and 2.92% of An. funestus 

species. Sporozoite rates tend to be higher in the Western part of the study area. Figure 2.3 presents the 

geographical location of the study area (top left) and surveyed locations with infected and uninfected 

mosquitoes. The monthly patterns of infected mosquitos and rainfall by species are depicted in Figure 2.2. 

 

 
Figure 2. 2: Monthly patterns of species-specific infectivity and rainfall  
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Figure2. 3: Geographical locations (top left) and surveyed locations with infected and uninfected mosquitoes. 

 

2.4.3 Variable selection 

Results of the variable selection in Table 2.2 indicate that rainfall and vegetation during the current month 

(Lag0), and day temperature during the month preceding the collection (Lag1) are important predictors of 

An. funestus density. The rise of An. gambiae density depends on suitable climatic conditions over a longer 

period of time such as rainfall during the current and previous two months and night temperatures during 

the previous two months. The proportion of “structural” or “excess” zeros is influenced by day and night 

temperatures for both species. However, for An. gambiae densities, the mixing proportion is associated 

with a longer lag time, that is second month (Lag2) and two previous and current months (Lag5) for day 

and night temperatures, respectively. Furthermore, distance to water bodies appears to be an important 

predictor of the mixing proportion of zeros for An. funestus densities.  
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Table 2. 2: Lag times and predictors selected by the variable selection  

Model  Zero-inflated 
Binomial 

Zero-inflated 
Binomial 

Zero-inflated negative 
Binomial 

Zero-inflated 
negative Binomial 

Binomial component An. funestus An.gambiae An. funestus An.gambiae 

Parameter     

Rainfall  Lag 3 Lag 0 Lag 0 Lag 5 
Vegetation (NDVI) - - Lag 0 - 
Day temp (LSTD) Lag 4 Lag 3 Lag 1 - 
Night temp (LSTN) - Lag 5 - Lag 4 
Distance to water body  Yes No No No 
 
Mixing Proportion 

    

     
 Rainfall - - - - 
 Vegetation (NDVI) - - - - 
Day temp (LSTD) - - Lag 1 Lag 2 
Night temp (LSTN) - - Lag 1 Lag 5 
Distance to water body Yes  Yes Yes No 

Legend:  
Lag 0: Average over the current month  
Lag 1: Average of the environmental covariate over the previous month   
Lag 2: Average of the environmental covariate over second previous month   
Lag 3: Average of the environmental covariate over the current and the previous month 
Lag 4: Average of the environmental covariate over the previous and the second previous month  
Lag 5: Average of the environmental covariate over the current, previous and the second previous month  
 
The most important climatic predictors of the sporozoite rates of An. funestus are rainfall during the current 

and previous month (Lag3) and day temperature during the two previous months (Lag4). Rainfall of the 

month of collection (Lag0) and more distant lag times for day (Lag3 corresponding to the current and 

previous month) and night temperatures (Lag5, i.e. current and the two previous months) appear to be the 

most important predictors of An. gambiae sporozoite rates. Distance to water body is the only important 

predictor of the proportion of “excess” zeros in the sporozoite rates for both species.   

 

2.4.5 Model-based vectorial density  

Positive effects of rainfall and vegetation during the current month showed important associations with the 

density of An. funestus. The distance at which the spatial correlation is less than 5% is equal to 10 km (95% 

Bayesian credible interval (BCI): 3-83 km). The phase of 0.65 radials suggested that the peak of the An. 

funestus density occurs in the month of September and the minimum in the month of March. The effect of 

predictors associated to the mixing proportion of the zero-inflated distribution was not important. The 

probability of the excess zeros is highest in the month of November and the lowest in the month of April.  
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Rainfall (during the current and two previous months) and night temperature (during the two previous 

months) are important predictors, negatively associated with An. gambiae density. Spatial correlation is not 

important (<0.05) beyond 5 km (95% BCI: 1-35 km). The temporal and the spatial variations are 

respectively 0.76 (95% BCI: 0.48-1.26) and 0.54 (95% BCI: 0.22-1.13). The maximum An.gambiae 

density occurs in the month of August and the minimum in the month of January. The probability of excess 

is related positively with the day temperature during the two previous months and negatively with the night 

temperature during the current and two previous months. The maximum probability of excess zero occurs 

in November and the minimum in April. Table 2.3 presents the posterior estimates of the ZINB model for 

both species. Figure 2.4 shows the monthly pattern of observed and fitted density (averaged over spatial 

locations) respectively for An. funestus and An. gambiae. 

 
Table 2. 3: Posterior estimates obtained from the geostatistical zero-inflated negative binomial (ZINB) models  

Parameters An. funestus An.gambiae 
Median (95% BCI) Median (95% BCI) 

Intercept  -0.38(-1.09, 0.46) 1.85 (-0.11, 3.56) 
Year2  0.24 (-0.64,1.07) -1.01 (-2.75, 0.39) 
Rainfall  0.87 (0.021, 1.71) -2.33 (-4.67, -0.2) 
Vegetation (NDVI) 1.12 (0.63, 1.65) - 
Day temp (LSTD) -0.78 (-1.56, 0.00) - 
Night temp (LSTN) - -1.3 (-1.9, -0.64) 
Amplitude 3.53(3.50, 3.56) 5.88 (5.83, 5.93) 
Shift/phase 0.648 (0.645, 0.653) -1.159 (-1.163, -1.155) 
Dispersion (r) 0.45(0.32, 0.63) 0.93 (0.71, 1.24) 
Spatial Variation 0.90(0.33, 2.03) 0.54 (0.22, 1.13) 
Range (km)a 1 (3, 83) 5 (1, 35) 
Temporal variation - 0.76 (0.48, 1.26) 
 
Parameters      Mixing proportion  

An. funestus An.gambiae 
Median (95% BCI) Median (95% BCI) 

Intercept  
Year2 

-14.42(-27.08, -3.57) 
0.24 (-0.64, 1.07) 

-11.06(-18.80, -3.47) 
4.42 (-5.67, 11.66) 

Distance to water body  -3.52 (-12.43, 3.51) - 
Rainfall  - - 
Vegetation (NDVI) - - 
Day temp (LSTD) 4.14 (-9.38, 21.23) 3.21(0.89, 5.89) 
Night temp (LSTN) 5.13 (-5.08, 14.83) -1.99 (-5.57, -0.57) 
Amplitude 21.92 (21.69, 22.16)  4.03 (3.96, 4.18) 
Shift/phase 1.06 (1.05, 1.07) 2.25 (2.22, 2.27) 
a: minimum distance in kilometer at which the spatial correlation remains important , BCI=Bayesian Credible Interval 
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Figure 2.4 (a): 1Monthly patterns of observed and fitted indoor residual densities (averaged over spatial locations) of An. 
funestus. 

 

 
 
 Figure 2.4 (b): 2Monthly patterns of observed and fitted indoor residual densities (averaged over spatial locations) of An. 
gambiae.  

 

a 

b 
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2.4.6 Model-based mosquitoes’ infectivity  

Table 2.4 presents the posterior estimates of the ZIB model for both species. The effects of predictors 

appeared not to be important for both species. The maximum of An. funestus infectivity occurs in the 

month of August and the minimum in April. Estimates of the seasonality parameters in the mixing 

proportion indicate that the probability of “structural” zeros is maximum in October and minimum in the 

month of April. 

 
Table 2. 4: Posterior estimates obtained from the geostatistical zero-inflated binomial (ZIB) models  

Parameters An. funestus An.gambiae 
Median (95% CI) Median (95% CI) 

Intercept  
Year2 

-6.65 (-14.8, -1.42) 
-0.67 (-3.36, 2.10) 

-1.82 (-4.21, 4.14) 
-0.92 (-4.32,1.49) 

Distance to water body  0.10(-1.54, 1.83) - 
Rainfall  -1.42 (-4.84, 1.51) -0.16 (-2.06, 1.94) 
Vegetation (NDVI) - - 
Day temp (LSTD) -0.25 (-3.53, 2.64) -0.47(-1.13, 0.08) 
Night temp (LSTN) - 0.05 (-0.72, 0.81) 
Amplitude 7.25 (7.12, 7.38) 2.50 (2.45, 2.54) 
Shift/phase -1.89 (-1.94, -1.85) 2.72 (2.68, 2.75) 
Spatial Variation 0.67 (0.22, 2.78) 0.51 (0.22, 1.19) 
Range (km)a 0.05 (0.01, 0.44) 0.05 (0.01, 0.27) 
Temporal variation - 0.99 (0.53, 2.26) 
Parameters      Mixing proportion  

An. funestus An.gambiae 
Median (95% CI) Median (95% CI) 

Intercept  
Year2 

-2.96 (-20.12, 11.79) 
1.88 (-17.24, 15.2) 

      -11.45 (-26.0, -0.0015) 
       -3.25 (-18.15, 9.07) 

Distance to water body  11.5 (-7.67, 27.29)     3.546(-9.625, 11.39) 
Rainfall  -  - 
Vegetation (NDVI) - - 
Day temp (LSTD) - - 
Night temp (LSTN) - - 
Amplitude 11.09 (10.88, 11.30) 4.03 (3.96, 4.10) 
Shift/phase 1.19 (1.15, 1.23) 2.25 (2.22, 2.27) 
a: minimum distance in kilometer at which the spatial correlation is significant at 5%, CI=credible interval 
 
 

Sporozoite rates in An. gambiae take the largest and lowest values in November and April, respectively.  

The probability of “structural” zeros is higher in December and lower in June. Variation in time is larger 

than the one in space. Furthermore, the distance at which the correlation coefficient falls below 5% (spatial 

correlation) is deemed unimportant for both An. funestus and An. gambiae (95% BCI: 1-44 km and 1-27 

km, respectively).  Figure 2.5 (a)-(b) shows the monthly pattern of observed and fitted sporozoite rate 

(averaged over spatial locations) respectively for An. funestus and An. gambiae. 
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Figure 2.5(a):  Monthly pattern of observed and fitted sporozoite rate (averaged over spatial locations) of An. funestus.  

 
 

 
 
Figure 2.5(b):  Monthly pattern of observed and fitted sporozoite rate (averaged over spatial locations) of An. gambiae 

a

b
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2.4.7 Entomological inoculation rate (EIR) 

The annual EIR averaged across the area was 131.4 infective bites per person for 2002. Figure 2.6 depicts 

monthly EIR estimates of the median predictive posterior distribution at 250 by 250 m2 resolutions within 

the HDSS site. The high transmission season is during May–October; however there are some “high-

transmission” areas in the western part during November. In fact, the western region has the highest EIR 

estimates across the whole HDSS catchment area. 
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Figure 2.6: Monthly EIR estimates of the median predictive posterior distribution at 250 by 250 m2 resolutions 
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2.4.8 Model validation  

Model validation showed that 92% and 73% of the test locations had sporozoite rate falling within the 95% 

credible interval estimated from the zero inflated spatial binomial model and zero inflated spatio-temporal 

model respectively for An. funestus and An. gambiae. 

Density models validation showed that 73% and 58% of the test locations had mosquito densities falling 

within the 95% credible interval estimated from the zero inflated spatial negative binomial model and zero 

inflated spatio-temporal negative binomial model respectively for An. funestus and An. gambiae density 

models. However the zero inflated spatio-temporal models included higher proportion of test locations in 

the lowest credible intervals compared to the zero inflated spatial negative binomial. Figure 2.7 (a)-(b) 

shows the proportions of test locations with respectively sporozoite rate and mosquito density falling in 

between 5% and 95% credible intervals of the posterior predictive distribution.   

a  
Figure 2.7(a): 1Proportions of test locations with sporozoite rate falling in between 5% and 95% credible intervals.   

b  
Figure 2.7(b): 2Proportions of test locations with mosquito density falling in between 5% and 95% credible intervals.   
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2.5 Discussion  

In this study we described and quantified malaria transmission heterogeneity in the Nouna HDSS using a 

comprehensive entomological dataset and rigorous spatio-temporal models, which include Bayesian 

variable selection and take into account zero-inflation. The models determine the elapsing time between 

climate suitability and malaria transmission and estimate spatio-temporal patterns of transmission. Malaria 

transmission is mainly driven by two efficient vectors namely Anopheles gambiae and An.funestus, which 

co-exist geographically across the study area. The transmission fluctuated over the study period indicating 

seasonal, spatial and temporal variation within such a small geographic extend (1775 km2). These findings 

corroborate previous studies concluding a very heterogeneous malaria distribution which is prone to great 

variations between villages and compounds (Greenwood 1989; Carter, Mendis, and Roberts 2000; N. 

Amek et al. 2012). Transmission intensity measured by EIR in Nouna HDSS was high (>100 ib/p/y) 

especially in the rainy season. A seasonal pattern was observed in mosquito densities and in sporozoite 

rates for both species. The high transmission season starts from May throughout October with the peak 

transmission occurring in September.  

 

The negative relationship between night temperatures and An. gambiae mosquito density in our results 

possibly imply that although the high temperatures of the study area (average daily minimum: 20-28.1°C, 

maximum: 29.5-37.2°C) are suitable for stable malaria transmission (Craig, Snow, and le Sueur 1999a), a 

spell of  relief from the heat mainly in the night is also a key determinant  for mosquito development and 

survival. 

Rainfall is associated with the densities of both species; however the direction of the effect is different. A 

negative association with An. gambiae density may suggest that although rainfall remains an important 

factor for the development of this species, consecutive heavy rainfall (over the current and the two previous 

months as shown by the Lag5 effect) may flush away all suitable An. gambiae breeding sites, therefore An. 

gambiae is a rainy-dependant species which favours temporary and shallow breeding sites. A positive 

association with An. funestus density indicates that rainfall is important for the development and survival of 

this species which predominantly develops in permanent water bodies with emerging vegetation (Dia, 

Wamdaogo, and Ayal 2013). This result is consistent with the positive important association between 

NDVI (a proxy measure of vegetation) and An. funestus density and the lack of association between NDVI 

with An.gambiae density (NDVI was not identified as a potential predictor of An.gambiae density). 
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The shortest distance at which the spatial correlation was below 5% for sporozoite rate was 5 km for both 

species. However, for the density it is twice as much for An. funestus than that for An. gambiae in spite of 

wide credible intervals associated with both estimates. The negative association between rainfall and 

sporozoite rate (although not significant) for both species can be explained by the sporogony cycle in 

relation to mosquito survival. Furthermore, only adult mosquitoes that have successfully taken a blood 

meal carry sporozoites while many young newly emerged mosquitoes shortly after the onset of the rainy 

season may reduce the proportion of older ones in the population. Similar results were also found by (N. 

Amek et al. 2011) and (Kasasa et al. 2013). 

The lack of association between distance to water bodies especially An. gambiae may be explained by the 

fact the water bodies considered are mostly large permanent and semi-permanent ones and does not include 

small breeding sites which are favoured by An. gambiae. The zero-inflated (ZI) model formulations that 

were adopted in our study allow accounting for the structural zeros that may arise due to some factors that 

have not been considered in the study.  For example, vector control interventions targeting adult 

mosquitoes that are likely to be infective or proximity to temporary water bodies where it is likely to find 

many young newly emerged (not yet infective) mosquitoes. 

Interestingly, high EIR estimates are observed in the western part of the study area, which is located to a 

large extent in shallows that are extensively used by local populations for rice cultivation. The transmission 

in this area remained high even during the dry season.  Figure 2.2 in the appendix shows the monthly 

patterns of observed and fitted of sporozoite rate (a,b)-(c,d) and densities (e,f)-(g,h) averaged over spatial 

locations respectively in high and low EIR regions of the study area and for An. funestus and An. gambiae. 

The observed and fitted sporozoite rate and densities plots display similar patterns in both the low and high 

EIR regions. 

The EIR maps clearly depict a strong spatial and temporal heterogeneity despite the relatively small 

geographical extent of the study area. 

These maps are valuable tools in identifying malaria "high-transmission" areas and in prioritizing timely, 

control interventions. The high spatial resolution EIR estimates are also important in addressing research 

questions such as the relationship between malaria transmission intensity and mortality. 

The lag time analysis indicated short elapsing periods between climatic suitability and rise of An. funestus 

densities as opposed to longer times required by An. gambiae. A possible explanation could be that rainfall 

quickly dries out or it streams into shallows (in case of heavy rainfall) where water is collected for an 
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extended period thus favouring the development of An. funestus. Suitable breeding sites for An. gambiae 

appear only after successive rainfalls that lead to soil saturation. Understanding the lag times between 

climate suitability and change in malaria transmission is important not only for delivering interventions at 

the right time but also for developing predictive models to support early warning systems (EWS).  In many 

studies the choice of environmental predictors is based on biological plausibility rather than assessing 

whether plausibility is supported by the data generated by the study site. However, local conditions 

influence transmission patterns, therefore rigorous modelling approaches that take into account and 

estimate lag times in climatic factors are needed to increase model predictive ability.  

In this study we used and systematically examined different lag structures through Bayesian variable 

selection implemented within a geostatistical model. Modelling lag effects via distributed lag models 

(Almon 1965; A. Gasparrini, Armstrong, and Kenward 2010; Antonio Gasparrini 2011) is an alternative 

approach to the one used in this paper, however this approach assumes that the different climatic proxies 

are available on a daily scale or aggregated over a common temporal resolution (e.g. month). We are 

currently comparing both approaches.  

To our knowledge, this is the first effort in estimating and comparing the lag time between climatic 

suitability and malaria transmission between the two vector species. The results improve our understanding 

of the dynamics of malaria transmission. However it is worth noticing that the associations found in this 

study area may not necessarily apply in different eco-climatic zones and further work in the area could 

clarify how lag effects depend on ecological zone.  Model based estimates of transmission can identify 

high transmission areas in order to prioritise interventions and support research in malaria epidemiology.  
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2.6 Appendix 
 
We assume that ( )k

iφ ’s latent observations from a stationary Gaussian spatial process N (0,σ1k
2 R(k ) ). ( )kR

models spatial correlation as an exponential function of distance dij  between any pairs of locations i and 

j  that is Rij
(k ) = exp(dij ;ρk )  and kρ  is a measure of the rate of the correlation decay with distance. The 

value 3 / kρ  estimates the maximum distance at which the spatial correlation is significant at 5% (Ecker 

and Gelfand 1997). The 2
1kσ  measures the within-location variation.  Temporal correlation was introduced 

by monthly random effects and modelled by autoregressive (AR) process of order 1 that is 

ε t
(k ) ~ N (θ (k )ε t−1

(k ) ,σ 2k
2 ) and ε t

(k ) ~ N (0,σ 2k
2 /1−θk ) . 2

2kσ  and kθ   are the temporal variance and 

autocorrelation parameters respectively.   

For the regression coefficients we adopt a non-informative normal prior distribution with large variance. 

