
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Jul 10, 2018

The Effect of Pt Particle Size on the Oxidation of CO, C3H6, and NO Over Pt/Al2O3 for
Diesel Exhaust Aftertreatment

Hansen, Thomas Klint; Høj, Martin; Hansen, Brian Brun; Janssens, Ton V.W.; Jensen, Anker Degn

Published in:
Topics in Catalysis

Link to article, DOI:
10.1007/s11244-017-0818-9

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Hansen, T. K., Høj, M., Hansen, B. B., Janssens, T. V. W., & Jensen, A. D. (2017). The Effect of Pt Particle Size
on the Oxidation of CO, C3H6, and NO Over Pt/Al2O3 for Diesel Exhaust Aftertreatment. Topics in Catalysis,
60(17-18), 1333-1344. DOI: 10.1007/s11244-017-0818-9

http://dx.doi.org/10.1007/s11244-017-0818-9
http://orbit.dtu.dk/en/publications/the-effect-of-pt-particle-size-on-the-oxidation-of-co-c3h6-and-no-over-ptal2o3-for-diesel-exhaust-aftertreatment(4859219b-8b74-445f-b3f8-a3df0ccecb7f).html


1 / 41 
 

The Effect of Pt Particle Size on the 1 

Oxidation of CO, C3H6, and NO over Pt/Al2O3 2 

for Diesel Exhaust Aftertreatment 3 

Thomas Klint Hansen1, Martin Høj1, Brian Brun Hansen1, Ton V.W. Janssens2, Anker Degn Jensen1* 4 

1Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark 5 

2Haldor Topsøe A/S, Kgs. Lyngby, Denmark 6 

*Corresponding author: Anker Degn Jensen, aj@kt.dtu.dk 7 

Abstract 8 

Platinum-based oxidation catalysts applied for diesel exhaust aftertreatment constitute a significant part of 9 

system costs. Effective utilization of platinum is therefore relevant to reduce costs while retaining 10 

performance. To this end, the influence of Pt particle size on catalytic activity for CO, hydrocarbon, and NO 11 

oxidation was studied. 1 wt.% Pt/Al2O3 catalysts were prepared by wet impregnation, drying, and different 12 

calcination and thermal treatments, yielding Pt particles with diameters between 1.3 and 18.7 nm, as 13 

determined by CO pulse titration and transmission electron microscopy. Activity measurements for CO, C3H6, 14 

and NO oxidation showed an optimal Pt particle size with respect to the mass based activity between 2-4 nm 15 

for all three reactions. From measured turnover frequencies and site statistics of Pt particles, the reactions 16 

appear to be mainly catalyzed by terrace atoms, which are most abundant between 2-4 nm. The decrease in 17 

catalytic activity for large Pt particles is therefore due to the diminishing Pt surface area, while the decrease in 18 

activity for small particles is due to the lack of terrace atoms required for CO, HC, and NO oxidation.  19 

 20 
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1. Introduction 21 

In order to comply with strict emission control regulations [1, 2], modern diesel-driven vehicles are equipped 22 

with a catalytic exhaust aftertreatment system to reduce the emission of harmful compounds [3]. The main 23 

harmful compounds in a diesel exhaust gas are particulate matter (soot particles), NOx, CO, and unburnt 24 

hydrocarbons (HC), which are converted to CO2, H2O, and N2 in the aftertreatment system [3]. To achieve this, 25 

a modern aftertreatment system typically consists of a diesel oxidation catalyst (DOC), a diesel particulate filter 26 

(DPF) and a catalytic NOx abatement unit further downstream, which consists of a catalyst for the selective 27 

catalytic reduction with NH3 (NH3-SCR) combined with an ammonia slip catalyst (ASC) for oxidation of residual 28 

NH3 (see Figure 1). 29 

 30 

Figure 1. 31 

 32 

 The temperature in the exhaust gas varies, depending on the driving load, but generally lies in the range 200-33 

500°C [3-5]. The combination of a high exhaust gas flow (500-1500 m3/h) [4] and a limited space for catalysts 34 

requires a good catalyst performance at high space velocities while maintaining a low pressure drop at any 35 

operating temperature. This is achieved by using catalysts coated on monolith substrates [6]. Furthermore, 36 

diesel fuel contains sulfur compounds that when combusted lead to SOx in the exhaust gas, which can poison 37 

and deactivate catalysts during operation [5, 7]. 38 

The main purpose of the DPF is to capture the soot particles produced in the engine. A common type of filter is 39 

the wall-flow filter, in which the exhaust gas is forced through the walls of a monolith, whereby the soot 40 

particles are retained [3, 5]. The amount of soot accumulated in the filter increases with time, which results in 41 
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an undesired pressure drop. Therefore, some regeneration of the filter is required. One method to do this is 42 

active regeneration, which entails periodically raising the temperature to above 600°C by injection of post 43 

engine fuel, which causes the soot to burn in the oxygen of the exhaust gas [3, 5]. An alternative method is 44 

passive regeneration, in which the temperature for soot oxidation is lowered to the normal operating 45 

temperature range (350-500°C), which makes a continuous soot oxidation under normal operation possible. To 46 

this end, a catalyst for soot oxidation can be applied to the DPF, or NO2 generated in the DOC can be used for 47 

the removal of soot [3, 5]. 48 

The NOx abatement system consists of a catalyst for the selective catalytic reduction with NH3 (NH3-SCR) 49 

combined with an ammonia slip catalyst (ASC) [3]. In the SCR reactions, NOx is converted by ammonia and 50 

oxygen to N2 and H2O, with high selectivity [3, 5, 8]. The ammonia is usually provided by injection of urea at the 51 

inlet to the SCR unit. In practice, a 5-10% excess of ammonia is used in the NH3-SCR to improve the 52 

performance [8], and the ASC removes the excess ammonia by selective oxidation of ammonia with oxygen to 53 

N2 and water [9]. The presence of NO2, up to a NO2/NOx ratio of 0.5, can also improve the SCR performance, as 54 

it allows for the fast-SCR reaction to occur [5, 8].  55 

The DOC removes CO and unburnt hydrocarbons in the exhaust gas by oxidation to CO2 and H2O. Additionally, 56 

the DOC is used to oxidize NO to NO2, which, as mentioned above, may improve SCR performance and enhance 57 

the regeneration of the DPF in systems using passive regeneration [3, 5, 7]. DOC formulations are usually based 58 

on Pt supported on metal oxides [5, 7]. Pt is also less sensitive to sulfur, compared to other noble metals and 59 

metal oxides [5, 7], making the catalysts robust in environments with small amounts of SO2 and SO3. To 60 

improve the thermal stability of the DOC and reduce cost, some of the Pt can be replaced by Pd, although Pd is 61 

significantly less tolerant to sulfur [5, 7].  62 
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The support materials used in a DOC are common metal oxides, such as Al2O3, SiO2, CeO2, TiO2, ZrO2, zeolites, 63 

or a combination of these [5]. A common support material is γ-Al2O3, due to its high surface area (100-200 64 

m2/g) and good thermal stability [5]. Therefore, Pt/Al2O3 is a good model catalyst for a DOC, and has been used 65 

in many studies on Pt catalysts [5, 10-45]. 66 

A focus area for DOC development is the improvement of low temperature catalytic activity [5, 10, 46]. This is 67 

relevant due to the development of more fuel-efficient engines, which result in lower exhaust gas 68 

temperatures. In addition, a good low temperature activity also helps reduce the emissions during cold start of 69 

the engine, which account for a significant part of the total emissions [3, 4]. 70 

