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In the last decade, cumulative installed capacity of photovoltaic (PV) has grown at a compound average rate 
of 49% per year, reaching by the end of 2015 a worldwide installed capacity of 230 GW. In 19 countries the 
annual PV contribution to electricity demand was estimated to exceed the 1% mark, with Italy leading with 
at least 7.9% followed by Greece at 7.6% and Germany at 7%. Different IEA scenarios predict for 2050 a PV 
penetration between 6% and 16% of the world electric consumption [1], while other scenarios advocate 
for much more ambitious numbers in order to reach 100% renewable energy in the electricity sector in the 
same timeframe. For instance a roadmap from the Stanford University [2] envisions a total worldwide PV 
penetration of 47% in 2050, as shown in Figure 1.

Figure 1: A vision of the structural change required in worldwide electricity generation and consumption in order to 
reach 100% coverage by wind, water and solar (WWS) by 2050. Note that besides PV, the ‘Utility-scale solar’ fraction 
in the figure includes about 10% CSP generation [2].

Electricity grids can be affected by high PV generation long before attaining such ambitious penetration 
levels, introducing a stochastic variability dependent on meteorological conditions. On the daily time scale 
in particular, PV production increases the rapidity of load ramps so that a greater secondary reserve and 
ready supply is needed. This is accentuated in the evenings when the rapid reduction of large amounts of 
PV power production combines with an increase in electricity demand, a phenomenon which has come to 
be known as a “Nessie” or “duck” curve. 

1. INTRODUCTION
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1. INTRODUCTION 2. Rationale for PV power forecasting and observability

Figure 2: Example of a “duck” 
curve, showcasing typical grid 
load with and without high PV 
penetration over the course of 
a sunny day (from midnight to 
midnight) [3].  

Thus, a large share of PV power introduces new 
challenges for the stability of the electrical grid, 
both at the local and national level, requiring the 
need of revised reserve policy (more distributed 
than central) and utilization complementing 
technology solutions (flexible generation, flexible 
demand response, storage, etc.) to ensure electrical 
balancing and overcome the unpredictability and 
variability of demand and intermittent generation. 
Moreover it implies an increase in costs related to 
transactions and dispatching/balancing operations 
on the Day-Ahead, Intraday and Real-Time Energy 
Markets. Despite the challenges, grids can sustain 
high penetration of distributed power generation 
provided that quality of supply is addressed at 
connection point through the capabilities of modern 
power electronics, distributed control, and the use 
of ancillary services.

PV power forecasts could mitigate the effects of high 
solar power injection into the electricity grid, both 
for grid management and on the energy market. 
Short-term forecasts (intra hours) could be used to 
predict power ramps and voltage flickers as well 
as to better control operations on the Real-Time 
market and dispatching management. Mid-term 
forecasts (intra-day and day-ahead) could be used, 
on one hand, for load following to control voltage 
and frequency instability and for transmission 
scheduling to reduce the secondary reserve. On 
the other hand, it could be employed for a better 
match between the intra-day and day-ahead market 

commitment and the real PV production, reducing 
the energy unbalancing costs. For these reasons, 
the site and regional day ahead forecast of the 
solar power generated by large PV producers 
and Distribution System Operators (DSOs) is now 
mandatory in many European and non-European 
countries (Italy, Germany, Spain, Romania, USA, 
Japan etc.) yet the required level of accuracy is 
still generally undefined.

In its review of the challenges and opportunities 
associated with massive deployment of solar PV 
generation [4], the Grid integration working group of 
the ETIP PV identified forecasting and observability as 
critical technologies for the planning and operation 
of the power system with large PV penetration. In this 
white paper we set out to spell out in more details 
what features are needed from these technologies 
and what is the state of the art. 

Some very good reviews of forecasting techniques 
have been published in recent years [5, 6]. We 
have built on these by taking a step back and 
analysing the different use cases for forecasting 
in relation to PV, and by linking forecasting to the 
issue of observability i.e., the ability to evaluate at 
a given time the status of PV generation. Experts 
on power systems, PV technologies and forecasting 
contributed their knowledge of the field as well as 
first-hand results they have obtained and issues 
they have observed.

< 10 s

 
 

Switching of power electronics 

1 min
Fast start of pumped hydropower plants [7] 

15 min Gas power plant from 1/3 to full power  [9]

1 h Start-up and shutdown of most power plants

24 h

1 year Maintenance planning

10 years Expanding transmission infrastructure

20+ years
 

Table 1: Characteristic time constant of power system components

At any time in any power system, consumption (including losses and charging of storage systems) and 
production (including losses and discharging of storage systems) need to be equal. In a conventional power 
system operating in alternating current (AC) the frequency is a real-time indicator of this balance. However 
grid assets have finite dynamic characteristics so to ensure the balance any fluctuation of production or 
consumption needs to be anticipated as much as possible before it translates into frequency deviations.

Indeed, the characteristic time constants of power system components range from less than a second to 
ten years or more, as summarized in Table 1:

Prior to the introduction of variable renewable sources (wind and PV), power consumption was the only 
stochastically variable component in power system balance. Forecasting its variations was already introduced 
in the 1940s. It has since been refined to take into account “seasonal” variations (day of the year, day of 
the week, hour of the day) and the specific characteristics of different electricity uses (heating and cooling, 
cooking, industrial equipment, lighting, etc.). The focus has always been on regional or national aggregates [8].



98

2. Rationale for PV power forecasting and observability 2. Rationale for PV power forecasting and observability

The deployment of variable renewable generation is introducing new requirements on forecasting 
techniques. First of all PV and wind generators are much more sensitive to weather conditions. The main 
weather parameter with an influence on electricity demand is temperature, where heating or cooling is 
powered with electricity. This parameter varies relatively slowly in time and space. PV and wind on the other 
hand strongly depend on rapidly changing variables: as a first approximation, PV power is proportional to  
G · (1 + k logG) where G is the global irradiance on the plane of the PV array, k is an installation-dependent 
parameter, and wind power varies with V3 where V is the wind speed. As a result, the geographic distribution 
of the generators matters more for the aggregate variations than that of the loads. In addition, PV generation 
is highly distributed in terms of locations and ownership. It is therefore often necessary to forecast generation 
with a higher spatial resolution than demand. Indeed single MW-scale PV plants may be exposed to market 
trades, and microgrid operations with self-consumed PV electricity require forecasts at the building or 
district levels. Such granularity increases the forecasting difficulty: the standard deviation of PV power 

S N, where S is the surface area of a PV power plant and N is the number 
of aggregated plants [9, 10].

An important concept when dealing with forecasting in 
the power system is the balance group. Balance groups 
can include generation units, consumption units, or be 
“virtual” when operated by financial actors who only 
trade. Forming a balance group is a requirement to 
operate on wholesale electricity markets. All balance 
groups report to a balancing authority, which in 
Europe is generally the transmission system operator 
(TSO). This authority ensures that trades on the 
electricity market are balanced i.e., that contracted 
generation matches forecast consumption. Balance 
Group Managers (BGMs) are responsible to ensure 
that at each time step of market operations their 
contracted production and/or consumption matches 
the realised values. In case of mismatch between 
prediction and realisation, BGMs are penalised 
based on intraday market price; if the imbalance is 
in the same direction as the whole system (e.g., a 
producer under-delivering when there is a shortage 
in production), the penalty will be above the intraday 
market price and if the imbalance is in the opposite 
direction the penalty will be below.