We further assumed a normal prior distributions with mean zero and large variance for the coefficients of 

the seasonal trends, that is a1k  and a2k ~ N (0,102 ). For the spatial parameters σ k
2 and ρk  we adopt inverse 

gamma and gamma prior distributions respectively, that is σ k
2 ~ IG(2.01,1.01)  and ρk ~ G(0.1,0.1) . 

Covariates were standardized in order to acquire better correlation properties and reduce the Markov chain 

Monte Carlo simulation computational time (Kuo and Mallick 1998a). 

Convergence was assessed by Gelman and Rubin diagnostic(Brooks and Roberts 1998) and kernel density 

plots. 

Exploratory analysis was carried out in STATA 11 (Stata Corporation, College Station, Texas, USA).  
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Figure legends  
Figure 2.1 (a): Monthly pattern of observed and fitted sporozoite rate of An. funestus: averaged over spatial locations in western 
(high EIR) region of the study area 
Figure 2.1 (b): Monthly pattern of observed and fitted sporozoite rate of An. funestus: averaged over spatial locations in eastern 
(low EIR) region of the study area. 
Figure 2.1 (c): Monthly pattern of observed and fitted densities of An. gambiae: averaged over spatial locations in western (high 
EIR) region of the study area. 
Figure 2.1 (d): Monthly pattern of observed and fitted densities of An. gambiae: averaged over spatial locations in western (low 
EIR) region of the study area. 
Figure 2.1 (e): Monthly pattern of observed and fitted densities of An. funestus: averaged over spatial locations in western (high 
EIR) region of the study area. 
Figure 2.1 (f): Monthly pattern of observed and fitted densities of An. funestus: averaged over spatial locations in western (low 
EIR) region of the study area. 
Figure 2.1 (g): Monthly pattern of observed and fitted densities of An. gambiae: averaged over spatial locations in western (high 
EIR) region of the study area. 
Figure 2.1 (h): Monthly pattern of observed and fitted densities of An. gambiae: averaged over spatial locations in western (low 
EIR) region of the study area. 
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Abstract 

Background: Burkina Faso conducted its first nationally representative household malaria survey in 

2010/2011.The survey collected among others, information on malaria interventions, treatment therapies 

and malaria parasite prevalence in children aged 6-59 months. Methods: In this study, we use Bayesian 

geostatistical models to assess the effects of health interventions related to insecticide treated bed nets 

(ITN), indoor residual spray (IRS), Artemisinin-based Combinations Therapy (ACT) coverage associated 

with childhood malaria parasite risk at national and sub-national level after taking into account 

geographical disparities of climatic/environmental and socio-economic factors. Several ITN coverage 

measures were calculated and Bayesian variable selection was used to identify the most important ones. 

Parasitaemia risk surfaces depicting spatial patterns of infections were estimated. Results: The results show 

that the predicted population-adjusted parasitaemia risk ranges from 4.04 % in Kadiogo province to 82% in 

Kompienga province. The effect of ITN coverage was not important at national level; however ITNs have 

an important protective effect in Ouagadougou as well as in three districts in the western part of the country 

with high parasitaemia prevalence and low to moderate coverage. There is a large variation in ACT 

coverage between the districts. Although at national level the ACT effects on parasitaemia risk was not 

important, at sub-national level 18 districts around Ouagadougou deliver effective treatment. Conclusion: 

The produced maps show great variations in parasitaemia risk across the country and identify the districts 

where interventions are being effective. These outputs are valuable tools that can help improve malaria 

control in Burkina Faso  

Keywords: Bayesian, Burkina Faso, Sub-Saharan Africa, effect of malaria interventions, parasitaemia risk, 

geographical distribution.  

 

 

 

 

 

 



Chapter 3: Assessing the effects of malaria interventions on the geographical distribution of parasitaemia risk 
 

   44

3.1 Introduction  

Malaria is holoendemic in Burkina Faso with most transmission occurring during or shortly after the rainy 

season between July to December. Ninety nine percent of infection is attributed to P. falciparum. The 

overall prevalence of infection in children aged 6-59 months is estimated at 66 % (BFDHS-MICS 

2010)(Faso) and (USA) 2012). The under-5 severe malaria attributable death has been dropped from 8.1% 

in 2000 to 3.3% in 2010 (“Plan Stratégique 2011_2015 Palu” 2015). The government has made tremendous 

efforts to achieve the objectives of the 2006-2010 National Malaria Strategic Plan and implemented special 

programs such as home-based malaria management in 2008, universal coverage of insecticide treated bed 

nets (ITN) in 2010, intermittent preventive therapy (IPT) for high-risk groups in 2005, piloting of the 

indoor residual spray (IRS) in certain health districts since 2010, larval control and sanitation programs, 

introduction of effective tools for malaria control mainly the rapid diagnostic test (RDT) at all health 

facilities in 2010 and actual availability of Artemisinin-based Combinations Therapy (ACTs) in health 

facilities in 2007 (“Plan Stratégique 2011_2015 Palu” 2015). 

Burkina Faso carried out the first malaria indicator survey (MIS) in 2010, a nationally representative 

household survey in the country compiling malaria-related indicators. MIS surveys generate a number of 

indicators of malaria intervention coverage that can be used to assess progress towards the goals of the 

global malaria action plan (GMAP) (“Household Survey Indicators for Malaria Control 12b June 2013 

(RBM) - Household Survey Indicators for Malaria Control.pdf” 2015). These indicators measure 

ownership, use and access of ITNs, implementation of IRS, access to ACTs and to Intermittent Preventive 

Treatment for pregnant women (IPTp). MIS data have been used to assess effects of interventions 

(Giardina et al. 2012; L Gosoniu et al. 2006; Samadoulougou et al. 2014); Giardina et al. 2014; Riedel et al. 

2010). Some studies reported protective effects (Giardina et al. 2012; Giardina et al. 2014) for specific 

interventions and others did not find any effect (Gosoniu et al. 2012b; Adigun et al. 2015). In the analysis 

of the Senegal MIS data of 2008, using geostatistical variable selection, we showed that among the various 

indicators of ITN ownership, only few were able to estimate a protective effect of ITN intervention on 

parasitaemia risk (Giardina et al. 2012).   

Intervention effects are likely to vary in space because there is often geographical variation in the 

intervention coverage and their effects are related to malaria endemicity (Kobbe et al. 2007; Reid et al. 

2012 ; Talisuna et al. 2015). We have recently estimated effects of vector-control interventions on changes 
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of malaria parasite risk at different spatial resolutions in six sub-Saharan African countries using Bayesian 

geostatistical models with spatially varying covariates. Results suggested that some interventions may not 

show any effect when looked upon at national level while they can have a protective effect at sub national 

level (Giardina et al. 2014).  

(Samadoulougou et al. 2014) used the Burkina Faso MIS 2010 data to estimate the spatial distribution of 

malaria risk among children under-five of age in Burkina. The authors included only ITN use as an 

intervention-related predictor and estimated an overall effect at country level, which was not statistically 

significant. 

In this study, we analyse MIS data using Bayesian geostatistical models to assess the effects of different 

malaria interventions at national as well as sub-national level (fifty health districts) in the country. 

Bayesian variable selection within geostatistical models allowed us to screen different coverage measures 

for each intervention and spatially structured regression coefficients measured the effects of interventions 

at district level. We also produce predictive maps of the disease burden adjusted for climatic effects. 

  

3.2 Materials and Methods 

3.2.1 Country profile  

Burkina Faso lies mostly between latitudes 9° and 15°N and longitudes 6°W and 3°E. It is made up of two 

major types of countryside. The larger part of the country is covered by a “peneplain”, which forms gently 

undulating landscapes with, in some areas, a few isolated hills. The southwest of the country forms a 

sandstone massif bordered with sheer cliffs up to 150 meters high. Burkina is therefore a relatively flat 

country with an average altitude of around 400 meters. Four main rivers drain the country: the Mouhoun, 

the Nakambé, the Nazinonand the Komoé. The Mouhoun is one of the country's only two rivers which flow 

year-round, the other being Komoé, which flows to the southwest. Burkina Faso has a primarily tropical 

climate with two very distinct seasons. In the rainy season, the country receives between 600 and 900 

millimetres of annual rainfall and malaria is known for a seasonal recrudescence during this period at 

which it accounts for the main cause of fever and mortality in the country. The rainy season lasts 

approximately four months, May/June to September, and is shorter in the north of the country. In the dry 

season, the” harmattan”, a hot dry wind blows from the Sahara carrying dust and dirt that contribute to high 

morbidity from lower respiratory infections.  
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3.2.2 Survey Data  

The MIS was conducted by the National Institute for Statistics and Demography (INSD) with the technical 

assistance of ICF Macro from April 2010 to January 2011 using standardized malaria indicator 

questionnaire. The collected data include information on malaria indicators, education, demographics, and 

socio-economic characteristics.  

A random sample of 574 (176 and 398 respectively in urban and rural settings) clusters and 15,000 

households were selected through a stratified two-stage sampling procedure. The clusters were the census 

units established by INSD in the census carried out in 2006 (Récensement Général de la Population et de 

l’Habitat, RGPH-2006). At the first stage, 574 clusters were drawn with probability proportional to the 

number of households in each cluster. The sampling procedure was stratified by area type (urban/rural) of 

the cluster and by the administrative regions (13 regions). At the second sampling stage, a count of 

households in each of these 574 clusters provided a list of households from which was derived the final 

households sample with an equal probability systematic sampling. As part of the final sampling, one in 

every two households was randomly selected and every child between 6 and 59 months of age was tested 

for parasitaemia. Two malaria diagnostic tests were performed, namely RDT and blood smear test 

(microscopy). Analyses in this study are based on the results of microscopic examination since it is 

considered as the gold standard (Kobbe et al. 2007). Geographic information was collected at the centroid 

of the clusters. Figure 3.1 shows the observed prevalence reported in 540 survey locations. 
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Figure 3. 1: Observed prevalence at survey locations, Burkina Faso MIS 2010.  

 
 
 
The MIS data were used to construct intervention coverage measures related to ITN such as the number of 

ITNs per child under five years (ITNpU5), the proportion of children under five who slept under an ITN 

the night preceding the survey (ITNsU5) and the total number of ITNs per household member (ITNpPR). 

An indoor residual spray (IRS) coverage indicator was defined as the proportion of households sprayed 

with an insecticide within the last 12 months. We also generated a ‘case management’ coverage measure as 

a proxy of health system performance. It was defined by the proportion of children under five in the cluster 

who had received timely a first line ACT out of those reported to have fever 2 weeks prior the survey visit 

(ratio of ACT per reported recent fever). 

Socioeconomic status (SES) was captured by mother’s education and wealth index. The latter was 

calculated as a weighted sum of household assets; the weights were obtained through principal component 

analysis (Johnson and Rutstein 2004). Socioeconomic quintiles ranging from the poorest to the wealthiest 

were included as a categorical variable in the analysis. 
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3.2.3 Climatic data 

Malaria transmission is environmentally driven; therefore remotely sensed (RS) climatic and 

environmental proxies were used as predictors in the models to take into account their potential effects on 

parasitaemia. In particular, the following climatic and environmental factors were included in the models: 

land surface temperature day (LSTD) and night (LSTN), rainfall estimates (RFE), normalized difference 

vegetation index (NDVI), altitude, urban-rural extent, proximity to the rice field (within 5 km radius from 

the survey locations) and the shortest Euclidean distance to nearest water body calculated in ArcGIS 10 

(ESRI; Redlands, CA, USA). Table 2.5 in the appendix indicates the sources of these data as well as their 

spatial and temporal resolution. 

 

3.3 Bayesian geostatistical modelling 

We fitted three Bayesian geostatistical logistic regression models, firstly to estimate the geographical 

distribution of malaria risk based on climatic predictors (model 1); secondly to assess the effects of malaria 

related interventions (i.e. ITN, IRS and ACT coverage) at national level after adjusting for climatic and 

socio-economic (i.e. wealth index, mothers education) confounders (model 2) and thirdly to assess the 

effects of the above mentioned interventions at the level of the health district (model 3). The climatic 

model (model 1) was fitted on the number of malaria-infected children at cluster level. The models with 

intervention effects (models 2 and 3) were applied on the binary outcome indicating the infection status of 

a child and considering the age of a child (in years) as a covariate. All models included cluster-specific 

random effects, arising from a Gaussian stationary process with covariance matrix capturing correlation 

between any pair of cluster locations as a function of their distance. Bayesian geostatistical variable 

selection was applied in model 1 to identify the most important set of climatic predictors (including their 

best functional form). In particular, for each climatic predictor an indicator was introduced to estimate the 

probabilities of excluding or including the predictor into the model in linear or categorical form. The 

categories of the predictors were defined using their quartiles. The final model included variables and 

functional forms with inclusion probability of more than 50%. Model 2 contained the most important 

climatic/environmental predictors selected in model 1 as well as age, SES, ITN, IRS and ACT coverage 

measures. Geostatistical variable selection was applied to select the best ITN coverage measure (i.e. 
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ITNpU5, ITNsU5 and ITNpPR) by introducing binary indicators specifying the exclusion or inclusion of 

each measure from the model. 

The effects of malaria interventions (i.e. ITN, IRS and ACT coverage) at sub-national level were estimated 

from the geostatistical model 3 which includes the intervention coverage measures as spatially varying 

covariates, following model formulations used by (Giardina et al. 2014). A conditional autoregressive 

(CAR) prior distribution (Banerjee et al, 2014, Banerjee, Carlin, and Gelfand 2014) was considered to 

introduce a neighbour-based spatial structure on the regression coefficients related to each intervention 

effect in the study (Giardina et al. 2014;  Haining 2003). Neighbours were defined as the adjacent areas 

(health districts) of each health district and used to create a matrix of spatial weights taking the value of 

one for a direct neighbour and zero otherwise. Model 3 utilises the ITN coverage measure, which was 

selected in model 2. 

Bayesian kriging (Diggle, Tawn, and Moyeed 1998) was employed to predict the malaria parasite risk over 

a regular grid of 226,627 pixels at 1 km2 resolution covering the entire study area. Population adjusted risk 

estimates were obtained at district level by combining pixel-level risk estimates with population data of 

children under 5 years. The analysis was carried out in STATA 13 (Stata corporation, College Station, 

Texas, USA) and OpenBUGS version 3.2.3 rev 1012 (Imperial College and Medical Research Council, 

London, UK). Parameter estimates were summarised by their posterior median and the corresponding 95% 

Bayesian credible interval (BCI). Modelling details are given in the appendix. 

The predictive model was validated on a test subset of the data. A randomly selected sample of 432 

locations (80% of the data location) was used as a training set for the model fit. The predictive performance 

of the model was assessed by calculating the proportion of observed prevalence data at the remaining 20% 

of the test locations, correctly estimated within Highest Posterior Density Intervals (HPDI) of probability 

coverage ranging from 50 to 95%.  
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3.4 Results 

A total of 5741 children aged between 6 and 59 months from 574 clusters were tested for parasitaemia 

using blood smear test results. The overall observed malaria parasite prevalence was 65%. Thirty-four 

(5.92%) clusters had no data thus reducing the actual number of clusters to 540 (figure 3.1). 

The ratio of ITN to children under 5 years old ranges from 0.33 in district of Orodara to 1.52 in Nanoro 

district with 11 out of the 50 districts in the country having a ratio above 1. 80% of the 50 health districts 

have IRS coverage less than 1%. The maximum IRS coverage of 50% was found in the districts of 

Diebougou and Toma. The percentage of households falling in the lowest social-economic quintile ranges 

from 1.6% (in Tenkodogo) to 63.33% (in Gorom-gorom). Table 3.1 gives a summary of the raw coverage 

measures per health district. The highest proportion of fever cases receiving ACTs is 22% and it is 

observed in the districts of Tenkodogo in the East central and Koudougou in the Central part of the 

country. Figures 3.3 (right) depict the ITNpU5, ITNsU5 and ACT coverage at health district level, 

respectively. 

The results of variable selection are presented in Table 3.2. In particular, Bayesian geostatistical variable 

selection applied in the climatic model 1 indicated that the most important factors related to parasitaemia 

risk are LSTN (Night Land Surface Temperature) in linear form and the proximity to rice cultivation 

(categorical) with 74.10% and 74.50% posterior inclusion probabilities, respectively. The place of 

residence (rural/urban) stood out as one of most important predictors with a posterior inclusion probability 

of 87.20%. Geostatistical variable selection of the ITN coverage measures (model 2) showed that the 

proportion of children that slept under a net (U5sITN) had the highest probability (equal to 32.02%) to be 

included in the model among the ones that were assessed. The inclusion probability of less than 50% 

indicates that U5sITN is less likely to have an important effect at national scale. We included however 

U5sITN in model 3 as a spatially varying covariate to assess important effects at sub-national levels and 

identify health districts that the ITN interventions are associated with the parasitaemia risk. 
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Table 3. 1: Summary of raw malaria coverage measures per health district.  

