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Journal Name

Time-Resolved X-Ray Scattering by Electronic Wave
Packets: Analytic Solutions to the Hydrogen Atom†

Mats Simmermacher, Niels E. Henriksen,∗ and Klaus B. Møller

Modern pulsed X-ray sources permit time-dependent measurements of dynamical changes in
atoms and molecules via non-resonant scattering. The planning, analysis, and interpretation of
such experiments, however, require a firm and elaborated theoretical framework. This paper pro-
vides a detailed description of time-resolved X-ray scattering by non-stationary electronic wave
packets in atomic systems. A consistent application of the Waller-Hartree approximation is dis-
cussed and different contributions to the total differential scattering signal are identified and inter-
preted. Moreover, it is demonstrated how the scattering signal of wave packets in the hydrogen
atom can be expressed analytically. This permits simulations without numerical integration and
establishes a benchmark for both efficiency and accuracy. Based on that, scattering patterns of
an exemplary wave packet in the hydrogen atom are computed for different points in time. In doing
so, distinct features of time-resolved X-ray scattering by non-stationary electronic wave packets
are illustrated and accentuated in greater detail than it has been done before.

1 Introduction
Recent advances in the generation of coherent, intense, and ultra-
short X-ray pulses provide novel and promising opportunities for
imaging rapid dynamics in atoms and molecules via non-resonant
time-resolved scattering. Current X-ray Free-Electron Laser facili-
ties permit measurements with temporal resolutions of the order
of tenths of femtoseconds1–4 and allow to track nuclear motions
and structural changes in chemical reactions in real time5–12. The
durations of these pulses may be further decreased to attoseconds
in the future13–17. It can thus be assumed that temporal changes
in the X-ray scattering signal due to even faster electronic motions
will be detectable.

The interpretation of such changes, however, is significantly
complicated by the quantum mechanical nature of the motion of
bound electrons, the non-classical character of the light-matter
interaction, and the lack of intensification of coherent scattering
as in Bragg diffraction by crystalline matter. It has already been
pointed out that the scattering signal of non-stationary electronic
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wave packets in atoms and molecules does not reveal their instan-
taneous electron densities18. The semi-classical approach suc-
cessfully applied in static X-ray scattering, i.e. the assignment of
the signal to the Fourier transform of those densities, was proven
inadequate. Instead, the scattering event has to be described by
quantum electrodynamics, taking into account that photons are
quantized excitations of electromagnetic field modes19.

In order to exploit the potential of X-ray scattering experiments
with femto- or attosecond resolution, a firm and elaborate the-
oretical framework for their planning, analysis, and interpreta-
tion is necessary. This has been pioneered in the nineties20–22

and was addressed in several recent publications18,23–30. Nev-
ertheless, some aspects of the theory remain opaque. Though
the equations provided in the references are compact and gen-
erally applicable, the immediate insights they provide are rela-
tively limited. A deeper understanding of the characteristics of
time-resolved X-ray scattering requires a more detailed and more
specific analysis.

In section 2 of this paper, the scattering signal of non-stationary
electronic wave packets in atoms is rigorously described. Static
and time-dependent contributions are identified and related to
their constituting scattering matrix elements. In section 3, a phys-
ical interpretation of these elements is provided. Section 4 sum-
marizes the derivation of an approach to express and evaluate the
scattering signal by any wave packet in the hydrogen atom analyt-
ically. Finally, the distinctive features of time-resolved X-ray scat-
tering by non-stationary electronic wave packets are illustrated
by means of an example in section 5.
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2 General Theory
In time-resolved X-ray scattering experiments, a pulse of elec-
tromagnetic radiation prepares a non-stationary wave function∣∣Ψ(t)

〉
by excitation of a material system initially in its ground

state. Subsequently, a second pulse of X-rays is scattered. The
time lag between these two pulses is referred to as the pump-
probe delay. The evolution of

∣∣Ψ(t)
〉

describes the dynamics of
the system that are to be probed at different pump-probe de-
lays. In the following, the wave function is assumed to be a non-
stationary electronic wave packet:

∣∣Ψ(t)
〉
=

N

∑
i

ci e−ιEit/h̄ ·
∣∣ψi
〉
. (1)

The basis vectors
∣∣ψi
〉

are eigenstates of the field-free Hamilto-
nian of the material system with energy Ei, the multipliers ci are
expansion coefficients, ι denotes the imaginary unit, and h̄ is the
reduced Planck constant.

The interaction of hard X-ray photons and
∣∣Ψ(t)

〉
can be de-

scribed by use of first-order perturbation theory and a quantized
electromagnetic X-ray field18,24–26. For equation (1), the time-
resolved differential scattering signal per solid angle, dS/dΩ, is
given as25:

dS
dΩ

=
dσt

dΩ
·
∫ +∞

−∞

I(t) ∑
i, j

∞

∑
f

ci c∗j e−ιωi jt

×
∫

L f i L∗f j
ωs

ω0
F
(
ωs +ω f i j

)
dωs dt.

(2)

Equation (2) involves the differential Thomson cross-section
dσt/dΩ, a directional measure of elastic scattering of electromag-
netic radiation by free electrons. It contains the intensity time
profile I(t) as well as the power spectral density F

(
ωs + ω f i j

)
of the X-ray probe pulse. Moreover, ω0 and ωs are the angu-
lar frequencies of the incident and scattered photons, whereas
ωi j = (Ei−E j)/h̄ and ω f i j =

(
E f −

[
Ei +E j

]
/2
)
/h̄ refer to differ-

ences in energies of their corresponding electronic states. Finally,
the expression contains scattering matrix elements:

L f i =
〈
ψ f
∣∣L̂∣∣ψi

〉
. (3)

Here, the scattering operator L̂ = ∑n eιqrn connects the two
eigenstates

∣∣ψi
〉

and
∣∣ψ f
〉
. The scattering vector q = k0 − ks in

the exponent of the operator refers to the vector difference of the
wave vectors of the incident and the scattered photons, respec-
tively. The sum runs over all electrons of the system and rn is the
spatial coordinate of the electron with index n. These coordinates
are the variables of integration in equation (3).