Another development of the DOC is aimed at cost reduction, either by replacement of the noble metal with 71 

cheaper materials or by a more effective use of the noble metals, allowing for a significant reduction of the 72 

noble metal content [5, 11, 46]. High catalytic activity and cost-effective utilization of metals is generally 73 

associated with small particles (high dispersion) of the active phase [5, 12, 13]. However, small Pt particles 74 

show a low turnover frequency (TOF) for CO oxidation [12, 47, 48], HC oxidation [13-18], and NO oxidation [12, 75 

19, 20] in studies with a large excess of oxygen relative to reactants, similar to conditions in diesel exhaust 76 

aftertreatment, e.g. 10 vol.% O2, 5 vol.% H2O, 1000 ppm NOx, 300 ppm HC, 1000 ppm CO [49]. As a result, an 77 

optimum in Pt particle size exists, with a corresponding maximum in catalytic activity. 78 

To our knowledge, no studies investigate the influence of Pt particle size on the oxidation of CO, HC, and NO, 79 

relevant for the diesel oxidation catalyst, over the same catalysts. Furthermore, few studies include H2O in the 80 

feed gas, which is present in diesel exhaust gas (2-12 vol.% H2O) and promotes CO oxidation while inhibiting 81 

both HC and NO oxidation [7, 21-23]. It was therefore the purpose of this work to investigate the effect of Pt 82 

particle size for all three oxidation reactions relevant for the DOC (CO, HC, and NO) under diesel exhaust gas 83 

conditions, and identify the respective optimal Pt particle sizes over a broad range of average Pt particle 84 
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diameters (between 1.3-18.7 nm). The feed gas for activity measurements contained either 2.8 or 7.8 vol.% 85 

water vapor and about 10 vol.% O2 in order to better emulate the catalytic activity under diesel exhaust gas 86 

conditions. We show that the oxidation of CO, C3H6, and NO all exhibit the same optimum Pt particle size range 87 

and that the high mass based catalytic activity does not necessarily coincide with the maximum TOF. We relate 88 

these observations to the change in abundance of corner, edge, and terrace atoms. 89 

2. Experimental 90 

2.1 Catalyst Preparation 91 
To prepare Pt/Al2O3 catalysts with different Pt particle sizes, two batches of alumina were impregnated with 1 92 

wt.% Pt and dried. The batches were then split into smaller portions before being calcined and thermally 93 

treated with different temperatures, gas atmospheres, and durations (see Table 1) in order to obtain a series of 94 

nine catalysts with different Pt particle sizes in the range 1.3 to 18.7 nm.  95 

For the impregnations, 3 g or 10 g of γ-Al2O3 support material (Puralox NWa-155; Sasol; surface area 153.7 96 

m2/g) was suspended in an aqueous solution (20 mL solution/g γ-Al2O3) of 2.59 mM H2PtCl6·6H2O (ACS reagent; 97 

Sigma-Aldrich) under stirring at 50°C in an open beaker [48]. The water evaporated overnight and a dry solid 98 

sample remained. The samples were dried further in a horizontal tube furnace (ETF 30-50/15-S; Entech) in 3 NL 99 

N2/min at 80°C for 4 hrs. Subsequent calcination and thermal treatments were done in the same horizontal 100 

tube furnace. From the first batch of 3 g, two portions of 1 g each were given the oxidative calcination 101 

treatments (O2/N2 or H2O/O2/N2) presented in Table 1, yielding samples A and B. The entire second batch of 10 102 

g was calcined in a 3 NL/min flow of N2 at 550°C for 8 hrs and a 1 g portion was taken as sample C. Six 1 g 103 

portions of the remaining batch were then exposed to the different thermal treatments presented in Table 1, 104 

yielding samples D to I. The use of a chlorine Pt precursor can lead to residual chlorine after calcination that 105 

can inhibit catalytic activity [50, 51], but the calcination and thermal treatments applied in this study, together 106 
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with the presence of H2O in the reactor feed (Section 2.2.2), will effectively remove chlorine [50, 51]. 107 

Additionally, a commercial 1 wt.% Pt/Al2O3 powder catalyst (205966; Sigma-Aldrich) was used as a benchmark 108 

in both fresh, SA1, and thermally treated states, SA2. The properties and thermal treatment of the benchmark 109 

catalysts are also presented in Table 1. Table 1 presents an overview of the eleven catalysts studied, indicating 110 

their calcination and thermal treatments, as well as the resulting Pt dispersion and average Pt particle diameter 111 

calculated from the CO adsorption capacity and verified by TEM (Section 2.2.1). 112 

 113 

Table 1. 114 

  115 

The Pt contents of samples A, D, and SA1 were determined by inductively coupled plasma optical emission 116 

spectrometry (ICP-OES), and were assumed to be representative of each respective batch. The Pt contents of 117 

the three batches were very similar with 0.94 wt.% Pt for the first batch (samples A and B), 0.98 wt.% Pt for the 118 

second batch (samples C to I), and 0.92 wt.% Pt for the commercial catalyst (samples SA1 and SA2). These Pt 119 

contents were used for subsequent calculations. The eleven catalyst samples were tableted, crushed, and 120 

sieved to a fraction of 150-300 µm before further characterization and testing.  121 

2.2 Catalyst Characterization  122 

2.2.1 Pt Particle Size 123 
The catalysts were analyzed by CO pulse titration (Autosorb-iQ2; Quantachrome Instruments) to measure CO 124 

adsorption capacity, which was used to calculate the Pt dispersion and average Pt particle diameter. The 125 

procedure for pretreatment and CO pulse titration was as follows: First, a 0.5 g sample was heated to 100°C 126 

(10°C/min) and dried in a 30 NmL/min flow of air for 30 minutes. To remove impurities, the sample was then 127 

heated to 350°C (10°C/min) and oxidized in a 30 NmL/min flow of air for 30 minutes. Next, the system was 128 
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evacuated and the sample cooled to 100°C under vacuum. A 30 NmL/min flow of pure H2 was then introduced 129 

and the sample was heated to 350°C (10°C/min) and reduced for 120 minutes. The system was then 130 

evacuated and the sample was heated to 550°C (10°C/min) under vacuum and held at 550°C for 120 minutes 131 

to remove any adsorbed water formed from the oxidative and reductive treatments. After cooling to 35°C 132 

under vacuum, CO pulse titration was performed at 35°C using a 279 µL injection loop filled with pure CO and a 133 