PV generators were until recently shielded from this balancing responsibility. In Germany for example, 
transmission system operators carry the responsibility and operate a balance group for PV systems connected 
under the Renewable Energy Sources Act in their area [11]. Regulators are now pushing to increase exposure 
of PV generators to market conditions and increase their responsibility in the balancing mechanisms. A 2014 
ruling by the Italian regulator introduced imbalance charges for renewable power generators of more than 
1 MW in capacity; the mechanism is similar to that applied to conventional balance groups but the fees are 
modulated to take into account the inherent volatility of the different sources [12]. The resulting cost for 
PV generators is estimated around 5 €/MWh, which is still significantly lower than imbalance prices applied 
to regular balance groups in Europe [13, 14].

In addition, support mechanisms for large PV generators are evolving from feed-in tariffs to market premiums 
in France, Germany and the UK [15] under which these generators receive a regulated payment on top of 
market prices. As illustrated in Figure 3, these premiums can be floating i.e., cover the difference between 
the average market price over a certain period of time – generally one month – and a reference price set 
by the regulators, or fixed. In both cases generators have a direct interest in maximising the value on the 
market of the electricity they produce and the volumes they can effectively sell. Since a generator can only 
commit on the market amounts of power which it can confidently produce, accurate forecasts are essential 
to maximise these sold volumes.

Figure 3: Working principle of market premiums; adapted from [15]

Finally, the development of micro-grids and of combined PV+storage systems requires local energy management 
which, for optimal operation, relies on predictive control. Single-system or neighbourhood-level power 
forecasts on timescales from a few minutes to 24 hours are therefore necessary.
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2.3.1. For investors in solar PV power plants

Long term assessments of energy production are essential to investors in PV plants. Investment decisions 
are made based on a comparison of the levelized cost of electricity for the PV generation with the benefits 
derivable from the sale of electricity to the grid or self-consumption, taking into account projections for 
future grid electricity prices. Such assessments are based on statistical weather data (“typical meteorological 
years”) and physical modelling of PV power plants.

2.3.2. For operators of PV power plants

The operator of a PV power plant can be the plant owner himself, or a third party who is conferred operational 
authority by the owner. Regardless of its size, the primary operational goal of a PV plant is to achieve a 
profit or cost reduction. 

Operators of small PV power plants have an incentive to receive short-term PV forecasting information if 
such information can be useful to determine their own operational strategies to yield lower energy bills and 
better utilization of solar PV generation. 

For larger PV power plants, time-resolved forecasts of energy production are necessary to place bids on the 
wholesale electricity market including the fully dispatchable mode, or to honour other forms of contractual 
arrangements, e.g. with retailers.

2.3.3. For grid operators

The increasing penetration of intermittent energy resources requires grid operators (including Transmission 
System Operators – TSOs – and Distribution System Operators – DSOs) to pay attention to upcoming 
fluctuations in electricity generation. Forecasting of solar PV generation, as well as intermittent renewable 
energy in general, is critical for decisions on active/reactive power flow control, as well as for the operation 
and management of network components to avoid possible grid overload and to facilitate the economic 
operation of the system.

Grid operators increasingly need to consider the inclusion of intermittent renewable generation in their 
network planning models in order to achieve proper planning decisions. In distribution grids in particular, 
many of the planning models are still based on one-way power flow instead of bidirectional flow accounting 
for generation from distributed energy resources. 

2.3.4. For electricity retailers/aggregators

An electricity retailer is an entity that purchases electricity from different channels, such as the wholesale 
market or power plants, and sells it directly to consumers with the goal of earning a profit. Retailers are 
not responsible for balancing the grid, but are however associated with a balancing group and they need 
to meet the collective profiles of their customers. 

Together with the dynamics of power system components described earlier, these drivers create a range 
of use cases for forecasts on time horizons ranging from 15 min or less to decades, and on geographical 
scales ranging from a single site to an entire region or country. These use cases are summarised in Table 2.

PV plant owners 
PV plant operators

DSOs 
Microgrid operators

TSOs 
Market operators

Scale
Time  
horizon

Single site  
(10 m – 100 m)

MV distribution grid  
(1 km – 10 km)

Transmission system  
(100 km – 1000 km)

15 min Management of storage 
system

Management of active/
reactive power

Activation of reserves

1 h
Management of storage 

system
Intra-day trades

Storage and load 
management

Intra-day trades

24 h

Management of storage 
system

Compliance with 
regulations

Day-ahead trades

Storage and load planning
Booking of reserves

Transmission scheduling
Day-ahead trades

1 year O&M contract
Planning of maintenance 

operations
Long-term trades

20+ years Investment case Infrastructure planning Infrastructure planning

Table 2: Summary of use cases for PV power forecasting
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For electricity retailers, forecasting of the consumption from their consumers is directly linked to the energy 
they should procure from their suppliers. The profitability of retailers therefore largely depends on the 
accuracy of demand forecasting, as the cost of the purchased electricity increases with deviations from the 
actual consumption. Solar PV forecasting is essential to retailers with high PV installations in their customer 
group as it influences the consumption of other customers connected to the grid. Moreover, retailers / 
aggregators will utilise accurate forecasting techniques to plan their supply energy mix capable of meeting 
the forecasted demand profile of their customers including flexible demand response where provided. 

2.3.5. For balance group managers

To formulate a schedule, a balance group manager (BGM) must collect the power generation and consumption 
information from all the generators and customers in the group. Negotiations may take place between 
BGMs in case the required schedule leads to any infringement of the grid security. In real time operation, 
deviations may occur from time to time due to uncertainty of energy generation and consumption in the 
period. Any deviations from the schedule will be handled at the time of market settlement, while the exact 
rules may differ depending on the system operator.