Due to the ωs-dependence of the q-vector, the two scattering
matrix elements in equation (2) are involved in the integral over
the frequency. If ωs ≈ ω0, however, q and thus L f i L∗f j become
independent of ωs. This assumption was first used by Waller and
Hartree31 and is sometimes termed the “elastic approximation”.
Despite its name, it does not imply that the scattering becomes

purely elastic. It is only assumed that the transfer of energy be-
tween the photon and the material system is small compared to
the mean photon energy of the probe pulse and that its effect
on q is negligible. This is well justified as long as the transition
energies of the material system are orders of magnitude lower
than the mean energies of the incident photons. Since the rele-
vant electronic eigenstates of atoms and molecules are typically
separated by not more than a few electron volts, this condition
is usually satisfied in time-resolved X-ray scattering with photon
energies of several keV. Hence, equation (2) becomes:

dS
dΩ
≈ dσt

dΩ
·
∫ +∞

−∞

I(t) ∑
i, j

∞

∑
f

ci c∗j e−ιωi jt L̃ f i L̃∗f j W f i j
(
∆ω
)

dt. (4)

The tilde on top of L̃ f i L̃∗f j labels the scattering matrix elements
to be independent of ωs. The remaining integral over ωs is written
as the function W f i j

(
∆ω
)
:

W f i j
(
∆ω
)
=
∫

ω0+∆ω

ω0−∆ω

F
(
ωs +ω f i j

)
dωs. (5)

The lower and upper limits of the integral are defined by a de-
tection window of ±∆ω around the mean angular frequency ω0.
It is important to note that ∆ω has to be small in comparison
with ω0 in order to be consistent with the approximation intro-
duced above. In a previous derivation25, it was assumed that
the integral runs from zero to infinity, meaning that all photons
are detected regardless of their energies. This resulted in an ex-
pression for time-dependent incoherent scattering published al-
ready in 199822, but violates, strictly speaking, the condition un-
der which equation (4) is justified. Consequently, the information
contained in scattering by single electrons is lost, as discussed in
the Supplementary Information†. It is therefore necessary to re-
strict the range of detection to scattered photons with frequencies
in the vicinity of ω0.

The function W f i j
(
∆ω
)

imposes a weight on the terms of the
sum over f in equation (4). It accounts for the number of inci-
dent X-ray photons with frequencies that can be shifted by ω f i j

to frequencies ωs within the detection range of ±∆ω around ω0.
The shift ω f i j corresponds to an inelastic energy transfer between
the photon and the wave packet. Since the value of W f i j

(
∆ω
)

decreases with an increase in ω f i j, the function effectively intro-
duces an upper limit into the sum over f .

Equation (4) is similar to the expression used in the seminal
contribution by Dixit et al.18. There are, however, some differ-
ences: First, equation (4) is not based on the assumption that the
dynamics of the wave packet is frozen during the scattering pro-
cess. The convolution with I(t) is explicitly taken into account.
Second, the limits of integration in equation (5) have been in-
troduced as a direct consequence of the approximation ωs ≈ ω0.
Third, equation (4) is written in terms of scattering matrix ele-
ments and not as one compact expectation value of density op-
erators. This permits further simplifications and facilitates the
identification, physical interpretation, and evaluation of separa-
ble contributions.
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To begin with, equation (4) contains terms diagonal and off-
diagonal in i and j that can be partitioned:

dS
dΩ

∝

N

∑
i

I ·Di +2 ·
N−1

∑
i

N

∑
j>i

∫ +∞

−∞

I(t) Zi j(t) dt. (6)

The sum of the diagonal elements Di in equation (6) defines
the static average of the differential scattering signal, whereas
the sum of the integrated, off-diagonal elements Zi j describes its
time-dependent modulation. The elements are given as:

Di =
∣∣ci
∣∣2 · ∞

∑
f

∣∣L̃ f i
∣∣2 W f ii

(
∆ω
)
, (7)

Zi j(t) = Re
[
ci c∗j e−ιωi jt ·

∞

∑
f

L̃ f i L̃∗f j W f i j
(
∆ω
)]

. (8)

Due to the real part in equation (8), Zi j(t) is invariant under
interchange of its sub- and superscript. Hence, the N×N sized
matrix of all elements is symmetric. This permits the reduction of
the double sum in equation (6) to j > i and results in the factor
of 2. Since Di contains no time variable, only Zi j(t) is convoluted
with the intensity time profile I(t) and Di is simply multiplied by
the total integrated intensity I =

∫+∞

−∞
I(t) dt. According to Eu-

ler’s formula, equation (8) can be written in terms of real-valued
trigonometric functions:

Zi j(t) = cos(ωi jt) Re
[
Oi j
]
+ sin(ωi jt) Im

[
Oi j
]
. (9)

The element Oi j in equation (9) is a product of two different
scattering matrix elements, their expansion coefficients, and their
weights from equation (5):

Oi j = ci c∗j ·
∞

∑
f

L̃ f i L̃∗f j W f i j
(
∆ω
)
. (10)

In the following, the intensity time profile I(t) will be described
by a normalized Gaussian function:

I(t) =
1

σ
√

2π
e−

(t−τ)2

2σ2 . (11)

The pulse given in equation (11) is centered at the pump-probe
delay τ and has a duration defined as the full width at half max-
imum (FWHM) of dp = 2

√
2ln2 σ . With equations (9) and (11),

the integral over time in equation (6) can be solved analytically:

∫ +∞

−∞

I(t) Zi j(t) dt = e−
1
2 (ωi jσ)2

·
(

cos(ωi jτ) Re
[
Oi j
]

+ sin(ωi jτ) Im
[
Oi j
])

.

(12)

The two trigonometric functions cos(ωi jτ) and sin(ωi jτ) in
equation (12) determine the magnitude by which the real and

imaginary parts of the element Oi j contribute to the scattering
signal at a given pump-probe delay τ. The exponential factor
exp(− 1

2 (ωi jσ)2) accounts for the effect of the finite duration of
the probe pulse. It is always smaller than one and decreases
rapidly with an increasing ratio of the pulse duration to the pe-
riod of the oscillation, dp/Ti j, where Ti j = 2π/ωi j. Hence, the
exponential factor determines to what extent the time-dependent
modulation of the scattering signal can be temporally resolved.