30 NmL/min flow of He carrier gas. A thermal conductivity detector (TCD) at the sample cell outlet measured 134 

the CO in the effluent gas and was used to determine the CO adsorption capacity (NCO ads; mmol COads/gPt). After 135 

CO pulse titration, the sample was heated to 550°C (20°C/min) in a 30 NmL/min flow of He to desorb CO from 136 

the catalyst surface and then cooled to room temperature. For most samples, the characterization was 137 

repeated for a second portion of the catalyst sample and the average of the two measurements was used. 138 

Analyzed samples were subsequently stored at room temperature in ambient air. 139 

Assuming that CO adsorbs as a monolayer on the Pt surface atoms, the CO adsorption capacity is directly 140 

proportional to the number of surface Pt atoms (𝑁𝑁𝑃𝑃𝑃𝑃,𝑆𝑆; PtS atom/gPt). Using a stoichiometric factor of unity for 141 

the adsorption of CO on Pt [42, 52, 53], the Pt dispersion (DPt; %) is calculated as the ratio of surface Pt atoms 142 

to the total number of Pt atoms (𝑁𝑁𝑃𝑃𝑃𝑃; Pt atom/gPt): 143 

𝐷𝐷𝑃𝑃𝑃𝑃 =
𝑁𝑁𝑃𝑃𝑃𝑃,𝑆𝑆

𝑁𝑁𝑃𝑃𝑃𝑃
⋅ 100% =

𝑁𝑁𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎

𝑁𝑁𝑃𝑃𝑃𝑃
⋅ 100% (1) 

Note that for equation (1), the units of NCO ads are simply number of CO molecules/gPt. The surface-averaged Pt 144 

particle diameter (dPt; nm) is calculated from the ratio of Pt volume (𝑉𝑉𝑃𝑃𝑃𝑃; Å3 Pt/gPt) to Pt surface area (𝐴𝐴𝑃𝑃𝑃𝑃,𝑆𝑆; Å2 145 

Pt/gPt), assuming hemispherical Pt particles [52]. The Pt volume is calculated from the Pt density (𝜌𝜌𝑃𝑃𝑃𝑃; 2.145⋅10-146 

23 gPt/Å3 Pt [53]), while the Pt surface area is calculated from 𝑁𝑁𝑃𝑃𝑃𝑃,𝑆𝑆 and the cross-sectional area of one Pt atom 147 

(𝐴𝐴𝑃𝑃𝑃𝑃,𝑋𝑋; 8.0 Å2 Pt/Pt atom [53]). The equation for the average Pt particle diameter is therefore:  148 
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𝑑𝑑𝑃𝑃𝑃𝑃 = 6 ⋅
𝑉𝑉𝑃𝑃𝑃𝑃
𝐴𝐴𝑃𝑃𝑃𝑃,𝑆𝑆

=
6

𝜌𝜌𝑃𝑃𝑃𝑃 ⋅ 𝑁𝑁𝑃𝑃𝑃𝑃,𝑆𝑆 ⋅ 𝐴𝐴𝑃𝑃𝑃𝑃,𝑋𝑋
 (2) 

Catalyst samples C, D, and I were analyzed using Transmission Electron Microscopy (TEM) to verify the average 149 

Pt particle diameters determined from CO pulse titration. A FEI Titan ETEM, running at a 300 kV acceleration 150 

voltage with spherical aberration corrector was used to characterize the samples in vacuum at room 151 

temperature. The Pt particles observed had a close to circular shape and the Pt particle diameters were 152 

therefore measured for a circle that tightly outlined each particle. 153 

2.2.2 Activity Measurements 154 
The catalysts were tested for the oxidation of CO, HC, and NO. All samples used in the activity measurements 155 

were taken from the portion previously used in the CO pulse titration, and which had subsequently been stored 156 

at room temperature in ambient air (Section 2.2.1).  157 

The CO oxidation activity was measured using a quartz U-tube reactor (Di = 3 mm). The reactor was loaded with 158 

a mixture of 10 mg catalyst (150-300 µm) and 50 mg glass beads (212-300 µm), fixed between two plugs of 159 

quartz wool. The flow was directed upwards through the catalyst bed, and the temperature was measured with 160 

a thermocouple placed inside the reactor at the catalyst bed outlet. 161 

To measure the CO oxidation activity, a flow of a 310 NmL/min was used with a feed gas consisting of 240 ppm 162 

CO, 2.8 vol. % H2O, 9.7 vol. % O2, and balance N2, resulting in a space velocity of 0.021 mol/(gcat·s).  Water vapor 163 

was added to the gas mixture by bubbling it through a heated water flask at 30°C. The activity measurements 164 

were done by heating the catalyst from 40°C to 550°C at a rate of 5°C/min, holding at 550°C for 1 hour, 165 

followed by cooling to about 40°C. The cooling rate was set to 5°C/min, which could be followed until about 166 

425°C where the cooling rate became limited to the natural cooling of the system. The concentrations of CO 167 

and CO2 in the gas were measured using a continuous gas analyzer (Uras-26; ABB) and the concentration of 168 

water was determined using a humidity probe (HC2-IC102; Rotronic), which were both placed after the reactor. 169 
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The heating and cooling procedures were repeated on the same reactor loading in most cases, to check 170 

repeatability of the results. 171 

The catalysts were tested for hydrocarbon oxidation in the same manner as described above for CO oxidation, 172 

by replacing CO with 145 ppm of propene. Even though a typical diesel exhaust contains a variety of 173 

hydrocarbon components, propene (C3H6) was used as a model compound for hydrocarbon oxidation, 174 

following common practice [5, 10, 11, 23, 24, 46]. The propene conversion was determined based on the CO2 175 

concentrations measured in the product gas, using the same analyzer as for CO oxidation, and the 176 

stoichiometry of the reaction equation, forming three CO2 molecules per C3H6 molecule. The CO2 177 

concentrations measured at 550°C corresponded to full conversion and these were used to determine the feed 178 

concentration of propene, which agreed well with that expected from the set gas flows. 179 

For NO oxidation, a different flow reactor setup equipped with a NOx analyzer was used. A quartz U-tube 180 

reactor (Di = 6 mm) was loaded with a mixture of 20 mg catalyst sample (150-300 µm) and 100 mg glass beads 181 

