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Abstract: The properties of synthesized diblock poly(N-isopropylacrylamide)-poly((3-

acrylamidopropyl)trimethylammonium chloride) and triblock methoxy-poly(ethylene glycol)-

poly(N-isopropylacrylamide)-poly((3-acrylamidopropyl)trimethylammonium chloride) cationic 

copolymers at the silica/aqueous interface are investigated using quartz crystal microbalance with 

dissipation monitoring (QCM-D) and atomic force microscopy (AFM). Moreover, dynamic light 

scattering is employed to assess the copolymers in terms of the hydrodynamic size and  interchain 

aggregation. Although viscoelastic Voigt modeling of the QCM-D data suggests a comparable layer 

thickness for the copolymers on the silica surface, the AFM imaging and colloidal probe 

measurements reveal significant differences in surface coverage and thickness of the layers, which 

are discussed and compared with respect to the stabilization effect by the hydrophilic poly(ethylene 

glycol) block.  
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1. Introduction 

Copolymers with novel structures have been the subject of interest during recent years, both 

from a fundamental and a practical point of view.[1-5] With respect to the fundamental point 

of view, studying such molecular systems can bolster our understanding of the stimuli-

responsive materials, micellization, molecular self-assembly and interfacial phenomena.[6-

12] From the practical standpoint, it can help us to develop various biotechnological 

applications, owning to the encapsulation capability of the copolymers and selective 

responsivity of the blocks to various external stimuli such as temperature and ions.[13-19]      

Poly(N-isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) (PEG) are among the 

mostly investigated uncharged stimuli-responsive polymers.[20-22] Both the polymers 

represent a lower critical solution temperature (LCST) phase behavior in aqueous solution; 

however, the molecular and thermodynamic mechanisms of the phase separation are indeed 

different. PNIPAM has a phase separation temperature of around 32 ºC, at which undergoes 

an abrupt transition in conformation and interactions.[23-25] Below the phase separation 

temperature, PNIPAM chains adopt a swollen random coil conformation, with an approximate 

water content of 90%, including the water molecules forming hydrogen bonds with the amide 

groups and those in the hydrophobic hydration shell.[26, 27] Upon crossing the phase 

separation temperature in dilute solution, the swollen coils abruptly shrink to a collapsed 

globular structure with a water content of around 60%.[28, 29] This suggests that the phase 

separation mainly originates from hydrophobic dehydration, while the hydrogen-bonded 

water molecules almost remain intact. Such a sharp phase transition reminisces protein folding 

and denaturation, which renders PNIPAM a model thermo-responsive polymer for 

biomacromolecules with more complex structures.[30, 31] In addition, the phase separation 

temperature of PNIPAM is in the range of physiological temperature, making it a candidate 



for drug delivery applications.[32-34] On the other hand, PEG exhibits a more hydrophilic 

character than PNIPAM, and thus typically has a phase separation temperature above 100 ºC 

in salt-free solutions.[35, 36] In contrast to PNIPAM, the phase transition of PEG occurs over 

a relatively broad range of temperatures, which has been suggested to originate from gradual 

dehydration of the ether bonds.[37, 38] Regarding the conformation below the phase 

separation temperature, PEG chains adopt a helical structure, which transforms into a disc-

like structure at the fully collapsed state.[39, 40] Due to the stealth-like character toward 

human immune system, PEG has diverse usage in various biomedical applications such as 

gene therapy and cell fusion.[41-43] 

In the present  study, a diblock poly(N-isopropylacrylamide)-poly((3-

acrylamidopropyl)trimethylammonium chloride) (P(NIPAM)48-P(AMPTMA)20) and a triblock 

methoxy-poly(ethylene glycol)-poly(N-isopropylacrylamide)-poly((3-

acrylamidopropyl)trimethylammonium chloride) (MP(EG)45-P(NIPAM)50-P(AMPTMA)20) 

copolymer are investigated. The PAMPTMA block of the copolymers is positively charged in 

aqueous solution, thus can electrostatically adsorb onto negatively charged surfaces such as silica.[44-

46] This feature can be employed to produce stable polymer layers, which can be used in various 

practical applications, e.g., to prevent adhesion of biomolecules or conversely to promote specific 

attachment of cell types to surfaces.[47-49] Dynamic light scattering (DLS) is employed to inquire 

the thermo-responsive behavior and hydrodynamic size of the copolymers in bulk aqueous solution. 