Assuming coherence of the probe pulse, the power spectral
density F

(
ωs +ω f i j

)
has the following Gaussian shape with the

same σ as defined for I(t):

F
(
ωs +ω f i j

)
=

√
2
π

σ e−2σ 2
(

ωs−ω0+ω f i j

)2

. (13)

With equation (13), the weights in equation (5) are:

W f i j
(
∆ω
)
=

1
2
·
[
erf
(√

2σ(ω f i j +∆ω)
)

− erf
(√

2σ(ω f i j−∆ω)
)]

.

(14)

Equation (14) contains two error functions. For a given ∆ω,
W f i j takes maximum values when f is equal to i or j and con-
verges to a minimum when f → ∞.

Note that in the framework of equations (11) and (13) a
shorter pulse duration implies a larger frequency bandwidth,
since σ defines the widths of both I(t) and F

(
ωs +ω f i j

)
. Conse-

quently, a decrease in the pulse duration results in a reduction of
the number of photons with angular frequencies inside of ω0±∆ω

and thereby leads to a decrease in the intensity of the detected
scattering signal. It is important to emphasize that each term of
Di and Oi j in equations (7) and (10), respectively, is affected dif-
ferently by this decrease in intensity: Every contribution to the
scattering signal corresponds to a particular transfer of energy
ω f i j. If the contribution is elastic, the angular frequency ω f i j is
zero and equation (14) simplifies to erf

(√
2σ ∆ω

)
. This function

vanishes as σ→ 0 and approaches one as σ→∞. If at least two of
the indices in equation (14) are different, however, W f i j becomes
zero for both σ → 0 and σ → ∞ and displays an optimum in be-
tween. The value of σ where this optimum occurs depends on
both ω f i j and ∆ω.

Physically, this can be understood as follows: If the frequency
bandwidth of the incident probe pulse is smaller than ω0±∆ω,
almost all elastically scattered photons are detected. If the band-
width is increased, less photons fall into the range of detection
and the signal becomes weaker. For inelastically scattered pho-
tons, the situation is different. Only photons with incident an-
gular frequencies that fall into ω0±∆ω after a shift by ω f i j are
detected. If both ∆ω and the frequency bandwidth are small in
comparison to ω f i j, most photons are scattered to energies out-
side of the range of detection and the signal is weak.

A loss of time-dependent modulation of the scattering signal at
very short probe pulse durations was reported by Dixit et al.18.
In the present context, such a loss is ascribed to the coherence of
the probe pulse and a finite width of the detection window: For a
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given ∆ω, the weights W f i j in equations (7) and (10) define a fre-
quency bandwidth (or pulse duration) that permits the detection
of the largest proportion of photons that carry time-dependent
information. This explanation deviates from the previously pub-
lished one that related the loss of contrast to the time-scale of the
electronic motion18 and will be further illustrated in section 5.

3 Physical Interpretation
In coherent X-ray diffractometry of stationary systems, the scat-
tering signal can be described by absolute squares of Fourier
transforms of the one-electron density. It has therefore been sug-
gested to relate the time-dependent scattering of non-stationary
wave packets to absolute squares of Fourier transforms of the
time-dependent one-electron density29. However, such an ap-
proach essentially leads to wrong results, as has been revealed by
Dixit et al.18. In order to understand the fundamental difference
of the more involved description given in the previous section, it
is illustrative to re-express equations (7) and (10) in terms of ex-
pectation values of the one-electron density operator ρ f i(r) and
their Fourier transforms Fr

[
ρ f i(r)

]
(q) from r- into q-space:

ρ f i(r) =
Ne

∑
n=1

〈
ψ f
∣∣δ̂ (r− rn)

∣∣ψi
〉
, (15)

Fr
[
ρ f i(r)

]
(q) =

∫
∞

−∞

eιqr
ρ f i(r) dr. (16)

As shown in the Supplementary Information†, equations (15)
and (16) can be used to obtain the following alternative expres-
sions for Di and Oi j:

Di =
∣∣ci
∣∣2 · ∞

∑
f

∣∣Fr
[
ρ f i(r)

]
(q0)

∣∣2 W f ii
(
∆ω
)
, (17)

Oi j = ci c∗j ·
∞

∑
f

Fr
[
ρ f i(r)

]
(q0) F ∗r

[
ρ f j(r)

]
(q0) W f i j

(
∆ω
)
. (18)

The zero in subscript of q0 in equations (17) and (18) labels
the scattering vector to be independent of ωs.

Equation (17) shows that the element Di is a weighted sum of
absolute squares of Fourier transformed expectation values of the
one-electron density operator ρ f i(r) associated with the state

∣∣ψi
〉
.

The diagonal term with f = i describes coherent elastic scattering
on the one-electron density. The off-diagonal terms with f 6= i al-
low for inelastic energy transfer from the incident X-ray photon to
the material system or vice versa by electronic Raman transitions.
If the expectation values of the one-electron density operator ρ f i

are real—a condition that will be fulfilled when the eigenstates
are chosen to be real—the pattern of Di has to be centrosymmet-
ric in q-space, i.e. the inversion center has to be an element of its
corresponding point group. This requirement is a consequence of
the occurrence of the absolute squares of the Fourier transforms
in equation (17) and known as Friedel’s law32.

In contrast, the element Oi j in equation (18) involved in the

time-dependent part of the scattering signal is not related to the
absolute square of a single Fourier transform and may therefore
give rise to a non-centrosymmetric pattern. It is a weighted sum
of products of two different, Fourier transformed expectation val-
ues of the one-electron density operator and describes scattering
by two eigenstates that are superposed in the wave packet. Thus,
the element Oi j reveals non-local correlations of the X-ray photon
and the evolving material system in the scattering process. To-
gether with the off-diagonal contributions to Di, it accounts for
the quantum mechanical nature of the light-matter interaction18.