(212-300 µm), fixed between two plugs of quartz wool. The gas flowed upwards through the catalyst bed and 182 

the temperature was measured with a thermocouple placed inside the reactor at the catalyst bed outlet. The 183 

feed gas was 485 ppm NO, 7.8 vol. % H2O, 9.7 vol. % O2, and balance N2, with a total flow of 1030 NmL/min, 184 

resulting in a space velocity of SV = 0.035 mol/(gcat·s). Water was added to the gas mixture by bubbling a 185 

separate flow of N2 through water at 80°C. The concentrations of NO and NO2 were measured using a 186 

continuous gas analyzer (Limas11-HW; ABB) and the concentration of water was determined using a humidity 187 

probe (HC2-IC102; Rotronic). The procedure for the activity measurements were similar to those used in CO 188 

and C3H6 oxidation, with heating from 100°C to 550°C at a rate of 5°C/min, holding at 550°C for 1 hour, and 189 

cooling to 100 °C. The cooling was done at an initial rate of 5°C/min until the heat loss became controlling at 190 

450°C and the cooling rate became lower. For NO oxidation, heating and cooling procedures were repeated a 191 
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second and third time for two different catalysts, and these showed no significant difference (see Figure S4 in 192 

Supplementary Data). Therefore, the repeated cycles were omitted for all other samples in the measurement 193 

for NO oxidation. 194 

3. Results 195 

3.1 Determination of Pt Particle Size 196 

Table 1 presents the CO adsorption capacity measured by CO pulse titration for the different catalysts, as well 197 

as the calculated Pt dispersions and average Pt particle diameters. Since Pt dispersion and Pt particle diameter 198 

are inversely proportional, we choose to use the Pt particle diameter to describe the dispersion and to obtain a 199 

direct reference to the Pt particle size. The data in Table 1 shows that the calcination atmosphere and 200 

subsequent thermal treatments with various temperatures, gas atmospheres, and durations can be used to 201 

vary the average Pt particle diameter of the catalyst.  202 

The smallest Pt particles were obtained for samples A, B, and C that were only calcined at 550°C for 8 hrs, with 203 

different gas atmospheres during calcination having a limited effect. Calcination in a wet oxidative atmosphere 204 

produced the smallest Pt particles of 1.3 nm (sample A) and the dry oxidative atmosphere yielded slightly 205 

larger Pt particles of 1.6 nm (sample B), while calcination in a dry inert atmosphere of N2 resulted in a small 206 

additional increase to 2.1 nm (sample C). These results indicate that Pt particles of 1-2 nm are obtained from 207 

the initial calcination of [PtCl6]2- adsorbed on the surface of γ-Al2O3 and can be controlled to some extent by 208 

varying the calcination atmosphere between pure N2 and wet or dry oxidative atmospheres.   209 

Pt particles larger than 2 nm were formed by thermally treating catalyst samples that had been prepared by 210 

calcination in a dry N2 atmosphere at 550°C for 8 hrs, corresponding to sample C. The increase in Pt particle 211 

diameter was controlled by varying the temperatures, durations, and atmospheres of the thermal treatments. 212 
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Thermally treating the catalysts in a flow of N2 at 600°C, 650°C, or 750°C for 12 hrs gave limited increases in Pt 213 

particle diameter for samples D (2.7 nm), E (3.0 nm), and F (3.2 nm) in Table 1. Furthermore, increasing the 214 

duration of the thermal treatment in a flow of N2 at 750°C from 12 hrs (sample F) to 48 hrs (sample G) led to a 215 

slight increase in Pt particle diameter from 3.0 nm to 4.3 nm. To form the large Pt particles of samples H (7.7 216 

nm) and I (18.7 nm), the thermal treatments of catalysts were done in a flow of N2, O2, and water vapor at 217 

650°C or 750°C for 8 hrs. Similarly, the fresh Sigma-Aldrich catalyst with 2.1 nm Pt particles (sample SA1) was 218 

thermally treated in a flow of N2, O2, and water vapor at 550°C for 8 hrs, yielding sample SA2 with relatively 219 

larger Pt particles of 4.5 nm. Overall, these results indicate that the combination of oxygen, water vapor, and 220 

high temperature drives the sintering of Pt particles. 221 

Figure 2 shows TEM images for catalyst samples C, D, and I, alongside the number based particle size 222 

distributions and the corresponding log-normal distributions. The Pt particles of sample C are mostly between 223 

1-4 nm, with an average Pt particle diameter of 2.5 ± 1 nm, while most particles of sample D are between 1-4.5 224 

nm with an average Pt particle diameter of 2.8 ± 1 nm. These Pt particle sizes match well with 2.1 and 2.7 nm 225 

found from CO pulse titration. For sample I, which has much larger particles, only 19 particles were identified 226 

by TEM. The sizes vary from 11-63 nm, but the majority of the particles are between 11 and 22 nm. This is also 227 

in good agreement with the results from CO pulse titration, with an estimated average particle size of 18.7 nm. 228 

These results indicate that the average Pt particle diameters obtained by CO pulse titration are a good estimate 229 

of the Pt particle size. 230 

 231 

Figure 2.  232 

 233 
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3.2 Effect of Pt Particle Size on Activity 234 

During the 1st heating cycle to 550°C, changes in the prepared catalysts occur leading to higher activity, while 235 

the data for the 1st cooling and 2nd heating/cooling cycles are comparable, indicating that the catalysts have 236 

reached a stable state after the initial heating to 550°C (see Figures S1, S2, S3, and S4 of the Supplementary 237 

Data). Sintering may occur during the 1st heating and cooling cycle, but the overlaying activity measurements of 238 

SA1 (2.1 nm) and SA2 (4.5 nm) for C3H6 oxidation (see Figure S2a and S2b), which unlike CO and NO oxidation 239 

does not exhibit hysteresis behavior [54], indicate that sintering is negligible for samples with Pt particles of 2.1 240 

nm or larger. The samples with Pt particles smaller than 2.1 nm, such as A (1.3 nm) and B (1.6 nm), will still 241 

have the smallest Pt particles after the 1st heating and cooling cycle, and sintering will at most shift the particle 242 

sizes partly towards 2.1 nm. This gives a small margin of uncertainty in the exact Pt particle size of A and B used 243 

in the following presentation of results.   244 

The activity measurements from the 1st cooling cycles for CO oxidation, C3H6 oxidation, and NO oxidation, are 245 

shown in Figure 3. All catalysts are active for each of the three oxidation reactions, but clear differences in the 246 

temperatures at which the rate of each reaction becomes appreciable are observed. For the most active 247 

catalysts, this occurs in the range of 45-65°C for CO oxidation, 100-130°C for C3H6 oxidation, and 150-250°C for 248 

NO oxidation.  249 

 250 

Figure 3. 251 

 252 

Figure 3a shows the CO conversion during the 1st cooling cycle. Above 120°C, the catalysts all maintain 253 

complete oxidation of CO to CO2. For the catalysts with average particle diameters of 1.6 (B), 2.1 (C), 2.1 (SA1), 254 
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2.7 (D), and 3.2 nm (F), the CO oxidation starts at the lowest temperature and these are therefore the most 255 

active. The catalysts with smaller and larger particles all require a higher temperature for CO oxidation and are 256 

therefore less active, pointing to an optimal Pt particle size for CO oxidation. The oscillatory behavior seen for 257 

sample C (2.1 nm) in Figure 3a and for sample F (3.0 nm) in Figure S1c of the Supplementary Data, is known for 258 