The properties of the copolymers at the silica-aqueous interface are investigated by quartz crystal 

microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) imaging 

and colloidal probe force-distance measurements. Using QCM-D, adsorption of the copolymers onto 

the silica surface is monitored, and then compared in terms of the layer thickness and the viscoelastic 

behavior. From AFM experiments, the topography of the adsorbed copolymer layers is assessed; 



moreover, the interactions between two copolymer-coated silica surfaces are investigated at various 

temperatures. The length of the cationic PAMPTMA and thermo-responsive PNIPAM blocks are 

identical between the diblock and triblock copolymers, giving us the opportunity to assess the effect 

of the hydrophilic PEG block on the interfacial properties of the copolymer. The objective of this 

work is to provide a fundamental knowledge of the copolymers interfacial and thermo-responsive 

behavior, as well as suggesting how tuning the structure of the copolymers can help us to obtain more 

uniform and homogenous polymer layers. 

 

Scheme 1 Chemical structure, molecular weight and polydispersity of the cationic diblock copolymer (P(NIPAM)48-

P(AMPTMA)20, top) and triblock  copolymer (MP(EG)45-P(NIPAM)50-P(AMPTMA)20, bottom) studied here. 

2. Experimental Section 

2.1. Materials: The copolymers were synthesized according to a “one-pot” atom transfer radical 

polymerization (ATRP) procedure and the details on the synthesis and characterization are reported 



in our previous publications.[50, 51] The chemical structures of the copolymers employed in this 

study are depicted in Scheme 1, together with their weight-average molecular weights and 

polydispersity index. PEG (Mn of 6000 g·mol-1, Sigma Aldrich) and PNIPAM (Mn of 5500 g·mol-1, 

Polymer Source Inc., Dorval, Canada) homopolymers were used as received. The solutions were all 

prepared in 10 mM NaCl solution (Degassed Milli-Q water, resistivity of 18.2 MΩ·cm. organic 

content below 5 ppb, pH 5.6) using a nutating mixer for 24 hr.  

2.2. Dynamic light scattering (DLS): DLS (Zetasizer Nano-ZS, Malvern Instruments, 

Worcestershire, UK) measurements were performed to assess the aggregation temperature and 

estimate the hydrodynamic size of the copolymers at temperatures between 20 and 45 °C. The 

measurements were conducted on 0.15 wt% dilute solutions of the copolymers in 10 mM NaCl buffer, 

which were passed through a 0.45 μm pore diameter filter. Prior to the measurements, the samples 

were thermally stabilized at 20 °C for 15 min. After each temperature step, the samples were given a 

5 min stabilization time. The standard software of the instrument (Zetasizer software, Malvern 

Instruments) was used for fitting the correlation function data and obtain the hydrodynamic size from 

the Stokes-Einstein relationship.  

2.3. Quartz crystal microbalance with dissipation (QCM-D): Adsorption of PNIPAM and PEG 

homopolymers and the copolymers on the silica surface was monitored using QCM-D (Q-Sense E1, 

Biolin Scientific, Gothenburg, Sweden). A silica-coated sensor (QSX 303, Biolin Scientific) was 

repeatedly washed with acetone, rinsed with copious amount of Milli-Q water, and dried by a stream 

of nitrogen. The sensor was then plasma-cleaned (PDC-32G plasma cleaner, Harrick Plasma) for 5 

min, using the high power level and 500 mTorr pressure of water vapor. The measurements were 

started at 20 ºC under a 80 μl/min steady flow of degassed 10 mM NaCl solution. After reaching 

stable baselines for all the harmonics (1st to 13th overtones), the polymer solution (0.15 wt.% for 

copolymers and 0.1 wt% for homopolymers) in 10 mM NaCl solution was flowed into the cell for 1 



h at 20 ºC. To remove the loosely adsorbed chains, the cell was afterwards rinsed with 10 mM NaCl 

solution, until stable baselines for all the overtones were found. The measurements were repeated 

twice for each polymer solution. The standard software of the instrument (Q-Sense Dfind, Biolin 

Scientific) was employed for data analysis and viscoelastic Voigt modeling. 