Health district  Number 
of 

clusters 

ITNpU5  
(%) 

ACT (%) 
( # of fever 

cases)  

IRS (%) 
(# of 

clusters) 
ITNsU5 

(%) 
 

HH in 
lowest 
quintile 

(%) 
Banfora  26 109  3 (50) 4 (1) 76 

50 
38 
54 
56 
47 
80 
58 
43 
56 
63 
33 
53 
60 
73 
71 
38 
50 
39 
20 
42 
23 
58 
62 
21 

100 
57 
24 
42 
90 
17 
50 
42 
55 
22 
50 
67 
60 
53 
63 
64 
58 
58 
30 
67 
24 
65 
88 
49 
91 

4.37 
Barsalogho   6 50  2 (9) 0 (0) 23.94 
Batie  4 73 1 (7) 0 (0) 59.26 
Bogande  14 63  1 (26) 0 (0) 44.91 
Boromo  4 67 0 (16) 0 (0) 8.93 
Boulsa  9 50  3 (14) 0 (0) 13.04 
Bousse  6 95 3 (5)  0 (0) 24.00 
Dande  7 64 1(17) 0 (0) 10.00 
Dano  12 61  4 (38) 0 (0) 47.62 
Dedougou  11 73  3 (23) 0 (0) 15.53 
Diapaga  9 121  0 (6) 0 (0) 59.46 
Diebougou  4 133 8 (14) 50 (2) 14.63   
Djibo  15 49  6 (33) 0 (0) 39.35 
Dori  11 92 2 (11) 0 (0) 44.00 
Fada N'gourma    17 97  3 (24) 0 (0) 28.48 
Gaoua  14 109  4 (52) 0 (0) 47.76 
Gorom-gorom  9 46  11 (14) 0 (0) 63.33 
Hounde   5 78  0 (21) 0 (0) 9.33 
Kaya  18 37  12 (4) 0 (0) 14.18 
Kombissiri  6 46  10 (33) 0 (0) 12.50 
Kongoussi  10 57  2 (6) 0 (0) 23.08 
Koudougou  14 68  21 (38) 7 (1) 7.24 
Koupela  15 84  10 (16) 0 (0) 26.04 
Leo  7 66  9 (16) 0 (0) 14.63 
Manga   13 51  2 (34) 0 (0) 18.52 
Nanoro  4 152 9 (10) 0 (0) 14.29 
Nouna  10 63  2 (22) 0 (0) 13.04 
Orodara   9 33 3 (31) 0 (0) 20.00 
Ouagadougou  36 98  13 (45) 6 (2) 1.16 
Ouahigouya  24 136  4 (51) 0 (0) 15.15 
Ouargaye  4 60  1 (4) 0 (0) 22.86 
Pama  6 86  1 (8) 17 (1) 32.95 
Po  12 54  4 (18) 0 (0) 31.67 
Reo  11 75  6 (17) 0 (0) 37.23 
Sapone  10 60 7 (14) 0 (0) 3.28 
Sebba  9 87  1 (6) 11 (1) 51.11 
Secteur 15  13 55 7 (29) 0 (0) 7.96 
Secteur 22 12 62  8(39) 0 (0) 6.84 
Seguenega  6 121  1 (25) 0 (0) 5.00 
Sindou  7 68  2 (31) 0 (0) 7.23 
Solenzo   8 85  13 (15) 0 (0) 20.48 
Tenkodogo  18 51  22 (60) 0 (0) 1.06 
Titao  5 116  1 (20) 0 (0) 25.37 
To  8 66 5(22) 0 (0) 23.46 
Toma  4 55  1 (19) 0.5(2) 3.64 
Tougan  9 56  0 (26) 22 (2) 2.02 
Yako  10 142  3 (31) 0 (0) 19.54 
Zabre  4 87 7 (10) 0 (0) 52.08 
Ziniare   19 104  5 (48) 0 (0) 15.00 
Zorgho  15 140 11 (74) 7 (1) 11.68 
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Table 3. 2: Results of variable selection for the climatic predictors and ITN coverage measures based on Bayesian 
geostatistical logistic regression models. Posterior inclusion probabilities larger than 50% indicate an important 
predictor.  

                                                                              Posterior inclusion probability (%) 
Variable Model 1 Model 2 
Altitude 28  
Distance to water body 2  
NDVI 3.30  
LSTD 6.20  
LSTN 74.10  
Rainfall 1.60  
Distance to rice growing area 0.30  
Altitude* 5.70  
Distance to water body* 4  
Area type (urban/rural)*  87.20  
NDVI* 0.20  
LSTD* 4.50  
LSTN* 3.50  
Rainfall* 1  
Distance to rice growing area* 74.50  
ITN coverage    
ITN per person (ITNpPR) - 0.20 
U5 sleep under net (ITNsU5) - 32.02 
ITN per under five years (ITNpU5) - 2.46 
*categorical form.  
 
 

The predictive performance of the model (model2) is shown in figure 3.2. Eighty two (82%) of test 

locations were falling into all credible intervals with probability areas greater than 50%.     

 

 
Figure 3. 2: Proportion of test locations falling in the Highest Posterior Density intervals (HPDIs). 
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Parameter estimates of the three models are given in Table 3.3. In particular the climatic model 1 showed a 

negative correlation of the parasitaemia risk with LSTN and distance to rice fields. Moreover, living in 

rural areas increases the odds of being infected by about 3.91 times (95% BCI: 2.88, 5.22). The minimum 

distance at which the spatial correlation is less than 5% is equal to 10.61km (95% BCI: 2.39-20.82). Model 

2 assesses the effects of malaria interventions on parasite risk after adjusting for climatic and socio-

economic confounders. Results show that none of the health intervention measure is an important predictor 

of parasitaemia risk at national level. However, the model indicates that the odds of malaria infection 

decreases with better socioeconomic conditions reaching a 68% reduction within the least poor group, OR 

=0.32 (95%BCI: 0.24 -0.43). An increasing gradient of malaria risk was also observed with age with the 

oldest age group (4-5 years old) having odds of 2.08 times higher than infants. Furthermore, the model 

reveals a decreasing trend of parasiteamia odds with increasing mother’s education level although this 

decrease is not statistically important. The additional SES and malaria interventions related predictors in 

model 2 were able to explain some of the spatial correlation in the model. This is reflected in the estimate 

of the range parameter, which reduced to 3km compared to 10.6 km in model 1.  
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Table 3. 3: Posterior median and 95% Bayesian Credible Intervals (BCI) of the geostatistical model based on 
environmental/climatic, malaria intervention coverage and SES predictors. 

Geostatistical Model 1 Geostatistical Model 2 Geostatistical Model 3 
Variables OR (95% BCI) OR (95% BCI) OR (95% BCI) 

LSTN 0.78 (0.69, 0.88) 0.81(0.72, 0.90) 0.82(0.72, 0.93) 
Rice field proximity 0.49 (0.27, 0.81) 0.56 (0.34, 0.98) 0.73 (0.43, 0.99) 

No 1.00 1.00 1.00 
Yes 0.49 (0.27, 0.81) 0.56(0.34, 0.98) 0.73(0.43, 0.99) 

Area type      
urban 1 1 1 
rural 3.91(2.88, 5.22)  2.50(1.89, 3.35) 2.36(1.79, 3.13) 
SES      

Most poor 1 1 
Very poor 0.76(0.61, 0.95) 0.77(0.61, 0.96) 

Poor 0.90(0.71, 1.14) 0.92(0.73, 1.16)  
Less poor 0.70(0.55, 0.89) 0.71(0.56, 0.90) 
Least poor   0.32(0.24, 0.43) 0.33(0.25, 0.45) 
Age (yrs)      

0-1 1 1 
1-2 1.56(1.23, 1.56) 1.21(0.95, 1.55) 
2-3 1.72(1.35, 2.21) 1.71(1.33, 2.19) 
3-4 1.88(1.48, 2.41) 1.87(1.47, 2.39) 
4-5   2.08(1.62, 2.67) 2.07(1.61, 2.65) 

Mother’s education  
No education 1 1 

Primary  1.08(0.89, 1.31) 0.85 (0.71, 1.03) 
Secondary  1.06(0.74, 1.54) 0.88 (0.61, 1.27) 

Higher 1.44(0.29, 6.49)- 0.42 (0.05, 2.13) 
Case management (ACT) -   1.45(0.49, 4.21) 0.13 ( -1.49, 1.67) 
U5 sleep under net 
(ITNsU5) -   1.66(0.89, 3.08) 

0.25 (-0.37, 0.90) 

House Spray (IRS) -  1.14(0.17, 7.23)  0.11 (-1.75, 1.70) 
 

Variances  
Gaussian process 0.87(0.66, 1.15) 0.6(0.44, 0.80) 0.55(0.39, 073) 

Spatially varying ITNsU5   
 

0.57 (0.38, 0.88)* 
Spatially varying IRS   0.76 (0.42, 1.75)* 
Spatially varying ACT    0.75 (0.42, 1.84)* 
Range (km)a 10.61(2.39, 20.82)     3.00(0.40, 10.00) 2.70 (0.44, 9.75) 

a: minimum distance in kilometer at which the spatial correlation is lower than 5%  
Model1 includes only climatic factors,  
Model2 includes climatic factors, age, SES ,  intervention measures 
Model3 has spatially varying covariates for IRS, ACT and ITNsU5  
*Posterior median 
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Figures 3.3a-c depict the predicted parasitaemia risk maps (median (a), 2.5th (b) and 97.5th (c) percentiles of 

the posterior predictive distribution estimated from model 2) in children less than 5 years of age at 1 km2 

spatial resolution in Burkina Faso. Estimates show that malaria parasitaemia risk ranges from 36% to 71% 

across the country while the median predicted prevalence is 59%. The Southwest, Comoe, Cascade, East, 

Central-west, Boucle du Mouhoun and the Sahel regions bear the highest prevalence. The central, the 

North, the east central and regions appear to be the less burdened regions. The total number of infected 

children under five years old in the country was estimated to be 1,097,296. Table 3.4 presents the 

population-adjusted and estimated number of infected under five children under 5 years of age per province 

and region.  
  

(a)  
 

Figure 3. 3: Predicted parasitaemia risk map in children under 5years old based on the (a) median 2.5th percentiles and  

97.5th percentiles of the posterior predictive distribution estimated from model 2 at 1 km2 resolution. Province 

boundaries are overlaid. 

 

 

 

 

(b)  

 

(c)  
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Table 3. 4: Population-adjusted and estimated number of infected children under five years old per province and region.  

Region  
Province 

Observed 
prevalence 

(%) 

Population of 
under 5 children 

Population adjusted 
estimated prevalence 

Estimated number of 
infected children 

Boucle du Mouhoun Bales 79 37601 17.72 17646 
Banwa 78 47308 16.92 21975 
Kossi 76 48528 28.96 18321 

Mouhoun  74 52335 20.85 21159 
Nayala 81 28425 19.12 13828 
Sourou 63 38168 21.79 18577 

Cascades Comoe 59 71772 33.13 32656 
Leraba 55 20765 25.44 8000 

Centre Kadiogo 34 243402 4.04 139826 
Centre-Est Boulgou 62 98226 10.91 41548 

Koulpelogo  75 47315 18.04 18495 
Kouritenga 52 59702 7.44 24678 

Centre-Nord Bam 60 50553 11.46 24229 
Namantenga 78 60409 16.08 27146 
Sanmatenga  62 109630 13.10 46970 

Centre-Ouest Boulkiemde 64 87305 8.20 34159 
Sanguie 88 51241 14.39 24188 
Sissili 75 37038 28.00 16542 
Ziro 77 31847 27.71 12820 

Centre-Sud Bazega 67 39878 15.11 17614 
Nahouri 71 27251 20.69 11722 

Zounweogo 75 42191 13.65 18243 
Est Gnagna 74 78380 18.22 31657 

Gourma 66 59266 33.75 22215 
Komandjari 41 15841 47.24 7041 
Kompienga 73 15690 81.72 5842 

Tapoa 67 67016 38.67 25250 
Haut-Bassins Houet 52 148488 10.68 76584 

Kenedougou 65 44522 25.62 20182 
Tuy 75 35504 21.55 18267 

Nord Loroum 72 25989 20.06 12062 
Passore 56 57802 9.67 25994 
Yatenga 66 99943 9.80 47657 

Zandoma 60 30413 8.98 13394 
Plateau central  Ganzourgou 66 56713 10.46 27228 

Kourweogo 52 24218 9.90 11251 
Oubritenga 65 42149 10.15 18400 

Sahel  Oudalan 72 35453 46.15 14507 
Seno 63 47034 19.54 23291 
Soum 85 62279 31.43 26560 
Yagha 51 28730 34.73 12464 

Sud-Ouest Bougouriba 59 17941 24.32 7492 
Ioba 83 33185 15.01 14889 

Noumbiel 87 12456 36.51 5086 
Poni 76 45305 26.78 19638 

 
 
 
 
    

  



Chapter 3: Assessing the effects of malaria interventions on the geographical distribution of parasitaemia risk 
 

   57

Spatially structured coefficients of intervention coverage measures obtained by model 3 allowed estimation 

of the effect of ITN, IRS and ACT at health district level. Figure 3.3 presents the different coverage (right 

hand side maps) and intervention effects (left hand side maps) for each health district estimated from model 

3 with the spatially varying covariates. ACT coverage appears to be an important health system component 

associated with decreased malaria parasitaemia risk in a number of the health districts. However the 

strongest effects are observed in the districts of Ouagadougou, Koudougou, Kaya, Zorgho, Koupela and 

Tenkodogo. ITN usage shows a protective effect in only 4 health districts namely Ouagadougou, Ziniare, 

Ouahigouya and Sebba. IRS, which, is in a pilot phase in the district of Diebougou (South-west) did not 

show any effect.  
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Figure 3. 4: Coverage (right) and intervention effects (left) maps of ITNpU5, ITNsU5, IRS and ACT  

Important effects are indicated with (*) and correspond to 95% Bayesian credible intervals that do not include 0.  
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3.5 Discussion  

This is the first study in Burkina Faso, which estimates the spatial effects of malaria interventions on the 

geographical distribution of parasite risk. We calculated different ITN coverage measures related to bed net 

use and ownership and studied the effects of ITN, IRS and case management coverage on the spatial 

pattern of malaria risk after taking into account disease variation due to climatic and socio-economic 

factors. We also obtained georeferenced estimates of the parasite risk and of the number of infected 

children. Our study analysed the Burkina Faso MIS survey data of 2010 and employed Bayesian 

geostatistical models with spatially varying covariates using geostatistical variable selection to identify the 

most relevant bed net coverage indicators. Our geostatistical variable approach identified a list of the most 

important climatic and environmental predictors. Weiss (2015) proposed a list potential predictors that 

could be used to improve malaria modelling (Weiss et al. 2015).   

 

The most important ITN coverage measure was the proportion of children under five years old sleeping 

under bed net, with however a low posterior probability to be included in the model equal to 32.02% 

followed by far by the number of ITN per under five (2.46%) and the number of ITN per household 

member (0.20%). This finding support previous results showing that contingent upon the setting and the 

prevailing conditions, ITN ownership and ITN use may show different ability in capturing ITN 

intervention effects on parasitaemia (Giardina et al. 2012). 

Overall, the effect of interventions in Burkina Faso was not significantly associated with change in malaria 

parasitaemia risk at country level. These results are in line with the findings of Giardina (2014) in a 

multisite study. The lack of statistically important ITN intervention effects may be explained by the fact 

that at country-level, a sizeable percentage (37.97%) of children under the age of five years still do not 

sleep under ITN. However when analysed at sub-national level (health district level) some interventions 

show protective effects in certain districts. For instance ITN use, which appeared to have not an important 

effect at national level proved to be an effective intervention in four health districts namely Ouagadougou, 

Ziniare in the central region of the country, Ouahigouya in the North and Seeba in the Sahel region. Among 

factors that might affect ITN effectiveness feature the inadequate coverage and the uneven distribution of 

ITN and the usage among households and health districts (“eLife Digest” 2015).  

Indeed, malaria is holoendemic in Burkina Faso and the transmission occurs throughout the year. In such 

settings, even significant reductions in the total exposure would not necessarily warrant substantial 
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reductions in parasitaemia (Bødker et al. 2006; T. A. Smith, Leuenberger, and Lengeler 2001b; Trape and 

Rogier 1996; Robert W. Snow and Marsh 1995). Furthermore, there is still an incomplete ITN utilization 

compliance (62.03%) among children under the age of five years. ITN intervention is expected to be more 

effective in low transmission settings and with the highest ITN usage (Apinjoh et al. 2015). Districts where 

ITN usage was found to be protective are located in low to mild transmission settings and ITN usage 

ranges from 42 to 90% (Prevention 2016). 

 

ACT showed a protective effect in 19 health districts. However it is worth noting that except Gorom-gorom 

in the Sahel region, Solenzo in the North West (Boucle du Mouhoun), secteur 15 and 22 in the West 

(Hauts-bassins) and Diebougou in the Southwest, the remaining districts where ACT showed a protective 

effect are located in the central region. A close inspection of the coverage levels shows that ACT tends to 

be effective in districts where a minimum level of coverage is achieved (above 5%). This finding supports 

the hypothesis that the effectiveness of a given intervention is related to both its coverage as well as the 

transmission levels. Indeed, the ACT effect is presumably limited by very low coverage (Okell et al. 2008). 

High levels of transmission are also believed to limit the effect of ACT. Findings from a study conducted 

in Tanzania suggested that the percentage reductions in prevalence of infection and incidence of clinical 

episodes achieved by ACT were much higher in areas with low initial transmission (Okell et al. 2008). ITN 

interventions, however, aim at reducing the malaria transmission intensity by reducing the chances that an 

individual will be bitten by an infective Anopheles mosquito (Eisele, Larsen, and Steketee 2010). However 

low compliance and actual usage may seriously limit the potential impact of ITNs (Prevention 2016), 

(Hawley et al. 2003). Therefore conjugate efforts to increase both the ACT coverage (in order to reduce the 

prevalence) and ITN usage (to further reduce the transmission) are required to warrant a synergetic effect 

towards a better and effective control of the disease (Fullman et al. 2013). Findings from a continental 

study that used data from 32 malaria-endemic African countries showed that ITN intervention was the most 

important and effective malaria intervention accounting for an estimated 68% declines in malaria parasite 

rate in 2015, followed by ACT (19%) and IRS (13%) (Bhatt et al. 2015). Our study showed an important 

effect of ITN at some districts, however at country level the effect was not important. 

IRS was not associated with malaria parasitaemia risk most probably owing to an extremely low 

percentage of houses sprayed within the last 12 months (0.92%) prior to the survey. 
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Malaria is known to be a climate-driven disease and among the most important climatic factors features 

temperature. The model-based parasitaemia risk map depicts a strong spatial with lower parasitaemia risk 

estimated in the cities (urban settings) relative to rural settings. Our results show a negative association 

between increased night temperature and malaria transmission. Laboratory experiments observed the 

shortest An. gambiae s.s larval survival (<7 days) at 10-12°C and 38-40°C and the highest larval mortality 

occurring between 30-32°C, with death (rather than adult emergence) representing over 70% of the 

terminal events in mosquitoes originally from Lagos (Nigeria) (Bayoh and Lindsay 2004). In Burkina Faso, 

the monthly mean temperature in the hottest and driest period (March-May) is constantly well above 31°C. 

Land surface night temperature, therefore appears to be an important predictor of malaria transmission. 

Furthermore, the behavioural high temperature avoidance experiment showed that An. Gambiae, the most 

efficient malaria vector species in Burkina Faso, was more sensitive to increased temperatures than its 

sibling An. arabiensis (Bayoh and Lindsay 2004). In nature, this probably results in short distance flights to 

seek cooler spots, typically the shaded resting sites under vegetation outdoors or cool dark comers indoors. 

The highly endophilic nature of An. gambiae protects the mosquito from the highly variable and more 

extreme external climate. This may explain the negative association between increased LSTN and the 

transmission because during the hot night spells local populations rest outdoor thus reducing knowingly or 

unknowingly the contact human-vector. The authors also found that female temperature avoidance was 

most pronounced in hungry females (which avoid temperatures above 25°C), less strong in blood-feds 

(above 30°C) and least strong in newly emerged females (above 32°C). High night temperatures were also 

found to affect An. gambiae (one of the most predominant and effective malaria vector in Burkina Faso) 

behaviour and vectorial capacity (Cator et al. 2013; Kirby 2005). 