CO oxidation over Pt and the phenomena associated with this have been thoroughly discussed elsewhere [25, 259 

26, 55], and is beyond the scope of this article. 260 

A similar trend is observed for C3H6 oxidation. In Figure 3b, the C3H6 conversion during the 1st cooling cycle 261 

shows that the onset temperature of the reaction is higher than for CO oxidation. Below 100°C, no significant 262 

C3H6 conversion is obtained for any catalyst and above 180°C full conversion of C3H6 is reached. The catalysts 263 

with Pt particles diameters of 2.1 (SA1), 2.7 (D), and 3.2 nm (F) were the most active, while smaller and larger 264 

Pt particles resulted in a lower catalytic activity, indicating an optimum in Pt particle size for C3H6 oxidation as 265 

well.  266 

For NO oxidation, the data looks quite different compared to CO and C3H6 oxidation. Figure 3c shows the NO 267 

conversion during the 1st cooling cycle with a maximum in conversion between 325-450°C. This maximum is 268 

due to the NO2 decomposition imposed by the thermodynamic equilibrium of the reaction NO + ½ O2 ↔ NO2, 269 

which shifts toward NO + O2 with increasing temperature, resulting in a lower NO conversion at higher 270 

temperatures. The equilibrium NO conversion is indicated by the dashed black line in Figure 3c. Below 300°C, 271 

where the contribution of the reverse reaction is limited, there are significant differences in catalytic activity 272 

observed. The most active catalysts have an average Pt particle diameter of 2.1 (SA1), 2.7 (D), 3.0 (E), and 4.3 273 

nm (G). This indicates that there is an optimal particle size for NO oxidation, like for CO and C3H6 oxidation.  274 

In order to better visualize the observed trends of activity with the Pt particle diameter, we used the 275 

temperature at which 50% conversion was measured (T50) for CO oxidation and C3H6 oxidation. For NO 276 
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oxidation, not all catalyst samples reached 50% conversion and therefore, the temperature for 20% conversion 277 

(T20) was used instead. A lower T50 or T20 corresponds to a higher activity; the choice of conversion level is 278 

arbitrary and different choices did not lead to significantly different trends. Figure 4 shows the observed trends 279 

for the T50 and T20 with the Pt particle size, derived from 1st cooling and 2nd heating/cooling cycles for CO, C3H6, 280 

and NO oxidation. In Figure 4, for catalysts with repeated CO pulse titration measurements, the end points of 281 

the error bars indicate the individual Pt particle sizes calculated from the repetitions.  282 

 283 

Figure 4. 284 

 285 

For CO oxidation, in Figure 4a, the catalysts with an average Pt particle diameter of 1.6 (B), 2.1 (C), 2.1 (SA1), 286 

2.7 (D), and 3.2 nm (F) show the lowest T50 at around 60 °C, and therefore are the most active catalysts for CO 287 

oxidation. The T50 for smaller particles is about 75°C for 1.3 nm (A) and about 110 °C for very large particles of 288 

18.7 nm (I), indicating a significantly lower activity for these catalysts. A similar trend is observed for C3H6 289 

oxidation in Figure 4b; catalysts with an average Pt particle diameter of 2.1 (SA1), 2.7 (D), and 3.2 nm (F) 290 

achieve the lowest T50 of about 135°C. The T50 for both the smallest particles of 1.3 nm (A) and largest of 18.7 291 

nm (I) are about 148°C. For NO oxidation, in Figure 4c, the T20 is lowest for samples with Pt particle diameters 292 

of 2.1 (SA1), 2.7 (D), 3.0 (E), and 4.3 nm (G) at about 220°C. The largest Pt particles of 18.7 nm (I) show an 293 

increase in T20 to 275°C, related to a decrease in activity. In contrast, decreasing the Pt particle diameter to 1.3 294 

nm (A) results in a very significant increase of T20 to 380°C and therefore a significant decrease in the catalytic 295 

activity. These data show that the highest activity for all three reactions relevant for application of Pt as diesel 296 

oxidation catalyst is obtained for catalysts with an average Pt particle diameter in the range of 2-4 nm.   297 
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To check whether the loss of activity for larger particles is due to the loss of Pt surface area, the turnover 298 

frequency (TOF = mol/(s·mmol Pts)) was determined for the CO, C3H6, and NO oxidation reactions. If the loss of 299 

surface area solely causes the loss of activity for larger Pt particles, then the TOF should remain constant. The 300 

TOF was calculated from the mass based rate of reaction (r’= mol/(s·gPt)) and the number of surface Pt atoms, 301 

𝑁𝑁𝑃𝑃𝑃𝑃,𝑆𝑆 per gram platinum, as derived from the CO adsorption capacity, NCO ads. The rate of reaction rate, r’, was 302 

evaluated for each reaction at the temperature at which 10% conversion was reached for the most active 303 

catalyst, to ensure differential conditions. The TOF was therefore evaluated at 50°C for CO oxidation (10% CO 304 

conversion for sample D (2.7 nm)), at 105°C for C3H6 oxidation (10% conversion for sample F (3.2 nm)), and 305 

190°C for NO oxidation (10% conversion for sample SA1 (2.1 nm)).  306 

The TOFs for CO, C3H6, and NO as function of average Pt particle diameter are presented in Figure 5 along with 307 

the rates of reaction and CO adsorption capacities. From Figure 5a, the TOF for CO oxidation increases from 1.3 308 

(A) to 2.7 nm (D), achieving the maximum TOF value for 2.7 nm (D). An increase in the Pt particle diameter to 309 

4.5 (SA2) and 18.7 nm (I) causes a steep decrease in the TOF for CO oxidation. Furthermore, the maximum in 310 

rate of reaction for CO oxidation coincides with the maximum TOF at a Pt particle size of 2.7 nm (D). For the 311 

C3H6 oxidation TOF in Figure 5b, the TOF increases with the Pt particle diameter from 1.3 (A) to 3.2 nm (F). For 312 

larger Pt particles, the TOF continues to increase slightly, unlike the TOF for CO oxidation. Although the highest 313 

C3H6 TOF value is observed for 18.7 nm (I) Pt particles, the maximum mass based rate of reaction is measured 314 

for the samples with a Pt particle size between 2-4 nm. Similarly, the TOF for NO oxidation in Figure 5c 315 

increases with a change in the Pt particle diameter from 1.3 (A) to 2.1 (SA1) - 2.7 nm (D), and has significantly 316 

higher values for 7.7 nm (H) and 18.7 nm (I). For C3H6 and NO oxidation, the maximum TOF does therefore not 317 

correspond to the maximum in the mass based rate of reaction for 2-4 nm Pt particles. The fact that the TOF 318 

for C3H6 and NO oxidation does not decrease significantly for large particles is consistent with a loss of activity 319 

due to a decrease of Pt surface.   320 
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4. Discussion 321 