In general, short and near term PV forecasting is of great importance to the economic operation of balance 
groups. BGMs send in and/or modify the schedules in day-ahead and intraday markets. Since the forecasting 
accuracy generally degrades with the stretch of time horizon into the future, the effectiveness of forecasting 
results varies. Depending on the price scheme, the use of forecasting results by BGMs covers:

 Establishing the baseline generation/consumption of the Balance Group (BG)
 Generate possible scenarios for economic evaluation
 Trade with other BGs
 Optimize the energy schedule

Besides the above, the results can also be used to:

 Estimate possible operational security issues
 Monitor power quality issues

Balancing authorities are required to permanently maintain the power balance within the control area they 
are responsible for. For them, only aggregated PV forecasting results are of interest. The main application of 
forecasting for their operations is related to balancing service provision. There can be a number of benefits 
from PV forecasting for balancing authorities that can be identified and evaluated: 

 Reduced cost for procurement of required upward and downward reserve control power and energy 
including the actual use

 Reduced amount and stress on the regulation units (wear and tear, efficiency), as well as their opera-
tional costs

 Reduced ramping capability requirements of the system. Solar irradiance can change drastically at the 
time scale of seconds, and fast and continuous ramps create problems for the plants and grid operation. 
Fast ramping capability relying on online capacity is precious and expensive

 Reduced requirements on grid inertia, including both from alternators and virtual  
 Reduced amount of interruptible loads to be prepared
 Reduced energy storage requirements

Because the use cases are so diverse, there is not a single metric which could characterise an absolutely 
“good” forecast. Instead, any of the three most commonly used metrics, which are listed in Table 3, can be 
preferred depending on the target application. These metrics are all based on the difference between the 
forecasted PV production Yforecast and actual yield Yrealised over a given time period. They are generally reported 
in a normalised way; particular attention must be paid to the normalisation factor and to the integration 
period. It is in particular good practice to integrate the error only over day hours, since PV production is 
sure to be zero in the night. And while errors in irradiance forecasts are generally normalised by the average 
measured irradiance, those on power forecasts are often normalised by the nominal peak power of the 
system. This difference mechanically results in errors for power generation which are about three times 
lower than for irradiance.

Metric Formula Application

Mean Bias Error Investment decision

Mean Absolute Error Balance group management

Root-Mean-Square Error
Optimisation of generation 

reserves

Skill Score
Comparison of the accuracy 

of forecasts in different 
locations or years

Table 3: Main performance metrics used to assess forecasting methods
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In the electricity market deviations from declared profiles of supply and demand have a cost and this is 
bound to be the case for imbalances as a result of forecasting deviations of renewable energy sources (RES).

Imbalance prices are regularly published by balancing authorities, which in Europe are generally TSOs. 
For example, the half-hourly energy imbalance price (charged to suppliers and generators) in the UK on  
7th January 2016 ranged from 20.1 GBP/MWh to 119.8 GBP/MWh (average: 39.0 GBP/MWh) [13]. Between 
8th October 2015 and 6th January 2016, half-hourly imbalance settlement prices in France [14] ranged:

 From -3.6 €/MWh to 112.5 €/MWh for positive deviations (average: 31.8 €/MWh)
 From 0.3 €/MWh to 265.9 €/MWh for negative deviations (average: 44.4 €/MWh)

The cost which can be attributed to forecast errors is the difference between this imbalance price and market 
prices over the same time horizon. 

For example, the relevant cost for hour-ahead forecast errors is the difference between imbalance prices 
and intraday spot prices. On average, this difference is typically 20 €/MWh. If a 1 MWp plant in the North 
of Italy were a balance group on its own it would then be charged this price. This situation is currently 
hypothetical but may soon become a reality, at least for large PV power plants. As shown in Table 3, the 
relevant metric for balance group management is the mean absolute error. Over four years for the above-
mentioned 1MWp PV plant example it is 11.6% of nominal power with clear-sky persistence, and 7.1% with 
an advanced forecasting technique (numerical weather forecast plus support vector machine) [16]. Since 
only daytime is taken into account (yearly average duration of 12 hours), these errors translate into an 
annual imbalance of 0.50 MWh/kWp and 0.31 MWh/kWp, respectively. So the annual imbalance cost would 
be 10000 € and 6200 €, respectively. As a comparison, with power-purchase agreements at less than 80 €/
MWh as are now contracted in Germany [17], annual income for this plant would be at most 80000 €. So 
two conclusions can be drawn:

 Forecasting errors can reduce the value of PV electricity by more than 12%
 Advanced forecasting techniques can generate a value of almost 4000 € per year for a 1 MWp plant.

The first approach in PV power forecasting relies first on the 
(at least temperature and irradiance), followed by a calculation of the corresponding power output. This 
approach can build on existing weather forecasting tools. The most appropriate tool to predict irradiance 
depends on the desired time horizon.

For resource assessment i.e. to predict patterns of energy generation over the lifetime of the system, sta-
tistically representative time series of weather parameters are generated based on interpolation of ground-
level measurements (weather stations) or satellite images to produce “typical meteorological years”. Typical 
accuracies are of the order of 5% for satellite data, 3% for site adaptation techniques, and 2% for ground 
measurements.

For time horizons between six hours and three days, numerical weather prediction (NWP) is preferred. NWP 
data are generated by global or mesoscale simulation models which provide the numerical integration of the 
coupled differential equations describing the dynamics of the atmosphere and radiation transport mecha-
nisms [18]. The initial conditions are given by satellite, radar, radiosonde and ground station measurements. 
NWP data are often corrected by post-processing algorithms called Model Output Statistics (MOS) which 
use historical ground measurements to partially remove systematic errors [19].

For time horizons between two hours and six hours, visible and/or infrared images are acquired by satellite-
based sensors. The cloud index is computed by satellite reflectance measures and is typically used to derive 
ground-level global and direct irradiances through a model [20]. Since the measurements directly provide 
solar irradiances, as compared to NWP, only a few relatively simple modelling assumptions have to be ap-
plied to derive the solar resource. Persistence of cloud speed and direction (as derived from the two last 
images) is generally assumed. The dynamic nature of clouds challenges cloud-motion vector approaches 
as cloud distribution can change substantially within the 30 min horizon which is the typical rate of image 
refresh. Therefore, it is challenging to account for cloud convection, formation, dissipation, and deforma-
tion. However, since large-scale cloud systems (such as those associated with a cold weather front) are more 
persistent, satellite-based forecasts typically perform more accurately than NWP-based forecasting models 
up to 6 hours ahead, mostly because of ingestion, data assimilation, and latency of calculations required to 
“spin up” NWP-based forecasts. As classical satellite methods use only the visible channels (i.e., they work 
only in daytime), morning forecasts are less accurate than daytime ones because of a lack of time history; 
to overcome this issue, images from infrared channels (which work day and night) have to be taken into 
consideration [21].

For time horizons below 30 minutes, total sky imaging is the preferred method. It consists in four steps:

 Acquisition of the sky image from a ground-based, wide-angle camera
 Analysis of the sky image to identify clouds
 Estimation of cloud motion vectors
 Prediction of future cloud cover and ground irradiance.

The maximum accuracy with this method is generally obtained between 5 min and 20 min; with low and fast-
moving clouds it can be reduced to 3 min and for high and slow-moving clouds it can be extended to 30 min.
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The state-of-the-art accuracy for these methods is summarised in Figure 4.