4 Theory of the Hydrogen Atom

In the following, the general considerations of the last section
will be applied to electronic wave packets of superposed eigen-
states in the hydrogen atom. The matrix elements in Di and Oi j

can, in principle, be evaluated directly in a basis of real-valued
atomic orbitals. It is possible to expand the scattering operator
L̂ in terms of spherical Bessel functions and spherical harmon-
ics18,24 and to evaluate the angular integrals analytically by use
of Clebsch-Gordon coefficients33. For the remaining radial inte-
grals, however, no analytic solution is known. Hence, it is neces-
sary to evaluate them numerically—a task that is computationally
demanding even for the hydrogen atom18. As will be demon-
strated in this section, one can overcome this obstacle and obtain
completely analytic solutions, if the original wave packet is trans-
formed into an eigenstate basis of the field-free Hamiltonian in
parabolic coordinates34,35:

ψn,n1,n2(ξ ,η ,ϕ) = Nn,n1,n2 · (ξ η)
m
2 · e−

ξ+η

2n

×Lm
n1
(ξ/n) ·Lm

n2
(η/n) · eιmϕ .

(19)

Equation (19) includes two associated Laguerre polynomials
Lm

ni
(x)36 that depend on one of the two parabolic coordinates, ξ

and η , each. ϕ is the azimuthal angle. n and m are the principal
and magnetic quantum numbers of the eigenstate. Moreover, n1

and n2 are parabolic quantum numbers. They obey the relation
n = n1 +n2 +m+1. Nn,n1,n2 is a normalisation factor:

Nn,n1,n2 =
1

nm+2 ·

√
1
π
· n1!
(m+n1)!

· n2!
(m+n2)!

. (20)

Note that the expressions given in34,35 deviate from equations
(19) and (20) due to a different definition of the associated La-
guerre polynomials.

The scattering matrix elements that occur in equations (7) and
(10) have the general form

〈
ψ f

∣∣L̂∣∣ψi
〉
. With parabolic eigenstates

of the hydrogen atom, the corresponding integrals can be eval-
uated analytically if the scattering vector q is aligned with the
z-axis, meaning q = qez. The full three-dimensional scattering can
be obtained thereafter by rotation of the z-axis around the mate-
rial system, as will be described later. Hence, the scattering oper-
ator that refers to the electron in the hydrogen atom becomes:
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L̂z = eιqezr = eιqz = eιq ξ−η

2 . (21)

With equations (19) and (21), the scattering matrix element〈
ψ f

∣∣L̂z
∣∣ψi
〉

is given as:

〈
ψn f ,n f1 ,n f2

∣∣L̂z
∣∣ψni,ni1 ,ni2

〉
=

1
4
·Nn f ,n f1 ,n f2

·Nni,ni1 ,ni2

×
∫

∞

ξ=0

∫
∞

η=0
(ξ +η) · e−(ξ+η)κ · (ξ η)

m f +mi
2 ·Lm f

n f1

(
ξ/n f

)
×Lm f

n f2

(
η/n f

)
·Lmi

ni1
(ξ/ni) ·Lmi

ni2
(η/ni)

× eιq ξ−η

2 dξ dη ·
∫ 2π

ϕ=0
eι(mi−m f )ϕ dϕ.

(22)

The factor κ in the second line of equation (22) denotes the
inverse of the harmonic mean of the principal quantum numbers
of the two states, κ = (n f + ni)/(2 ni n f ). The last integral over
ϕ does not contain the parabolic coordinates ξ and η . Hence,
it can be evaluated independently of the first two integrals. It
corresponds to the integral representation of the Kronecker delta
δi j multiplied by a factor of 2π:

∫ 2π

ϕ=0
eι(mi−m f )ϕ dϕ = 2π δmi,m f . (23)

The sum (ξ +η) in the second line in equation (22) prohibits
the separation of the two remaining integrals over ξ and η . How-
ever, the sum can be substituted by the negative partial derivative
with respect to κ 34, since:

(ξ +η) · e−(ξ+η)κ =− ∂

∂κ
e−(ξ+η)κ . (24)

With equations (23) and (24), equation (22) becomes:

〈
ψn f ,n f1 ,n f2

∣∣L̂z
∣∣ψni,ni1 ,ni2

〉
=−π

2
·Nn f ,n f1 ,n f2

·Nni,ni1 ,ni2

× ∂

∂κ

[ ∫
∞

ξ=0
ξ

m · e−ξ(κ− ιq
2 ) ·Lm

n f1

(
ξ/n f

)
·Lm

ni1
(ξ/ni) dξ

×
∫

∞

η=0
η

m · e−η(κ+ ιq
2 ) ·Lm

n f2

(
η/n f

)
·Lm

ni2
(η/ni) dη

]
.

(25)

The two remaining integrals in equation (25) are fully separa-
ble and can be evaluated independently. Each of these integrals
contains a power of the variable of integration, an exponential
function, and two associated Laguerre polynomials. A solution
for this kind of integral is known from literature37:

∫
∞

x=0
xα · e−kx ·Lα

q (λx) ·Lα
p (µx) dx

=
Γ(p+q+α +1)

p! q!
· (k−λ )q · (k−µ)p

k(p+q+α+1)

× F2 1

(
− p,−q;−p−q−α;

k · (k−λ −µ)

(k−λ ) · (k−µ)

)
.

(26)

The functions on the right-hand side of equation (26) are the
Gamma function Γ(n) and the Gaussian hypergeometric function
F2 1 (a,b;c;z). After application of equation (26) to the two inte-

grals in equation (25), the partial derivative with respect to κ can
be taken. κ occurs in equation (26) in the second fraction and
in the fourth argument of the hypergeometric function. Hence,
the derivative of the hypergeometric function with respect to its
fourth argument38 is involved:

∂

∂ z
F2 1 (a,b;c;z) =

ab
c
· F2 1 (a+1,b+1;c+1;z). (27)

All other derivatives can be obtained by use of ordinary differ-
entiation rules. Rearrangement of terms and simplification leads
to the final expression in equation (28), where Fα,β (q) denotes a
product of two hypergeometric functions as defined by equation
(29). The indices α and β are either zero or one.