An optimum in the rate of reaction for the oxidation of CO, C3H6, and NO was observed for Pt particle 322 

diameters of 2-4 nm for all three reactions. For application as a DOC, this means that tuning the Pt particle size 323 

to this range enhances the CO, HC (C3H6), and NO oxidation reactions. However, the TOF does not follow this 324 

trend. For CO oxidation, the maximum in TOF occurs for 2-3 nm Pt particles [12], while the TOF increases with 325 

Pt particle size for both HC oxidation [13-18] and NO oxidation [12, 19, 20]. The observation that the optimum 326 

particle diameter coincides with a maximum in TOF for CO oxidation but not for HC and NO oxidation indicates 327 

that the reasons for the maxima in rates of reaction are different. 328 

A phenomenon occasionally used to explain particle size effects is the transition from a metallic to a non-329 

metallic behavior that occurs when Pt particles become sufficiently small, since the band structure responsible 330 

for the metallic character of Pt cannot fully develop for very small particles [30, 31, 56, 57]. In general, this 331 

effect is most significant for clusters and particles below 1 nm in size for Pt/γ-Al2O3 [30, 57]. The smallest 332 

average Pt particle diameter considered in this work is 1.3 nm, and therefore we expect this effect to have a 333 

minor contribution to the lower TOF for the small Pt particles in this study. Instead we focus on the changes in 334 

the distribution of types of surface Pt atoms with variation in Pt particle sizes, and the resulting influence on 335 

catalyst behavior. 336 

A change in Pt particle size affects the relative number of corner, edge, and terrace atoms, and since the 337 

contribution of these surface Pt atoms to the catalytic activity can be different, the catalytic activity becomes 338 

dependent on the Pt particle size. Figure 6 shows the calculated total and relative abundance of corner, edge, 339 

and terrace Pt atoms as a function of the Pt particle diameter for a 1 wt.% Pt loading, with the assumption that 340 

the Pt particles have a truncated octahedral shape and are supported on a (111)-plane. The calculations are 341 

done as outlined in the supplementary material of reference [58]. Figure 6a shows that Pt particles smaller 342 
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than 4 nm have an appreciable number of edge and corner atoms, and that the number of terrace atoms starts 343 

to decrease, while the large Pt particles are dominated by terrace atoms. A comparison of Figure 6a with 344 

Figures 5b and 5c indicate that the TOFs for C3H6 and NO oxidation follow the relative amount of Pt terrace 345 

atoms, and the highest C3H6 and NO TOFs are obtained for large Pt particles, as previously reported [5, 12-20]. 346 

As a consequence, the maximum rates for HC and NO oxidation coincide with the maximum total number of 347 

terrace atoms, which occurs in the range of 2-4 nm. The decrease in reaction rate for large particles is then due 348 

to a lower number of Pt atoms in terraces. 349 

 350 

Figure 6. 351 

 352 

In contrast to HC and NO oxidation, the oxidation of CO exhibits a maximum in TOF at 2.7 nm and very low TOF 353 

for large Pt particles. Particles of 2.7 nm in diameter have a high amount of edge atoms, but the maximum 354 

amount of edge atoms is found at about 1.5 nm. If CO oxidation were governed by edge sites alone, then we 355 

should have found the highest CO oxidation activity for catalyst B, with a particle size of 1.6 nm. This indicates 356 

that edges are not the only source of catalytic activity for CO oxidation, and the maximum in TOF occurring 357 

close to the maximum in terrace atoms points to a contribution of the terrace atoms as well. The reason for the 358 

lower CO-oxidation activity of large Pt atoms is then the lack of edge sites, rather than the loss of terrace sites 359 

as was the case for HC and NO oxidation. 360 

From the discussion above, it follows that the role of the terrace sites in HC and NO oxidation is different 361 

compared to CO oxidation. The higher activity of the terraces for the oxidation of NO has been ascribed to a 362 

reaction of O2 with vacancies on terraces nearly saturated with O* adatoms [19]. As terraces bind the oxygen 363 
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atoms weaker, the vacancies are easier to create on terraces, thus favoring the NO oxidation. For hydrocarbon 364 

oxidation, the weakly bound O* species on terrace atoms are needed for the removal of H atoms in 365 

hydrocarbon oxidation [18]. For CO oxidation, the presence of edge sites is important, and the CO oxidation 366 

occurs preferentially between oxygen chemisorbed to step sites and CO adsorbed to terrace atoms [59-62]. 367 

The CO oxidation reaction then becomes dependent on the presence of both terrace and edge sites. 368 

An alternative explanation for the importance of edge sites in CO oxidation is the effect of water on the CO 369 

oxidation reaction. By using isotopically labeled oxygen, it was shown that water is actually the main source of 370 

the oxygen in CO2 in the low temperature CO oxidation over Pd/Al2O3 in a wet feed gas [63]. This suggests that 371 

CO2 is in fact formed from CO and water in a water gas shift reaction, rather than by an oxidation of CO with 372 

oxygen. Pt is also an efficient catalyst for water gas shift [64], and therefore the water gas shift reaction can 373 

also occur in CO oxidation under the wet conditions in a diesel exhaust gas. The water gas shift reaction 374 

requires dissociation of the water molecule to form adsorbed OH fragments, which then react with CO to form 375 

CO2. DFT calculations indicate that this step is difficult on a Pt(111) surface and large particles, but becomes 376 

easier with decreasing Pt particle size due to an increase in edge and corner atoms [65, 66]. Furthermore, the 377 

enhanced O2 dissociation on the edge sites may actually be beneficial for the dissociation of H2O, since H2O can 378 

readily react with O* in the presence of an extra H2O to facilitate the formation of OH* (H2O* + O* + H2O*  2 379 

OH* + H2O*) [67-69]. The subsequent formation of COOH* from CO* and OH* occurs more easily on terrace 380 

atoms (0.56 eV activation energy on Pt(111)) compared to step atoms (1.4 eV activation energy on Pt(211)) 381 

[70], and the final step, in which CO2 is formed, occurs readily through the transfer of H from COOH* to a 382 

neighboring OH*, forming H2O [69]. This means that the reaction pathway depends on both the edge atoms - 383 

for the dissociation of O2 and H2O - and on the terrace atoms for formation of COOH* [67, 68], in agreement 384 

with our observation that the maximum rate of CO oxidation is observed for a particle size that lies between 385 

the sizes corresponding to the maximum amount of edge and terrace atoms. In HC and NO oxidation, a similar 386 
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reaction path with water does not exist, and consequently, water has an inhibitive effect on HC and NO 387 

oxidation [7, 21-23]. 388 

The lower activity for small Pt particles below 2 nm can also be understood from the site distribution shown in 389 