A significant negative association between temperature and malaria infection was also found in a previous 

study in Burkina Faso (Samadoulougou et al. 2014); However the authors did not consider day and night 

temperatures separately and the climatic data considered in this study do not span the study period (April 

2010-January 2011).  

Our study estimated a negative association between malaria parasitaemia and proximity with rice growing 

areas. The rice growing areas used in this study were extracted from the National land use database with 

cartographic scale coverage of 1/200000 which features only large and economically relatively important 

rice growing areas. Furthermore, as exposed to an increased risk of malaria infection, surrounding 

populations receive relatively high attention from the local government including regular sensitization 
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campaigns (Information Education and Communication). Consequently, as an income generating activity, 

the local population is relatively well off. This makes it easier to access health care and other protective 

measures. This effect is known in Burkina Faso as the “paddy paradox” defined as the occurrence of large 

populations of vectors but low amounts of malaria transmission where irrigated rice is grown. Furthermore 

it is hypothesized that the “paddy paradox” is due to young pre-gravid mosquitoes dispersing more widely 

than gravid ones, not necessarily to low survival in the mosquito (J. D. Charlwood et al. 2011). Another 

reason might be the displacement of the most endophilic and anthropophilic malaria vector Anopheles 

funestus Giles by An. arabiensis Patton with lower vectorial capacity, as the latter thrives more than the 

former in rice fields. Similarly, among members of the An. gambiae complex, some cytotypes of An. 

gambiae sensu stricto are more vectorial than others (Ijumba and Lindsay 2001). Furthermore, studies in 

Burkina Faso, Ghana, Gambia and Tanzania where malaria is stable showed that there is less malaria in 

irrigated communities than surrounding areas (Ijumba and Lindsay 2001; J. D. Charlwood et al. 2011; 

Boudin et al. 1991; Lindsay et al. 1991). 

 

The predicted spatial distribution of malaria parasitaemia risk ranges from 36% to 71% across the country 

while the median predicted prevalence is 59%. Our predicted parasitaemia map shows the higher risks in 

the Southwest, South-Central and the Eastern region of the country. The above mentioned regions coincide 

with the regions of country bearing the highest vegetation density and receiving the highest annual rainfall 

relative to the northern part which receives less rainfall and is more “desertic”. Our predicted parasitaemia 

risk map shows similarities as well as discrepancies with the previous mapping efforts. Compared to the 

Plasmodium falciparum endemicity map in 2010 in Burkina Faso by the Malaria Atlas Project (MAP) 

team, common patterns were found especially in the northern and north-eastern parts of country, which 

appeared to be less burdened (Gething et al. 2011). The two efforts consistently found lower parasitaemia 

risk in urban settings. However, the highest burden of the disease was found to be in the northwestern part 

of the country on the MAP endemicity map in 2010, while our predicted parasitaemia risk map placed the 

highest burden in the southwestern part of the country. Another previous mapping effort indicated the 

northern part of the country as the most burdened region, whereas the southwestern region appeared among 

the least burdened region of the country (Samadoulougou et al. 2014). The discrepancies may be explained 

by the difference in the climatic/environmental and other predictors used in the different models. 
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This study estimated higher number of infected children in the cities despite the relatively low prevalence 

observed in the urban settings. This finding is consistent with the results from previous study that used the 

BFDHS-MICS 2010 data (Samadoulougou et al. 2014). We also observed differences between raw and 

population-adjusted parasitaemia risk estimates which is explained by the low prevalence observed in 

densely populated areas. For example the province of Kadiogo, one of the smallest provinces with the 

highest population density and the lowest population-adjusted raw parasitaemia risk (34%), shows an even 

lower parasitaemia risk adjustment for the population (4.04%). Similar results were found using Senegal 

MIS 2008 data (Giardina et al. 2012).  

We found an increasing risk gradient with age. Infants had the lowest risk while older children had the 

highest risk. We also observed an association between socio-economic status and malaria risk with children 

within the least poor quintile being substantially at reduced risk. Similar results were observed in a 

previous study in Burkina Faso and in other malaria endemic areas (Giardina et al. 2012; Samadoulougou 

et al. 2014).  

 

3.6 Conclusions  

Our study provides estimates of the effects of malaria interventions at country as well as at local scale. Our 

estimated risk and intervention effect maps are valuable tools for identifying high-risk areas and areas with 

less effective interventions in order to improve malaria control in Burkina Faso. These outputs can serve as 

benchmarks to evaluate the effectiveness of future control interventions and progress of the efforts towards 

disease control.  
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3.6 Appendix 

Let indicate the malaria parasitaemia status of child  at location . We assume that  follows a 

Bernoulli distribution and is related to its predictors using a logistic regression model, that is, 

( )
0 1log ( ) K k

ij k k ij jit p Xβ β φ== + ∑ + , where is the risk of child at location  of having malaria parasites, 

0 1( , ,..., )T
Kβ β β=β  is the vector of the K regression coefficients. Spatial correlation is taken into account 

by adding location-specific random effects modelled by a Gaussian process, 

 with variance-covariance matrix related to an exponential correlation 

function between locations, that is , where is the Euclidian distance between location  

and ,  is the geographic variability and  is a smoothing parameter that controls the rate of correlation 

decay with increasing distance. Bayesian geostatistical models fitted via Markov Chain Monte Carlo 

(MCMC) simulation were employed for parameter estimation and predictions. The specification of the 

Bayesian hierarchical model requires prior distribution for all model parameters. The spatial correlation 

parameters  and  were assigned an inverse gamma and a gamma prior respectively,  

and . 

Bayesian variable selection was carried out to identify the best set of predictors and their functional form 

using a variable selection approach known as stochastic search (George and McCulloch 1993a). In 

particular, for each predictor we introduce a categorical indicator parameter pI suggesting exclusion of 

the predictor from the model ( 0pI = ), inclusion in linear ( 1pI = ) or categorical form ( 2pI = ). pI has a 

probability mass function 
2

( )

0

j pI
j

j

δπ
=
∏  where jπ  are the inclusion probability of functional form j (i.e. 

j = 0,1,2) such that 
2

0

1j
j
π

=

=∑  and ( )jδ ⋅ is the Dirac function, 
1   

( )
0   

p
j p

p

if I j
I

if I j
δ

=
=

≠
. Furthermore, we 

assume a spike and slab prior for the corresponding regression coefficient. For the coefficient of the 

predictor in linear form we take ( )2 2
1 1 0~ ( ) (0, ) 1 ( ) (0, )p p p p pI N I Nβ δ τ δ υ τ+ −  proposing a non-informative 

prior for in case is included in the model in linear form (slab) and an informative normal prior 

Yij i s j Yij

Yij ~ Ber(pij )

pij i s j

φ j

σ 2 exp(−dijρ) dij s j

sl σ 2 ρ

σ ρ p(σ ) ~ IG(a1,b1)

p(ρ) ~ G(a2 ,b2 )

pβ

pβ
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shrinking  to zero (spike) if is excluded from the model. Similarly, for the coefficient { }, 1,...p l l L
β

=
 

corresponding to the categorical form of  with L categories, we assume that

( )2 2
, 2 , 2 0 ,~ ( ) (0, ) 1 ( ) (0, )p l p p l p p lI N I Nβ δ τ δ υ τ+ − . For the inclusion probabilities, we adopt a non-

informative Dirichlet distribution with hyper-parameter
 

T(1,1,1)α = that is, 

0 1 2( , , ) ~ (3, )T Dirichletπ π π=π α . 

Age and socioeconomic quintiles were not part of the variable selection. Continuous covariates were 

standardized in order to acquire better correlation properties and reduce the Markov chain Monte Carlo 

simulation (MCMC) computational time (Kuo and Mallick 1998b). 

We estimate model parameters using Markov chain Monte Carlo simulation (Gibbs sampling) (O’Hara and 

Sillanpää 2009). Starting with some initial values about the parameters, we run two chains sampler 

discarding the first 5000 iterations. Convergence was assessed by Gelman and Rubin diagnostic(Brooks 

and Roberts 1998) and kernel density plots. 

 
Estimating the effect of intervention at sub-national (health district) level 

We extend the above model to include intervention coverage measures with spatially varying coefficients 

as follows: ( ) ( )
0 1 1log ( ) ( )K k M m

ij k k ij m mj i j jit p X b Z Aβ β φ= == +∑ + ∑ + , where ( ) ( )m
i jZ A is the m  intervention 

coverage measure aggregated over the health district jA of the js location, mjb is the corresponding spatially 

varying coefficient (i.e. effect of intervention at jA district) and M  is the number of spatially varying 

interventions. We assumed Gaussian conditional autoregressive (CAR) prior distributions for the mb , that 

is 0~ ( , )m m mN bb 1 Σ where 0mb is the overall effect of the m intervention at country level and 

1 2 ( )m m D Wσ− −= −Σ , D  is a diagonal matrix with entries, the sum of the neighbours of each health district, 

W is a proximity matrix. 

 

 

 

 

 
 

pβ
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Table 3. 5: Environmental and climatic data  

 
 

Source Data Period 
Spatial 
Resolution 

Temporal 
Resolution 

Moderate Resolution Imaging 
 Spectroradiometer (MODIS) Terra 

Day & Night Land Surface 
Temperature (LST)  2010-2011 1×1km2 8 days 
  

  Moderate Resolution Imaging 
 Spectroradiometer (MODIS) Terra  

Normalized Difference 
Vegetation Index (NDVI)  2010-2011 0.25×0.25km2    8 days 

 
Afripop Population data   2010 1x1km2 na  
 
 
Africa Data Disseminating Services Rainfall  2010-2011 8×8km2 10 days 
 
 
Digital Elevation Model (Altitude) Shuttle Radar Topographic 2000 1×1km2             na  

     Mission (SRTM) 
      

National database of land use Rice cultivation field          2002 
 
0.25×0.25km2 na 

 
Health Mapper 
 
 
Global Rural and Urban Mapping  
Project 
 
 

 
Water Bodies  
 
 
Urban Rural extent 
 
 
 

-  
 

 
     2010 
 

 
 

1×1km2 

 

 

1×1km2 

 

 

 

na 
 
 
na 
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Abstract  

Background: There has been a remarkable decline in the child deaths over the past quarter of a century 

worldwide. However in Africa, under-five mortality still remains a major public health problem with 

malaria still featuring among the top leading causes of hospital consultations and deaths in most Sub-

Saharan Africa (SSA) countries.  

Data and Method: In this study, we used data form the Burkina Faso first nationally representative 

household survey focusing on malaria-related indicators, Burkina Faso Demographic and Health Survey-

Multiple Indicator Cluster Survey (BFDHS-MICS 2010) and employed Bayesian geostatistical Weibull 

survival models to explore the relation between malaria and infant/child mortality in Burkina Faso after 

adjusting for child, household characteristics as well as mother’s birth history.  

Results: Under five mortality hazard is significantly higher among children born in urban settings where 

malaria prevalence is above 75%, HR = 3.20 (95% CI: 1.01-10.46).  There was no relation between infant 

and child mortality with malaria in rural settings. No relation was also observed between malaria and 

infants mortality in the urban settings. The mortality hazard among infants from households in low SES 

quintiles was significantly higher in both rural and urban settings. Infants born to mothers aged between 20 

and 39 years old in rural settings have significantly reduced mortality hazard. Infants born to large 

households in rural areas have significant higher mortality hazard. Infants born within households with 3 or 

more under five children in both places of residence are at significantly reduced mortality hazard. This 

applies to children under five in rural areas. Infants’ hazard of death was significant lower among those 

with average and large birth size in urban settings. This also applies to children under five born with large 

birth size in rural settings. Children and infants born from a non-singleton outcome had significantly higher 

mortality hazard.  

Conclusion: There is a significant relationship between malaria endemicity and child survival in urban 

settings. Children living in the urban settings with endemicity level above 75% have higher mortality 

hazard. Other predictors of infants and child survival are those related to biological (birth size, mother age 

at birth), demographic socioeconomic and antenatal care factors.  

Keywords: Bayesian, geostatistical, malaria, mortality, Demographic and Health Survey, infant, children, 

Burkina Faso. 
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4.1 Introduction 

Under-five mortality still remains a major public health problem in Sub-Saharan Africa (SSA) despite 

important efforts over the last decades. An estimated 5.9 million children under five died in 2015 

worldwide about half of the deaths occurred in SSA (“WHO | Under-Five Mortality” 2014), (“WHO | 

Levels and Trends in Child Mortality 2012” 2014). Despite the relatively high rate of under-five mortality 

in SSA, there are signs of decline with a pace that has increased from 1.8% per year in 1990-2000 to 3.9 

per year 2000-2015. However, this progress is slow, and the Millennium Development Goal for child 

survival (MDG4) target was missed at the global level.  

In Burkina Faso, the under-five mortality rate was measured at 89 per 1000 live births in 2015. The leading 

causes of childhood death are neonatal death (27%), malaria (23%), diarrhea (10%), pneumonia (16%) and 

injuries (5%) (WHO/CHERG 2012). Malaria features among the top leading under-five causes of death, 

however the under-5 severe malaria attributable death which is a key indicator of malaria control programs 

(de Savigny and Binka 2004), declined remarkably over the last ten years from  8.1% in 2000 to  3.3% in 

2010. This decline can partly be attributed to the success in a wide range of malaria interventions and 

control programs such as insecticide treated nets (ITN), actual availability of artemisinin-based 

combinations therapy (ACTs) in health facilities (2007); launch of home-based malaria management 

(PECADO) strategy (2008); introduction of the rapid diagnostic test (RDT) as part of malaria case 

management at all health facilities (2010); universal coverage of ITNs (2010) and intermittent preventive 

therapy (IPT) for high-risk groups as part of the strategic plan against malaria 2006-2010. Understanding 

the relationship between malaria endemicity and infant/child mortality is not only important for estimating 

the burden of clinical malaria but also crucial for predicting and assessing the effectiveness of 

interventions.  

 It is worth noting that in the absence of reliable data sources, malaria burden estimates (Murray et al. 

2012) in most Sub-Saharan Africa are derived from either hospital-based records (case fatality rates) or 

rely on fragmented surveillance and assumptions with unknown validity (Bhatt et al. 2015). Furthermore, 

in most of the SSA countries the health systems provide only a small and distorted picture of the true 

underlying population level burdens of the disease. The largest proportion of affected population is 

deflected from the health services by issues including socioeconomic access, geographic and physical 

access, quality of health services (Don de Savigny 2004) .   
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Information on malaria prevalence and child mortality can be obtained from Malaria Indicators Surveys 

(MIS) and Demographic and Health and Surveys (DHS). These data could be used to quantify the malaria 

related mortality. Furthermore, MIS and DHS surveys are standardized and carried out at a lot more 

frequent intervals than any other malariology survey. 

In the past malaria risk data from the mapping malaria risk in Africa (MARA) project has been linked with 

DHS data to estimate the relationship between infant and child mortality with malaria endemicity, however 

no important relation was found, most likely due to age heterogeneities of  the historical data  across survey 

locations, and the geographical and temporal misalignment between the MARA and DHS data (Gemperli 

et al. 2004a).  

Recently, Abbas et al. (under review) linked Nigeria and DHS and Malaria Indicator Surveys (MIS) data 

and showed a significant relationship between malaria endemicity and infant and child mortality. The two 

surveys however were not aligned in space or in time.   

Burkina Faso conducted its first nationally representative household survey focusing on malaria-related 

indicators in 2010 (DHS-MICS 2010). The survey collected among others, georeferenced information on 

interventions, case management and malaria parasite prevalence in children aged 6-59 months. 

Comprehensive birth histories were also collected from female respondents aged 15-49 years. This is the 

first DHS survey that provides spatially aligned information on malaria endemicity and child mortality.  

In this study, Bayesian geostatistical Weibull survival models were employed to explore the relationship 

between malaria and infant/child mortality while adjusting for both individual child and household or 

family (bio-social) characteristics as well as mother’s birth history. 

 
 

4.2 Materials and Methods 

4.2.1 Country profile  

Burkina Faso lies mostly between latitudes 9° and 15°N and longitudes 6°W and 3°E. It has primarily a 

tropical climate with two very distinct seasons. The country receives between 600 to 900 mm of annual 

rain. The rainy season lasts approximately four months, May/June to September, and is shorter in the north 

of the country. During the rainy season, malaria accounts for the main cause of fever and mortality in the 
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country.  In the dry season, the” harmattan”, a hot dry wind from the Sahara blows and brings up dust and 

dirt, lower respiratory infections feature then as the main cause of morbidity. The country is divided in 

three climatic zones: the Sahel, the Sudan-Sahel, and the Sudan-Guinea. Further details on the country 

profile are provided by (Diboulo et al., 2016). 

 

4.2.2 Survey Data  

The MIS was conducted by the National Institute for Statistics and Demography (INSD) with the technical 

assistance of ICF Macro from April 2010 to January 2011 using standardized malaria indicator 

questionnaire. The collected data include information on malaria indicators, education, demographic, and 

socio-economic characteristics.  

A random sample of 574 (176 and 398 respectively in urban and settings) clusters and 15,000 households 

were selected through a stratified two-stage sampling procedure. The clusters were the census units 

established by the National Institute for Statistics and Demography (INSD) in the census carried out in 

2006 (Récensement Général de la Population et de l’Habitat, RGPH-2006). At the first stage, 574 clusters 

were drawn with probability proportional to the number of households in each cluster. The sampling 

procedure was stratified by area type (urban/rural) of the cluster and by the administrative regions (13 

regions) where key indicators estimates are available. At the second sampling stage, a count of households 

in each of these 574 clusters provided a list of households from which was derived the final households 

sample with an equal probability systematic sampling. As part of the final sampling, one in every two 

households was randomly selected and every child between 6 and 59 months of age was tested for 

parasitaemia. Comprehensive birth histories were also collected from all de facto and de jure mothers aged 

15-49 years present in the selected household on the night before the survey. Geographic information is 

available at cluster level. Two malaria diagnostic tests were performed, namely RDT and blood smear test 

(microscopy). The study population for this analysis includes children born between zero and five years 

preceding the survey and survived or not the childhood.       

 

4.2.3 Explanatory variables 

Malaria endemicity levels in the present analysis were constructed from the microscopy results. The 

prevalence was categorized into four groups defining different endemicity levels:  0-15%, 15-25%, 25-75% 
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and above 75%. This categorization was informed by exploratory analyses and some initial categories were 

combined to gain sufficient number of observations. Furthermore, we used socioeconomic (i.e maternal 

highest education level, type of place of residence (urban/rural) and wealth index quintiles), demographic 

(i.e. age of the mother at birth, sex of the child) and biosocial predictors such as birth order, size of child at 

birth, place of delivery, preceding birth interval (months), number of antenatal visits during pregnancy, 

numbers of household members, number of children aged 5 and under in household, outcome of the 

delivery (child is twin).  

