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Abstract

Bacteria in a biofilm colony have the capacity to monitor the size and growth conditions for

the colony and modify their phenotypical behaviour to optimise attacks, defence, migration,

etc. The quorum sensing systems controlling this involve production and sensing of diffusive

signal molecules. Frequently, quorum sensing systems carry a positive feedback loop which

produces a switch at a threshold size of the colony. This all-or-none switch can be beneficial

to create a sudden attack, leaving a host little time to establish a defence. The reaction-

diffusion system describing a basal quorum sensing loop involves production of signal mole-

cules, diffusion of signal molecules, and detection of signal molecules. We study the ignition

process in a numerical solution for a basal quorum sensor and demonstrate that even in a

large colony the ignition travels through the whole colony in a less than a minute. The igni-

tion of the positive feedback loop was examined in different approximations. As expected, in

the exact calculation the ignition was found to be delayed compared to a calculation where

the binding of signal molecules was quasistatic. The buffering of signal molecules is found

to have little effect on the ignition process. Contrary to expectation, we find that the ignition

does not start when the threshold is reached at the center—instead it allows for the thresh-

old to be approached in the whole colony followed by an almost simultaneous ignition of the

whole biofilm aggregate.

Introduction

Quorum sensing (QS) is a biological regulation process utilised by bacteria to control behav-

iour in accordance with size, density, and growth-rate of a bacterial population [1]. The pro-

cess is based on diffusible signal molecules, produced by the bacteria at a background level.

The signal molecules are able to bind to regulator molecules within the bacteria, thereby acti-

vating the regulator [2].

The collective behaviour regulated by QS was reported in Vibrio fischeri where it regulates

camouflage light in large cell colonies in the host [3–5]. Since then, QS systems have been

reported in many bacteria, e. g. Aeromonas hydrophila [6–9], Agrobacterium tumefaciens [10],
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and Pseudomonas aeruginosa [11–13]. The presence of QS in colonies of bacteria appears to be

the rule rather than the exception.

Frequently, the array of gene expressions acting under the control of activated QS regula-

tors includes signal molecule synthetase. This positive feedback leads to a size-sensitive switch

which can be used to control collective behaviour [1–5, 14]. The switch makes it possible to

maintain an invisible state until the sudden QS regulated attack sets in. Recently, a proper

measure of the “size” of a spherical biofilm aggregate was established as the cell density multi-

plied by the squared radius of the colony [15, 16]. The establishment of the size measure was

based on the observation that the concentration of the activated regulator

ra ¼ ½R2S2� ð1Þ

may be interpreted as the intrinsic measure of how quorate the state of the colony is and con-

trols the quorum sensing feedback as well as QS regulated genes [15].

In small colonies the signal molecules are produced at a low background level. In larger col-

onies, the diffusive signal molecules accumulate, activate the transcriptional regulator, and

induce transcription of the signal molecule synthetase at an increased level.

The dimer form of the activated regulator implied in Eq (1) allows for a fully developed

switch in the ignition of the quorum as observed in Gram negative bacteria [3–5, 14]. The

dimeric form is typical to quorum sensors and has been confirmed in main QS loops in a

range of Gram negative bacteria [1, 12, 17–25]. In the present study we will study the time

course of the ignition of the size-dependent switch in the most basic form of a single quorum

sensitive switch.

Reaction-diffusion system

The quorum sensing system considered in this article, is based on the reaction-diffusion

model proposed by Ferkinghoff-Borg and coworkers [15, 16, 25]. This model examines a

dimer based regulator system with concentrations dependent on both spatial coordinates and

time in a spherically symmetric geometry. These reaction-diffusion equations are obtained by

considering the reactions that occur, when the unactivated regulator molecules dimerize and

are subsequently activated by ligand binding as illustrated in Fig 1.

The reactions in Fig 1 are modelled by the four differential Eqs (2)–(5) [15].