Figure 4: Error obtained with state-of-the-art physical forecasting methods for irradiance (source: ETIP PV)

The uncertainty on PV power modelling from irradiance and weather data comes then on top. In a review of 
major modelling tools, the hourly RMSE on AC power output was found to be below 7% in all situations [22].
To avoid this addition of errors and to deal with time horizons between 30 min and 2 h where there is no 
satisfactory physical forecasting technique for irradiance, stochastic learning techniques are used. These 
methods can be separated between [16]:

- Univariate methods i.e., methods where only time 
series of the target variable (here, PV power) are 
fed into the model. These include:

 STL: seasonal decomposition of time series by 
Loess

 Holt-Winters seasonal method
 TSLM: linear model fit with time series 
components

 ARIMA: autoregressive integrated moving average
 BATS: exponential smoothing state-space model 
with Box-Cox transformation, ARMA errors, Trend 
and Seasonal components

 Nnetar: Feed-forward neural networks with 
a single hidden layer and lagged inputs for 
forecasting univariate time series

- Multivariate methods i.e., methods where 
exogenous variables such as measurements of 
ground irradiance, temperature or humidity levels 
are fed into the model in addition the the target 
variable. These include:

 MLR: Multi-Linear Regression Model
 SVM: Support Vector Machine
 ANN: Artificial Neural Network
 Regression Tree

In literature, several models have been developed 
to simulate the different components of PV power 
systems based on analytical or numerical approaches. 
In some of these approaches PV systems are simulated 
through mathematical equations for each component 
of the system (i.e., PV arrays, batteries, regulators, 
etc.). Generally, these systems are considered non-
linear, thereby requiring complex modeling difficult 
to define through classical approaches.

In this section, an artificial neural network (ANN) 
approach is proposed to estimate the AC power 
production of a 1 kWp experimental micromorph 
silicon PV plant located at the ENEA Portici Research 
Center. The multi-layer-perceptron (MLP) is used for 
solar radiation and PV power production estimation. 
Feed-forward multilayer perceptron networks 
consist of units arranged in layers with only forward 
connections to units in subsequent layers.

The connections have weights associated with them. 
Each signal traveling along the link is multiplied by 
a connection weight. The first layer is the input 
layer; the input units distribute the inputs to units 
in subsequent layers. In subsequent layers, each 
unit sums its inputs, adds a bias or threshold term 
to the sum and nonlinearly transforms the sum to 
produce an output. This nonlinear transformation 
is called the activation function of the unit. The 
output layer units often have linear activations.

The goal is to estimate the PV plant AC power 
production (Pac), as a function of two input 
parameters, i.e. the ambient temperature (Tamb) 
and solar global irradiance (GHI). Since the output-
input relation used is non-linear the MLP network 
with only one hidden layer has been proven to be 

a universal approximation of this function type. In 
more detail, the proposed ANN is made of a single 
hidden layer with eight neurons. The values of the 
learning period, size of data used in the training, 
neurons on the hidden layer and learning rate were 
set on a trial and error basis. 

Then, to improve the performance of the ANN 
proposed here, another input representing the clear 
sky solar radiation has been added. In this case 15 
neurons have been considered in the hidden layer.

In particular, two multi-layer-perceptron ANNs have 
been developed; the first one uses two input, the 
ambient temperature and the global solar radiation, 
for the training phase, while in the second ANN 
the clear sky solar radiation has been added as 
further input. Available data to train and test the 
ANNs were relative to seven years, from 2006 to 
2012. The ANNs have been trained using only one 
year of the available data and then tested on data 
relative to the remaining years. 

To evaluate the effectiveness of the approximation 
done using the ANNs in the evaluation of the AC 
power, three statistical coefficients have been 
evaluated: the relative mean square error (RMSE), the 
relative mean bias error (MBE) and the correlation 
coefficient (CC). 

As shown in Table 4, using two inputs, the relative 
mean bias error varied between 1.51% and 4.94%, 
the relative root mean square error between 6.12% 
and 9.54%, while the correlation coefficient was 
between 0.9851 and 0.9936. On the other hand 
in the case of three inputs and 15 neurons in the 
hidden layer, as shown in Table 5, the relative mean 
bias error ranged between 1.36% and 5.20%, the 
relative root mean square error between 5.26% 
and 8.99%, while the correlation coefficient was 
between 0.9862 and 0.9954. The worst results 
were obtained for the year in which available data 
quantity was the lowest.
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Year for Test MBE/A (%) RMSE/A (%) CC

2006 -4.5829 8.8055 0.9919

2008 1.7732 6.1224 0.9936

2009 2.2403 6.4724 0.9926

2010 1.5120 9.5372 0.9851

2011 3.8415 8.8910 0.9879

2012 4.9430 8.8840 0.9885

Table 4: Values of statistical coefficients relative to the ANN with two inputs (Tamb and GHI) values (source: ENEA)

Table 5: Values of statistical coefficients relative to the ANN with three inputs (Tamb, GHI and CSM) values  
(source: ENEA)

Year for Test MBE/A (%) RMSE/A (%) CC

2006 4.7613 8.4191 0.9938

2008 1.8174 5.2695 0.9954

2009 1.7453 5.7658 0.9934

2010 1.3649 8.9905 0.9862

2011 3.5926 7.7605 0.9901

2012 5.2045 8.1317 0.9918

During the evaluation of the MIRABEL concept [23] which was done at the Greek Center for Renewable 
Energy Studies’ (CRES) experimental microgrid on Khytnos, the Engle, Granger, Ramanathan and Vahid-Arraghi 
(EGRV) model for the PV forecasting was used. In this implementation and despite the fact that no weather 
data were used to improve accuracy (i.e. only PV power was used), the short and long term accuracies were 
good enough to provide a fine-grained balancing in the microgrid’s power. The diagrams in Figure 5 show 
that the used forecasting method achieved a high accuracy in the short-term and mid-term scales but also 
that it presented high discrepancies in the very-short-term.  This is due to frequent changes in the solar 
irradiance profile, which led to fast drops of the PV production during the day. As a result the imbalances 
present some high (yet short in duration) peaks during the day when these phenomena are more intense. Figure 5: Experimental implementation of the EGRV model for PV forecasting in conjunction with overall balancing 

of the microgrid in which the method was implemented [24]

The inclusion of weather parameter observation can therefore largely improve the very-short-term response 
and in turn the balancing of the system. Also, according to the analysis above, a larger scale spatiotemporal 
aggregation would substantially improve the model’s performance because in the specific implementation 
the microgrid size was too small and as a result the aggregation’s influence was negligible.

To sum up, the main conclusions from this analysis are the following:

 The specific methodological approach and the used forecast model are appropriate for market balancing 
mechanisms and can be used by actors responsible for balancing processes (i.e. Balance Responsible 
Parties) in a Balance Group thanks to its short and mid-term accuracy.

 The long-term accuracy of the model facilitates system and network operators in terms of long-term 
investment planning and technical upgrades of the grids. 

 The very-short-term accuracy, once refined by using meteorological data and higher levels of aggregation, 
can assist grid operators in the management of reserves and frequency/voltage control.
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The DSO of Cyprus is working closely with the FOSS Research Centre for Sustainable Energy to develop a 
complete forecasting tool covering all PV installations in Cyprus. The tool is to be utilised for the long term 
prediction needs of the DSO as well as day ahead and intraday needs for the development and operation 
of the grid in Cyprus. 