 

4.3 Statistical analysis  

Separate models were developed for infants (1-11 months) and children (1-5 years) mortality in both rural 

and urban settings. Bivariate relations were explored using non-spatial Weibull models.  

Bayesian geostatistical Weibull survival models were employed to assess the relationship between malaria 

endemicity and children under-five survival. Spatial correlation was introduced via village-specific random 

effects, which were assumed to be latent observations from a spatial Gaussian process. We assume a 

stationary Gaussian spatial process that is, spatial correlation is considered to be a function of distance only 

and not of the locations themselves. An exponential function was further considered for the correlation 

matrix.  

The analysis was carried out in STATA 11 (Stata Corporation, College Station, Texas, USA) and 

OpenBUGS version 3.2.3 (Imperial College and Medical Research Council, London, UK). A detailed 

description of the Bayesian geostaistical formulation is given in appendix.  

 

4.4 Results  

The number of individual subjects in the study was 14,152 representing the number of live births born to 

the interviewed mothers between zero and five years preceding the survey and survived or not the 

childhood. A total of 1,244 deaths were observed in the study population. The overall mortality rate (MR) 

is 129 per 1000 live births. The infants’ population consisted of 3,610 live births with 842 deaths. The 

infant mortality rate (IMR) was estimated at 65 per 1000 live births whereas children population of 1 to 4 
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years old amounted to 10,542 live births with 402 deaths and a MR estimated at 68 per 1000 live births. 

Mortality rates were calculated using the 5-years (2006-2010) period estimates prior to the survey. One 

hundred and seventy cluster locations in urban settings against 370 in rural areas had mortality data.  

Figure 4.1 and 4.2 show the observed child mortality rates and malaria parasite prevalence map 

respectively.  

 

Figure 4. 1: Child mortality map                                                                  Figure 4. 2: Malaria prevalence map 

 
4.4.1 Non-spatial model-based results 

The non-spatial analyses of infant and child mortality stratified by rural and urban areas showed that 

children living in urban areas with malaria endemicity level above 75% had significantly higher mortality 

hazard (HR 2.76; 95% CI: 1.08-7.08). There was no relation between malaria endemicity with infant as 

well as child mortality in rural settings. No relation was also observed between malaria and infants 

mortality in the urban settings. 

 

4.4.2 Geostatistical models-based results  

Table 4.1 presents the hazard ratio (HR) obtained from geostatistical Weibull survival models. 
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There was strong association between malaria endemicity levels and children mortality hazard in the urban 

settings (HR=3.20; 95% CI: 1.01-10.46). Important association has not been confirmed neither for children 

in rural areas nor for infants (irrespective of setting).  

In terms of levels of differentials of infant and child mortality by some socioeconomic and demographic 

factors and place of residence, there was a significant reduction in the mortality hazard in children born in 

wealthy households, and this hazard decreases with higher SES status in rural areas while only children 

born in the richest households (fifth SES quintile) were at significantly reduced mortality hazard in urban 

areas. Infants born to older mothers as well as those born within large households in rural settings are at 

significantly reduced mortality hazard. Infants born to large households in rural areas have significant 

higher mortality hazard (HR=1.37; 95% CI: 1.00-1.88). Infants born within households with 3 or more 

under five children in urban areas have significantly reduced mortality hazard (HR=0.23; 95% CI: 0.10-

0.48); this also applies to both infants and child in rural settings with respectively HR of (0.47; 95% CI: 

0.37-0.59) and (0.49; 95% CI: 0.37-0.66). Infants and children born with a large birth interval are less 

likely to die in rural settings. There was an important negative relation between birth size and the infants’ 

hazard of death in both, rural and urban settings (HR=0.39; 95% CI: 0.36-0.93 and HR=0.68; 95% CI: 

0.53-0.89, respectively). This association was also important for children living in rural areas (HR=0.66; 

95% CI: 0.46-0.95). 

Furthermore, in rural settings, infant mortality hazard increases by 12% for each increase of birth order by 

1 child (HR=1.12; 95% CI: 1.06-1.18). The mortality hazard was significantly lower among infants born 

from mothers who had at least one antenatal visit during pregnancy (HR= 0.77; 95% CI: 0.05-0.11 for rural 

and HR=0.12; 95% CI: 0.10-0.15 urban areas) and for children in rural settings, HR= 0.69 (95% CI: 0.54-

0.88). 

Infants and children born from none-singleton outcome had significantly higher mortality hazard in rural 

settings HR = 2.39 (95% CI: 1.87-3.04) and 2.23 (95% CI: 1.34-3.54). 

The mortality hazard is significantly higher among children born in urban settings where malaria 

prevalence is above 75%, HR = 3.20 (95% CI: 1.01-10.46).       

There was a stronger spatial correlation in areas compared to urban.    
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4.5 Discussion  

This study assesses the relationship between malaria endemicity and infant/child mortality after adjusting 

for socioeconomic factors, individual child and mother as well as household determinants of infant and 

child death using the Burkina DHS-MICS 2010 data.  

The results showed that children living in urban areas where malaria prevalence is above 75% have 

significantly higher mortality hazard compared to those living in rural areas. The highest malaria 

prevalence in urban settings is usually observed at the outskirts of the cities. These are slums where 

underprivileged people live in poor sanitation and hygiene conditions. The analyses were stratified by rural 

and urban settings as a proxy to low versus high endemicity levels. Urbanisation is generally expected to 

reduce malaria transmission and endemicity; however the endemicity levels remain high especially at the 

outskirts of African cities, in some cases even at higher levels than in nearby rural areas (De Silva et al. 

2012). The persisting high malaria endemicity in African cities is most probably the consequences of 

conjugate factors such as uncontrolled urban expansion, urban agricultural practices which are conducive 

to vector breeding sites. There was no important relationship between malaria endemicity and mortality in 

rural settings. Potential reasons for this lack of association include the fact that high endemicity levels lead 

to less mortality. Indeed people living in hyperendemic and holoendemic settings develop much faster and 

stronger immunity (R. W. Snow et al. 1997; D. Chandramohan et al. 2001). Furthermore, the relationship 

between malaria endemicity and mortality is not linear (Rowe et al. 2006; Gemperli et al. 2004b) and may 

reach a plateau after a certain threshold of the transmission intensity. The excess risk of post-neonates 

mortality in malaria endemic areas was found to be insensitive to the intensity of the transmission over a 

wide range of endemicity (Ross and Smith 2006). 

Overall, the highest mortality rates were observed in the northern (Sahel) and the Southwestern regions of 

the country. 

The study has also identified a number of factors influencing infant and child mortality in terms of levels 

and differentials between rural and urban settings. We observed a significant reduction in the mortality 

hazard in infants living in wealthy households. This mortality hazard decreases with higher SES status in 

both rural and urban areas. Indeed, the socioeconomic status has been found to be one of the most 

important predictors associated with under-five mortality in many part of the Sub-Saharan Africa (Nattey, 

Masanja, and Klipstein-Grobusch 2013; N. Fobil et al. 2012).  Maternal age at childbirth turned out to be a 

significant predictor of infant survival especially in rural areas. Infants born to older mothers are less likely 
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to die. These results are consistent with many studies that have reported higher mortality hazard among 

infants born to adolescent mothers (Finlay, Özaltin, and Canning 2011; Gubhaju 1985).  

In rural areas, infants born in large households had significantly higher mortality hazard. The potential 

effects of this risk should be put in perspective, indeed, while a larger number of household members could 

imply higher fertility levels and a fiercer competition for resources, a larger number of potential caregivers 

residing in an extended household may in fact decrease the mortality hazard. Many studies have 

investigated the effects of this predictor on infant and child survival (Jamal Uddin 2008; Bank 2004). Our 

results support the former effects implying higher fertility levels and a competition for resources. This fits 

well the rural context where family planning campaigns have not yet yielded the expected effects. 

However, infant in urban areas and both infant and child in rural areas born in households having 3 or more 

under- five children have significantly reduced mortality hazard. The number of children under five in a 

given household often reflects the number mothers, therefore the number of potential caregivers in that 

household, previous studies exploring the effects of the household (number of potential caregivers) size on 

infant and child mortality reported a significant lower mortality hazard (Jamal Uddin 2008; Bank 2004).  

Our results showed that children and infants born after 4 years interval in rural areas had significantly low 

mortality hazard. These findings are consistent with literature where a short proceeding birth interval has 

been found to increase the probability of infant mortality in many studies (“WHO | Report of a Technical 

Consultation on Birth Spacing” 2015). 

In the absence of direct measurement for premature delivery, which features among major biological 

factors causing an increase in the probability of infant and particularly neonatal mortality, birth weight is a 

good proxy measure assuming premature birth is closely related with low birth weight. Our results showed 

that infants born with average and large birth size had significantly reduced mortality hazard in urban areas 

whereas only large birth size was found to be associated with a significantly reduced mortality hazard 

among both infant and child in rural areas (“WHO | The World Health Report 2005 - Make Every Mother 

and Child Count” 2015). 

Our results showed that higher birth order infants had increased mortality hazard in rural areas. Birth order 

is also know to play a role in the probability of infant and child mortality (Bank 2004). It has been 

hypothesized that in intra-household competition, first born children are more likely to capture vital 

resources such as food and care, thereby reducing their mortality hazard (Bank 2004).  
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Infants born to mothers who have had at least one antennal visit were less likely to die in both urban and 

rural areas. However this extended to children in rural areas. Indeed, antenatal visits are expected to 

improve maternal health and reduce infant mortality hazard(“WHO | Antenatal Care in Developing 

Countries” 2015).   

Being born from a non-singleton outcome increases the mortality hazard in both infant and child in rural 

area. These findings are in line with the results of previous study on the effects of multiple birth on infant 

mortality (Uthman, Uthman, and Yahaya 2008; Justesen and Kunst 2000; Alam, Van Ginneken, and Bosch 

2007). The potential reasons that might explain the higher mortality hazard in infant and child born non-

singleton birth involve the place of delivery (by a healthcare professional), mother’s personal and 

biological characteristics, place of residence and household’s socioeconomic status (SES).    

This study explored the relationship between malaria endemicity and infant/child mortality (while adjusting 

for socioeconomic factors, individual child, mother as well as household determinants) in Burkina Faso. 

There was a significantly strong association between high endemicity levels and children mortality 

especially in urban settings. There was no significant relationship between malaria endemicity and 

mortality in rural settings. Other important predictors of infants and child survival are those related to 

biological (birth size, mother age at birth), demographic (number of children under five year-old, 

household size) socioeconomic and antenatal care factors.   
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4.6 Appendix 

Let s = (s1,s2 ,...,sn )t  be the set of locations (clusters) with observed mortality data, ti(sj ) the time to death 

for infant i at cluster s j , Xi(s j )are the covariates associated with infant i  at cluster s j . We assume that 

ti(sj )  arises from a Weibull distribution with shape and scale parameters α and λ  with α >0. δ i  is an 

indicator variable taking the value 1 if ti  is failure time and 0 if ti is right censored. To build the regression, 

we introduce covariates on a log scale through α and λi .   That is ti ~ dweib(α ,λi )Ιδ i  

We modeled spatial correlation via cluster-specific random effects φ j  (which is considered as latent 

observations of a spatial Gaussian process) on the log, as  where  is the vector 

of regression coefficients. We assumed φ ~ MVN (0,Σ) , Σ is the covariance matrix with elements Σkl  
accounting for the covariance between any pair of clusters k  and l  irrespective of the direction (isotropy). 
Using an exponential correlation function, the covariance matrix is defined by Σkl =σ

2 exp(−ρdkl )  where 

σ 2  is the spatial variation, dkl  is the distance between clusters k  and l , and ρ  is the rate of correlation 
decay with increasing distance.  The minimum distance at which the spatial correlation is significant at 5% 
is called range and can be obtained from the value 3/ ρ  (Ecker and Gelfand, 1997).  

A Bayesian model formulation requires the specification of prior distributions for all model parameters. In 

particular, we choose a non-informative normal prior distribution with mean zero and large variance for the 

 parameters, regression coefficients, an inverse gamma priors for σ e
2
 and σ 2 . A gamma prior for ρ , that 

is σ e
2 ,σ 2 ~ IG(2.01,1.01)and ρ ~ G(0.1,0.1) , α ~ G(1.01,0.001) . 

The model was fitted using Morkov Chain Monte Carlo (MCMC) simulation algorithm in OpenBugs 

version 3.1.2 (Imperial College and Medical Council, London, UK) to estimate model parameters (Gelfand 

et al., 2000). Starting with some initials values about the parameters, we run two chains sampler discarding 

the first 5000 iterations. Convergence was assessed by Gelman-Rubin diagnostic (Gelman, 1992).  
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Abstract  

Quantitative estimates of the relationship between malaria transmission intensity and mortality across 

different levels of transmission are still lacking. These quantitations are needed for improving the 

estimation of the disease burden and model-based predictions of the effects of interventions on mortality. 

The Malaria Transmission Intensity and Mortality Burden in Across Africa (MTIMBA) project collected 

biweekly entomological data from 2001-2004 at household level across a number of selected Health and 

Demographic Surveillance Systems (HDSS) sites in Africa. In this work we analysed MTIMBA and 

mortality data from the Nouna HDSS site to assess the relationship between malaria transmission intensity 

and all-cause mortality. 

Data and Method: Entomological data were collected biweekly from 2001-2004 and mortality data 

extracted from the Nouna HDSS database. We address spatial misalignment between the two data sources 

by obtaining EIR estimates at the mortality locations using Bayesian spatio-temporal models. The 

prediction uncertainty was also incorporated into the modeling during estimation of mortality risk. 

Household asset data were available for only a representative sample of locations. Insecticide-treated net 

(ITN) coverage was obtained from a onetime survey conducted on a representative sample of HDSS 

households and was used as a proxy measure of ITN coverage indicator. We employed kriging to estimate 

the household asset and the ITN coverage indicator at the household with no data. Time to death was 

treated at monthly interval and Bayesian geostatistical logistic regression approximating Cox proportional 

hazard model and incorporating the predicted EIR as covariate with measurement error were fitted.  

Results: The overall mortality rate over the study period was 11.26 per 1000 (95% CI: 10.81, 11.73). The 

highest mortality rates were observed in children and old age groups with the respective rates of 23.85 

(95% CI: 22.37, 25.42) and 81.92 (95% CI: 75.81, 88.53). A positive log-natural relationship between 

mortality and EIR was found among children (1-4 years), while a protective effect was found among adults 

(15-59 years). The excess mortality risk associated with a one-unit increase of the number of infective bites 

per month was highest among children 1-4 years it was equal to 5%. 

Conclusion: Significant relationship between all-cause mortality and malaria transmission was found 

among children (1-4 years) and adults (15-59 years). This suggests that successful malaria interventions in 

high malaria endemic areas will not only reduce malaria-related mortality but also other causes-related 

mortality.  
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5.1 Introduction  
Recent estimates show that there has been a rapid decline in malaria mortality in Africa; this has been 

largely attributed to the scaling up of control activities and interventions.  In 2015, there were an estimated 

438 000 malaria deaths (range 236 000–635 000) worldwide. Most of these deaths occurred in the African 

Region (90%), followed by the South-East Asia Region (7%) and the Eastern Mediterranean Region (2%) 

(“WHO | Fact Sheet: World Malaria Report 2015” 2016). Ambitious new goals for control of malaria have 

been set and significant additional resources for malaria control have been mobilized over the last ten 

years. However, malaria control remains a major public health challenge especially in sub-Saharan African 

countries.   

  

Successful malaria interventions are expected to reduce the transmission intensity to a level where the 

disease is no longer a public heath challenge. Assessing the effectiveness of health intervention requires 

appropriate information on morbidity and cause-specific mortality in order to derive the level of reduction 

in transmission required to achieve a significant reduction in morbidity and mortality. 

However, owing to still embryonic and inadequate vital and civil registration systems, most Sub-Saharan 

African countries rely on information derived from national censuses and surveys, which are not carried 

out continuously to assess effectiveness of heath interventions in reducing morbidity and mortality. 

Understanding the role of transmission intensity in estimating the burden of clinical malaria is crucial in 

predicting and assessing the effectiveness of interventions.  

 

Many recent studies have investigated the relationship between mortality and malaria transmission 

intensity from different perspectives such as obtaining direct estimates (Kampe et al. 2015; Larsen et al. 

2014 ; Haque et al. 2014; Bi et al. 2013), assessing impact of interventions (Smithson et al. 2015; Aaby et 

al. 2015; Penny et al. 2015; Louis et al. 2012; Selemani et al. 2015; K’Oyugi 2015), modeling malaria 

transmission dynamics (Buonomo 2015; Alan Brooks 2012; Penny et al. 2015; Forouzannia and Gumel 

2015); Stuckey, Smith, and Chitnis 2014; Okell et al. 2012; Eisele et al. 2012)  and forecasting future 

malaria risk (D. L. Smith et al. 2009; Thomson and Connor 2001; Sriwattanapongse and Prasitwattanaseree 

2013). However only few studies have explicitly accounted for differentials in transmission levels in their 

estimates (Alan Brooks 2012; Stuckey, Smith, and Chitnis 2014; Eisele et al. 2012). The common 

shortcoming to any of these studies has been the lack of mathematical quantitative estimates describing this 



 
Chapter 5: Modelling of all-cause mortality patterns in relation to malaria transmission intensity 
 

   87

relationship. However, this quantitation is indeed needed for estimating the burden of the disease based on 

different levels of transmission.  

Health and demographic surveillance systems (HDSS) sites and their data have been invaluable in deriving 

reliable mortality estimates in countries where they exit. The INDEPTH-MTIMBA project aimed at 

assessing the levels of malaria transmission intensity, establishing the relationship between all-cause, 

malaria-specific mortality and malaria transmission intensity taking into account the effect of disease 

control interventions.  
Six HDSS sites within five countries namely Burkina Faso, Tanzania, Ghana, Kenya and Mozambique 

participated in the project and provided comprehensive data. Analyses of data from three MTIMBA sites in 

Tanzania, Kenya and Mozambique reported a positive log-linear relationship between all-cause mortality 

and transmission intensity among under-fives, there are differences in the magnitude and direction in 

mortality risk in other age groups (Rumisha et al. 2014; Amek et al. 2013); Kasasa et al. 2013). Nouna 

HDSS in Burkina Faso is located in a different agro-ecological zone and has different patterns and levels of 

malaria transmission from that of the other sites.    

