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Abstract. The increasing occurrence of algal blooms and their negative
ecological impacts have led to intensified monitoring activities. This
needs the proper identification of the most responsible factor/factors
for the bloom formation. However, in natural systems, algal blooms
result from a combination of factors and from observation it is diffi-
cult to identify the most important one. In the present paper, using
a mathematical model we compare the effects of three human induced
factors (fertilizer input in agricultural field, eutrophication due to other
sources than fertilizers, and overfishing) on the bloom dynamics and
DO level. By applying a sophisticated sensitivity analysis technique, we
found that the increasing use of fertilizers in agricultural field causes
more rapid algal growth and decreases DO level much faster than eu-
trophication from other sources and overfishing. We also look at the
mechanisms how fertilizer input rate affects the algal bloom dynam-
ics and DO level. The model can be helpful for the policy makers in
determining the influential factors responsible for the bloom formation.

1 Introduction

Farmers frequently use fertilizers to obtain high yield where fertilizers contain basic
materials: nitrogen, potassium, phosphorus and other nutrients, like zinc, needed for
healthy plant growth [1]. To increase agricultural productivity, both developed and
developing nations are using increasing doses of fertilizers. Only a fraction of the
fertilizers is utilized by the crop and the remainder accumulates in the soil or lost as
runoff. Such excess use of fertilizers is not at all healthy for the rest of the environment
[2]. Some of the chemical fertilizers are known to cause gastric cancer, goitre, birth
malformations, hypertension, testicular cancer, stomach cancer, Blue Baby Syndrome,
etc. Apart from these direct effects, there are also several other adverse effects of
excess use of fertilizers. High amount of fertilizers can find their way into waterways,
causing an excess of algae and resulting in loss of dissolved oxygen (DO) in the water
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column [3]. This has a negative effect on fish and other aquatic populations. In recent
days, agricultural run-off is considered as one of the largest causal pollution problems
globally [4]. Thus, it is important to investigate the mechanisms of potential harmful
effects of fertilizers on algal blooms.

Mathematical modeling of water pollution dynamics is a mature subject in the-
oretical ecology and water quality research [5–7]. Many of these studies have been
directed to eutrophication and to understand the interplay between algal biomass
and nutrient supply. A general theoretical approach for the interpretation of bloom
development has been proposed using the theory of excitable media [8,9]. Later on,
Truscott [10] used this theory to explain the development of sudden phytoplankton
peaks as a consequence of variations of the micro-algal growth rates above a critical
value. Although, there are several factors found to be responsible for initiating bloom
dynamics by affecting growth rate [11,12], nutrient remains the most important one
[13]. Some of the studies showed that simultaneous reductions of different nutrient
sources are required for effective long-term control and management of algal blooms
[14,15]. Some mathematical models are also available in the literature where the ef-
fects of excessive inflow of nutrients from agricultural fields on the occurrence of algal
blooms are investigated [16–23]. These studies showed that algal population growth
highly depends on nutrient discharge. A recent study of Misra et al. [19] suggested
that farmers should restrict the use of the amount of fertilizers in order to reduce eu-
trophication and the awareness among farmers plays an important role in controlling
algal blooms.

In most of the previous modelling studies, it is considered that the nutrients are
coming to the water bodies through the agricultural runoff [18,19,23]. However, in
the real situation, the amount of nutrients through runoff to the water bodies depends
on the amount of fertilizers used to increase the agricultural yields. It is well known
that the nutrients in the water bodies are also formed from the detritus and in fact
the amount of detritus does not only depend on dead part of algae but also depends
on the residual of the crops in the agricultural fields where the residuals reach to the
water bodies through runoff and increase the amount of detritus in the water. As soon
as the amount of detritus in the water body increases, the concentration of nutrients
in the water body increases as nutrients are regenerated from detritus. Although,
these interrelated factors significantly affect the whole aquatic ecosystem, especially
eutrophication, algal blooms, depletion of DO, survival of aquatic population, etc., to
the best of our knowledge, the effect of fertilizers have never been considered explicitly
in modeling eutrophication and algal blooms. Thus, in the present paper, our main
aim is to study the role of fertilizer input rate on different dynamical behavior of the
system and also how it develops harmful algal blooms (HABs). Although, HABs can
occur in two different ways: (1) through the depletion of DO in the water column and
(2) by releasing toxic chemicals, here we mainly concentrate on the first case. We also
use a sensitivity analysis technique to compare between the effects of different factors
on the bloom formation and how it is helpful in identifying the most influential factor
responsible for the bloom formation.