Equations (28) and (29) are a generalisation of the formula
that has been published by Schnaidt in 193434. Whereas the lat-
ter is limited to a

∣∣1s
〉

ground state, the equations reported here
permit the evaluation of any scattering matrix element

〈
ψ f

∣∣L̂z
∣∣ψi
〉

of the hydrogen atom in the parabolic eigenstate basis.

If a wave packet
∣∣Ψ(t)

〉
is defined in terms of real-valued atomic

orbitals, a change to the parabolic basis is necessary. Hence, the
original basis vectors are expanded in parabolic eigenstates:

∣∣ψn,l,|m|=0
〉
=

n−1

∑
n1=0

an1 ·
∣∣ψn,n1,n2

〉
, (30)

∣∣ψn,l,|m|6=0,µ
〉
=

n−|m|−1

∑
n1=0

[
an1 ·

∣∣ψn,n1,n2

〉
+bn1 ·

∣∣(ψn,n1,n2)
∗〉]. (31)

The indices n, l, and m on the left-hand sides of equations (30)
and (31) refer to the principal, azimuthal, and magnetic quan-
tum numbers of the atomic orbitals. These orbitals are linear
combinations of spherical eigenstates with positive and negative
m. Hence, for each value of |m| 6= 0 two orbitals exist. In order
to distinguish between them, the index µ is introduced. It can
either be + or −, corresponding to the operation by which the
two spherical eigenstates are combined. The degeneracy in |m| is
also reflected by the fact that equation (31) contains the parabolic
vectors

∣∣ψn,n1,n2

〉
as well as their complex conjugates. The multi-

pliers an1 and bn1 are expansion coefficients. The parabolic quan-
tum number n2 is unequivocally defined by n2 = n− n1−|m|− 1.
Expansions for all atomic orbitals with n ∈ {1,2,3,4} are given in
the Supplementary Information†.
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〈
ψn f ,n f1 ,n f2

∣∣L̂z
∣∣ψni,ni1 ,ni2

〉
=

4m+2 nm+3
i nm+3

f√
ni1 ! ni2 ! n f1 ! n f2 !

·
(
ni1 +n f1 +m

)
!√

(ni1 +m)!
(
n f1 +m

)
!
·

(
ni2 +n f2 +m

)
!√

(ni2 +m)!
(
n f2 +m

)
!

×
(
ni−n f − ι ni n f q

)ni1 ·
(
n f −ni− ι ni n f q

)n f1(
ni +n f − ι ni n f q

)ni1+n f1+m ·
(
ni−n f + ι ni n f q

)ni2 ·
(
n f −ni + ι ni n f q

)n f2(
ni +n f + ι ni n f q

)ni2+n f2+m

× 1(
ni +n f

)2
+n2

i n2
f q2
· 1(

ni−n f
)2

+n2
i n2

f q2
·

[
ni n f q− ι ·

(
ni1 −ni2 +n f1 −n f2

)(
ni +n f

)2
+n2

i n2
f q2

·F0,0(q)

− 2 ι(
ni−n f

)2
+n2

i n2
f q2
·

ni1 n f1

ni1 +n f1 +m
·F1,0(q)+

2 ι(
ni−n f

)2
+n2

i n2
f q2
·

ni2 n f2

ni2 +n f2 +m
·F0,1(q)

]
·q,

(28)

where

Fα,β (q) = F2 1

α−ni1 , α−n f1 ; α−ni1 −n f1 −m; 1+
4 ni n f(

ni−n f
)2

+n2
i n2

f q2



× F2 1

β −ni2 , β −n f2 ; β −ni2 −n f2 −m; 1+
4 ni n f(

ni−n f
)2

+n2
i n2

f q2

 .

(29)

According to the definition of the operator L̂z in equation (21),
the applicability of equations (28) and (29) is hitherto limited to
the condition that the q-vector is aligned with the z-axis. In order
to evaluate the full three-dimensional scattering matrix element〈
ψ f

∣∣L̂∣∣ψi
〉
, the description has to be extended to any orientation

of the q-vector. Such an extension is obtainable by use of the rota-
tion matrices R̂y(θ) and R̂z(φ)

39. Their successive action upon a
state

∣∣ψ〉 leads to a rotation of the vector around the y- and z-axes
of the coordinate system by angles θ and φ :

∣∣ψR(θ ,φ)
〉
= R̂z(φ) R̂y(θ)

∣∣ψ〉. (32)

Equation (32) equally describes a rotation of the coordinate
system around the fixed state. This is illustrated in figure 1. Since
the q-vector is aligned with the z-axis, such a rotation alters its
orientation with respect to the material system and thus the ro-
tated states

∣∣ψR(θ ,φ)
〉

permit an evaluation of the full scattering
matrix element with any orientation of the q-vector:

〈
ψ f
∣∣L̂∣∣ψi

〉
=
〈
ψ f ;R

∣∣L̂z
∣∣ψi;R

〉
. (33)

If the original state
∣∣ψ〉 is an atomic orbital, the rotated vector∣∣ψR(θ ,φ)

〉
can be expressed as an angle-dependent linear combi-

nation of orbitals that share the same n and l. This can be ascribed
to the fact that the magnetic quantum number m defines the ori-
entation of the angular momentum.

∣∣ψn,l,|m|,µ;R(θ ,φ)
〉
= r0(θ ,φ) ·

∣∣ψn,l,mR=0
〉

+
l

∑
−
∑

mR=1, µR=+

rmR,µR(θ ,φ) ·
∣∣ψn,l,mR,µR

〉
.

(34)

The angle-dependent expansion coefficients r0(θ ,φ) and
rmR,µR(θ ,φ) in equation (34) can be determined by use of R̂y(θ)

and R̂z(φ). For that the atomic orbital
∣∣ψn,l,|m|,µ

〉
is written in

Cartesian coordinates. The rotation matrices transform these co-
ordinates into a weighted sum of products ∏

l
i αi with αi ∈ {x,y,z}.