In this study, we estimate the relation between all-cause mortality and malaria transmission using the 

MTIMBA data from the Nouna HDSS. We employed Bayesian geostatistical models to link estimates of 

malaria exposure (based on EIR) with the HDSS mortality. EIR exposure surfaces were obtained from a 

separate Bayesian spatio-temporal model (Diboulo et al. 2015). Our mortality model took into account 

prediction uncertainty in the EIR estimation and adjusted for malaria control interventions and socio-

economic factors. 
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5.2 Material and Methods  

5.2.1 Study site  

The Nouna health and demographic surveillance system (HDSS) is run by the Centre de Recherche en 

santé de Nouna (CRSN, Nouna Health Research Center) and located in the Nouna health district’s 

catchment area in northwest Burkina Faso, 300 km away from the capital city, Ouagadougou. Relative to 

the health district, the HDSS catchment area is located southeast. 

The Nouna HDSS area is characterized by a Sub-Saharan climate with a mean annual rainfall of 

approximately 800mm with fairly constant average daily minimum (20-28.1°C) and maximum temperature 

(29.5-37.2°C) throughout the year. Rainfall occurs from May to September. The entire region consists of 

“Plateaux” with gentle slopes and drained by several small semi-permanent streams. 

The HDSS area is about 1,775 km2 with the specificity of covering both rural and semi-urban areas. The 

population is about 90,000 residing in 11,750 households across 58 villages and Nouna town. Subsistence 

farming is the predominant occupation. Malaria is holo-endemic and is known for a seasonal recrudescence 

during the rainy season, at which time it accounts for the main cause of fever and mortality in the district 

(Müller et al. 2008). During the dry season, in February and March, lower respiratory infections are the 

main cause of morbidity, due to the relatively cool temperatures and strong winds, which bring up dust and 

dirt. 

 

5.2.2 Mortality Data  

The verbal autopsy (VA) technique was used to assign cause of death within the study area. Trained non-

medical fieldworkers conducted VA interviews. They interviewed the main caregiver on the background 

characteristics of the deceased using structured filter questions on the specific signs and symptoms 

experienced by the deceased. Information from the VA forms are independently reviewed by at least three 

experienced physicians (M. Yé et al. 2011b). The underlying cause is defined as the disease or injury that 

initiated the train of events leading directly to death. 
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5.2.3 Socioeconomic and intervention data  

Socioeconomic, household asset-based indicators were collected once during the period of the MTIMBA 

project in 2004 on a sample of 1000 HDSS households. Principal component analysis was used to construct 

a household asset (SES) index. The variables used to construct the SES index included in-house assets 

(motorcycles, bicycle, radio, television, telephone), livestock possession (cattle, sheep, goat pig, guinea 

fowl), primary source of drinking water, use of improved cooking stoves. SES index was categorized into 

quintiles ranking households from the poorest (first quintile) to the least poor (fifth quintile). These data 

were available for only a sample of locations. SES status was estimated for the entire study area by 

calculating the proportion of households falling into the highest SES quintile per village. The latter 

estimate was then predicted (on a logit scale) at the villages without data via kriging. Furthermore, we used 

data from the closest in time insecticide-treated net (ITN) coverage survey to the period of the MTIMBA 

project, conducted in 2007 to obtain an ITN coverage indicator measuring at village level the proportion of 

households owning a bed net. The survey was carried out on a representative sample of HDSS households. 

Kriging was also used to predict bednet coverage  (on a log scale) at un-sampled locations.  

 

5.2.4 Entomological inoculation rate (EIR) 

Bayesian geostatistical zero-inflated binomial (ZIB) and zero-inflated negative binomial (ZINB) models 

were developed to model sporozoite rate (proportion of infected mosquitoes) and mosquito densities, 

respectively. The models included the most important climatic factors related to malaria transmission and 

took into account lag times between climatic suitability and malaria transmission. Models were fitted 

separately to An. funestus and An. gambiae data to obtain species-specific surfaces of mosquito density and 

sporozoite rate within the study area. The overall EIR estimate at a given location and month are based on 

the mean number of infected mosquitoes (from both species) multiplied by the conversion factor to adjust 

for vector collection bias between human bite catch and light trap collection techniques.  
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5.3 Statistical analysis  

 
Monthly-predicted EIR estimates were available during September 2001 to December 2002, however we 

analysed mortality 2001-2004 by assuming a transmission (EIR) pattern similar to 2001-2002 throughout 

the study period. The HDSS population was stratified into different age groups namely neonates (0-28 

days), post-neonates (1-11 months), children (1-4 years), school-age (5-14 years) adults (15-59 years) and 

old age (60 years and above) and separate analyses were carried out for each of those groups. However the 

neonate group was excluded from the analysis because estimates (number of observations of the outcome 

variable of interest) were not representative of this sub-group.    

Crude mortality rates were calculated by dividing the total number of deaths per age group by the total 

person-time in that specific age group. The annual mortality rates were expressed per 1000 person-years at 

risk.  

We fitted Cox proportional hazards models with time-dependent covariates approximated by a logistic 

regression assuming a discrete time to death (Singer and Willett 1993). The models included the following 

covariates: EIR estimates on the logit scale, proportion of households in the highest SES quintile and 

bednet ownership. The prediction error of EIR estimates was taken into account by considering EIR as a 

covariate with measurement error to account for the prediction uncertainty (Armin Gemperli 2003). 

Bayesian geostatistical models were employed to assess the relationship between malaria transmission 

intensity and all-cause mortality. Spatial correlation was introduced via village-specific random effects, 

which were assumed to be latent observations from a spatial Gaussian process. We assume a stationary 

Gaussian spatial process that is; spatial correlation is considered to be a function of distance only and not of 

the locations themselves. An exponential function was further assumed for the correlation matrix. Mortality 

was related to the EIR of the same month. Bayesian models were implemented in OpenBUGS version 3.2.3 

(Imperial College and Medical Research Council, London, UK). Parameters were estimated using Markov 

Chain Monte Carlo (MCMC) simulation algorithm (Gelfand and Smith, 1990). A detailed description of 

the Bayesian geostatistical formulation is given in appendix.  
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5.4 Results  

The complete mortality database considered over the study period (2001-2004) included 62,132 individuals 

from 58 villages plus Nouna town. The total time at risk was 207,021.6 person-year (py). A total of 2331 

deaths occurred over the study period and were apportioned as follows in the different age groups: 1 death 

in the neonates group, 67 in the post-neonates or infants group, 941 in the children group, 224 in school-

age group, 459 in adults and 639 in old-age group. The mean age at death was 29.93 years (95% CI: 28.65, 

31.21) years. Figure 5.1 depicts the EIR pattern and the death count over the study period. The proportion 

of households falling into the highest SES quintile per village ranged between 0.09 and 0.6; while the 

proportion of households owning bed nets ranged from 0.25 to 1 in the study area. The predicted annual 

EIR was 131.4 infective bites per person for year 2002. 

 

 
Figure 5. 1: EIR pattern and the death count over the study period 

 

Table 5.1 and 5.2 show the mortality rates per year and the mortality rates per age group respectively over 

the study period.   

 

 

 

0
50

100
150
200
250
300
350

Death count Mean EIR



 
Chapter 5: Modelling of all-cause mortality patterns in relation to malaria transmission intensity 
 

   92

Table 5. 1: Mortality rates per year over the study period (2001-2004) 

Calendar year  Person-years    Deaths  Rate per 
1,000 

[95% Conf. Interval] 

2001 17009.68 289 16.99   15.14          19.10 
2002 48716.65 554 11.37   10.46          12.36 
2003 55247.30 762 13.79   12.85          14.81 
2004 86047.98 726 8.44    7.85            9.07 
Total  207021.61 2331 11.26   10.81    11.72619 
 
 
 
 
Table 5. 2: Mortality rates per age group over the study period (2001-2004) 

Age group  Person-
years    

Deaths  Rate per 
1,000 

[95% Conf. Interval] 

Neonates (0-28 days) 803.00       1 1.25   .18              8.84 
Post-neonates (1-11 
months) 

9336.16 67 7.18 5.65             9.12 

Children (1-4 years) 39453.79 941 23.85 22.38           25.42 
School-age (5-14 years) 41859.47 224 5.35    4.69             6.10 
Adults (15-59 years) 107745.73 459 4.26 3.89            4.67 
Old age (60 + years) 7800.13 639 81.92 75.81            88.53 
Total  206998.29 2331 11.26    10.81            11.73 
 
Mortality rates were highest in years 2001, 16.99 (95% CI: 15.14, 19.07) and 2003, 13.79 (95% CI: 12.85, 

14.81). The overall mortality rate over the study period was 11.26 (95% CI: 10.81, 11.73).    

Infant and old age groups had the highest mortality rates with respectively 23.85 (95% CI: 22.37, 25.42) 

and 81.92 (95% CI: 75.81, 88.53). 

Figure 2 shows crude mortality rates by age groups over the 4-year study period. The death rate was 23.85 

in children; it declined with age to reach the lowest at 4.26 in adulthood and increased to its maximum 

81.92 in the old-age group.  
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Figure 5. 2: Age specific annual all-cause mortality rates.  

 
Mortality rates for the neonates and the post-neonates could not be estimated for the first 3 years of the 

study due to an extremely low number of deaths in these specific age groups.  However it is noteworthy to 

mention that the mortality rate declined consistently in all age groups. The highest percentage decline was 

90.77 % observed in school age children. 

 

5.4.1 Model-based results 

Table 5.3 presents the hazard ratio (HR) of all-cause mortality obtained from geostatistical models adjusted 

for EIR, ITN and SES. The relationship between mortality and malaria transmission intensity was 

important in children (1-4 years) and in old age group (15-59 years). In children the HR was estimated at 

1.05 (95% BCI: 1.04-1.07) suggesting that for an infective bite (EIR) increase per month the hazard of 

death increases by 5%. In the old age, a HR of 0.93 (95% BCI: 0.91-0.95) was estimated indicating that a 

unit increase in EIR reduces the mortality hazard by 7%. 

A significant negative association was found between all-cause mortality and socioeconomic (SES) status 

among adults with the highest protective effects (HR=0.93, BCI: 0.91, 0.95).  

The minimum distance, at which the spatial correlation is less than 5% ranges between 4.98 km and 20.42 

km across all age groups.  
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Table 5. 3: Posterior estimates (median and 9

Covariates Post-neonates 
HR 

(95% BCI) 

C

(9
EIR (log scale) 1.02  

(0.95, 1.09) (1
SES 0.42  

(0.01, 1.38) (0
ITN 1.21  

(0.39, 4.80) (0
Spatial variance 0.38  

(0.15, 1.23) (0
Range (km)a 14.09 

(1.54, 50.22) (1.
a: minimum distance in kilometer at which the spatial correl
 
 

5.4.2 Effect of EIR on mortality in the

Figure 5.3 shows the HR of EIR on 
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5.4.3 Excess mortality attributable to malaria transmission 

The excess mortality rate (EMR) was calculated as the difference between the mortality rates (MR) at 

which the values of EIR is greater than zero and at zero: EMR=MR (EIR>0) - MR (EIR=0).  In particular, 

we computed the probability (Pij ) of death for each age group j  from the logistic regression model over a 

range of EIR values between 0.1 and 1200 (with an interval of 0.1) using model coefficients, monthly EIR 

and midpoint for each age group. A Taylor series approximation was used to obtain probability at zero 

level of transmission. The probability of death for each age group  j  was converted to a rate and expressed 

per 1000 person-years (py), that is rate = [− ln(1− Pij )] / t  per 1000 py; where i=EIR interval,  j =age group 

and t=one month.  

 



 
Chapter 5: Modelling of all-cause mortality patterns in relation to malaria transmission intensity 
 

   96

 
 
Figure 5. 4: Age-specific patterns of excess mortality by EIR levels.  
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Post-neonate, children and school age groups show increasing levels of excess mortality with increasing 

levels of malaria transmission (EIR). The highest rate is observed in post-neonate group.  

A protective effect is observed in elderly people. School age group showed a very low excess mortality 

with increasing levels of transmission.  

  

5.5 Discussion 

This study explores the relationship between malaria exposure levels measured via EIR and all-cause 

mortality in the Nouna HDSS. Malaria transmission intensity was measured by the predicted EIR obtained 

from separate model at household-level. Vital events were subsequently linked with the transmission levels 

in order to quantify the malaria exposure-mortality relationship. Separate analyses were carried out for the 

different age groups where it was possible to assess this relationship, that is, post-neonates, children, 

school-age, adults and old-age.  Overall, our study reports a decline in all-cause mortality rates over the 4-

year study period. The largest decline during the study period was observed among school age (5-14 years) 

90.77% followed by old-age (60 years and above) 46.74%. Previous studies carried out in the same area 

reported a decline in all-cause mortality in children aged less than five years (Ramroth et al. 2009; Ndugwa 

et al. 2008).   

Despite the negative temporal trend, the mortality rates remained high among old age and school age with 

rates of 81.92, (95% CI: 75.81, 88.53) and 23.85, (95% CI: 22.37, 25.42), respectively.   

The Bayesian geostatistical models showed a positive and significant log-linear relationship between all-

cause mortality and malaria exposure in children (1-4 years). These findings corroborate a positive 

relationship between mortality and malaria transmission intensity among under-five observed in previous 

studies carried out in the MTIMBA sites of Rufijii, Kisumu and Manhica (Rumisha et al. 2014; Amek et al. 

2013; Kasasa et al. 2013).  

Children had a hazard ratio of 1.05 (95% CI: 1.04, 1.07). This effect translates into increasing levels of 

excess mortality in relation to malaria transmission intensity (EIR) in this age group. This finding is in line 

with the results from a previous study that used the MTIMBA data from Kisumu HDSS in Kenya, where 

children appeared to be at higher risk (Amek et al. 2013).  However our findings show an increasing 

pattern of the risk from early infancy to childhood followed by a decreasing trend from childhood to older 

age.  
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The highest excess mortality associated with levels of transmission was observed among post-neonates (1-

11 months) (figure 3). This may be explained by the fact that this fraction of the population is the most 

exposed to malaria as they lack or are still building up the immune system.  

A significant protective effect was found among elderly people (HR=0.93, 95% CI: 0.91, 085). It might be 

associated with the development of naturally acquired immunity which is believed to increase with age 

(Bejon et al. 2009). 

ITN use did not show any significant association with all-cause mortality across all age groups, which may 

be explained by the fact that ITN data was obtained from a onetime survey carried out on a representative 

sample of Nouna HDSS households.    

Higher SES quintiles were protective against all-cause mortality in adults. This implies that adults from 

well-off households are less likely to die compared to their counterpart in poorer households. These results 

are consistent with many previous studies which have also reported the effects of socioeconomic disparities 

on infant and child mortality (Po and Subramanian 2011; Nattey, Masanja, and Klipstein-Grobusch 2013; 

Sonko et al. 2014). However in the case of adults, this may be explained by the fact that wealthier people 

have easily access to health care, in the absence of universal health coverage, where the health care 

financing is still based on the out-of-pocket expenditure. 

The minimum distance, at which the spatial correlation is deemed unimportant ranges between 4.98 km 

and 20.42 km across all age groups, thus suggesting a geographical dependence of mortality.  

The analyses also revealed extremely low mortality rates among neonates and post-neonates, which is 

rather an artifact of the routine data collection system, related to the prevailing socio-cultural practices in 

the study area. Indeed the verbal autopsy interview is conducted within the three month following any fatal 

event captured in the HDSS catchment area. In a predominantly Muslim community (about 70%), and 

owing to some specific cultural practices, it is a common that a newborn have the naming ceremony on the 

seventh day after birth.  This time frame extends up to forty days in some local communities. The death of 

any newborn before that time frame tends to be silenced and hardly refer to.  Newborns that die before their 

naming date are usually referred to as “passerby”, not full family members; their death is therefore not 

considered as a major event. One way to overcome that issue in data collection is to ensure a proper 

registration and follow-up of any pregnant women in the HDSS catchment area.  

This study used entomological data, which has been linked to the most comprehensive vital events to 

assess the relationship between malaria transmission intensity and all-cause mortality adjusted for ITN 
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coverage and SES in Nouna HDSS. The analyses showed statistically significant relationships between 

mortality and malaria transmission intensity especially among children (1-4 years) and adults (15-59 

years). However these findings can hardly be generalized as the relationship between mortality and 

transmission intensity depends on the levels of endemicity and malaria distribution is very heterogeneous 

even within such a small geographical area and prone to between and within village variation (Greenwood 

1989; Carter, Mendis, and Roberts 2000). 
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5.6 Appendix 

 Let Yijt  be the mortality (all-cause) status of an individual  at village  j  and time interval tand Nijt the 

total number of individuals present at time interval t . Xij  is the covariates associated with individual i at 

location j . We assume that Yijt  arises from a Binomial distribution. That is Yijt ~ Bin(Nijt , pijt ) where, pit is 

the probability of individual i dying at time interval t . We modeled spatial correlation via village-specific 
random effects φ j  (which is considered as latent observations of a spatial Gaussian process) on the logit, as 

 where  is the vector of regression coefficients. EIR is modeled on the log scale as 

a covariate with measurement errors (because it is estimated by separate Bayesian geostatistical models), 
that is  predicted at the household of child iwhere and σ ei

2 correspond to the 
mean and variance respectively obtained from posterior prediction distribution of EIR at household i. We 
assumed φ ~ MVN (0,Σ) , Σ is the covariance matrix with elements Σkl  accounting for the covariance 
between any pair of villages k  and l  irrespective of the direction (isotropy). Using an exponential 
correlation function, the covariance matrix is defined by Σkl =σ

2 exp(−ρdkl )  where σ 2  is the spatial 

variation, dkl  is the distance between villages k  and l , and ρ  is the rate of correlation decay with 
increasing distance.  The minimum distance at which the spatial correlation is significant at 5% is called 
range and can be obtained from the value 3 / ρ  (Ecker and Gelfand, 1997).  

A Bayesian model formulation requires the specification of prior distributions for all model parameters. In 

particular, we choose a non-informative normal prior distribution with mean zero and large variance for the 

 parameters, regression coefficients, an inverse gamma priors for σ e
2  and σ 2 . A gamma prior for ρ , that 

is σ e
2 ,σ 2 ~ IG(2.01,1.01)and ρ ~ G(0.1,0.1) . 

The model was fitted using Morkov Chain Monte Carlo (MCMC) simulation algorithm in OpenBugs 

version 3.1.2 (Imperial College and Medical Council, London, UK) to estimate model parameters (Gelfand 

et al., 2000). Starting with some initials values about the parameters, we run two chains sampler discarding 

the first 5000 iterations. Convergence was assessed by Gelman-Rubin diagnostic (Gelman, 1992).  
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Abstract  

Explicit quantitative estimates of the number of malaria-attributable deaths have been lacking and this has 

been a common shortcoming of most of malaria-related studies. The Malaria Transmission Intensity and 

Malaria Burden in Across Africa (MTIMBA) project was initiated to help fill this gap. In this work, 

estimates of malaria exposure surfaces (EIR surfaces) obtained using MTIMBA data were linked to Nouna 

Health and Demographic Surveillance Site (HDSS) mortality database in order to estimate the number of 

malaria-related deaths in Nouna HDSS and assess the performance of the physician-coded verbal autopsy 

method to correctly identify malaria as the cause of death.  