2 Mathematical model

Let F (kg/ha) be the concentration of fertilizers and A (ton/ha) be the agricultural
production. Furthermore, let N (µgN/l), P (µgN/l), S (µgN/l) and C (mg/l) be
the amount of nutrients (nitrogen in our case), density of algae, density of detritus
and concentration of DO, respectively. It is assumed that fertilizers are spread in
the farms with a constant rate. Some of the fertilizers deplete naturally while some
of them are used up to increase the agricultural production. Fertilizer increases the
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agricultural production up to a certain limit and a large amount of fertilizer does
not increase the production in the same proportion. Therefore, the depletion rate of
fertilizers used up to increase in agricultural production is assumed to be followed by
Holling type II interaction between the concentration of fertilizers and agricultural
production. However, in the absence of fertilizers, agricultural production increases
following logistic growth law depending on the natural nutrients available in the field.

Further, it is considered that nutrients are coming to the system through agricul-
tural runoff as well as sources other than agriculture. There is a natural depletion of
nutrients in the lake and nutrients are also taken by algae for their growth. There is a
natural death of algae and algae also die due to higher predation. Detritus are formed
due to the death of algal population and runoff of the crop residual. Detritus are being
decomposed by the bacterial population to form nutrients. Nutrient regenerations by
bacterial populations are taken into account without explicitly considering equations
for bacterial populations. Decompositions due to both anaerobic and aerobic bacteria
are considered. Anaerobic bacteria does not need oxygen to decompose detritus to
form nutrients whereas the decomposition process by aerobic bacteria needs a large
amount of DO. The inflow of DO in the lake is through water-air interaction and pho-
tosynthesis by algae. By considering all of these facts together, we have the following
differential equation:

dF

dt
= Q− α0F −

k1FA

k12 + F
,

dA

dt
= rA

(
1− A

L

)
+
λ1k1FA

k12 + F
,

dN

dt
= q + γαZF − α1N −

β1NP

β12 +N
+ πεS, (1)

dP

dt
=
θ1β1NP

β12 +N
− α2P − β10P 2,

dS

dt
= ηα′ZA+ π1α2P + π2β10P

2 − εS,

dC

dt
= qc − α3C + λ11P − δ2SC.

In the model (1), the constant Q is the rate at which fertilizers are used in the
farms and the constant α0 is the rate at which fertilizers deplete naturally in the
farms. The constant k1 is the maximum rate at which fertilizers are depleted due to
agricultural production and the constant k12 limits this rate. The constants r and
L are the intrinsic growth rate and carrying capacity of agricultural production in
the absence of fertilizers. The proportionality constant λ1 stands for the increase
in agricultural yield due to application of fertilizers. The parameter q denotes the
nutrient input in the aquatic system due to other sources than fertilizer and can be
a representative of eutrophication due to other sources. The constant γ is the input
rate of nutrient in the aquatic system through agricultural runoff, α is the nutrient
content per unit of fertilizer, Z is the area of the farmland, η is the growth rate
of detritus due to runoff of the residual of crops and α′ is the nutrient content per
unit of agricultural production. α1 represents the natural depletion rate of nutrient.
β1 is the nutrient uptake rate by algae and β12 is the half saturation constant of
uptake, θ1 is the conversion of nutrient into algal density. α2 is the natural mortality
of algae whereas β10 is the algal mortality due to higher predation which can also be
a representative of overfishing by larger top predatory fish. ε is the depletion rate of
detritus due to the biochemical activity by bacteria. We assume ε = δ+ δ1C, where δ
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and δ1 are the depletion rates in the absence (C = 0) and presence (C > 0) of dissolved
oxygen, respectively. Depletion of detritus happens due to the biochemical processes
for the conversion of detritus to nutrient conducted by anaerobic and aerobic bacteria
present in the system. Conversion by anaerobic bacteria does not need DO and thus
nutrient regeneration only depends on the amount of detritus present in the lake. On
the other hand, aerobic bacteria utilizes oxygen and organic matter to yield energy
that increases the remineralization rate of nutrient throughout the degradation of
detritus. This process results in the depletion of DO level at a rate δ2. This type of
conversion depends on both the amount of detritus present in the lake as well as the
concentration of DO in the water column. Thus, in the presence of oxygen both type
of bacteria take part into the degradation process whereas only anaerobic bacteria
remains active in the absence of oxygen. qc is the inflow rate of DO due to surface
re-aeration, α3 is the natural depletion rate of nutrient and λ11 is the inflow rate of
DO by unit algal density. All the above constants are assumed to be positive and the
constants η, π, π1, π2 and θ1 lie between 0 and 1. The biological meanings of all the
variables and parameters of the model (1) are summarized in Table 1.