These products are substituted with their corresponding linear

Fig. 1 Rotation of the q-vector around the material system Ψ by an
angle θ . Since the q-vector is, by definition of L̂z, aligned with the z-axis,
its rotation is described by a rotation of the coordinate system. The
original coordinates x and z are transformed into xR and zR. Thereby, q
becomes qR.
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combinations of atomic orbitals. A rearrangement of terms fi-
nally yields the coefficients. A more detailed description as well
as expansions for rotations of all

∣∣d〉 and
∣∣f〉 orbitals are given in

the Supplementary Information†.
The atomic orbitals in both terms on the right-hand side of

equation (34) can, in turn, be expanded in the parabolic eigen-
state basis, as it was previously shown in equations (30) and (31).
The angles θ and φ refer to the orientation of the q-vector and are
not affected by the integration over the real space coordinates ξ ,
η , and ϕ in equation (22). Hence, a full three-dimensional scat-
tering matrix element defined in a real-valued atomic orbital basis
can be expanded in terms of the one-dimensional elements given
in equations (28) and (29):

〈
ψn f ,l f ,|m f |,µ f

∣∣L̂∣∣ψni,li,|mi|,µi

〉
= ∑

mR
∑
n f1

∑
ni1

tmR,n f1 ,ni1
(θ ,φ)

×
〈
ψn f ,n f1 ,n f2

∣∣L̂z
∣∣ψni,ni1 ,ni2

〉
,

(35)

where the Kronecker delta in equation (23) led to a reduction
of the two sums over m f ,R and mi,R to a single one over mR. Its
lower and upper limits are zero and min(l f , li). The sums over n f1

and ni1 run from zero to n f −mR−1 and ni−mR−1, respectively.
The expansion coefficients tmR,n f1 ,ni1

(θ ,φ) can be derived from the
coefficients in equations (30), (31), and (34). No complex con-
jugate vector

∣∣(ψn,n1,n2)
∗〉 enters the matrix elements explicitly,

since for parabolic eigenstates:

〈
ψ f
∣∣L̂z
∣∣ψi
〉
=
〈
ψ
∗
f
∣∣L̂z
∣∣ψ∗i 〉, (36)〈

ψ f
∣∣L̂z
∣∣ψ∗i 〉= 〈ψ∗f ∣∣L̂z

∣∣ψi
〉
= 0. (37)

Equations (36) and (37) can be deduced from equations (19)
and (22): A parabolic eigenstate is complex only in the exponen-
tial eιmϕ . Taking the conjugates of both, the bra and the ket, leads
to a change of sign of the exponent in equation (23). This change
does not alter the result of the integration. If, in contrast, only
one vector is complex conjugate, the difference mi−m f in equa-
tion (23) is transformed into the sum mi +m f . Since mi and m f

are positive integers, the integral has to vanish.

5 Illustrations
In the following, the results of sections 2 and 4 are applied to an
electronic wave packet of superposed and equally weighted

∣∣3dz2

〉
and

∣∣4fz3

〉
orbitals of the hydrogen atom. Time-resolved X-ray

scattering patterns of this wave packet have already been calcu-
lated numerically by Dixit et al.18. The compact density operator
formalism the authors have used to demonstrate the difference
between the quantized and the semi-classical descriptions of the
scattering, however, makes a more detailed analysis of the nature
of the patterns difficult. Here, the elements Di and Oi j are eval-
uated separately, allowing not only a more efficient computation
but also a more illustrative discussion of the time-dependence of
the X-ray scattering signal.

By use of atomic units and equation (1), the non-stationary
electronic wave packet is defined as:

∣∣Ψ(t)
〉
=

1√
2
·
(

e−ιE3t/h̄ ·
∣∣3dz2

〉
+ e−ιE4t/h̄ ·

∣∣4fz3

〉)
. (38)

The energies in equation (38) are E3 = −1/18 a.u. ≈ −1.51 eV
and E4 = −1/32 a.u. ≈ −0.85 eV. With equations (6) and (12),
the scattering signal of this wave packet is described by:

dS
dΩ

∝ D3 +D4 +2 e−
1
2 (ωσ)2

·
(

cos
(
ωτ
)

×Re
[
O3,4

]
+ sin

(
ωτ
)

Im
[
O3,4

])
.

(39)

The indices 3 and 4 in equation (39) and in the following refer
to the

∣∣3dz2

〉
and

∣∣4fz3

〉
orbitals, respectively. The angular fre-

quency of the wave packets is ω = 7/288 a.u.≈ 1.0/fs.
According to equations (7) and (10), the elements in equation

(39) are given as:

D3 =
1
2
·

∞

∑
f

∣∣L̃ f ,3
∣∣2 W f ,3,3

(
∆ω
)
, (40)

D4 =
1
2
·

∞

∑
f

∣∣L̃ f ,4
∣∣2 W f ,4,4

(
∆ω
)
, (41)

O3,4 =
1
2
·

∞

∑
f

L̃ f ,3 L̃∗f ,4 W f ,3,4
(
∆ω
)
. (42)

The off-diagonal element in equation (42) contains the same
matrix elements as equations (40) and (41). These matrix el-
ements have to be evaluated once and then all three elements,
D3, D4, and O3,4, can be formed as their corresponding products.
Following the previous section, exact solutions to the matrix el-
ements are obtainable by expansion in the parabolic eigenstate
basis. Note that only the states involved in the wave packet, but
not the vectors

∣∣ψ f
〉

have to be rotated by equations (32) and
(34). The sum over f includes all states degenerate in m once
and is therefore unaffected by rotation. Further details of the
evaluation are given in the Supplementary Information†.