Methods: Bayesian geostatistical logistic regression models approximating Cox proportional hazard model 

and incorporating the predicted EIR as covariate with measurement error were fitted. EIR estimates were 

obtained from a separate Bayesian spatio-temporal model; therefore, prediction uncertainty was taken into 

account during estimation of the mortality hazard. Socioeconomic status (SES) and Insecticide-treated net 

(ITN) coverage were used as covariates. Time to death was treated at monthly interval. We estimated the 

number of malaria-attributable deaths across all age groups and assessed the diagnostic performance of the 

physician-coded verbal autopsy using the estimated malaria-related excess mortality as the gold standard.   

Results: The highest malaria-mortality rates were observed in years 2001, 5.41 (95% CI: 4.41, 6.64) and 

2003, 4.13 (95% CI: 12.85, 14.81). A significant positive natural logarithmic relationship was found 

between malaria exposure and mortality among children, with hazard ratio (HR) of 1.06 (95% CI: 1.03, 

1.08).  Children and adults had the highest percentage of deaths attributed to malaria by VA equal to 

44.95% and 35.27%, respectively. The percentage of malaria-related deaths according to the malaria 

transmission exposure was higher in the old-age group (93.92%). The overall sensitivity and specificity of 

the physician-certified verbal autopsy (PCVA) were 0.27 and 0.70, respectively.   

Conclusion: A significant relationship was found between malaria mortality and malaria transmission 

among children (1-4 years). This suggests that successful malaria interventions in high malaria endemic 

areas are likely to further reduce malaria-related mortality in children. The sensitivity and specificity 

analysis of the physician-certified verbal autopsy (PCVA) indicates an overall moderate specificity but 

very low sensitivity of this method 

Keywords: Bayesian, geostatistical, malaria mortality, Burkina Faso, Nouna HDSS, EIR, physician-

certified verbal autopsy, sensitivity and specificity, diagnostic error. 
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6.1 Introduction  

The quantitative relationship between malaria transmission intensity and mortality still remains unclear  

(T. A. Smith, Leuenberger, and Lengeler 2001a; Rumisha et al. 2014)) partly because of the poor quality 

data in most endemic countries. Little is therefore known about the minimum reduction in transmission 

required to achieve a useful health benefits in term of specific reduction in mortality.  

Different approaches and data sources have been used to estimate the number of malaria-attributable 

deaths. These approaches include (i) using data on reported deaths and adjusting them for incomplete 

reporting and use of public sector facilities (Mendis et al. 2001), (ii) using an estimated number of cases 

and multiplying by an estimated case fatality rate (“WHO | World Malaria Report 2011” 2016) and (iii) 

using results of the verbal autopsies (Liu et al. 2012; R. W. Snow et al. 1992).  

The main disadvantages associated with the first two approaches lie in the fact that they rely on hospital-

based data, which are severely limited and represents only a fraction of the actual burden since a 

considerable proportion of malaria deaths occur at home (Greenwood et al. 1987) 

The INDEPTH-MTIMBA project aimed at assessing the levels of malaria transmission intensity, 

establishing the relationship between all-cause, malaria-specific mortality and malaria transmission 

intensity. MTIMBA collected georeferenced entomological data from several Health and Demographic 

Surveillance Sites (HDSS) in Africa.  

In our previous work (Diboulo et al. under review), we used the INDEPTH-MTIMBA and the Nouna 

HDSS data to assess the relation between malaria transmission and all-cause mortality. Children aged 1-4 

years were found to have an increased mortality hazard with increasing levels of transmission while 

increasing levels of malaria transmission showed a protective effect among old age group.    

Recent studies have used data from INDEPTH-MTIMBA project to assess the relationship between 

malaria transmission and all-cause mortality in Rufiji (Tanzania), Kisumu (Kenya) and Manhiça 

(Mozambique) (Rumisha et al. 2014; Amek et al.  2013; Kasasa et al. 2013).  

One of the main advantages of MTIMBA data resides in the fact that we have the actual estimates of the 

malaria transmission intensity measured via entomological inoculation rate (EIR) together with the verbal 

autopsy (VA) data. VA is a tool for obtaining causes of deaths when medical diagnoses are not available. It 

is based on information about signs and symptoms observed ante mortem by relatives or associates of 

deceased individuals, and the diagnosis is derived either from a review of questionnaire (which includes an 
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open section to record the respondent’s verbatim account of the subject’s final illness and a closed section 

to probe for specific signs and symptoms) by two or more physicians, or from a set of algorithms.  

Different approaches have been used for assessing the sensitivity, specificity and the validity of VA and 

these approaches include comparing VA diagnoses with reference diagnoses obtained from hospital and 

used as gold standard (Daniel Chandramohan et al. 1998); comparisons of cause-specific mortality rates 

between intervention and control groups after an intervention targeted to reduce deaths from a specific 

cause (Maude and Ross 1997); and using community-based longitudinal demographic surveillance of a 

population and classifying the cause of death (Deressa, Fantahun, and Ali 2007).     

   

Nouna HDSS in Burkina Faso is a malaria endemic setting where the transmission occurs throughout the 

year and is sustained by two sympatric sibling anopheles species: An. gambiae and An. funestus. Malaria is 

the leading cause of death in the Nouna HDSS catchment area. This offers a unique opportunity to explore 

the relationship between malaria transmission intensity and malaria cause-specific mortality and to 

generate quantitative estimates of malaria-attributable deaths. Measuring the magnitude of malaria-

attributed deaths is crucial in order to provide decision makers and other relevant stakeholders with the 

actual burden of the disease.   

In this study, we set out to use Nouna HDSS-MTIMBA data to assess the relation between malaria 

transmission intensity and malaria cause specific mortality and estimate the number of malaria-attributable 

deaths.  Estimates of malaria exposure surfaces (EIR surfaces) obtained using MTIMBA data were linked 

to Nouna HDSS mortality database. Bayesian geostatistical models incorporating the predicted EIR as 

covariate (with measurement errors) and adjusting for malaria control interventions were employed to 

assess the relationship between malaria transmission intensity and malaria cause-specific mortality. We 

also assessed the diagnostic performance of the physician-coded verbal autopsy (PCVA) using the 

estimated malaria-related excess mortality as the gold standard.   
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6.2 Material and Methods  

6.2.1 Study site  

The Nouna health and demographic surveillance system (HDSS) is run by the Centre de Recherche en 

santé de Nouna (CRSN, Nouna Health Research Center) and located in the Nouna health district’s 

catchment area in northwest Burkina Faso, 300 km away from the capital city, Ouagadougou. Relative to 

the health district, the HDSS catchment area is located southeast. Further details on the study site are given 

in (Diboulo et al., 2015). 

 

6.2.2 Mortality Data  

We used Nouna HDSS data to extract mortality data from year 2001 to 2004. The verbal autopsy (VA) 

technique was used to assign cause of death within the study area. Information from the VA forms are 

independently reviewed by at least two experienced physicians (M. Yé et al. 2011a). The underlying cause 

is defined as the disease or injury that initiated the train of events leading directly to death. In this study, 

all-cause mortality estimates as well as other exposure attributable and not attributable causes of death 

come from a previous study on all-cause mortality analysis (Diboulo al. 2016c, under review).    

 

6.2.3 Socioeconomic and intervention data  

The socioeconomic indicators were collected once during the MTIMBA project period in 2004 on a sample 

(1000) of HDSS’s households. Principal components analysis was used to construct household 

socioeconomic status (SES) index. SES status was estimated for the entire study area by calculating the 

proportion of households falling into the highest SES quintile per village (range 0.09-0.6). 

Insecticide-treated net (ITN) coverage survey was also conducted in 2007 as part of different study and was 

used as a proxy measure of ITN coverage indicator (bed nets ownerships). The proportion of households 

owning bed nets ranges from 0.25 to 1 in the study area. Further details can be found in Diboulo et al.  

2016c, under review). 
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6.2.4 Entomological inoculation rate (EIR) 

Bayesian geostatistical zero-inflated binomial (ZIB) and zero-inflated negative binomial (ZINB) models 

were developed to model sporozoite rate (proportion of infected mosquitoes) and mosquito densities, 

respectively. The predicted annual EIR was 131.4 infective bites per person for year 2002. Modelling 

details are provided by (Diboulo et al. 2015).  

 

6.3 Statistical analysis  

 
The analyses included all individuals who were residents and were first restricted to the period from 

September 2001 to December 2002 where monthly-predicted EIRs are available.  We further assumed a 

similar transmission (EIR) pattern throughout 2002-2004 and extended the study period from September 

2001 to December 2004.  The HDSS population was stratified into different age groups namely neonates 

(0-28 days), post-neonates (1-11 months), children (1-4 years), school-age (5-14 years) adults (15-59 years) 

and old age (60 years and above) and separate analyses were carried out for each of those groups. However 

the neonate group was excluded from the analysis because estimates (number of observations of the 

outcome variable of interest) were not representative of this sub-group. 

Crude mortality rates were calculated by dividing the total number of deaths in an age group divided by the 

total person-time in that specific age group. The annual mortality rates were expressed per 1000 person-

years at risk. Cox proportional hazards models were fitted using logistic regression assuming a discrete 

time to death due to the presence of time-dependent covariates (Singer and Willett 1993).  

The models included EIR estimates on the logit scale, SES quintiles and ITN coverage indicators. The 

prediction error of EIR estimates was taken into account by considering EIR as a covariate with 

measurement error to account for the prediction uncertainty (Gemperli et al. 2003). Bayesian geostatistical 

models were employed to assess the relationship between malaria transmission intensity and all-cause 

mortality. Spatial correlation was introduced via village-specific random effects, which were assumed to be 

latent observations from a spatial Gaussian process. We assume a stationary Gaussian spatial process that 

is; spatial correlation is considered to be a function of distance only and not of the locations themselves. An 

exponential function was further assumed for the correlation matrix. Mortality was related to the EIR of the 

same month.  
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Bayesian models were implemented in OpenBUGS version 3.2.3 (Imperial College and Medical Research 

Council, London, UK). Parameters were estimated using Markov Chain Monte Carlo (MCMC) simulation 

algorithm (Gelfand and Smith, 1990). A detailed description of the Bayesian geostatistical formulation is 

given in appendix.  

 

6.4 Results  

Cause of death was assigned to 81% of the total deaths. Malaria appeared to be the main cause of death 

over the study period and followed by acute gastro-intestinal infections, pneumonia, HIV/AIDS and 

coronary heart diseases (CHD). Figure 6.1 and 6.2 show the frequency distribution of deaths by cause and 

by cause and year.  Figure 6.2 shows that malaria, acute gastro-intestinal infections pneumonia, HIV/AIDS 

and CHDs are consistently the leading causes of death throughout the study period. CHD, acute gastro-

intestinal infections and malnutrition are on steady rise overtime.  

 

 
Figure 6. 1: Main causes of deaths  
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Figure 6. 2: Main causes of deaths per study years 

 

 

Figures 6.3:1-6 show the leading causes of death among neonates (0-28 days), post-neonates (1-11 

months), children (1-4 years), school-age (5-14 years) adults (15-59 years) and old age (60 years and 

above), respectively. Depending on the age group the proportion of unspecified deaths by verbal autopsy 

varies from 10% in children to over 70% in neonates. Malaria is the main cause of death up to the school 

age accounting for around 12%, 60%, 55%, 34% among neonates, post-neonates, children and school age 

children respectively. Malaria deaths rank 4th among adults with a frequency of 7.35% after HIV/AIDS 

(18.62%), pneumonia (7.81%) and CHD (7.59%) and become a prominent death cause in the old age. 
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Figures 6.3. 1: Leading causes of death among neonates          Figures 6.3. 2: Leading causes of death among post-neonates 

 

  
Figures 6.3. 3: Leading causes of death among children        Figures 6.3. 4: Leading causes of death among school age       

   
Figures 6.3. 5: Leading causes of death among adults            Figures 6.3. 6: Leading causes of death among old age 
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The complete mortality database considered over the study period (2001-2004) included 62,132 individuals 

from 58 villages plus Nouna town. The total time at risk was 207021.6 person-year (py). A number of 641 

malaria-related deaths occurred over the study period and were allotted in the different age groups as 

follows: 0 deaths in the neonates group, 19 in the post-neonates or infants group, 423 in the children group, 

79 in school-age group, 30 in adults and 90 in old-age group. The mean age at death was 29.93 (95% CI: 

28.65, 31.21) years. Figure 6.4 depicts the EIR pattern and the malaria-related deaths count over the study 

period. Malaria mortality picks up shortly after the pick of EIR 

 

 

 Figures 6.4 1: EIR pattern and the death count over the study period 

 
 
Table 6.1 and 6.2 show the malaria mortality per year and per age group respectively over the study period.   
 
Table 6. 1: Malaria mortality rates per year over the study period (2001-2004) 

Calendar year  Person-years    Failures  Rate per 
1,000 

[95% Conf. Interval] 

2001 17009.68 92 5.41 4.41            6.64 
2002 48716.65 151 3.10 2.64            3.64 
2003 55247.30 228 4.13 3.63            4.70 
2004 86047.98 170 1.98 1.70             2.30 
Total  207021.61 641 3.10 2.87            3.35 
Table 6. 2: Malaria mortality rates per age group over the study period (2001-2004) 

Age group  Person- Deaths  Rate per [95% Conf. Interval] 
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years    1,000 
Neonates (0-28 days) 803.00       0 0   -   - 
Post-neonates (1-11 
months) 

9336.16 19 2.02      1.29                3.17 

Children (1-4 years) 39453.79 423 10.73 9.76                11.81 
School-age (5-14 years) 41859.47 79 1.89    1.52                   2.35 
Adults (15-59 years) 107745.73 30 .28 .19                   .40  
Old age (60 + years) 7800.13 90 11.56 9.41                14.22 
Total  207021.61 641 3.10    2.87           3.345513 
 
Malaria mortality rates were among the highest in years 2001, 5.41 (95% CI: 4.41, 6.64) and in 2003, 4.13 

(95% CI: 12.85, 14.81) per thousand. The overall mortality rate over the study period was 11.26 (95% CI: 

3.63, 4.70).   The highest malaria-related mortality was observed in the old-age group (i.e 11.56, 95% CI: 

9.40, 14.22) and followed by children (i.e. 10.73, 95% CI: 9.76, 14.22) and post-neonates (i.e. 2.01, 95% 

CI: 1.29, 3.16). 

6.4.1 Model-based results  

Table 6.3 presents geostatistical model based estimate the hazard ratio of EIR across the different age 

groups adjusted for ITN intervention coverage and SES effects. The relationship between malaria exposure 

(on the logarithmic scale) and mortality was important only in children with a HR=1.06 (95% CI: 1.03, 

1.08). The minimum distance at which the spatial correlation is deemed unimportant (i.e. less than 5%) 

ranges from 11.76 km to 32.5 km.  

 
Table 6. 3: Geostatistical models’ posterior estimates for malaria cause specific mortality 

Covariates Post-neonates 
HR 

(95% BCI) 

Children 
HR 

(95% BCI) 

School-age 
HR 

(95% BCI) 

Adults 
HR 

(95% BCI) 

Old age 
HR 

(95% BCI) 
EIR (log scale) 0.96  

(0.88, 1.05) 
1.06 

(1.03, 1.08) 
1.04 

 (0.99, 1.09) 
1.06 

 (0.99, 1.14) 
0.98 

 (0.94, 1.03) 
SES 0.79  

(0.001, 1.76) 
0.23  

(0.05, 1.62) 
0.29  

(0.02, 3.52) 
0.74 

 (0.02, 1.76) 
0.95 

 (0.10, 1.69) 
ITN 1.59  

(0.30, 1.98) 
1.14  

(0.74, 1.75) 
1.18 

 (0.54, 2.62) 
1.37  

(0.40, 5.31) 
0.47 

 (0.21, 1.00) 
Spatial variance 0.17  

(0.02, 2.46) 
0.30 

(0.14, 0.76) 
1.23  

(0.46, 3.46) 
0.50  

(0.17, 2.05) 
0.54 

 (0.20, 1.50) 
Range (km)a 17.26  

(1.74, 50.69) 
32.5 

(5.59, 52.0) 
22.65  

(4.90, 49.92) 
11.76  

(1.59, 48.61) 
11.78  

(1.98, 47.20) 
a: minimum distance in kilometer at which the spatial correlation remains important , BCI=Bayesian Credible Interval 
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6.4.2 Sensitivity and specificity analysis  

Table 6.4 shows the number of malaria-related and all-cause deaths recorded at different EIR ranges. The 

numbers of malaria-related deaths tend to be lower in moderate EIR values (i.e.25 -100 infective bytes per 

person and year).  

 

 
Table 6. 4: Distribution of time at risk and deaths by Entomological Inoculation rate (EIR) 

  Entomological Inoculation rate (IBPPY)  
  EIR=0 1-25 25-50 50-100 >100 Total 
Post-neonate Malaria deaths VA  11 4 0 2 2 19 
 All-cause deaths 40 14 2 4 7 67 
 Person years at risk  5361.13 2472.32 443.15 356.52 703.04 9336.16 
Children  Malaria deaths VA  199 110 36 17 61 423 

All-cause deaths 513 219 53 34 122 941 
Person years at risk  22537.41 10112.51 1872.56 1212.84 3671.83 39407.14 

School-age Malaria deaths VA  50 9 5 4 11 79 
 All-cause deaths 132 38 11 8 35 224 
 Person years at risk  23293.76 13337.85 2079.15 989.59 2159.11 41859.47 
Adults Malaria deaths VA  13 11 1 3 2 30 
 All-cause deaths 265 107 27 22 38 459 
 Person years at risk  61591.36 30857.32 5870.92 2855.49 6587.29 107762.39 
Old-age Malaria deaths VA  59 14 6 1 10 90 
 All-cause deaths 448 91 29 15 56 639 
 Person years at risk  4624.77 2132.46 329.87 146.61 549.77 7783.47 

  
Table 6.5 shows the diagnostic performance of VA using the EIR-mortality relationship as gold standard. 