We assume that the dynamics of nutrient is not directly affected by the concen-
tration of DO. Although, when oxygen is depleted, nitrate and nitrite are reduced
and transformed to ammonia, but we did not consider such increase in nutrient at
low DO level to avoid further complexity of the model.

We analyze the model (1) with the initial conditions, F (0) > 0, A(0) ≥ 0, N(0) >
0, P (0) ≥ 0, S(0) ≥ 0, C(0) > 0.

3 Mathematical analysis

In this section, we analyze our model (1) mathematically. First, we find all possible
equilibria of our model (1) and conditions of their existence.

3.1 Possible equilibrium points and their existence conditions:

The model system (1) has the following four non-negative equilibria:

1. The equilibrium point E0 = (F0, 0, N0, 0, 0, C0), with F0 =
Q

α0
, N0 =

γαZQ+ qα0

α0α1

and C0 =
qc
α3
, when there is no agricultural production as well as no algae and detritus

in the system. The equilibrium E0 always exists in the system.
2. The equilibrium E1 = (F1, A1, N1, 0, S1, C1), where there is no algae in the

system. Here, the densities F1, A1, N1, S1, and C1 are defined as follows:

A1 =
L

r

(
r +

λ1k1F1

k12 + F1

)
, N1 =

q + π(δ + δ1C1)S1

α1
, C1 =

qc
α3 + δ2S1

. F1 is a

positive root of the following equation:

f(F ) =
L

r

(
r +

λ1k1F

k12 + F

)
− (Q− α0F )

k1

k12
F

= 0. (2)

From equation (2), the followings may be easily noted:

(a1) when F → 0, f(F )→ −∞,
(a2) f (Q/α0) > 0, and

(a3) f ′(F ) > 0, for F ∈ (0, Q/α0) .
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The above points (a1), (a2) and (a3) together imply that there exists a unique positive
real root F = F1 of the equation (2) in the interval (0, Q/α0).

S1 is the positive root of the following quadratic:

δδ2S
2 + (δα3 + qcδ1 − ηα′Zδ2A1)S − ηα′Zα3A1 = 0. (3)

Equation (3) has a unique positive root and thus the equilibrium E1 always exists in
the system.

3. The equilibrium when there is no agricultural production is given by E2 =(
Q

α0
, 0, N2, P2, S2, C2

)
, where the densities N2, P2, S2 and C2 are given as follows:

N2 =
β12(α2 + β10P2)

θ1β1 − (α2 + β10P2)
, C2 =

qc + λ11P2

α3 + δ2S2
, S2 is the positive root of the

following quadratic equation:

δδ2S
2 + {δα3 + δ1(qc + λ11P2)− δ2(π1α2P2 + π2β10P

2
2 )}S

−α3(π1α2P2 + π2β10P
2
2 ) = 0 (4)

and P2 is the unique positive root of the following cubic equation[
q̃ +

(
ππ1 −

1

θ1

)
α2P +

(
ππ2 −

1

θ1

)
β10P

2

]
[(θ1β1 − α2)− β10P ]− β12α1(α2 + β10P ) = 0. (5)

The equilibrium E2 exists if the following condition is satisfied

(θ1β1 − α2)q̃ − β12α1α2 > 0, (6)

where q̃ = q +
γαZQ

α0
.

