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Electronic structure and time-dependent description of rotational predis-
sociation of LiH

P. Jasik,a J. E. Sienkiewicz, a∗ J. Domsta b and N. E. Henriksenc

Adiabatic potential energy curves of the 1Σ+ and 1Π states of the LiH molecule have been calculated. They correlate asymp-

totically to atomic states, like 2s+1s, 2p+1s, 3s+1s, 3p+1s, 3d+1s, 4s+1s, 4p+1s and 4d+1s. Very good agreement is found between

our calculated spectroscopic parameters and experimental ones. The dynamics of the rotational predissociation process of the 11Π

state has been studied by solving the time-dependent Schrödinger equation. The classical experiment of Velasco [Can. J. Phys. 35,

1204 (1957)] on dissociation in the 11Π state is explained in detail.

1 INTRODUCTION

During the last twenty years, the physics of diluted gases has seen

major advances in two fields, namely laser cooling of atomic and

molecular samples and femtosecond chemistry. In both cases, ap-

propriately frequency and phase shaped laser light is used in or-

der to control the system. In this context, two fundamental pro-

cesses, i.e., photoassociation and photodissociation, or in other

words formation and breaking of the chemical bond by light, have

attracted attention of theoreticians as well as experimentalists.

Particularly, photodissociation of diatomic or small polyatomic

molecules is an ideal field for investigating molecular dynamics

at a high level of precision.

Homonuclear and heteronuclear alkali metal molecules, in-

cluding LiH, are valuable for theoreticians, mainly because they

have simple electronic structure, being one- or two-valence elec-

tron systems. They can serve as convenient prototypes to test

theoretical methods, which can be further applied to more com-

plicated molecular systems. Besides that, the knowledge of in-

teratomic adiabatic potential energy curves of diatomic systems

is essential in understanding several processes like photodissoci-

ation, photoassociation, cooling and trapping. An extensive sur-

vey on the spectroscopy and structure of LiH was published in

1993 by Stwalley and Zemke1; and later on they were followed

by Gadea2 in 2006.

Already in 1935-1936, Crawford and Jorgensen3,4 made anal-

ysis of the LiH band spectra. Since that, many notable studies

have been undertaken. Among them, in 1962 Singh and Jain5

applied the Rydberg-Klein-Rees method in order to obtain ener-

gies of the low excited states of LiH. Gadea and coworkers cal-

culated potential energy curves2,6,7,8, radial couplings9, nona-
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diabatic energy shifts10 as well as the LiH formation by radia-

tive association in ion collisions11 . Results of several other cal-

culations, including semiempirical and ab initio approaches to

describe important physical and chemical properties of LiH are

available12,13,14,15,16,17,18,19,20,21,22. Calculations related to LiH

are also used in the description of ultracold polar molecules for-

mation in a single quantum state (e.g. Cote et al.23). Special

investigations were devoted to dipole moments24,25 and ionic

states of LiH26,27,28. Recently, Tung et al.29 and Holka et al.30

performed very accurate calculations of the ground and some ex-

cited state potential curves.

LiH was also intensively explored in time-dependent studies.

Again, being only a four electron molecule makes it a convenient

example for molecular dynamics calculations. Already in 1936

Mulliken31 noted that the change in the internuclear separation

may cause a rearrangement of the density of electrons’ distribu-

tion. Recently, the LiH molecule was used in a computational

study using the time-dependent multiconfiguration method32.

The aim of our work is to provide accurate potential energy

curves and next to use them to explain a classical experiment

of Velasco33 on rotational predissociation. We choose to solve

the time dependent Schrödinger equation (TDSE) with a probe

wavepacket placed on the effective interatomic potential possess-

ing a centrifugal barrier. This approach gives us the possibility

to compare rovibrational spacings with those calculated directly

from the electronic structure. Our work is also motivated by the

case of the NaI molecule intensively studied by A. Zewail34 and

later by others35,36,37,38. The NaI dimer shows similar behavior

as LiH in creating ionic bonds and is a well studied prototype

molecule in femtochemistry, particularly in the aspect of dynam-

ics of unimolecular reactions.

In Section II, the appropriate model of the electronic struc-

ture is defined, leading to an algorithm for calculating some low-

excited singlet Σ and Π states. Next, we describe the theoretical

backgrounds of rotational predissociation and molecular dynam-

ics. We explain, how the obtained adiabatic potentials can be

used in the theoretical treatment of the rotational predissociation

proccess. In Section III, we present rotational predissociation re-

http://arxiv.org/abs/1703.10629v1


sults for the 11Π state and compare them with measurements of

Velasco33. Finally, we show results of the dynamics of predisso-

ciation process induced by a laser field. Conclusions are given in

the last section.