2.4. Atomic force microscopy (AFM): To study the topography and interactions of the copolymers 

at the surface, AFM (NanoWizard 3, JPK Instruments AG, Berlin, Germany) measurements were 

carried out. Interactions between two copolymer-coated silica surfaces were evaluated by the AFM 

colloidal probe technique. A tipless rectangular cantilever (HQ:CSC38/Cr-Au, MikroMasch) with 

approximate length of 350 µm, width of 32.5 µm, thickness of 1 µm, and normal spring constant of 

0.03 N.m−1 was used. The accurate normal spring constant of the tipless cantilever was obtained 

according to the thermal noise method.[52] Afterwards, a silica particle with a diameter of 7.2 ± 0.1 

µm (measured by Nikon Eclipse LV100ND optical microscope) was glued to the end of the 

cantilever, using the two-component Araldite 2000 plus epoxy adhesive.[53] The cantilever and the 

silicon wafer (WaferNet Inc., San Jose, CA, USA) were plasma-cleaned for 5 min at the high power 

level and 500 mTorr pressure of water vapor, mounted in the instrument, and then immersed in a 0.15 

wt% solution of the copolymer for 1 h at 20 ºC. After rinsing the instrument cell with copious amount 

of water, the measurements were instantly conducted. The solution temperature was controlled with 

an accuracy of ±0.1 ºC using a BioCell (JPK Instruments). Two syringe pumps (Aladdin syringe 

pump, World Precision Instruments) were used to exchange the solutions in the BioCell. When 

changing the cell temperature, the system was given a 10 min of stabilization time. For each 

temperature, 65 force curves were obtained at various surface positions over a 5µm × 5µm area. To 

avoid the contribution from hydrodynamic forces, an approach and retraction velocity of 200 nm/s 

was employed. Topography of the copolymer-covered surfaces was inspected using the Quantitative 

Imaging (QI) mode. A rectangular cantilever (HQ:CSC38/Al BS, MikroMasch) with normal spring 



constant of 0.03 N.m−1 and a conic probe of 8 nm radius was used. The set force value of 0.35 nN 

and a pixel resolution of 256×256 were employed for all the measurements. The standard software of 

the instrument (JPKSPM Data Processing) was used to analyze the images and the force curves. 

 

Figure 1 DLS data of the diblock (Left panel, red figures) and the triblock (Right panel, blue figures) copolymer solutions (0.15 wt% copolymer in 10 

mM NaCl solution). (First row) correlation data at 20 ºC (Inset shows the data at 40 ºC), (Second row) hydrodynamic diameter distribution (size-

intensity) at 20 ºC (Inset shows the data at 40 ºC), (Third row) average hydrodynamic diameter as a function of temperature, (Last row) derived count 

rate as a function of temperature. At each temperature, the standard deviation for the unimers average hydrodynamic diameter is no larger than ± 0.2 

nm, while the aggregates average size changes in the range of ± 20 nm.  



3. Results and Discussion 

3.1. DLS Measurements: Before addressing the properties at the interface, we first evaluate the 

hydrodynamic size distribution and thermo-responsive behavior of the copolymers in bulk aqueous 

solution. Figure 1 depicts the average hydrodynamic diameter and the derived count rate of the 

copolymer solutions at various temperatures between 20 and 45 ºC, as well as the correlation data 

and hydrodynamic diameter distribution profiles at 20 and 40 ºC. With respect to the diblock 

PNIPAM-PAMPTMA copolymer, the relatively slow decay of the correlation function and the 

observed shoulder imply polydispersity in size and presence of aggregates. Accordingly, a bimodal 

hydrodynamic diameter distribution is obtained at 20 ºC, which represents a narrow peak at around 

7.8 nm and a considerably broad peak at around 350 nm. While the former is attributed to the 

individual diblock chains, also known as the unimers, the latter reveals the presence of intermicellar 

complexes. Presence of such interchain aggregates has been previously investigated for different 

PNIPAM block lengths and salt concentrations.[50] However, it should be noted that the unimers are 

entirely dominant in number compared to the intermicellar structures.(Supplementary information, 

Section S1) By increasing the temperature up to 30 ºC, both the peaks remain almost untouched in 

size and intensity, giving an average hydrodynamic diameter of 7.4 nm for the unimers. In the 

temperature range between 30 and 35 ºC, the unimers peak continuously decays in intensity, while 

the second peak becomes progressively sharper, suggesting gradual formation and growth of the 

complexes at the expense of the unimers.[50] At 36 ºC, the peak corresponding to the unimers 

completely disappears and the intermicellar structures peak is relatively narrower compared to at 20 