Here, the sum over f in equations (40) to (42) has been trun-
cated at the principal quantum number n f = 50. The values of
D3, D4, and 2 Im

[
O3,4

]
at the converged q-space coordinates of

the maximum of Im
[
O3,4

]
at different values of truncation n f are

shown in figure 2. Following Dixit et al.18, it is assumed that
the incident X-ray probe pulse propagates along the y-axis and
has a mean photon energy of

〈
E0
〉
= 4 keV and a time duration

(FWHM) of dp = 1 fs. All scattered photons within the range of
±∆ω = 0.25 eV around

〈
E0
〉

are detected. It becomes apparent
that in all three cases electronic states with principal quantum
numbers above n f ≈ 20 contribute only negligibly to the total
value. Physically, every matrix element that involves a vector∣∣ψ f
〉

with n f /∈ {3,4} corresponds to an electronic Raman tran-
sition induced by inelastic scattering of a photon. Thus, the con-
vergence of the values in figure 2 can be related to the fact that
transitions to electronic states in the proximity of those already
occupied in the wave packet are the most probable to contribute
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Fig. 2 Values of the elements D3 ( ), D4 ( ), and 2 Im
[
O3,4

]
( )

with increasing number of states
∣∣ψ∗f 〉. The variable n f denotes the

principal quantum number at which the sum over f is truncated. The
incident probe pulse propagates along the y-axis and has a mean
photon energy of

〈
E0
〉
= 4 keV and a time duration (FWHM) of dp = 1 fs.

All scattered photons within the range of ±∆ω = 0.25 eV around
〈
E0
〉

are
detected. The elements have been evaluated at q≈ 0.45/Å, θq ≈ 84◦,
and φq = 90◦, i.e. the point in the qx-qz plane at which Im

[
O3,4

]
has its

maximum. The vertical lines mark the points where the elements are
converged to less than 1% deviation of their values at n f = 50. These
points are n f = 14, n f = 16, and n f = 15.

to the detected scattering signal. The convergence in figure 2 also
illustrates that it is not generally sufficient to approximate the ele-
ments Di by their elastic contributions. At the considered q-space
coordinate, inelastic scattering accounts for more than 44% of D3

and 64% of D4. This becomes even more dramatic at larger values
of q, where inelastic scattering is usually stronger than elastic.

Further evaluation of O3,4 reveals that its real part vanishes.
Equation (39) therefore reduces to:

dS
dΩ

∝ D3 +D4 +2 e−
1
2 (ωσ)2

sin
(
ωτ
)

Im
[
O3,4

]
. (43)

According to equation (43), the differential scattering signal
experiences a sinusoidal modulation with pump-probe delay τ

over a period of T = 576π/7 a.u. ≈ 6.253 fs. The global magni-
tude of this modulation is limited by the probe pulse duration
dp = 2

√
2ln2 σ , whereas its spatial pattern is described solely by

the imaginary part of O3,4.
A contour plot of 2 Im

[
O3,4

]
is shown in figure 3. The scatter-

ing pattern lies in the qx-qz plane and photons scattered at angles
of at most 60◦ are detected. With the approximation ωs ≈ ω0, the
norm of the q-vector takes maximum values of qmax ≈ 2.03/Å. The
pattern in figure 3 displays a dihedral D1 rosette group symmetry
that involves a single reflection through the qz-axis. Its values are
positive at qz > 0 (or φq < 180◦), but negative when qz < 0 (or
φq > 180◦). As a consequence, the imaginary part of O3,4 causes
the differential scattering signal to oscillate along the qz-axis and
breaks any higher symmetry that D3 and D4 may have. The pat-
tern is not centrosymmetric and cannot be related to absolute
squares of Fourier transformed, real-valued functions, as it has
been discussed in section 3.

After evaluation of the remaining elements, D3 +D4, the full
scattering signal of the wave packet is obtained. In figure 4, scat-
tering patterns computed for five different pump-probe delays τ

Fig. 3 Contour plot of two times the imaginary part of the element O3,4
in the qx-qz plane. O3,4 represents spatial coherences in the X-ray
scattering signal of superposed and equally weighted

∣∣3dz2
〉

and
∣∣4fz3

〉
orbitals of the hydrogen atom. The incident probe pulse propagates
along the y-axis and has a mean photon energy of

〈
E0
〉
= 4 keV and a

time duration (FWHM) of dp = 1 fs. All scattered photons within the
range of ±∆ω = 0.25 eV around

〈
E0
〉

are detected. With photons
scattered up to 60◦ and qmax ≈ 2.03/Å, the qx and qz coordinates take
values in between ±1.66/Å. The angular coordinate is the azimuthal
angle of the q-vector, φq. The approximation ωs ≈ ω0 has been applied.

are shown: at zero, one-fourth, one-half, three-fourth, and one
times the period of the oscillation T . They match the patterns
published by Dixit et al.18. With dp = 2

√
2ln2 σ = 1.0 fs, the

exponential in equation (43) constrains the magnitude by which
the element O3,4 can contribute to at most 91%. Since the time-
dependent term in equation (43) involves a sine function, scat-
tering patterns at zero, one-half, and one times T are described
exclusively by the time-independent average D3 +D4. They dis-
play a centrosymmetric D2 rosette group symmetry that contains
a two-fold rotation and reflections through both the qx- and the
qz-axis. The patterns can correspond to the static average one
would measure without any time-resolution. The higher D2 sym-
metry of the patterns is broken to D1, as soon as the contributions
of O3,4 are non-zero. In between zero and one-fourth times T , the
scattering signal is shifted into the upper semi circle of the pat-
tern to azimuthal angles of φq < 180◦. At one-fourth of T , most
of the intensity is observed at qz > 0. After this, the signal moves
downwards in direction of the lower semi circle of the pattern to
azimuthal angles of φq > 180◦, until the intensity at qz < 0 reaches
its maximum at three-fourth of T . Finally, the signal is shifted up-
wards again, closing the cycle at T .

Hence, the scattering patterns in figure 4 show temporal vari-
ations that have already been deduced from figure 3 alone. This
illustrates that the elements Oi j are of prime importance for the
simulation and understanding of the time-resolved differential X-
ray scattering signal of non-stationary electronic wave packets.