2 THE MODEL

2.1 Electronic structure

We consider the interaction between the lithium (atom A) and

hydrogen (atom B) under the assumption that the molecular

state is a composition of the electronic adiabatic states Ψel
i (~r;R),

i = 1,2,3, . . . , which depend on the positive variable R, i.e. on

the separation between the nuclei of these atoms. The applied

notation indicates, that our considerations are restricted to such

eigenstates, which are independent of the direction of the vec-

tor joining the nuclei. In other words, electronic wave functions

possess the spherical symmetry with respect to the nuclear co-

ordinates. Our calculations are based on the Born-Oppenheimer

approximation, i.e. as the solutions of the following time inde-

pendent Schrödinger equation

HelΨel
i (~r;R) = Eel

i (R)Ψel
i (~r;R). (1)

Here, the separation parameter R is kept fixed, vector~r represents

all electronic coordinates, Hel is the electronic Hamiltonian of a

diatomic system. Thus Ψel
i (~r;R) describes the i-th eigenstate of

the Hamiltonian, Eel
i (R) are the corresponding eigenvalues, also

named as adiabatic potentials. The Hamiltonian of the system

can be written as

Hel = T el +V, (2)

where T el stands for the kinetic energy operator of the valence

electrons and V represents the operator of the interaction be-

tween the valence electrons, the Li-core and the nucleus of H.

In the present approach only the valence electrons are treated

explicitly and the lithium core is represented by an angular mo-

mentum dependent pseudopotential. The latter is taken as

V = V A +V A
pol +V B +

1

r12
+Vcc. (3)

Here V A describes Coulomb and exchange interaction as well as

the Pauli repulsion between the valence electrons and the lithium

core. We use the following semi-local energy-consistent pseu-

dopotentials:

V A =
2

∑
i=1

(

−
QA

rAi
+∑

l,k

BA
l,k exp(−β A

l,kr2
Ai)P

A
l

)

, (4)

where QA = 1 denotes the net charge of the lithium core, PA
l is

the projection operator onto the Hilbert subspace of angular sym-

metry l with respect to the Li+-core. The parameters BA
l,k and β A

l,k

define the semi-local energy-consistent pseudopotential. The sec-

ond interaction term in Eq. (3) is the polarization term which

describes, among others, core-valence correlation effects and is

taken as

V A
pol = −

1

2
αA

~F2
A , (5)

where αA = 0.1915 a0 is the dipole polarizability of the lithium

core40 and ~FA is the electric field generated at its site by the va-

lence electrons. For the latter we are using the following formula

~FA = ∑
i

~rAi

r3
Ai

[1−exp(−δAr2
Ai)], (6)

where δA is the cutoff parameter, which equals 0.831 a−2
0 (value

taken from Fuentealba et al.40). The third term in Eq. (3) repre-

sents the Coulomb interaction between the valence electrons and

the hydrogen nucleus. The fourth term stands for the repulsion

between the valence electrons, whereas the last term describes

the interaction between the lithium core and hydrogen nucleus.

Since the lithium atomic core and the hydrogen nucleus are well

separated, we choose a simple point-charge Coulomb interaction

in the latter case. More detailed characteristics of the applied po-

tentials are given in the papers of Czuchaj and co-workers41,42

and Dolg43.

The core electrons of the Li atom are represented by

the pseudopotential ECP2SDF40, which was formed from

the uncontracted (9s9p8d3 f ) basis set. The basis for the

s and p orbitals, which comes with this potential is en-

larged by functions for d and f orbitals given by P.

Feller44 and assigned by cc-pV5Z. Additionally, our basis set

was augmented by four s short range correlation functions

(1979.970927, 392.169555, 77.676373, 15.385230), four p

functions (470.456384, 96.625417, 19.845562, 4.076012), four

d functions (7.115763, 3.751948, 1.978298, 1.043103) and four

f functions (2.242072, 1.409302, 0.885847, 0.556818). Also,

we added to the basis the following set of diffuse functions: two

s functions (0.010159, 0.003894), two p functions (0.007058,

0.002598), two d functions (0.026579, 0.011581) and two f

functions (0.055000, 0.027500). The numbers in parenthesis are

coefficients of the exponents of the primitive Gaussian orbitals.

The basis set for the hydrogen electron is the standard cc-pV5Z

basis44.