ºC. In the temperature range between 37 to 40 ºC, the average hydrodynamic diameter of the 

intermicellar structures remains unaffected (around 350 nm), as well as the peak width. The calculated 

hydrodynamic diameter is in the range of 1 μm at 41 ºC; however, poor quality of the correlation data 

indicates macroscopic phase separation of the solution; henceforth, the data at temperatures higher 



than 40 ºC are omitted. Regarding the derived count rate values, a similar trend is displayed. The 

temperature at which the count rate value rises is around 30 ºC, in accordance with the temperature 

at which the unimers peak declines, supporting gradual transformation of the unimers into the 

intermicellar entities at the temperature range between 30 and 35 ºC.  

With respect to the MPEG-PNIPAM-PAMPTMA triblock copolymer, the correlation function 

represents a monodisperse system at 20 ºC. Hereupon, a narrow unimodal size distribution with an 

average hydrodynamic diameter of around 9.4 nm is obtained, so merely unimers can be found in the 

solution. Moreover, the unimer average hydrodynamic diameter is relatively larger than that of the 

diblock copolymer, which can be attributed to the presence of the PEG chain. In general, increasing 

the temperature has no drastic effect on the average hydrodynamic diameter and the count rate values; 

henceforth, no significant aggregation occurs within the studied temperature range. However, at 40 

ºC, the average hydrodynamic diameter of the unimer entities slightly decreases (~ 8 nm), and a 

relatively weak and broad secondary peak corresponding to the intermicellar complexes appears. In 

the temperature range between 40 and 45 ºC, the complexes peak becomes slightly stronger in 

intensity, but still the unimers are utterly dominant in population.(Supplementary information, 

Section S1)  A similar trend is demonstrated for the count rate values, which show minor dependence 

on the temperature. All these observations together confirm that the hydrophilic PEG block stabilizes 

the unimer state and effectively prevents interchain aggregation throughout the studied temperature 

range. Knowing the behavior of the copolymers in bulk solution, next step is to assess adsorption and 

self-assembly of the copolymers at the silica-aqueous interface. 

3.2. QCM-D Measurements: Figure 2 represents the frequency and dissipation factor shifts resulting 

from adsorption of the homopolymers and the copolymers onto the silica surface. As a common 

observation, adsorption of the polymers is accompanied with a negative shift in the oscillation 

frequency (ΔF<0), as well as a positive shift in the dissipation factor (ΔD>0). The former is related 



to the amount of the added mass over the sensor surface, which indeed includes the mass of the 

adsorbed polymer chains plus their water content, known as the “wet” polymer mass. The latter is 

attributed to the ability of the attached polymer chains to deform and dissipate some energy during 

each oscillation. Accordingly, a soft and swollen polymer film gives rise to a high dissipation value; 

whereas, a rigid and collapsed polymer film follows the sensor oscillation with no significant 

deformation, and thus is associated with a small damping factor.[54-56] 

 

Figure 2 QCM-D data of adsorption of the homopolymers and the copolymers on the silica surface; (Left column) frequency shift normalized by the 

overtone number, (Right column) dissipation factor shift. Each figure represents three steps. Stable baseline in 10 mM NaCl solution (step 1), changing 

to the polymer solution (step 2), and finally rinsing with 10 mM NaCl to remove the loosely adsorbed polymer chains and obtain the stable polymer 

layer. The data of 3rd, 5th and 7th overtones are provided. In contrast to the homopolymers, notable overtone-dependence is found for the copolymers 

adsorption, suggesting formation of a soft and dissipative polymer layer.       