RES power forecasting (mainly PV and wind in the case of Cyprus) plays an important role for the secure, 
economic and balanced operation of power systems with increased RES in the energy mix. At the moment, 
allocation by the local TSOs of the required reserves is made in a deterministic way which is based on 
historical data and the point forecast of a RES aggregate output. This methodology is not adequate as 
renewables are increasingly integrated into the grid and this may lead to a large provision of reserves, 
create operational security problems and operational shortcomings as a result of dynamic power variability 
(ramp-rates, reactive compensation etc). These limitations can be addressed by advanced forecasting tools 
that utilise spatiotemporal forecasting algorithms that enable relatively accurate prediction of the power 
produced by photovoltaic (PV) systems. An example of such a system is under development in Cyprus and 
results to date are promising.

The development of a spatiotemporal forecasting tool primarily requires that the existing and future PV 
systems are grouped spatially. The division of Cyprus into logical areas considered with the same irradiance 
(pixilation) is based on the locations of the existing 
meteorological stations. Connected smart-meters 
supply real time generation data from systems 
spread all over the island and provide a good 
basis to simplify the process without losing the 
required accuracy. In addition all installed PV 
systems are linked through their distribution 
substation to the nearest pixilation area. Figure 
6 shows the locations of the 17 meteorological 
stations and the 100 smart-meters. The capacity 
and location of the installed PV systems is stored 
in a geodatabase, which includes all relevant 
additional parameters: technology, inclination 
angle, orientation and mounting system. The 
database is updated daily with information of 
the newly installed PV systems. Figure 6: Location of meteorological stations (pins) and smart-meters (circles).  

Source: FOSS, University of Cyprus

The forecasting tool receives day ahead Numerical Weather Prediction (NWP) datasets of the solar irradiance 
and ambient temperature from the Meteorological Service of Cyprus (MSC). The NWP and the data collected 
from the ground stations (meteorological stations, smart-meters and PV production at the distribution 
substation level) are fed into a physical and statistical model through which the day and hour-ahead dispatch 
forecasts of the PV power production of the island are calculated. A brief summary of the physical and 
statistical approach of the method used is presented in Figure 7.

Figure 7: Physical (a) and statistical (b) model approaches to PV power production forecasting.  
Source: FOSS, University of Cyprus

The overall approach governing the development of the forecasting tool is summarised in Figure 8. The 
datasets received from the Meteorological service, the meteorological stations, smart-meters, the local 
DSO and the distribution substations are initially stored in a database (after an initial quality check). The 
three following operations of the tool concern three different time horizons: the day ahead, the hour 
ahead and real time. The “long-term” prediction of the PV production is considered as day-ahead. For this 
forecast historical time series of all datasets collected are analysed using physical and statistical processes 
that deliver an accurate forecast. The second evaluation process addresses the “short-term” prediction of 
PV production, also known as “now casting”. This process uses historical and real time data with statistical 
valuations delivering PV production between 1 and 6 hours ahead. The last process concerns the real time PV 
production. Real time data from the meteorological stations, smart meters and the distribution substations 
are utilised with statistical valuations and scale-up mechanisms that estimate the real time production of PV 
systems in Cyprus at time intervals ranging from 15 to 30 minutes. The outputs from all operations of the 
forecasting tool are stored at the central database and are further used to train the developed processes 
and to continuously improve the effected calculations.

Figure 8: Overall approach in the development of the PV forecasting tool. 
Source: FOSS, University of Cyprus
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In a project carried out by EURAC in collaboration with the local DSO, Edyna (former AEW), ANNs were used 
to estimate and forecast the distributed generation of 1985 PV plants in a small part of the South Tyrol Region 
in Northern Italy with an installed capacity at the end of 2015 of 68.2 MWp and a PV penetration of 7%. 
This region of around 800 km2 has a complex orography and variable weather conditions (see Figure 9 (A)).
 
In this case the forecast method consists in applying spatial clustering of PV plants and then use satellite 
derived irradiance and numerical weather prediction (NWP) data (centered on each cluster centroids) as 
inputs for Ensemble of Artificial Neural Networks (ANNsE) that estimates or predict the regional PV power 
output.  The clustering algorithm aggregates all the PV plants in six areas corresponding approximately to the 
municipality of Naturno, Tirolo-Merano, Lana, Nalles, Collalbo-Sopra Bolzano, and Bolzano (see Figure 9 (B)).

Figure 9: (A) PV plants in the region of interest, (B) PV plants spatial clustering. Source: EURAC Research

3.4.1. Data
The two years of PV power generation data used to train and test the models together with the load and 
transmission data used to analyse the benefit of PV forecast were provided with 15-minute resolution by 
the local DSOs (Edyna, AEW). The models were trained with data from 2014 and tested with data from 2015. 

The satellite derived irradiance with a spatial resolution of 2 km and an hourly granularity comes from the 
geostationary radiative fluxes products, under Météo-France responsibility. It was obtained by OSI SAF SSI 
algorithm applied to the satellite images provided by METEOSAT-9 (MSG-3) at 0° longitude, covering 60S-60N 
and 60W-60E, at 0.05° latitude-longitude.

The numerical weather predictions were generated by the Weather Research and Forecasting (WRF–NWP 
3.6.1) mesoscale model with 20 minute time resolution and 3 km spatial resolution centered on the region 
of interest.

The main metric used to measure the power output forecast accuracy is the root mean square error evaluated 
over the number of sun hours Nsun (Table 3). Moreover to evaluate the performance of a forecast model the 
accuracy is compared to the accuracy obtained by a simple reference model. Usually the simplest reference 
model adopted as benchmark is the persistence (simple persistence or smart persistence) that considers 
the persistence of the weather conditions. For a fixed forecast horizon, the accuracy of this model can be 
considered a measure of the irradiance variability in a specific site or area. On one hand, the more stable 
the weather conditions or the smaller the forecast horizon, the higher the accuracy of the persistence 
model and the more difficult outperforming it with a forecasting model. On the other hand, the lower the 
accuracy of the persistence model, the higher the irradiance variability so that more sophisticated models 
should be used to provide an accurate prediction.

Figure 10 shows the accuracy of the regional estimation and mid-term forecast models and of the smart 
persistence model (clear sky persistence) for different forecast horizons.

Figure 10: RMSE of regional PV power estimation and forecast vs forecast horizon evaluated 
for the year 2015 for the area located in the South Tyrol region, Italy.  
Source: EURAC Research

The trend of forecast accuracy (RMSE) as function of forecast horizon reflects the results reported in 
literature [25].
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Table 6: Comparison of state-of-the-art forecast performance with the results achieved in this case study

The accuracy of power estimation modelling achieved using satellite derived irradiance is around 3% of 
installed capacity thus the upscaling method could be adopted for real time power supervision. 

The intra-day forecast performs with a RMSE between 4.8% and 6.9% of installed capacity while the persistence 
obtains an error between 4.5% and 10.4%. The day-ahead forecast performs with a RMSE of 7.1% and 7.6% 
with respect to 11.6% and 13.9% of the clear sky persistence model, or 12.3 % and 13.9% of the simple 
persistence. These results are compared with the state of the art of Table 6.