The spin-orbit coupling (SO) contributes insignificantly to

the energy of our system, so we do not take it into ac-

count. To calculate adiabatic potential energy curves of the

LiH diatomic molecule we use the multiconfigurational self-

consistent field/complete active space self-consistent field (MC-

SCF/CASSCF) method and the multi-reference configuration in-

teraction (MRCI) method. All calculations are performed by

means of the MOLPRO program package46. Using these compu-



Table 1 Comparison of asymptotic energies with other theoretical and experimental results. Energies are shown in cm−1 units

Atomic asymptotes Experiment Moore45 Theory Boutalib6 Theory Gadea2 Theory present

Li(2p)+H(1s) 14904 14905 14898 14904

Li(3s)+H(1s) 27206 27210 27202 27202

Li(3p)+H(1s) 30925 30926 30920 30921

Li(3d)+H(1s) 31283 31289 31279 31276

Li(4s)+H(1s) 35012 35018 35007 35016

Li(4p)+H(1s) 36470 36475 36465 36464

Li(4d)+H(1s) 36623 37590 36626 36617

tational methods we obtained adiabatic potential energy curves

for singlet Σ, Π and ∆ states, which correlate to the Li(2s)+H(1s)

ground atomic asymptote and the Li(2p)+H(1s), Li(3s)+H(1s),

Li(3p)+H(1s), Li(3d)+H(1s) excited atomic asymptotes, respec-

tively. The quality of our calculations can be confirmed by the

comparison with experimental and theoretical asymptotic ener-

gies for different electronic states, which is shown in Table 1.

Our asymptotic energies for ground and excited states are in very

good agreement with experimental and other theoretical values.

Particularly, perfect match is found between our result and the

experimental value for the Li(2p) energy level.

2.2 Rotational predissociation

When the adiabatic potential Eel(R) of the singlet state 1Λ is ob-

tained from solution of Eq. (1), the effective potential energy may

be written in the following form (e.g. Landau and Lifshitz)48:

UJ(R) = Eel(R)+
J(J +1)−Λ2

2µR2
, (7)

where Λ is the component of the sum over all electron angular

momenta on the diatomic axis, J ≥ Λ is the rotational quantum

number of the molecule, and µ is the reduced mass of the nuclei.

Rovibrational energies E(v,J) depend on Eel(R) as well as vibra-

tional v and rotational J quantum numbers. They are solutions of

the time-independent nuclear Schrödinger equation:

HnucΨnuc
v,J (R) = E(v,J)Ψnuc

v,J (R), (8)

where the nuclear Hamiltonian is taken as

Hnuc =−
h̄2

2µ

∂ 2

∂R2
+UJ(R). (9)

The effective potential UJ(R) forms a barrier for J > 0 with a

maximum UJ(RJ), at the internuclear distance RJ, which easily

can be estimated. Any rovibrational state with the positive en-

ergy E(v,J) lower than UJ(RJ) has a finite lifetime before it will

be decomposed due to a quantum tunneling effect. These states

are called quasibound states and formally belong to the contin-

uum. What is important is that during their lifetimes they can

be regarded as bound states. When the energy E(v,J) exceeds

the barrier maximum UJ(RJ) then any bound state is not possible.

Following Way and Stwalley39, we introduce a critical value of

the rotational quantum number Jc which obeys the two following

inequalities:

E(v,Jc)<UJc
(RJc

) (10)

and

E(v,Jc +1)>UJc+1(RJc+1). (11)

In other words, for a given v, the state with the energy E(v,Jc)

is the last of the quasibound states series supported by the barrier,

and the state with the energy E(v,Jc + 1) already belongs to the

continuum. By solving Eq. 8 we obtain E(v,Jc) and estimate by

extrapolation E(v,Jc + 1). Respectively, the differences E(v,Jc)−

E(0,0) and E(v,Jc + 1)− E(0,0) may refer to the last observed

and the first unobserved rotational predissociation experimental

result.

2.3 Molecular dynamics

The time-dependent approach which is mathematically equiva-

lent to the time-independent one can be regarded as a compli-

mentary tool and is often used in studying photodissociation pro-

cesses. Here, it serves as an alternative and quite illustrative

method for testing results of our structural calculations.

We start our consideration from the time-dependent

Schrödinger equation written in the following form

ıh̄
∂

∂ t
Φ(R, t) = HnucΦ(R, t), (12)

where Φ(R, t) is the time dependent wavepacket moving on the

effective potential energy curve UJ(R) (Eq. 7) and Hnuc is the

nuclear Hamiltonian given in Eq. 9.