@r1

@t
¼ b1 þ 2k�

2
r2 � 2kþ

2
r2

1
� l1r1 ð2Þ

@r2

@t
¼ kþ

2
r2

1
þ k�

3
r3 � 2kþ

3
r2s � ðk�

2
þ l2Þr2 ð3Þ

Fig 1. Reaction scheme of a generic quorum sensing process with regulator (R with promoter PR) and

signal molecules (S with promoter PS). In this example dimerization takes place prior to signal molecule

binding. As the signal molecules produced by the cell itself diffuse quickly away, the signal molecules binding

to the regulator typically come from other cells. Figure modified form [15]

https://doi.org/10.1371/journal.pone.0180199.g001
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4
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4
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Each of the equations model the change in concentration of each regulator stage, with r1 as the

concentration of R, r2 the concentration of R2 and so forth. The final reaction produces the

activated dimer regulator concentration r4 = ra = [R2S2].

The term b1 signifies the production of monomer regulator with concentration r1 = [R]. In

the model the reaction between regulators is governed by on- and off-rates, denoted by kþi and

k�i , as well as degradation rates λi, i = 1, . . ., 4. The dimer degradation rates are assumed to be

equal λd = λ2 = λ3 = λ4 [16] and significantly lower than the monomer decay rate λ1. All degra-

dation rates include proteolytic degradation as well as dilution by cell division. The degrada-

tion rates are assumed to be considerably slower than the on- and off-rates.

Additionally, an equation governing the production and diffusion of signal molecules is

required. The change in signal molecule concentration s = [S] is modelled using a diffusion

equation containing a production term ρvκs:

@s
@t
¼ DDsþ rvks ð6Þ

ks ¼

bs

ks
Ks þ ra

Ks þ ra
ks �

bs ; ra <
bs

ks
Ks

ks ; ra > Ks

8
<

:
ð7Þ

Multiplication of the intracellular production κs by the volume fraction occupied by cells, ρv,

ensures correct normalisation of the production term. Note that the production term shifts

away from background production, ρvbs, already when the activated regulator level reaches
bs
ks

Ks, which was recognised as the ignition point for the feed-back loop [15].

When solving the model numerically, a spherical geometry with radius R will be assumed.

Regulator as well as signal molecule concentrations are thus dependent on time, t, and distance

from center. Additionally, the boundary of the colony is assumed to be absorbing, sðR; tÞ ¼ 0,

corresponding to a rapid exchange of the surroundings.

Eq (6) implicitly assumes that the free signal molecule concentration is much larger than

the bound signal molecule concentration. If this is not the case, for a calculation of the time

course of the binding, it is necessary to account for the bound signal molecules. This results in

the following equation.

@s
@t
¼ DDsþ rvks þ rvð2k�

4
r4 þ k�

3
r3 � 2kþ

3
r2s � kþ

4
r3sÞ ð8Þ

Incorporating this behaviour in the model, introduces a buffering of the signal molecules. In

the static limit, the added terms vanish and therefore do not alter the results by Ferkinghoff-

Borg et al. Below, we shall refer to the solution of Eqs (2)–(5) with Eq (8) as the “exact” model,

and the solution with Eq (6) as the solution “without buffering”.

In Eq (6) we only consider the generic case, where there is equilibrium between the concen-

tration of signal molecules inside and outside the cells. This is a fair approximation for QS sys-

tems mediated by smaller AHL molecules. However, for larger AHL molecules, active efflux
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pumps have been reported to assist in transporting the autoinducers out of the cell thereby

speeding up the ignition process [26, 27]. Modifications representing the active transport

across the membrane may therefore have to be introduced to produce a realistic profile of the

ignition process in these cases [28].

Quasi-static and static approximations to the solution of the reaction-diffusion system will

serve as references for the obtained results. The quasi-static approximation assumes an instant

equilibrium between regulator stages Eqs (2)–(5). This leads to a simple relation between sig-

nal molecule concentration and activated regulator concentration

r4 ¼ ra ¼
s2

~K 2 þ s2
rm ð9Þ

where rm is the maximal concentration of the active form of the regulator and ~K is an effective

dissociation constant which sits at the crossing between the asymptotes for large and small sig-

nal molecule concentrations [29]. Both rm and ~K are determined by the static solution of Eqs

(2)–(5). The quasi-static approximation does not assume the diffusion equation to be in static

equilibrium.