In order to ascertain the affinity of the uncharged blocks for the silica surface, adsorption of PNIPAM 

and PEG homopolymers is first studied.[57, 58] It is demonstrated that PEG has a relatively weak 

segmental affinity towards the silica surface. The adsorption is accompanied with a 2 Hz decrement 

in the oscillation frequency and a negligible increment of 0.1 in the dissipation factor, for the third 

overtone. This observation indicates limited physical attractions between the ethylene glycol 

segments and the silica surface. Considering the notably small dissipation shifts alongside with minor 

overtone-dependence of the adsorption curve, the Sauerbrey equation can be used to estimate the 

adsorbed mass[59], giving an approximate value of 75 ng/cm2. On the other hand, PNIPAM 

homopolymer represents a relatively stronger physical interaction with the silica surface, which is 

evident from a 10 Hz decrement in the oscillation frequency and an increment of 0.7 in the damping 

factor. However, the adsorption curves render no significant overtone-dependence, suggesting a 

pancake conformation for the PNIPAM chains on the surface.[60, 61] Accordingly, the mass of the 

adsorbed PNIPAM layer is approximated using the Sauerbrey equation, giving an estimated value of 

200 ng/cm2. 

 

Table 1 Viscoelastic modeling of the copolymer films (detailed description of modeling procedure is provided in the Supplementary 

information, Section S2) 

Copolymer 

 Voigt thickness  

(nm) 

 Shear viscosity 

(mg/m·s) 

Elastic modulus 

(Mg/m·s2) 

PNIPAM-PAMPTMA 16.5  1080 5.0 

MPEG-PNIPAM-PAMPTMA 17.0  1040 3.5 

 

Adsorption of the diblock PNIPAM-PAMPTMA copolymer gives rise to a frequency shift of 

–18.2 Hz and a dissipation shift of 2.1. The relatively large value of the dissipation factor 



together with the apparent overtone-dependence of the adsorption curve imply formation of a 

soft and viscoelastic copolymer layer.(see the Supplementary information, Section S2) 

Therefore, the layer properties are estimated using the Voigt viscoelastic model[62-64], 

suggesting an average layer thickness of around 16.5 nm (Table 1). It is worth mentioning that 

the calculated thickness does not necessarily describe the real thickness of the produced 

copolymer layer, but only provides the thickness of a homogenous and uniform layer that has 

the same viscoelastic behavior.[65, 66] With respect to adsorption of the triblock MPEG-

PNIPAM-PAMPTMA copolymer, a frequency shift of –16.5 Hz and dissipation shift of 1.8 

is detected, as well as overtone-dependence of the adsorption curve, thus a swollen and 

dissipative layer conformation is expected. Using the viscoelastic modeling, a layer thickness 

of around 17 nm is found, which is indeed comparable with that of the diblock copolymer. 

Therefore, the QCM-D measurements exhibit similarity in the properties of the diblock and 

triblock copolymer layers. Nevertheless, as explained above, the viscoelastic modeling data 

can be misleading if the polymer layers are not homogeneous. Accordingly, the topography 

of the copolymer-covered surfaces will be further examined using AFM imaging. 

3.3. AFM imaging: AFM topography images of the copolymer-covered silica surfaces in 10 mM 

NaCl solution at 20 ºC are compared in Figure 3. In apparent contrast to the QCM-D modeling data, 

the thickness and topography of the copolymer-covered surfaces are shown to be significantly 

different. With respect to the diblock copolymer (Figure 3a,b), relatively large aggregates can be 

found on the surface, which can suggest adsorption of the intermicellar complexes from the solution. 

The clusters on the surface differ greatly in the planar dimension, relative height and shape. For the 

imaged entities, the typical planar dimension varies approximately from 50 to 250 nm, while the 

typical maximum relative height is roughly between 20-50 nm (Figure 3c).  



 

Figure 3 Topography of the copolymers on the silica surface at 20 ºC; (a)(b) Height images of PNIPAM-PAMPTMA diblock, (c)(d) Cross-section 

profiles of a cluster and a unimer, which are indicated on figure b, (e)(f) Height images of MPEG-PNIPAM-PAMPTMA triblock.    

This is in agreement with the fact that the complexes in solution are quite polydisperse in the 

hydrodynamic diameter (see Figure 1); moreover, the adsorbed complexes on the surface 

might merge to form relatively larger and asymmetrical clusters. In addition to the large 

aggregates, relatively smaller entities with an average planar dimension of around 10 nm and 

relative height of around 4 nm are apparently adsorbed on the surface (Figure 3d). Since the 

dimension values are comparable to the measured hydrodynamic dimeters of the unimers, we 



suggest such structures are the unimers that are heterogeneously adsorbed on the surface. With 

respect to either the aggregates or the unimers, the planar dimensions are apparently larger 

than the relative height values, which can be reasoned based on the relatively strong segmental 

affinity of the PNIPAM block to the silica surface (see Figure 2) that can favor a pancake-like 

conformation for the PNIPAM blocks. Besides, the cationic block is also expected to extend 

on the surface and adopt a flat conformation. It should also be noted that the cantilever tip 

radius and compression of the polymer chains during imaging could also cause broadening of 

the imaged entities.                  