Malaria exposure-attributable deaths were highest in among children (421) and old-age group (90). The 

percentage of deaths assigned-malaria as cause in VA was highest in children and school age groups with 

respectively 44.95% and 35.27%. The percentage of deaths attributable to malaria exposure was high 

across all age group (>65%). The malaria specific mortality rate ranged from 0.3 in adults to 11.6 in old 

age group. The highest malaria exposure-attributable mortality rate was observed among adults and old age 

groups with respectively (106.33 and 112.69 deaths/1000 person-years). The highest sensitivity of the VA 

were observed among children and school age groups with respectively 0.44 and 0.38, while the highest 

specificity were observed in adults and old age groups with respective values of 0.96 and 0.92. 
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Table 6. 5: Diagnostic performance for malaria VA using the EIR-mortality relationship as gold standard 

 Post-
neonate 

Child School-
age 

Adults Old-age Overall 

Estimates of numbers of deaths       
a : Malaria attributable by VA and exposure 15.65 345.4 57.4 26.99 86.71 532.15 
b : Malaria attributable by VA only 3.35 77.6 21.6 3.01 3.29 108.85 
c:  non-malaria attributable  by VA and exposure 36.8 437.24 92.43 354.41 513.44 1434.32 
d:  non-malaria attributable  by VA only 11.2 80.76 52.57 74.59 35.56 254.68 
       
Derived quantities        
Overall all-cause mortality rate (deaths/1000 person-years) 
(from Table 1) 7.18 23.88 5.35 4.26 81.92 11.26 
% of deaths assigned malaria as cause in VA (a+b)/(a+b+c+d) 28.36% 44.95% 35.27% 6.54% 14.08% 27.51% 
% of deaths attributable to malaria exposure (a+c)/(a+b+c+d) 78.28% 83.17% 66.89% 83.09% 93.92% 84.40% 
Malaria specific mortality rate estimated from VAs 
(deaths/1000 person-years) 2 10.7 1.9 0.3 11.6 3.10 
Malaria exposure attributable mortality rate  (deaths/1000 
person-years) 75.58 88.91 98.65 106.33 112.69 89.04 
Sensitivity of VA (a/(a+c)) 0.30 0.44 0.38 0.07 0.14 0.27 
Specificity of VA (d/(d+b)) 0.77 0.51 0.71 0.96 0.92 0.70 
Positive Predictive Value of VA (PPV) (a/(a+b)) 0.82 0.82 0.73 0.90 0.96 0.83 
Negative Predictive Value of VA (NPV)  (d/(c+d)) 0.23 0.16 0.36 0.17 0.06 0.15 
 

6.5 Discussion  

We found a relationship between malaria specific mortality and malaria exposure in children (1-4 years) 

with a hazard ratio of respectively (HR=1.06, 95% CI: 1.03, 1.08). These findings are in line with those of 

previous studies based on MTIMBA and HDSS analyses in Kisumu (Amek et al. 2013).  

The distribution of time at risk and deaths among the different EIR values showed that the numbers of 

malaria-related deaths tend to be lower in moderate levels of transmission (i.e. 25-100). This supports 

findings suggesting that people in areas with moderate transmission intensity tend to develop much faster a 

stronger natural immunity (Bejon et al. 2009; R. W. Snow et al. 1997).   

In this study we considered malaria-attributed deaths derived from the EIR-mortality model as the gold 

standard and estimated the diagnostic error of VA. The percentage of deaths attributable to malaria 

exposure was higher in old age group, children and adults with respectively 93.92%, 83.17% and 83.09%.  

Results of the diagnostic performance showed that VA had higher specificity than sensitivity across all age 

groups. The highest specificity was estimated in adults (96%), while the lowest was estimated among 
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children (51%). The overall specificity is the physician-certified verbal autopsy (PCVA) is found to be 

70%.  

The diagnostic sensitivity of VA was among the highest in post-neonates, children and school-age groups 

with values of 30%, 44% and 38%, respectively. VA had the lowest probability to correctly diagnose 

malaria deaths in adults (i.e. 7%). Furthermore the PCVA proved to be very good at confirming malaria 

related deaths (PPV=83%); it did however correctly identify overall 27% of all malaria related deaths 

(sensitivity). The negative predictive value (NPV) which, expresses the ability of the PCVA at reassuring 

that a death is not malaria-related, is estimated at 15%. Many studies found reasonable validity of the 

PCVA in determining the cause of death (Soofi et al. 2015; Winbo 1998; Engmann et al. 2012; Leitao et al. 

2014). 

The PCVA has often been criticized, as it tends to overestimate malaria burden due to poor sensitivity and 

specificity in distinguishing fevers caused by malaria and those, which are not (Adjuik et al. 2006; Ndugwa 

et al. 2008; Todd et al. 1994). Our results however showed an overall poor performance of the PCVA in 

detecting malaria-attributable deaths (sensitivity of 27%). A study in Kenya assessed the diagnostic 

performance of the PCVA by comparison with a prospective survey of childhood deaths at a district 

hospital where medically confirmed diagnoses were available. Common causes of death were detected by 

PCVA with specificities greater than 80%. Sensitivity of the PCVA technique was greater than 75% for 

measles, neonatal tetanus, malnutrition, and trauma-related deaths; however, malaria, anaemia, acute 

respiratory-tract infection, gastroenteritis, and meningitis were detected with sensitivities of less than 50% 

(R. W. Snow et al. 1992).  

The specificity and the sensitivity are two estimates of the divergence that may exist between the actual 

cause of death and the cause diagnosed by VA, since this discrepancy may have a major impact on cause-

specific mortality rates (Maude and Ross, 1997). However, unlike certain diseases, malaria has no specific 

pathognomonic symptoms (Rogier et al. 2005) and symptoms such as fever, anaemia, coma, respiratory 

distress and neurological disturbances associated with malaria also overlap with many other tropical 

diseases (Marsh et al. 1996; Berkley et al. 1999).   
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The VA may therefore be less reliable for diagnosing malaria deaths. Many other previous studies have 

compared VA diagnoses with hospital-based diagnoses concluded that VA had low sensitivity and 

moderate specificity (Rowe 2005;  Anker et al., 1999; Todd et al. 1994; R. W. Snow et al. 1992).  

This study found an association between malaria transmission and malaria-mortality in children (1-4 

years). This suggests that successful malaria interventions in high malaria endemic areas are likely to 

further reduce malaria-related mortality. The sensitivity and specificity analysis of the physician-certified 

verbal autopsy (PCVA) indicates an overall poor performance of this method. However, further 

investigations using larger VA datasets are needed to confirm these findings.   
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6.6 Appendix 

Let Yijt  be the malaria-specific mortality status of an individual  at village  j  and time interval tand Nijt

the total number of individuals present at time interval t . Xij  is the covariates associated with individual i 

at location j . We assume that Yijt  arises from a Binomial distribution. That is Yijt ~ Bin(Nijt , pijt ) where, pit

is the probability of individual i  dying at time interval t . We modeled spatial correlation via village-

specific random effects φ j  (which is considered as latent observations of a spatial Gaussian process) on the 

logit, as  where  is the vector of regression coefficients. EIR is modeled on the log 

scale as a covariate with measurement errors (because it is estimated by separate Bayesian geostatistical 

models), that is  predicted at the household of child i where and σ ei
2

i
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correspond to the mean and variance respectively obtained from posterior prediction distribution of EIR at 

household i. We assumedφ ~ MVN (0,Σ), Σ is the covariance matrix with elements Σkl  accounting for the 

covariance between any pair of villages k  and l  irrespective of the direction (isotropy). Using an 

exponential correlation function, the covariance matrix is defined by Σkl =σ
2 exp(−ρdkl )  where σ 2  is the 

spatial variation, dkl  is the distance between villages k  and l , and ρ  is the rate of correlation decay with 

increasing distance.  The minimum distance at which the spatial correlation is significant at 5% is called 

range and can be obtained from the value 3 / ρ  (Ecker and Gelfand, 1997).  

A Bayesian model formulation requires the specification of prior distributions for all model parameters. In 

particular, we choose a non-informative normal prior distribution with mean zero and large variance for the 

 parameters, regression coefficients, an inverse gamma priors for σ e
2  and σ 2 . A gamma prior for ρ , that 

is σ e
2 ,σ 2 ~ IG(2.01,1.01)and ρ ~ G(0.1,0.1) . 

The model was fitted using Morkov Chain Monte Carlo (MCMC) simulation algorithm in OpenBugs 

version 3.1.2 (Imperial College and Medical Council, London, UK) to estimate model parameters (Gelfand 

et al., 2000). Starting with some initials values about the parameters, we run two chains sampler discarding 

the first 5000 iterations. Convergence was assessed by Gelman-Rubin diagnostic (Gelman, 1992). 
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Chapter 7: General discussion  

 
In this thesis, we assess the relationship between malaria transmission and mortality across all age groups 

and at different geographical scales in Burkina Faso. The results of this research contribute to the field of 

malaria epidemiology with i) knowledge on the malaria transmission-mortality relationship ii) up-to-date, 

nationwide, spatially explicit estimates of malaria risk and number of infected children under five years and 

iii) estimates of infant and under-five mortality in relation to malaria endemicity in Burkina Faso iv) 

estimates of the performance of verbal autopsy to diagnose malaria as the cause of death. 

The work is structured around 7 chapters, which form the thesis. Chapter 2 corresponds to a manuscript, 

which has been already published in Parasites & Vectors. Chapter 3 has been published in Malaria Journal. 

Chapter 4 has been prepared for submission to Tropical Medicine & International Health Journal. Chapters 

5 and 6 will be submitted to Acta Tropica and Malaria journal, respectively. For each chapter, detailed 

discussion and conclusion are provided.  In this section, we summarise the main findings and their 

significance, discuss limitations and propose extensions of the work. 

 

7.1 Significance of the work  

7.1.1. Epidemiological methods 

In chapter 2, we followed the approach by (Rumisha et al. 2014) and developed spatio-temporal models of 

EIR by fitting zero-inflated binomial (ZIB) and zero-inflated negative binomial (ZINB) models to  

sporozoite rates (proportion of infected mosquitoes) and mosquito densities, respectively. We extended the 

methodology by introducing Bayesian variable selection to identify the most important climatic factors 

related to malaria transmission and take into account lag times between climatic suitability and malaria 

transmission. Four models were fitted separately to An. funestus and An. gambiae data to obtain species-

specific surfaces of mosquito density and sporozoite rate within the study area. The overall EIR estimate at 

a given location and month is based on the mean number of infected mosquitoes (from both species) 

multiplied by a conversion factor. 

To our knowledge, this is the first effort for estimating and comparing the lag time between climatic 

suitability and malaria transmission between the two vector species (An. gambiae and An. funestus) using 
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rigorous modelling approaches. The results improve our understanding of the dynamics of malaria 

transmission in relation to the two species and are useful in timing control interventions. 

We also assess the diagnostic performance of the physician-coded verbal autopsy (PCVA) using the 

estimated malaria-related excess mortality as the gold standard. Children and adults had the highest 

percentage of deaths attributed to malaria by VA equal to 44.95% and 35.27%. The percentage of malaria-

related deaths according to the malaria transmission exposure was higher in old-age group (93.92%). The 

overall specificity of the physician-certified verbal autopsy (PCVA) was 0.70 

The sensitivity and specificity analysis of the physician-certified verbal autopsy (PCVA) indicate an 

overall good performance of this method. This confirms that malaria still ranks among the leading causes 

of deaths and the acceptable diagnostic performance of the PCVA.    

 

7.1.2 Malaria epidemiology  

Results of this work contribute to a better understanding of the interplay between environmental/climatic 

conditions and malaria transmission, which is important not only for delivering interventions at the right 

time but also for developing predictive models to support early warning systems (EWS).  

The estimated risk and intervention effect maps are valuable tools for identifying high-risk areas and areas 

with less effective interventions in order to improve malaria control in Burkina Faso. These outputs can 

serve as benchmarks to evaluate the effectiveness of future control interventions and progress of the efforts 

towards disease control.  

Results from the mortality-malaria transmission analyses improve our understanding of the relationship 

between malaria transmission, all-cause and malaria specific mortality in Nouna region. 

In chapter 2, model-based high-resolution maps depicting monthly malaria transmission pattern in Nouna 

HDSS catchment area were produced at 250m by 250 m spatial resolution using rigorous Bayesian 

geostatistical and temporal models. The potential strength of these maps lies in the fact that they account 

for small scale and species-specific spatio-temporal variation of malaria transmission within the Nouna 

HDSS catchment area. This is of particular importance since malaria transmission is mainly driven by two 

efficient vectors namely Anopheles gambiae and An.funestus, which co-exist geographically across the 

study area. Interestingly, high EIR estimates are observed in the western part of the study area, which is 
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located to a large extent in shallows that are extensively used by local populations for rice cultivation. The 

transmission in this area remained high even during the dry season. Therefore special targeted interventions 

focusing on these areas can be carried out continuously.    

The prediction maps of entomological inoculation rate (EIR) surfaces depict strong spatial-temporal 

heterogeneity. Our results contribute to better understanding of the interplay between 

environmental/climatic conditions and malaria transmission, which is important not only for delivering 

interventions at the right time but also for developing predictive models to support early warning systems 

(EWS).  

In chapter 3, we analyze MIS data using Bayesian geostatistical models to assess the effects of different 

malaria interventions at national as well as sub-national level in the country. Bayesian variable selection 

within geostatistical models allowed us to screen different coverage measures for each intervention and 

spatially structured regression coefficients measured the effects of interventions at district level. We also 

produce predictive maps of the disease burden adjusted for climatic effects at 1 km2 spatial resolution 

covering the entire country. We also obtained maps of the effects of malaria interventions at health district 

level, which enabled us to identify districts where interventions are less likely to be effective. This is of 

policy relevance, as it will guide the choice of intervention with regard to their respective likelihood of 

success in a given place. While in districts where single interventions are less likely to be effective, a 

combination of interventions should be delivered in order to achieve synergistic effects. 

In this thesis, we also assessed the relationship between malaria endemicity and infant/child all-cause 

mortality in Burkina Faso using Burkina Faso Demographic and Health Survey-Multiple Indicator Cluster 

Survey (BFDHS-MICS 2010) data. We employed Bayesian geostatistical Weibull survival models to 

explore malaria and infant/child mortality relationship in Burkina Faso while adjusting for individual and 

household characteristics as well as mother’s birth history. There was a significantly strong association 

between high endemicity levels and children mortality especially in urban settings. No significant 

relationship was found between malaria endemicity and mortality in rural settings. Previous studies in other 

settings have investigated the relationship between child/infant all-cause mortality and malaria endemicity 

using Demographic and Health Survey data and reached different conclusions. Indeed while (Gemperli et 

al. 2004a) did not find any relation between malaria endemicity and mortality in Mali; (Kimani-Murage et 

al. 2014) using Demographic and Health Survey data collected between 1993 and 2008 in Kenya found 
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more rapid and statistically significant decline in infant, child and under five mortality rate in rural areas 

but not in urban areas.  

Previous studies using MTIMBA data found a positive log-linear relationship between all-cause mortality 

and malaria exposure in infant and child in Navrongo (Ghana), Kisumu (Kenya) HDSS (Amek et al. 2013; 

Kasasa et al. 2013). Our analyses in the Nouna HDSS confirmed this finding. We found that overall, 

malaria transmission and all-cause mortality risk increases from early infanthood to childhood where it 

reaches its maximum; it then decreases steadily from childhood to elderly age. However, the EIR was 

negatively correlated with all-cause mortality in elderly population (60+ years).  The same finding was 

obtained from the analyses in Kisumu HDSS (Amek et al. 2013) and it may be explained by the fact that 

elderly people have over time acquired natural immunity against the disease (Doolan, Dobaño, and Baird 

2009). Higher SES quintiles were protective against all-cause mortality in adults. This implies that adults 

from well-off households are less likely to die compared to their counterpart in poorer households. 

A significant positive log-linear relationship was also found between EIR and malaria mortality in children 

(Chapter 6). This suggests that successful malaria interventions in malaria endemic areas are likely to 

further reduce malaria-related mortality.  

7.2 Limitations and challenges  

7.2.1 Intervention and socioeconomic data in the MTIMBA project  

The MTIMBA project was primarily designed to gather comprehensive entomological, demographic as 

well as malaria-related interventions data. However the Nouna HDSS site by then was not routinely 

monitoring ITN and SES information.  The ITN coverage estimates used in this thesis were extracted from 

a survey conducted in 2007, as part of another study on a sample of the HDSS households. The 

socioeconomic indicators were also collected once during the period of the MTIMBA project in 2004 on a 

sample of 1000 HDSS households. Principal components analysis was then used to construct household 

socioeconomic status (SES) index categorized into quintiles ranking households from the poorest (first 

quintile) to the least poor (fifth quintile). These data were therefore available for a sample of locations. SES 

status was estimated for the entire study area by calculating the proportion of households falling into the 

highest SES quintile per village. The lack of ITN and SES information at households with mortality data 

and the temporal misalignment between the ITN data used in the modeling may bias the malaria-mortality 

estimates.  
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7.2.2 Nouna HDSS mortality data  

Extremely low mortality rates were observed among neonates and post-neonates in the Nouna HDSS. This 

finding may be associated with the routine data collection system, especially the mortality data and the 

prevailing socio-cultural practices in the study area. Indeed the verbal autopsy interview is conducted 

within the three months following any fatal event captured in the HDSS catchment area. Owing to some 

specific cultural practices, it is a common practice that a newborn has the naming ceremony on the seventh 

day after birth.  This time frame extends up to forty days in some local communities. The death of any 

newborn before that time frame tends to be silenced and hardly refer to.  One way to overcome that issue in 

data collection is to ensure a proper registration and follow-up of any pregnant women in the HDSS 

catchment area. 

 

7.2.3 Environmental/climatic predictors and la analysis  

The environmental and climatic predictors used in this thesis were extracted from satellite data sources.  

These data were obtained in a continuous scale at different temporal and spatial resolutions. However, 

MTIMBA data were collected biweekly and aggregated at monthly intervals in our analyses. Covariates 

were also summarized over months (current and previous ones in the lag analyses). The summarized values 

are linked to the study outcome to assess the time interval that best explains the variation in the data.  

Aggregating of the data could have resulted in masking variation in the data and subsequently led to biased 

parameter estimates.  

 

7.3 Extension and future research  

The models used to obtain georeferenced estimates of malaria risk based on the 2009 MIS data can be 

applied to analyse the most recent MIS data of 2014 dataset to produce comparative estimates in order to 

monitor changes of the malaria situation in the country. These estimates and intervention effect maps will 

be valuable tools for identifying priority areas and areas with less effective interventions in order to 

improve malaria control in Burkina Faso. Further analyses of the malaria-mortality relation using 
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complementary data e.g. incidence should be conducted to confirm our findings on the relationship 

between malaria endemicity and children under five of age mortality.   

In this thesis we used and systematically examined different lag structures through Bayesian variable 

selection implemented within a geostatistical model. Future research should explore lag effects via 

distributed lag models as an alternative approach to the one used in this work (Almon 1965; Gasparrini, 

Armstrong, and Kenward 2010; Gasparrini 2011). However it is worth noting that this approach assumes 

that the different climatic proxies are available on a daily scale or aggregated over a common temporal 

resolution (e.g. month). 
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