By definition the wave-packet is a coherent superposition of

stationary states (e.g. Tannor47) which may be represented in the

following form consisting of two contributions from the discrete



and continuous parts of the spectrum

Φ(R;t) =∑
v,J

cv,J Ψnuc
v,J (R)e−ıE(v,J)t/h̄+

∫

c(E)ΨE(R)e−ıEt/h̄ dE,

(13)

where cv,J and c(E) are the energy-dependent coefficients,

e−ıE(v,J)t/h̄ and e−ıEt/h̄ are the time evolution factors, Ψnuc
v,J (R) and

ΨE (R) are eigenfunctions of Hnuc(R). The wavepacket Φ(R;t) is

a solution of Eq. (12) and its initial shape at t = 0 may be taken

as a Gaussian function of arbitrary half-width placed on the effec-

tive potential energy curve. The wavepacket moves away from its

starting location due to the Newtonian force −dUJ/dR. This pro-

cess is described by the time-dependent autocorrelation function

S(t) =
∫

Φ(R;t = 0) Φ(R;t)dR. (14)

In our case the autocorrelation function describes evolution of

the initial wave packet in the excited electronic state. The time-

dependent wavepacket population is calculated as

P(t) =

∫ Rmax

0
|Φ(R;t)|2 dR. (15)

The expression for the absorption cross section is proportional to

the Fourier transform of S(t) and is written as:

σ(E) =
E

2h̄2c

∫ +∞

−∞
eıEt/h̄ S(t)dt, (16)

where E is the photon energy.

3 RESULTS AND DISCUSSION

Our results of the calculated adiabatic potential curves of 1−81Σ+

and 11Π states are presented in FIG. 1. Several characteristic

avoided crossings are visible, particularly the double one at 5 and

20 a0 between the curves of the 31Σ and 41Σ states. Though not

very pronounced, there are avoided crossings between 11Σ and

21Σ at 7.5 a0 and 21Σ and 31Σ at 10 a0.

Equilibrium positions Re and depths of the potential wells De

are compared with other theoretical and experimental results in

Table 2. For the ground state our position of Re agrees exactly

with the theoretical value of Dolg49 and reasonably with the ex-

perimental value of Stwalley et al.1. We also find a good agree-

ment within 40 cm−1 between the well depths De of our results

and experimental data of Stwalley et al. In the case of 11Π, our

results of Re and De agree within 2 cm−1 with the experimental

data of Velasco. All theoretical results indicate the existence of a

double well for the 31Σ state but this is not confirmed by the only

available experiment by Huang et al.50.

FIG. 2 displays spacings between successive rovibrational levels

of the 11Π state. Our first set of values is obtained by solving51
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Fig. 1 Adiabatic potential energy curves of LiH: 1-8 1Σ+ states (solid

lines), 11Π state (dashed line).

Eq. 8. The second one comes from appropriate differences be-

tween the positions of peaks in the absorption spectrum obtained

from Eq. 16 and presented in FIG. 3. These two sets agree very

well with each other. Moreover, there is also very good agreement

with the experimental values of Velasco33.
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Fig. 2 Differences ∆E(v,J′,J) = E(v,J′)−E(v,J) between rovibrational

levels with the same vibrational quantum number v of the 11Π state.

Three series of differences are drawn for v = 1,2 and 3. Each difference

is specified by (J,J′). The blue lines are coming from calculated

rovibrational levels. The red ones are derived from experimental data of

Velasco33. The green ones are our results obtained from the absorption

spectrum shown in FIG. 3.



Table 2 Spectroscopic parameters Re [a0], De, ωe, and Te [cm−1] for the ground and low-excited states of the LiH molecule

State Dissociation limit Author Re De ωe Te

11Σ+ Li(2s) + H(1s) present (theory) 3.003 20327 1391

Aymar 2009 (theory)21 3.002 20167 1398

Gadea 2006 (theory)2 3.003 20349

Dolg 1996 (theory)49 3.000 20123 1391

Stwalley 1993 (exp.)1 3.015 20288 1407

Boutalib 1992 (theory)6 3.007 20174

21Σ+ Li(2p) + H(1s) present (theory) 4.866 8687 260 26544

Aymar 2009 (theory)21 4.820 8698 241

Gadea 2006 (theory)2 4.862 8687

Stwalley 1993 (exp.)1 4.906 8679

Boutalib 1992 (theory)6 4.847 8690 26390

Vidal 1982 (theory)53 4.910 8686 244

11Π present (theory) 4.50 286 226 34945

Velasco 1957 (exp.)33 4.49 284 216

Vidal 1982 (theory)53 4.50 289

Aymar 2009 (theory)21 4.52 251 243

31Σ+ Li(3s)+H(1s) present (theory) 3.821 1270 540 46259

10.172 8438 293 39092

Aymar 2009 (theory)21 3.830 1267 390

10.150 8361 390

Gadea 2006 (theory)2 3.821 -

10.181 8453

Huang 2000 (exp.)50 - -

10.140 8469

Boutalib 1992 (theory)6 3.825 1277 46109

10.206 8444 38942
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Fig. 3 The total absorption cross section calculated from Eq. 16.