Figure 6. Small particles contain mostly edge and corner atoms, and the lack of terrace atoms, which are 390 

required for the CO, HC, and NO oxidation reactions, then results in the low activities. Figure 6 shows that 391 

particles smaller than 2 nm contain less terrace atoms, which is in good agreement with our observation that 392 

both the activity and TOF are lower for catalysts with Pt particle size below 2 nm. Furthermore, small Pt 393 

particles are also more easily oxidized than large particles [40, 41, 68, 71] and, consequently, the reduction of 394 

small Pt particles becomes harder. This is indicated by the 100-150 °C higher reduction temperature of oxidized 395 

Pt particles of 1.5 nm in size compared to for Pt particles of 4 nm [40, 71]. However, as oxygen always is 396 

present under the typical conditions in a DOC, it is difficult to distinguish whether the lower activity is the result 397 

from a change in chemistry due to oxide formation, or due to the loss of active sites, as both effects always will 398 

occur simultaneously. 399 

According to the discussion above, the optimal Pt particle size of 2-4 nm for the oxidation of CO, C3H6, and NO 400 

over Pt/Al2O3 catalysts in the presence of water is mainly determined by the number of terrace sites. For the 401 

oxidation of C3H6 and NO, Pt particles larger than approximately 4 nm are less active due to the loss in surface 402 

area, but the TOF remains more or less constant. For CO oxidation, edge sites also play a role, and therefore 403 

the larger particles are less active due to the loss of edge sites, resulting in a lower TOF for large particles. The 404 

lower activity and TOF for the oxidation CO, C3H6 and NO for particles smaller than 2 nm can be understood by 405 

the lower amount of terrace sites in such particles, although the effects of a higher stability of Pt oxide in small 406 

particles are possible and indistinguishable. 407 
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5. Conclusion 408 

The optimum Pt particle size for the oxidation of CO, C3H6, and NO was investigated through preparation, 409 

characterization, and activity measurements of a range of 1 wt.% Pt/Al2O3 catalysts. The catalysts were 410 

prepared by wet impregnation and different calcination and thermal treatments, in order to obtain a range of 411 

samples with Pt particles diameters of 1.3-18.7 nm, as determined from CO pulse titration and verified by TEM.  412 

Comparison of catalytic activity as a function of temperature and Pt particle diameter showed that the greatest 413 

catalytic activities were achieved for Pt particle diameters between 2-4 nm for all three reactions. The results 414 

indicate that for C3H6 and NO oxidation, terrace surface atoms achieved the highest TOF values and were 415 

identified as the most active type of surface atoms, with the greatest abundance of terrace atoms 416 

corresponding to the optimum Pt particle diameter between 2-4 nm. With increasing Pt particle size, the rate 417 

of reaction decreases due to the significant decrease in Pt surface area relative to the slight increase in TOF. 418 

For CO oxidation, the particle size dependency is more complex and a maximum in TOF was observed for 2.7 419 

nm, suggesting that CO oxidation under diesel exhaust conditions is dependent on both terrace and edge 420 

atoms. The dependence of CO oxidation on both terrace and edge atoms results in an optimum TOF between 421 

2-4 nm, since the absence of terraces in small particles or edges in large particles effectively decreases the 422 

reaction rate of the individual reactions.  423 

Based on the results in this study, a diesel oxidation catalyst based on Pt/Al2O3 with Pt particles between 2 and 424 

4 nm in diameter is optimal for CO, hydrocarbon, and NO oxidation in the presence of water. 425 
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Figure 1: Diagram of a typical diesel exhaust aftertreatment system consisting of a diesel oxidation catalyst 432 

(DOC), a diesel particulate filter (DPF), the injection of urea or NH3, a catalyst for the selective catalytic 433 

reduction of NOx with NH3 (NH3-SCR), and an ammonia slip catalyst (ASC).  434 

 435 

Table 1: Overview of catalysts prepared. Catalysts from the first batch (A-B) were given oxidative calcinations at 436 

550°C for 8 hours, and no further thermal treatment. Catalysts from the second batch (C-I) were all initially 437 

calcined in a flow of N2 at 550°C for 8 hours, and most samples (D-I) were subsequently given thermal 438 

treatments with different temperatures, atmospheres, and durations. 1 wt.% Pt/Al2O3 catalysts from Sigma-439 

Aldrich, fresh (SA1) or thermally treated (SA2), were also considered. The atmospheres for calcination and 440 

thermal treatments were pure N2, 10 vol.% O2 in N2, or 3 vol.% H2O and 10 vol.% O2 in N2. The CO adsorption 441 

capacity, Pt dispersion, and average Pt particle size were determined by CO pulse titration. Average Pt particle 442 

diameters determined with TEM for samples C, D, and I are given in parentheses.   443 

 444 

Figure 2: Left column: TEM images for samples C, D, and I. Right column: Number based Pt particle size 445 

distributions based on TEM images and corresponding log-normal distributions for samples C, D and I. µ is the 446 

number average Pt particle diameter with a standard deviation of σ. 447 

 448 

Figure 3: Conversion curves for 1st cooling cycles. a) CO oxidation: 10 mg catalyst, 310 NmL/min gas flow, SV = 449 

0.021 mol/(gcat·s), 240 ppm CO, 2.8 vol.% H2O, 9.7 vol.% O2, and balance N2. b) C3H6 oxidation: 10 mg catalyst, 450 

310 NmL/min gas flow, SV = 0.021 mol/(gcat·s), 145 ppm C3H6, 2.8 vol.% H2O, 9.7 vol.% O2, and balance N2. c) NO 451 

oxidation: 20 mg catalyst, 1030 NmL/min gas flow, SV = 0.035 mol/(gcat·s), 485 ppm NO, 7.8 vol.% H2O, 9.7 452 

vol.% O2, and balance N2. The dashed black line is the thermodynamic equilibrium for NO and NO2. 453 
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Figure 4: Temperatures for 50% conversion (T50) for 1 wt.% Pt/Al2O3 with varying Pt particle diameters during a) 454 

CO oxidation: 10 mg catalyst, 310 NmL/min gas flow, SV = 0.021 mol/(gcat·s), 240 ppm CO, 2.8 vol.% H2O, 9.7 455 

vol.% O2, and balance N2, and b) C3H6 oxidation: 10 mg catalyst, 310 NmL/min gas flow, SV = 0.021 mol/(gcat·s), 456 

145 ppm C3H6, 2.8 vol.% H2O, 9.7 vol.% O2, and balance N2. c) Temperatures for 20% conversion (T20) for NO 457 

oxidation: 20 mg catalyst, 1030 NmL/min gas flow, SV = 0.035 mol/(gcat·s), 485 ppm NO, 7.8 vol.% H2O, 9.7 458 

vol.% O2, and balance N2. The end points of the error bars indicate the individual Pt particle sizes for catalysts 459 

with repeated CO pulse titration measurements. For all three graphs, the black lines are to help guide the eye. 460 