Country
Time  

horizon
Spatial resolution

RMSE  
[% Pn]

Skill score [%] Reference

Germany intra-day
Two Regions  

(214120 km²  - 103890 km²)
3.9 - 4.3

40.0  - 42.3 
(persistence)

Lorenz et al 
[26]

Germany 1 h to 4 h
Region  

(349223 km²)
1.8 - 3.8

0  - 11.6 
(smart persis-

tence)

Wolff et al. 
[25]

Italy intra-day 800 km² 5 - 7
(-8)-34 

(smart persis-
tence)

This case 
study

Germany 24 h
Region  

(214120 km²  - 103890 km²)
4.1 - 4.3

48.0  - 52.8 
(persistence)

Lorenz et 
al. [26]

Japan 24 h
Two regions  

(32424 km² – 72572 km²)
6 - 7

50  - 60 
(persistence)

Fonseca et 
al. [27] [28]

France 24 h
Two french counties  

(7000 km² each)
6 - 5.8 -

Zamo et al. 
[29]

Italy 24 h 800 km² 7.1
42.8 

(persistence)
This case 

study

Moreover, the accuracy of regional forecast leads to a reduction of RMSE between 30%-50% with respect to 
the performance obtained for the forecast of a single PV plant generation since the spatial averaging reduces 
the errors (ensemble smoothing effect). This effect depends on the size of the considered geographic area 
[17, 28]. The obtained RMSE of 7.1% for the regional day-ahead forecast can be compared with the RMSE 
of 11.8% achieved in the forecast of the power output of an optimal tilted PV plant located in Bolzano [16]. 
Thus the regional forecast provides a RMSE reduction of 40% with respect to the single site power output 
prediction, coherently with the literature results.

It should be remarked that the intra-day forecast model improves the day-ahead forecast by making use of 
past power estimation (based on satellite data). For time horizons longer than 4 hours the intra-day forecast 
is no longer able to improve the accuracy of the day-ahead forecast (based on NWP data). This means that 
after 4 hours satellite data becomes less accurate than the numerical weather prediction. Similar result 
can be found in literature [25]. Moreover in this case, the one hour forecast is slightly less accurate than 
the clear sky persistence.

Figure 11 shows the reliability plot i.e., the frequency of observation that lies inside of each prediction 
interval versus the respective confidence levels (expected probability). A prediction of the forecast errors 
is completely reliable if the observed frequency is equal to the corresponding confidence level (grey dash 
line e.g., 50% frequency at 50% confidence level).

In the present case, the model provides a correct estimation of the prediction interval since the observed 
frequency is almost equal to the expected one.

Figure 11: Reliability plot evaluated during the years 2015. Source: EURAC Research.

Figure 12 reports the trend of the prediction interval for five days of February 2015. It can be observed that 
the width of the interval is reduced when passing from overcast to clear sky days. 

Figure 12: Example of prediction interval trend for five days of February 2015. The grey colours correspond to different 
confidence levels: 95%-75% -50%-25%; from the clearest grey showing the interval with 95% of confidence to the darker 
grey showing the interval with 25% of confidence. The dots represent the observed values while the white line is the 
forecast. Source: EURAC Research.
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forecast
The photovoltaic production in the considered region provided in 2015 6.9% of the electric consumption. 
Since the PV penetration is very similar to the one observed at the national level (7.9%), this is a good case 
study for analysing the impact of PV generation on the electric grid and the effects of PV power forecast on 
transmission scheduling and on secondary reserve estimation.

3.4.5. Transmission scheduling
Figure 13 shows how the distributed PV generation can affect the residual load and consequently the 
secondary reserve, which should be predicted for the day-ahead. The stochastic behaviour of the residual 
load induced by the irradiance variability introduces an additional error in the prediction of the power that 
should be supplied by TSOs to DSOs to fulfil the electricity demand of a region.

Figure 13: Impact of PV production on the residual load of a distribution network. Source: EURAC Research.

Figure 14 (A) shows the monthly daily average of the actual power transmission that should be provided 
by the Italian TSO (Terna) to the local area of interest and the expected transmission scheduling with and 
without considering the PV power forecast. Figure 14 (B) reports the monthly daily average of the absolute 
energy imbalance (|transmissionexpected - transmissionactual|) with and without the PV power forecast.

In 2015, without considering the PV power forecast the absolute energy imbalance was 11% of the power 
supplied by Terna (654 GWh). It should however be noted that, in the period from April to July around noon, 
the imbalance is between 60% and 75% of the TSO power supply. This means that in this period, for some 
hours of the day, the photovoltaic generation can provide from 60% to 75% of the energy that the local DSO 
should buy from Terna to cover the residual load. 

Thus with 7% of penetration, the distributed PV generation could have a great impact both on the transmission 
scheduling capability (high energy imbalance) and on the DSO energy needs. 

Mid-term PV forecast could greatly reduce this energy imbalance. The day-ahead forecast reduces the 
absolute imbalance to 2.1% of the DSO energy needs, of which 1.1% is positive (transmission over-estimation) 
and 0.96% is negative (transmission under-estimation). The two hour ahead forecast brings the absolute 
imbalance to 1.8%, of which 1.1% is positive and 0.7% is negative. For both forecasts, the maximum imbalance 
is around 14% and is reached at noon in June.

Figure 14: (A) Monthly daily average of the transmission scheduling during the year 2015 with and without considering 
the PV power forecast; (B) Monthly daily average of the absolute energy imbalance with (red and blue areas) and 
without (grey area) considering the PV power forecast. Source: EURAC Research

3.4.6. Energy reserve
Not only the PV power forecast but also the prediction of the forecast errors could be very important. Indeed 
prediction intervals could be used not only to estimate the probability of a specific PV generation bid on 
the energy market, but also to reduce the energy reserve predicted for the next day.

A conservative algorithm to estimate secondary reserve in a certain area could be built considering that 
the residual load of the next day will be surely between a minimum: NetLoad(clear sky)=Load-PVcs and a 
maximum: NetLoad(overcast)=Load. PVcs is the PV generation during clear sky conditions. It could be easily 
calculated by rescaling the clear sky global horizontal irradiance so that 95% of the PV production should 
be below the PVcs curve (see figure 15 A).
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A more effective algorithm can be built using the day-ahead prediction interval with a confidence level of 
95% defined by the two forecast trajectories: PV1dFlow(95%) and PV1dFup(95%). PV1dFlow(95%) is the lower 
forecast and PV1dFup(95%) is the upper forecast so that the PV production of the day ahead will lie between 
these two limits with a probability of 95% (see figure 15 A). In this case, the residual load of the next day 
would be between NetLoadlow(95%)=Load-PV1dFup(95%) and NetLoadup(95%)=Load-PV1dFlow(95%) with a 
95% probability.

Figure 15 shows both the PV production curves and the resulting residual load and energy reserve for five 
days of 2015. It can be observed that the curve PV1dFlow reduces the reserve during clear sky days and 
variable conditions while PV1dFup reduces the reserve during overcast conditions.

Figure 15: (A) PV production curves for five days of 2015; (B) residual load and energy reserve. The red area is 
representative of the 95% prediction interval and overlaps the grey area.