The peaks in the absorption spectrum (FIG. 3) are obtained by

solving the time dependent Schrödinger equation52 (Eq. 12) with

a Gaussian-shaped wavepacket Φ initially centered at 6.15 a0 and

possessing the half-width equal to 0.95 a0. Here, we are not in-

terested in the intensity of the peaks and the precise shape of the

initial wave packet is unimportant. The set of effective potentials

UJ (Eq. 7) spans J from 1 to 10. The broadened peak labeled

by v = 0 and J = 9 is the last in the series since J = 9 is a critical

value Jc discussed in Section 2.2. Its half-width (FWHM) is equal

to 2.7 cm−1. The last very broad peak with J = 10 illustrates the

situation where the depth of the effective potential is too shallow

to allow for existence of any bound vibrational level. The last

and already broadened peak observed by Velasco was assigned as

v = 0 and J = 8. In his analysis, he correctly foreseen the exis-

tence of an unobserved peak labeled by v = 0 and J = 9 before

the molecule breaks off due to high rotations. But his prediction

of existence of two other missing peaks in the spectrum, namely

with v = 1, J = 6 and v = 2, J = 3 is not confirmed by our results.

The broadening of the peak with v = 0 and J = 9 showed by our
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Fig. 4 Time-dependent population of the wavepacket placed on the

effective potential UJ(R) (J=1,...,10) for electronic energy of the 11Π

state. All lines refer to the same initial conditions at t = 0 of the

wavepacket.

calculation is due to quantum tunneling through the centrifugal

barrier.

The last figure (FIG. 4) shows the results for the time depen-

dent population of the 11Π state for the same initial condition.

For J = 10, no bound states are supported by the effective poten-

tial and the drop in population around 2.5 ps shows the time it

takes for the continuum wave packet to reach R = Rmax. In our

calculations, we set this value to be equal to 100 a0. In all cases,

the population is close to one within the first approximately 2.5

ps, since any continuum part of the wave packet needs this time

to reach Rmax. Furthermore for low values of J, the population is

close to one within the time window of 15 ps, meaning that es-

sentially all parts of the wave packet can be represented by bound

states. For J = 9, the wave packet consists of a continuum as well

as a (quasi-) bound part. The quasibound part decays via tunnel-

ing giving rise to the slow exponential decay with a decay con-

stant of 2.4 ps. Based on the time-energy uncertainty principle,

we can estimate that this lifetime should give rise to a line width

of approximately 2 cm−1. This is in good agreement with the

spectrum in FIG. 3.

4 Conclusions

In order to describe the rotational predissociation process of the

LiH molecule we start from calculating the low lying adiabatic po-

tential energy curves with particular emphasis on the 11Π state.

Our spectroscopic parameters are in very good agreement with

experimental values. Having the potential curve of 11Π state we

calculate the rovibrational levels. The differences between these

successive levels are compared with those derived from experi-

mental data of Velasco. The agreement again is very good, which

means that the shape of the first excited electronic state 11Π is

reliable. On the other hand since our difference (Te) between po-

tential wells of 11Π and of the ground state 11Σ+ is around 50

cm−1 larger than experimental value of Stwalley et al., the direct

comparison with the spectrum of Velasco shows a small system-

atic shift.

In order to get insights from the complementary time-

dependent approach we solve the time-dependent nuclear

Schrödinger equation. The solution shows the evolving

wavepacket originally placed on the effective potential curve. The

absorption spectrum is calculated as a Fourier transform of the au-

tocorrelation function. The differences between successive peaks

in the spectrum are compared with those of Velasco and ours ob-

tained in the time-independent approach. All three sets of values

are in very good agreement. Our results for time-dependent pop-

ulation of the 11Π state explain in detail the rotational predisso-

ciation mechanism of the LiH molecule. A challenge for experi-

mentalist would be to detect in real time (via pump-probe spec-

troscopy) the predissociation due to quantum tunneling through

the centrifugal barrier.
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