Finally, the effect of the pulse duration dp and the range of
detected frequencies ∆ω upon the scattering signal will be illus-
trated. Figure 5A shows the total scattering signal at different
pump-probe delays τ for one point in q-space and three probe
pulse durations dp. The intensity of the signal decreases with dp.
As discussed in section 2, less photons are detected at shorter
pulse durations. In figure 5B, only the modulation, i.e. the total
signal from A minus its time-independent average, is shown. The
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Fig. 4 Contour plots of X-ray scattering patterns in the qx-qz plane at different points in time. The radiation is scattered by a non-stationary wave
packet of superposed and equally weighted

∣∣3dz2
〉

and
∣∣4fz3

〉
orbitals of the hydrogen atom. The incident probe pulse propagates along the y-axis and

has a mean photon energy of
〈
E0
〉
= 4 keV and a time duration (FWHM) of dp = 1 fs. All scattered photons within the range of ±∆ω = 0.25 eV around〈

E0
〉

are detected. With photons scattered up to 60◦ and qmax ≈ 2.03/Å, the qx and qz coordinates take values in between ±1.66/Å. The angular
coordinate is the azimuthal angle of the q-vector, φq. The time τ is the pump-probe delay and given in units of the oscillation period of the wave packet,
T ≈ 6.253 fs. The scattering patterns have been convoluted with a Gaussian shaped intensity time profile of the incident probe pulse. The
approximation ωs ≈ ω0 has been applied. It is shown how the elements D3, D4, and O3,4 defined in equations (40) to (42) add up to the patterns.

modulation has a larger amplitude for a pulse duration of 1.0 fs
than for 0.1 fs and 4.0 fs. Hence, the amplitude of the modulation
has to display an optimum at a pulse duration in the vicinity of
1.0 fs, as also observed previously18.

Fig. 5 A: Total scattering signal and B: its time-dependent modulation
at different pump-probe delays τ for probe pulse durations dp of 4.0 fs
( ), 1.0 fs ( ), and 0.1 fs ( ). A and B: The signals have been
evaluated at q≈ 0.45/Å, θq ≈ 84◦, and φq = 90◦ with a range of detection
of ±∆ω = 0.25 eV around

〈
E0
〉
= 4 keV.

This becomes even more apparent in figure 6A: The time-
independent average D3 +D4 approaches zero as dp → 0 and a
finite limit as dp→∞. The amplitude of the time-dependent mod-
ulation 2 exp(− 1

2 (ωσ)2) Im
[
O3,4

]
becomes zero in both cases and

has an optimum in between at dp ≈ 1.63 fs. The amplitude of
the relative modulation, defined as the ratio of the absolute am-
plitude and the average, is displayed in figure 6A as well. It ap-
proaches a finite value as dp→ 0 and zero as dp→∞. Moreover, it
displays an optimum at dp ≈ 1.31 fs. The ratio of detected photons
that carry time-dependent information to those that do not is the
largest here. This confirms the previously observed, somewhat
counterintuitive behaviour that time-dependent scattering signal
loses contrast (amplitude of the modulation) at very short probe
pulse durations18. It can be seen, however, that the scattering
signal does not become completely time-independent as dp → 0.
Even though the amplitude of the absolute modulation vanishes
and the signal may eventually become too weak to be detected,
the proportion by which the modulation contributes to the total
signal approaches a constant.

Following the general discussion of section 2, the existence of
the optimum in the amplitude of the modulation can be ascribed
to the weights W f i j

(
∆ω
)
. The loss of scattering signal and contrast

at very short pulse durations is a direct consequence of the limited
range of detection ∆ω. As shown in figure S3 of the Supplemen-
tary Information†, not only the modulation but also the inelastic
part of the static average displays an optimum. This is expected
from the investigation in section 2. Furthermore, the position of
the optimum depends on the value of ∆ω. Figure 6B reveals that
the optimum of the amplitude is shifted towards shorter pulse du-
rations when ∆ω is increased and more photons can be detected.
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Fig. 6 A: Average ( ), amplitude of the modulation ( ), and
amplitude of the relative modulation ( ) of the scattering signal at
different probe pulse durations dp. A range of detection of
±∆ω = 0.25 eV around

〈
E0
〉
= 4 keV has been chosen. B: Pulse duration

dp,opt at which the amplitude of the modulation displays its optimum for
different ranges of detection ±∆ω around

〈
E0
〉
= 4 keV. A and B: The

signals have been evaluated at q≈ 0.45/Å, θq ≈ 84◦, and φq = 90◦.

6 Summary and Conclusions
The time-resolved X-ray scattering signal of non-stationary elec-
tronic wave packets in atomic systems is described in detail and
different contributions are identified as the elements Di and Oi j.
They refer to the static and non-stationary scattering contribu-
tions, respectively. Whereas the former corresponds to absolute
squares of Fourier transformed expectation values of the one-
electron density operator, the latter represents spatial correlations
of the X-ray photon and different states of the material system.
The time-dependent part of the scattering signal solely comprises
these correlations. For a probe pulse with a Gaussian intensity
time profile, it is shown that neither the pump-probe delay nor
the properties of the pulse enter the matrix elements directly.
They are arguments of a function that multiplicatively weights
the contribution of Oi j. This enables cost-efficient simulations for
different points in time under various experimental conditions.

Moreover, it is demonstrated how to express the X-ray scatter-
ing signal of non-stationary electronic wave packets in the hy-
drogen atom analytically. By rotation of the wave packet in the
parabolic eigenstate basis, the scattering matrix elements can be
evaluated exactly without numerical integration. This approach
is, in principle, also applicable to atomic systems with single non-
stationary Rydberg electrons that are decoupled from the remain-
ing stationary core electrons, as a numerical investigation of scat-
tering by the helium atom27 suggests. Distinctive features of

time-resolved X-ray scattering by non-stationary electronic wave
packets are illustrated by reference to the wave packet that has
been introduced by Dixit et al.18. It is shown that the elements
Oi j are characteristic of time-resolved scattering and determine
the symmetry the patterns display. Finally, it has been demon-
strated that the loss of contrast of the time-dependent scattering
signal at very short probe pulse durations is merely a consequence
of the energy resolution of the detector.

A further extension of the analysis presented here could involve
a detailed investigation of time-resolved X-ray scattering by di-
atomic molecules in non-stationary nuclear and electronic states.
This may eventually support prospective X-ray scattering experi-
ments that address the electronic time-scale in chemistry40–42.
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