On the contrary, the triblock MPEG-PNIPAM-PAMPTMA copolymer (Figure 3e, f) evidently 

produces a more homogenous and uniform layer on the silica surface. There is no trace of 

large aggregates throughout the surface, which is in agreement with the DLS measurements 

in which only unimers were identified in the solution at 20 ºC. Lack of large entities also 

indicates that the adsorbed unimers are unlikely to merge and form interchain aggregates  on 

the surface at this temperature. Furthermore, one cannot observe distinguishable unimer 

entities even in small-scale images, which strengthens the idea of having a relatively dense 

and homogenous copolymer film, with a uniform surface coverage. 

3.4. AFM colloidal probe force-distance measurements: The force-distance curves between two 

silica surfaces covered with the copolymers in a 10 mM NaCl solution at various temperatures are 

illustrated in Figure 4. It should be noted that the long-ranged electrostatic forces are effectively 

screened in presence of the salt (Debye length of around 3 nm); hence, we can specifically study the 

polymer-related forces. Regarding the approach force curves between the surfaces covered with the 

diblock copolymer, a considerably long-ranged repulsive force is demonstrated. At 20 ºC, the 

repulsive force starts at an average separation distance of around 95 nm. Such a long-ranged repulsion 

is indeed caused by the huge complexes present on the surfaces. Based on the images and force 



curves, the repulsive force that kicks in at the separation distance of around 95 nm can be attributed 

to compression of the aggregates against each other or the opposite bare surface. However, since the 

layer is topographically non-uniform and heterogeneous, one cannot conclude a definite thickness 

from the AFM force measurement data. Increasing the temperature to 25 and 30 ºC has no noticeable 

effect on the force-distance profile. By increasing the temperature to 35 ºC, the strength of the 

repulsive force profile becomes slightly weaker and the average contact point slightly decreases.(See 

the Supplementary information, Section S3) 

 

Figure 4 Force-distance (approach and retract) curves between two silica surfaces (silicon wafer and spherical silica probe) covered with 

the copolymer layers. (Left column) surfaces covered with the diblock copolymer, (Right column) surfaces covered with the triblock 

copolymer. At each temperature, the representative force curve that indicates the median behavior of all the measurements is plotted.   



This change in the force profile may be attributed to the collapse of the PNIPAM blocks within 

the aggregates, at temperatures between 30 and 35 ºC. However, it can also potentially 

originate from minor changes in the structure of the large domains, due to multiple 

compressions during the experiment. At 40 and 45 ºC (inset of Figure 4a), the repulsive force 

profiles seem to become relatively stronger and are almost similar to the force curve at 20 ºC. 

However, compared to 20 ºC, it seems that that the repulsive forces are relatively weaker at 

distances larger than 15 nm; while, they are apparently relatively stronger at the shorter 

distances. Hence, although the maximum thickness of the aggregates is not notably affected 

by increasing the temperature, the internal layer structure of the aggregates seems to be 

changed, which can be due to the collapsed and more compact conformation of the PNIPAM 

blocks, or again an experimental effect. With respect to the retract force-distance profiles, 

only a slight adhesion is found between the polymer-coated surfaces at 20 and 25 ºC, 

indicating lack of strong interchain interactions. Increasing the temperature to 30 ºC 

strengthens the adhesion and attractive forces, which can be attributed to presence of PNIPAM 

interchain interactions in the proximity of the collapse temperature. By further heating the 

solution, the adhesion energy becomes significantly stronger, and attraction between the 

surfaces is observed at separation distances up to around 500 nm, which can be correlated to 

the bridging aggregates.   