 461 

Figure 5: The turnover frequency (TOF, red) for varying Pt particle diameters calculated for a) CO oxidation at 462 

50°C, b)  C3H6 oxidation at 105°C, and c)  NO oxidation at 190°C from the rate of reaction (r’, blue ) and  CO 463 

adsorption capacity (NCO ads, green), which is directly proportional to the number of available Pt atoms. The 464 

measurements are for the 1st cooling cycle.  Solid lines for rate of reaction (r’, blue) and turnover frequency 465 

(TOF, red) are to help guide the eye.  466 

 467 

Figure 6: Calculated total and relative number of corner, edge and terrace atoms for Pt particles of different 468 

sizes, assuming a truncated octahedron geometry and perfectly uniform particle size distributions. Bottom 469 

panel: The total number of different Pt atoms per gram Pt (mmol Pt atoms/gPt). Top panel: The relative number 470 

of corner, edge, and terrace Pt atoms per specific Pt particle size, given as a percentage.   471 
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Figure 1. 472 
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Table 1. 474 

  475 

Sample 
Name 

Calcination 
Atmosphere 

@550°C for 8 hrs 

Thermal 
Treatment 

Temperature 

Thermal 
Treatment 

Atmosphere 

Thermal 
Treatment 
Duration 

CO Adsorption 
Capacity, NCO ads 

DPt, Pt 
Dispersion  

dPt, Average  
Pt Particle 
Diameter  

(°C) () (hrs) (mmol COads/gPt) (%) (nm) 
A H2O+O2+N2 - - - 4.12 80 1.3 
B O2+N2 - - - 3.53 69 1.6 
C N2 - - - 2.67 52 2.1 (2.5 ± 1) 
D N2 600 N2 12 2.13 42 2.7 (2.8 ± 1) 
E N2 650 N2 12 1.88 37 3.0 
F N2 750 N2 12 1.81 35 3.2 
G N2 750 N2 48 1.34 26 4.3 
H N2 650 H2O+O2+N2 8 0.74 14 7.7 
I N2 750 H2O+O2+N2 8 0.31 6 18.7 (23 ± 14) 

SA1 Sigma-Aldrich - - - 2.55 50 2.1 
SA2 Sigma-Aldrich 550 H2O+O2+N2 8 1.18 23 4.5 
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Figure 2. 476 
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Figure 3. 478 
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Figure 4. 480 
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Figure 5. 482 
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Figure 6. 484 
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A.1 Supplementary Data 493 

Figures S1 and S2 show the activity measurements for CO and C3H6 oxidation over the 1 wt.% Pt/Al2O3 catalysts 494 

with varying Pt particle size for the a) 1st heating cycle, b) 1st cooling cycle, c) 2nd heating cycle, and d) 2nd 495 

cooling cycle. The activity measurements during the 1st heating cycle behave significantly different compared to 496 

the subsequent cooling and heating phases. This suggests that the catalysts undergo a change during the 497 

heating cycle shown in Figure S1a and Figure S2a, and that the catalysts reach a stable state after the initial 498 

heating to 550°C, indicated by the subsequently similar CO conversion curves. 499 

 500 

Figure S1 501 

 502 

Figure S2 503 
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Figure S3 shows the NO oxidation activity measurements for the a) 1st heating cycle and the b) 1st cooling cycle. 504 

Similarly to CO and C3H6 oxidation, the 1st heating curve for NO oxidation is significantly different than the 505 

subsequent cooling curve, indicating again a change in the catalyst.  506 

 507 

Figure S3. 508 

 509 

For NO oxidation, we decided to exhibit two different catalyst samples to repeated heating and cooling cycles 510 

in order to verify the stability of the catalysts tested. Figure S4 shows repeated heating and cooling cycles for 1 511 

wt.% Pt/Al2O3 catalysts with an average Pt particle diameter of a) 1.3 nm (tested with four heating and cooling 512 

cycles) and b) 2.7 nm (tested with three heating and cooling cycles). The catalysts were prepared using the 513 

methods described in Section 2.1, with 1.3 nm Pt particles prepared using the same procedure as for sample A, 514 

while the sample with 2.7 nm Pt particles used the same procedure as for sample C, but with a calcination 515 

temperature of 750°C and a duration of 12 hours.  Figure S4 shows again the significant change in catalytic 516 

activity from the 1st heating cycle to the subsequent cooling and heating cycles, for both samples. The 517 

subsequent cooling and heating cycles show a stable catalytic activity, with only limited changes occurring 518 

between the cooling cycles. Based on this we chose to limit the NO oxidation activity measurements to one 519 

heating and cooling cycle and used the activity measurement during the 1st cooling curve to compare catalytic 520 

activity of samples.  521 

 522 

 523 

  524 
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Figure S1: CO oxidation conversion curves for the a) 1st heating cycle, b) 1st cooling cycle, c) 2nd heating cycle, 525 

and d) 2nd cooling cycle. Operating conditions: 10 mg catalyst (150-300 µm), 50 mg inert glass beads (212-300 526 

µm), 310 NmL/min gas flow, SV = 0.021 mol/(gcat·s), 240 ppm CO, 2.8 vol.% H2O, 9.7 vol.% O2, and balance N2. 527 

 528 

Figure S2: C3H6 oxidation conversion curves for the a) 1st heating cycle, b) 1st cooling cycle, c) 2nd heating cycle, 529 

and d) 2nd cooling cycle. Operating conditions: 10 mg catalyst (150-300 µm), 50 mg inert glass beads (212-300 530 

µm), 310 NmL/min gas flow, SV = 0.021 mol/(gcat·s), 145 ppm C3H6, 2.8 vol.% H2O, 9.7 vol.% O2, and balance N2. 531 

 532 

Figure S3: NO oxidation conversion over 1 wt.% Pt/Al2O3 with for a) 1st heating cycle and b) 1st cooling cycle. 533 

Operating conditions: 20 mg catalyst (150-300 µm), 100 mg inert glass beads (212-300 µm), 1030 NmL/min gas 534 

flow, SV = 0.035 mol/(gcat·s), 485 ppm NO, 7.8 vol.% H2O, 9.7 vol.% O2, and balance N2. 535 

 536 

Figure S4: NO oxidation conversions over 1 wt.% Pt/Al2O3 for several heating and cooling cycles with average Pt 537 

particle diameters of a) 1.3 nm and b) 2.7 nm. Operating conditions: 20 mg catalyst (150-300 µm), 100 mg inert 538 

glass beads (212-300 µm), 1030 NmL/min gas flow, SV = 0.035 mol/(gcat·s), 485 ppm NO, 7.8 vol.% H2O, 9.7 539 

vol.% O2, and balance N2.  540 
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Figure S1. 541 
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Figure S2. 543 
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Figure S3. 545 

 546 
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Figure S4. 548 
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