Figure 16 shows the monthly daily average of reserves (calculated with the two algorithms) and the PV 
production in 2015. The energy reserves estimated using the prediction intervals are 36.6% lower than the 
reserves calculated by the PVcs. It can be noted that the greatest reduction could be achieved from May to 
September, mainly due to the use of the PV1dFlow curve during clear sky days.

Figure 16: Monthly daily average of reserve and PV production in 2015

Accurate monitoring of PV systems is directly related to the observability of these systems. It is in practice 
not possible to gather information or monitor all PV systems in an electrical grid due to the continuously 
increasing number of systems, the huge amount of information and the implied high cost. Therefore, data 
gathered from a selected number of systems using smart-meters and weather data from meteorological 
ground stations are used to accurately estimate the output of PV systems. This implies that adequate 
information about the PV installations is available, such as the capacity, technology, orientation and year 
of implementation. In practice the findings of the simulations can be compared with real measurements 
from distribution or transmission substations, allowing to assess the accuracy of the simulation results. The 
detected errors can then be used to train the models in order to provide more accurate results. Figure 17 
shows an outline of the described system.

Figure 17: Simplified procedure for estimating in real time the distributed PV production. 
Source: FOSS, University of Cyprus.

However, the accuracy of the simulations depends heavily on the observability of PV systems. As mentioned 
above, PV power production depends on weather variations. Consequently, different PV production curve 
patterns exist due to the different weather conditions of each day.  Therefore, in order to increase the 
observability of PV systems a clustering approach is required in order to distinguish the different patterns 
of the PV production curve for a region. The clustering of data aims to identify specific characteristics in a 
dataset and then the grouping of those characteristics into clusters. This process will group similar objects 
in different clusters. For the analysis presented here, the K-POP clustering  method [30, 31]  is used to 
classify and characterise the daily solar irradiance of a region into 9 different classes based on the quantity 
and quality (degree of cloudiness, etc) of solar irradiance. 
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The K-POP method uses two indices to quantify the quantity and quality of the solar irradiance at the earth’s 
surface. The sky clearness index Kd and the probability of persistence POPd are used respectively. The sky 
clearness index is the ratio of the global horizontal irradiance (GHI) to the extraterrestrial irradiance Ea as 
shown in Eq. 2.

(2)

This index captures the instantaneous fluctuations of the solar irradiance and can further be used to calculate 
the daily solar irradiance that the surface of the Earth receives during a day, Kday, depicted in Eq. 3. 

  (3)

However, the sky clearance index cannot capture the quality of solar irradiance, which during a day can 
be calculated using a probabilistic approach. Firstly, an array, day, containing the differences between 
consecutive values of Kd within a day is calculated as depicted in Eq. 4. The POPday index for the day is the 
probability the values of the day array to be equal to zero (Eq 5.). Therefore, a high value of POPday for a 
day demonstrates a low fluctuation probability (low solar irradiance ramp rate during that day).

(4)

  (5)

As a result, employing this method for each day yields the daily value of the clearness index and the probability 
of persistence. The daily solar irradiance can be represented on a two-dimensional plot, where the x and y 
axes are the daily values of Kday and POPday respectively. The plot of Kday  vs POPday is divided into 9 classes 
as demonstrated in Figure 18 (a). The x-axis is divided into three sections based on the quantity of solar 
irradiance. The right column represents days with high solar quantity, the centre column days with medium 
solar quantity and the left column days with low solar quantity. Similarly, the y-axis representing the quality 
of solar irradiance is divided into 3 sections based on the quality of the daily sky conditions: clear or totally 
overcast sky (top row), relatively small and infrequent fluctuations (centre row) and large and frequent 
fluctuations (bottom row). Solar irradiance example profiles are shown in the cell of each class in (b).

Figure 18: The daily solar irradiance classes (a) and examples of the daily solar irradiance plots (b) for each class [32]

For the above presented analysis four years of global horizontal irradiance (GHI) data with a resolution of 
1 minute are used. The data was collected from 2011 to 2014 from a weather station located in the area of 
Akrotiri, Limassol, Cyprus, which is operated by the FOSS Research Centre of the University of Cyprus. The 
solar irradiance was measured using a “Kipp Zonen CMP 6” pyrometer. The extraterrestrial irradiance data 
was simulated using the online “Solar Position and Intensity Calculator” tool of NREL [33].

The solar irradiance patterns for the K-POP plots for the data collected in Cyprus are presented in Figure 19. 
The rectangular symbols represent the K-POP data points for each day of the year and the larger circular 
symbols indicate the centroid of the K-POP points of each year. Each colour represents a different year as 
indicated in the legend of the plot. A visual inspection of the results clearly shows that the distribution 
patterns of the data points throughout the years are very similar. This is an indication of the consistency of 
the yearly solar irradiance patterns. 

Figure 19: Daily solar irradiance distribution in Cyprus for all years of investigation. Source: FOSS, University of Cyprus
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The consistency of the results through the years can be confirmed also from the results presented in Table 
7. The average yearly centroid is around 0.87 for the  and 0.63 for the  indices, showing that the distribution 
patterns of the data points exhibit high correlation, a characteristic which enhances observability.

Table 7: Daily solar irradiance percentile distribution into the 9 classes and statistical average of the K-POP data 
points for each year. Source: FOSS, University of Cyprus

Year
Average

2011 2012 2013 2014

Clases (%)

1 45.8 49.3 51.2 47.1 48.4

2 1.1 2.2 6.1 1.6 2.8

3 1.6 0.5 1.5 1.6 1.3

4 30.4 22.7 12.5 30.7 24.1

5 11.8 14.2 22.7 13.4 15.5

6 1.6 2.2 0.9 0.8 1.4

7 2.7 3.8 0.6 2.2 2.3

8 4.9 4.9 4.7 2.5 4.3

9 0 0 0 0 0

Centroid Kday 0.65 0.63 0.59 0.64 0.63

Centroid POPday 0.87 0.86 0.88 0.87 0.87

The clustering of solar irradiance in Cyprus therefore revealed that grid connected solar systems in Cyprus 
are highly predictable and hence observable.  As a result they can potentially deliver quality energy to the 
grid, without compromising its operational reliability.  These findings lead to the conclusion that similar 
levels of reserves (primary, secondary and tertiary) that are currently enforced by national grid rules for 
systems with conventional generators can adequately offer similar levels of grid reliability and continuity 
when conventional generator capacity is replaced by equivalent solar generators [32].

Forecasting and observability of intermittent 
generation is becoming a critical requirement in the 
emerging energy mix. The nature of the emerging 
distributed technologies requires a fundamental 
change in the planning, development and operation 
of the integrated grid. This is the reality that affects 
the electricity grids through the high PV generation 
that introduces a stochastic variability dependent 
on meteorological conditions. Thus, a large share 
of PV power introduces new challenges for the 
stability of the electrical grid, both at the local 
and national level, requiring the need of revised 
reserve policy (more distributed than central) and 
utilization complementing technology solutions 
(flexible generation, flexible demand response, 
storage etc) to ensure electrical balancing and 
overcome the unpredictability and variability of 
demand and intermittent generation. PV power 
forecasts could mitigate the effects of high solar 
power injection into the electricity grid, both for 
grid management and on the energy market. This 
was well addressed in this white paper revealing 
the needs and practices for forecasts on all time 
horizons, and especially short-term forecasts (intra 
hours) and mid-term forecasts (intra-day and day-
ahead). 