Regarding the surfaces covered with the triblock copolymer, the approach force-distance 

profiles are evidently short-ranged. At 20 and 25 ºC, the repulsive force starts at a separation 

distance of around 10 nm, which confirms the idea of having a homogenous layer, formed 

solely of the unimers. Since the layer was shown to be uniform and homogenous, the layer 

thickness then can be estimated from the force-distance profile to be around 5 nm, which is 

also comparable with the measured hydrodynamic diameter and the maximum relative height 



found from the AFM images. It should again be considered that the PNIPAM and PAMPTMA 

blocks could interact with the silica surface, and the adsorbed unimers are thus expected to 

flatten on the surface. Therefore, the film thickness is relatively smaller than the 

hydrodynamic diameter of the unperturbed unimers in bulk solution. By increasing the 

temperature to 30 ºC, the repulsive force becomes stronger, while the contact distance is 

apparently not significantly affected. This intensification of the repulsive force can be 

attributed to the collapse of the PNIPAM blocks, and thus a change in the layer internal 

structure and rigidity. One can argue that upon increasing the temperature, the PNIPAM-

PNIPAM interchain interactions become notably stronger and the PNIPAM blocks tend to 

minimize their solvent-accessible surface area. Accordingly, a conformational transition from 

flat pancake to collapsed globule is expected, which could explain the relatively stronger 

repulsive force of layer compression. Further increment in temperature has no notable effect 

on the force-distance curves, suggesting a robust and stable layer structure up to 45 ºC. 

Regarding the retract force profiles, a weak adhesion –in less than half of the measurements- 

between the surfaces is found at 20 and 25 ºC, which can indicate relatively weak attractive 

interactions. Nevertheless, no adhesion is observed between the surfaces at 30 ºC and higher 

temperatures, demonstrating an effective shielding effect by the PEG blocks that can be found 

on the outer surface of the copolymer layer, which can prevent adhesion between the collapsed 

PNIPAM blocks. 

4. Conclusions 

In the present work, the properties of diblock PNIPAM-PAMPTMA and triblock MPEG-

PNIPAM-PAMPTMA copolymers at silica-aqueous interface were investigated. It was shown 

that presence of the PEG block drastically influences the behavior of the copolymer in bulk 



solution and when adsorbed to a silica surface. In the bulk state, it was indicated that the 

diblock copolymer solution is composed of unimers plus relatively large intermicellar 

structures, even below the collapse temperature of PNIPAM. On the other hand, the triblock 

copolymer solution includes merely unimer entities below the collapse temperature of 

PNIPAM, while the intermicellar structures can form at relatively high temperatures, but are 

in minority. AFM topography images also revealed evident differences in the topography of 

the surfaces covered with the copolymers. While large aggregated domains and separated 

unimers were found for the diblock copolymer, the triblock copolymer was demonstrated to 

produce a uniform and homogenous layer in terms of thickness and surface coverage. Such a 

discrepancy in the layers properties was not captured by the QCM-D measurements, in terms 

of the layer viscoelastic properties and thickness. The Voigt viscoelastic modeling data 

suggested comparable layer thicknesses and viscoelasticity for the both copolymer layers. The 

AFM colloidal probe force-distance measurements were in agreement with the height images, 

indicating long-ranged repulsive forces resulting from compression of the diblock copolymer 

clusters; on the other hand, a short-ranged repulsion in the range of unimers coil size was 

obtained for the triblock copolymer. Additionally, it was demonstrated that the diblock-

covered surfaces render considerably strong adhesion above the PNIPAM phase separation 

temperature, while no adhesion was measured between the triblock-covered surfaces even at 

45 ºC. In conclusion, our work suggests how including a short hydrophilic block with minor 

tendency to the substrate into the copolymer backbone can efficiently tune the interfacial 

adsorption in order to produce polymer layers with a more homogeneous structure and 

uniform surface coverage. Although electrostatic anchoring of copolymers has been employed 

as a useful way to produce responsive surfaces in the literature [67-69], one has to be aware 

that the adsorbed entities not always form a uniform and homogenous polymer layer, but can 



instead produce aggregated clusters. This hints at the need to closely characterize the 

copolymer behavior both in bulk and at surface. On the other hand, the observed shielding 

effect on adhesion forces mediated by the hydrophilic PEG block in the outer region of the 

copolymer film can be potentially employed for various applications, e.g. fabrication of 

antifouling surfaces against specific biomolecules[70, 71], or more generally the idea can be 

used to prepare surfaces with selective molecular recognition capabilities and interfacial 

properties.[72, 73]  
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