The static approximation of the model leads to an instantaneous switch and can be solved

by letting all time derivatives vanish [15]. At the center of the colony, the static approximation

Table 1. Table of parameters.

Parameter Value Description Reference

b1 1000 nM/h Monomer regulator production rate [32, 33]

D * 2 mm2/h Diffusion constant [15, 34]

bs 3600 nM/h Background production of S [33]

ks 100 bs Maximum production of S [15]

Ks 1 nM Promoter site PS dissociation constant Current study

r1 R concentration

r2 R2 concentration

r3 R2S concentration

r4 = ra < rm R2S2 activated regulator concentration

rm 537 nM Maximal ra concentration

~K 208 nM Effective dissociation constant [9, 35–37]

R 100 μm Radius of colony [38–41]

ρv Cell density (volume fraction occupied by cells)

k�
2

1000 h−1 2R R2 rate [33]

kþ
2

0.5 nM−1 h−1 2R! R2 rate constant [33, 42, 43]

k�
3

1000 h−1 R2 + S R2S rate [33]

kþ
3

100 nM−1 h−1 R2 + S! R2S rate constant [33]

k�
4

1000 h−1 R2S + S R2S2 rate [33]

kþ
4

100 nM−1 h−1 R2S + S! R2S2 rate constant [33]

λ1 20 h−1 Monomer decay rate [17, 18]

λd 0.5 h−1 Dimer decay rate (λ2, λ3, λ4) [1, 24, 25]

λ0 0.5 h−1 cell density growth rate

Table containing descriptions and values of parameters used in the model.

https://doi.org/10.1371/journal.pone.0180199.t001
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yields a simple factorised expression for the size of a colony, S,

S ¼
1

3
R2rv ¼

2D~K
bs

bs

ks

Ks þ ra
bs
ks

Ks þ ra

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
feedback switch

ra

rm � ra

� �1=2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
forward switch

ð10Þ

dependent on the activated regulator concentration, ra, [15]. Here all geometrical properties

(density and radius of the colony) are conveniently on the lhs. of the equation, and all intracel-

lular properties are on the rhs. The braces enhance the role of each term in the factorised form.

This factorized expression assumes not only time independence but also constant activation

Fig 2. Plot of activated regulator concentration, ra = r4, at the center of the colony as a function of geometric

size measure, Σ. Both axes are in natural units. The exact solution depicts the solution found when solving Eqs (2)–(5)

and (8), whereas non-buffered solution uses Eq (6). The quasi-static solution uses Eqs (6) and (9). The ignition point,

ra ¼
bs
ks
Ks ¼ 10� 2Ks, is indicated, as well as the dissociation constant Ks and maximum regulator concentration rm. The

exact solution is displayed with circles corresponding to 10 second intervals to indicate the speed of the ignition.

https://doi.org/10.1371/journal.pone.0180199.g002
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throughout the micro colony. Nevertheless, it proves to describe the qualitative features of the

system.

The system of differential equations was solved using the numerical solver pdepe in Matlab

[30, 31]. The initial condition was established by keeping the cell density fixed at a value below

the ignition point and allowing the system develop to stationary state. Growth of the colony

size, S, was accomplished by increasing the cell density, ρv, at a rate λ0 = 0.5 h−1. The full set of

parameters used in the simulation is listed in Table 1.

Results and analysis

In Fig 2, the activated regulator concentration at the center of the colony, ra, is displayed as a

function of the size, S. The curves represent the full model with and without buffering (broken

lines) compared with the static and quasi-static solutions (full lines).

First, we note that the exact model with buffering is indistinguishable from the model without

buffering, thus indicating that buffering of the signal molecules does not play a significant role.

Fig 3. Contour plot of activated regulator concentration ra = r4 = [R2S2] around the time of ignition as a

function of time and distance from the center of the colony. The plot contains the exact solution of the system

of equations presented in Eqs (2)–(5) as well as Eq (8), i. e. the system describing total signal molecule

concentration. The concentration necessary for ignition (
bs
ks
Ks in the static case) is marked by the red contour. A

logarithmic colour-scheme has been chosen due to the large range of values pre- and post-ignition.

https://doi.org/10.1371/journal.pone.0180199.g003
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In the factorized static approximation by Ferkinghoff-Borg et al. the feed-back loop appears

to ignite at a somewhat lower size than the full solution and the quasi-static solutions. This is

due to the approximation, that the concentration of activated regulator is taken to be equal to

its value at the center throughout the colony. It therefore reflects a limitation of the simple fac-

torized model in Eq (10).