The paper identifies that dealing with forecasting 
in the power system is of paramount importance 
since it affects the day ahead, hour to hour and 
minute to minute operation of electric grids with real 
substantial costs without adequate accuracy. Balance 
groups are playing a leading role in this direction. 
They can include generation and consumption 
units or be “virtual”, when operated by financial 
actors who only trade. All balance groups report to 
a balancing authority, which in Europe at national 
level is generally the transmission system operator 
(TSO). This authority ensures that trades on the 
electricity market are balanced i.e., that contracted 
generation matches forecast consumption. Balance 
Group Managers (BGMs) are responsible to ensure 

that at each time step of market operations their 
contracted production and/or consumption matches 
the realised values. In case of mismatch between 
prediction and realisation, BGMs are penalised 
based on intraday market price; if the imbalance 
is in the same direction as the whole system 
(e.g., a producer under-delivering when there is a 
shortage in production), the penalty will be above 
the intraday market price and if the imbalance is in 
the opposite direction the penalty will be below. 
Hence, it is of critical importance that forecasting 
tools and methods are reliable and adaptive. 

The paper goes on to address real use cases for all 
related stakeholders that include among others: 

 Investors in solar PV power plants
 Operators of PV power plants
 Grid operators
 Electricity retailers/aggregators
 Balance group managers
 Balancing authorities

A forecasting tool requires capturing all parameters 
that have an influence in the delivered energy of 
systems. For this reason the paper gives proper 
attention to these parameters and identifies their 
relativeness to the accuracy of results. The annual 
production is usually calculated through formulas 
with different levels of complexity varying from 
fixed efficiency equations to equations which 
account for second order effects and derating (e.g. 
various losses during the energy conversion value 
chain). The current status is clarified by classifying 
the existing PV forecasting techniques into either 
physical or statistical methods. Physical methods 
use solar and PV models to generate PV forecasts, 
while statistical methods use past data combined 
with autoregressive or artificial intelligent models 
to forecast the PV output. A comparison of the two 
methods has shown that the statistical method 
slightly outperformed the physical. However, in 
practice these two methods are often combined. 
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Another approach for developing a solar PV 
forecasting model based on neural networks is 
presented in the paper, giving the design details 
which will allow the basic tool to be integrated in 
a utility software. 

The paper presents in detail a forecasting tool 
developed for the needs of a DSO which shows 
promising results for all stakeholders. This was 
further elaborated through the presented results of 
the MIRABEL project, which addressed the optimality 
criteria to improve forecasting adequacy in different 
use cases. The analysis revealed the importance of 
input data characteristics and compared typical 
energy forecasting models. A brief overview of 
the applied method and results were presented. 

The paper gives more information through another 
case study in a project carried out in collaboration 
with a local DSO, by utilizing ANNs to estimate and 
forecast the distributed generation of 1975 PV plants 
in a small part of the South Tyrol Region in Italy.

Similarly the paper addresses the current status 
of observability techniques based on the fact 
that accurate monitoring of PV systems is directly 
related to the observability of these systems. It is 
in practice not possible to gather information or 
monitor all PV systems in an electrical grid due to 
the continuously increasing number of systems, the 
huge amount of information and the implied high 
costs. Therefore, data gathered from a selected 
number of systems using smart-meters and weather 
data from meteorological ground stations are used 
to accurately estimate the output of PV systems. 
Moreover, the clustering of solar irradiance improves 
predictability and the methodology was adequately 
presented in the paper with examples from real 
systems. As is shown in the paper these findings 
lead to the conclusion that levels of reserves 
(primary, secondary and tertiary) similar to those 
currently enforced by national grid rules for systems 
with conventional generators can adequately offer 
similar levels of grid reliability and continuity when 
conventional generator capacity is replaced by 
equivalent solar generators.

We believe that this paper is an important step 
towards more clarity on targets and objectives of 
improved observability and forecasting. It should be 
built upon to create a technology roadmap that will 
help guiding R&D efforts. To define such a roadmap, 
critical questions will need to be addressed:

 At present PV generators, balance group manag-
ers, distribution system operators and transmis-
sion system operators all have to provide some 
PV production forecasts or to include them in 
their net consumption forecasts, but in many 
cases the specifications of these forecasts are 
unclear. Whose responsibility will it be in the 
future to provide forecasts for (distributed) PV 
generation? What will be the incentives and 
penalties?

 Will the development of forecasting be driven 
by regulations (e.g., mandates from TSOs) or 
by market mechanisms?

 How will costs and deployment of energy storage 
technologies evolve, and how will that affect 
the need for power forecasting?

 Can the provision of confidence intervals with 
forecasts reduce the needs for reserve genera-
tion?

Based on our analysis, we can already point out that:

 Improvements in forecasts and in observability of 
both weather data and electrical quantities in the 
grid at a higher granularity are interdependent. 

 Control logics (e.g., curtailment) that include 
forecast also need an improvement in observ-
ability.

 Common metrics need to be standardised, 
including the integration time and the normal-
ization factors, so that the outcome of various 
methodologies (at single site and at regional 
level) can be quantitatively compared.

 A common benchmark (e.g. RMSE of persistence 
model) for both GHI and production forecasts 
(e.g. at optimal tilt angle and azimuth, similar 
to PVGIS) should be mapped across the EU as 
a reference.

PV Photovoltaics

IEA International Energy Agency

WWS Wind, Water (hydro) and Solar energy

DSO Distribution system operator

TSO Transmission system operator

BG Balance group

BGM Balance group manager

ETIP PV European Technology & Innovation Platform 
for Photovoltaics

AC Alternating current

O&M Operation & maintenance

MV Medium voltage

NWP Numerical weather prediction

MOS Model output statistics

MBE Mean bias error 

MAE Mean absolute error 

RMSE Root-mean-square error

GHI Global horizontal irradiance

RES Renewable energy sources

DB Database

EU European Union

ANN Artificial neural network

MLP Multi-layer perceptron

GUI Graphical user interface

POA Plane of (solar PV) array

GPOA Global solar irradiance on PV plane W/m²

GHI Global horizontal irradiance W/m²

Ea Extraterrestrial irradiance W/m²

V Wind speed m/s

S Surface area of a PV power plant m²

N Number of aggregated PV power plants -

Nsun Number of sun hours h

Pn Nominal power output of a PV power plant MW

Pac Instant AC power output of a PV plant MW

Yforecast Forecast PV production kWh

Yrealised Actual PV production kWh

Tamb Ambient temperature °C

Kd Instantaneous sky clearness index -

Kday Daily sky clearness index -

POPd Instantaneous probability of persistence -

POPday Daily probability of persistence -

PVcs PV generation during clear sky conditions MW
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