The quasi-static solution resembles the exact solution, differing only slightly around the

time of ignition. As expected, the ignition of the system occurs prior to the ignition in the

exact solution. In contrast to the quasi-static solution, at ignition, the full solution jumps only

part of the way up to the factorized static solution. The reason for this difference is that, in the

full model, the dimer concentration needs to build up and does so at the same rate as the dilu-

tion from growth and degradation in the cells. The exact and quasi-static solutions show an

increase of more than two decades in activated regulator concentration, shortly after reaching

the ignition point. Examining the circles, it can be seen that the ignition takes less than a min-

ute. (Here we define “ignition” as a jump of 2 orders of magnitude in concentration of acti-

vated regulator, ra.)

The activation of the feed-back loop as a function of the radial coordinate and time may be

examined in Fig 3. The ignition concentration (�
bs
ks

Ks) is reached at different times through-

out the colony, with a difference of approximately 5 minutes between the ignition point at the

center and the ignition point close to the boundary. However, the ignition, recognized as

dense horizontal lines, does not occur until the ignition condition is reached throughout the

whole colony. Once this happens, the whole colony ignites in less than a minute, ignoring a

thin region near the boundary which is under the control of the boundary condition. Thus, the

contour plot confirms the expectation that the entire colony resides in a well defined state,

either on or off.

Conclusion

We have modelled a generic single-loop quorum sensing system with positive feedback. The

primary goal of the study has been to study of the space-time structure of the ignition of the

switch produced by the positive feedback in the quorum sensor.

The exact solution exhibits a delayed response compared to both the quasi-static and static

approximations, as it is limited by the time it takes the regulator stages to react and build up

concentration of activated regulator. Inclusion of buffering terms produces no further retarda-

tion of the system.

Using a 3D representation to depict both the spatial and temporal dependency of the acti-

vated regulator concentration, the collective behaviour of the colony could be studied. A slow

build-up over five minutes to the ignition concentration of activated regulator followed by a

quick ignition was observed. The process exhibits the desired behaviour, as the entire colony is

either in an on- or off-state. These observations indicate that a partial ignition is difficult to

achieve, even for slow systems. The model demonstrates that even the largest naturally occur-

ring biofilm aggregates in chronic infections [41] ignite fully in less than a minute and, truly,

can be said to produce a surprise attack.
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Trends in Microbiology. 2013; 21(9):466–474. https://doi.org/10.1016/j.tim.2013.06.002 PMID:

23827084

42. Schlosshauer M, Baker D. Realistic protein-protein association rates from a simple diffusional model

neglecting long-range interactions, free energy barriers, and landscape ruggedness. Protein Sci. 2004;

13(6):1660–1669. https://doi.org/10.1110/ps.03517304 PMID: 15133165

43. Schlosshauer M, Baker D. A General Expression for Bimolecular Association Rates with Orientational

Constraints. J Phys Chem B. 2002; 106:12079–12083. https://doi.org/10.1021/jp025894j

How fast is a collective bacterial state established?

PLOS ONE | https://doi.org/10.1371/journal.pone.0180199 June 23, 2017 10 / 10

http://www.ncbi.nlm.nih.gov/pubmed/8439159
http://www.ncbi.nlm.nih.gov/pubmed/10440674
https://doi.org/10.1128/AAC.49.6.2467-2473.2005
http://www.ncbi.nlm.nih.gov/pubmed/15917548
https://doi.org/10.1016/j.tim.2013.06.002
http://www.ncbi.nlm.nih.gov/pubmed/23827084
https://doi.org/10.1110/ps.03517304
http://www.ncbi.nlm.nih.gov/pubmed/15133165
https://doi.org/10.1021/jp025894j
https://doi.org/10.1371/journal.pone.0180199