4. The interior equilibrium where all the six components of our model exist is given
by E∗ = (F ∗, A∗, N∗, P ∗, S∗, C∗). The equilibrium E∗ exists provided the following
condition is satisfied

(θ1β1 − β12α2)q1 − β12α1α2 > 0. (7)

Note that F ∗ = F1 and A∗ = A1. The densities N∗, P ∗, S∗ and C∗ may be obtained
by solving the following simultaneous algebraic equations:

0 = q + γαZF ∗ − α1N −
β1NP

β12 +N
+ π(δ + δ1C)S, (8)

0 =
θ1β1N

β12 +N
− α2 − β10P, (9)

0 = ηα′ZA∗ + π1α2P + π2β10P
2 − (δ + δ1C)S, (10)

0 = qc − α3C + λ11P − δ2SC. (11)

From equation (10), we have

(δ + δ1C)S = ηα′ZA∗ + π1α2P + π2β10P
2. (12)

From equation (9), we have

N =
β12(α2 + β10P )

θ1β1 − (α2 + β10P )
. (13)
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Now, using equations (12) and (13) in equation (8), we have

g(P ) =

[
q1 +

(
ππ1 −

1

θ1

)
α2P +

(
ππ2 −

1

θ1

)
β10P

2

]
[(θ1β1 − α2)− β10P ]− β12α1(α2 + β10P ) = 0, (14)

where q1 = q + γαZF ∗ + πηα′ZA∗.

From equation (14), the followings may be easily noted:

(b1) g(0) > 0 provided (θ1β1 − α2)q1 − β12α1α2 > 0,

(b2) g(P̃ ) < 0, for P̃ =
θ1β1 − α2

β10
and

(b3) g′(P ) < 0, for P ∈ (0, P̃ ).

The above points (b1), (b2) and (b3) together imply that there exists a unique positive

root P = P ∗ of equation (14) in the interval (0, P̃ ). Using this value of P = P ∗ in
equation (13), we get the values of N = N∗.
From equation (11), we have

C =
qc + λ11P

∗

α3 + δ2S
. (15)

Using equation (15) in equation (12), we have

δδ2S
2 + {δα3 + δ1(qc + λ11P

∗)− δ2(ηα′ZA∗ + π1α2P
∗ + π2β10P

∗2)}S
−α3(ηα′ZA∗ + πα2P

∗ + π2β10P
∗2) = 0. (16)

Equation (16) has exactly one positive root, say S∗. Now, from equation (15), we can
get the value of C∗.

Lemma 1 The region of attraction for all solutions initiating in the positive octant
is given by the set Ω [24]:

Ω =

{
(F,A,N, P, S,C) : 0 ≤ F <

Q

α0
; 0 ≤ A ≤ Am; 0 ≤ N + P + S ≤ q̄

δm
;

0 ≤ C ≤ Cm} , (17)

where

Am =
L

r

(
r +

λ1k1Q

k12α0 +Q

)
, q̄ = q +

γαZQ

α0
+ ηα′ZAm,

δm = min{α1, (1− π1)α2, (1− π)δ}, Cm =
qcδm + λ11q̄

α3δm
.

3.2 Stability of equilibria of our model (1):

Theorem 1 1. The equilibrium E0 is always stable in F,N, S and C directions and
unstable in A direction. Further, it is unstable (or stable) in P direction whenever the
equilibrium E1 exists (or does not exist).

2. The equilibrium E1 is always stable in F,A,N, S and C directions. Further, it
is unstable (or stable) in P direction whenever the equilibrium E∗ exists (or does not
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exist).

3. The equilibrium E2 is stable in F direction and unstable in A direction. Fur-
ther, it is stable in N,P, S and C directions iff conditions in (18) are satisfied, with
Ai = Bi for i = 1, 2, 3, 4.

4. The equilibrium E∗ is locally asymptotically stable iff

A4 > 0, A1A2 −A3 > 0, A3(A1A2 −A3)−A2
1A4 > 0. (18)

Ai’s and Bi’s are defined in Appendix.

Proof: Can be easily proved using simple stability analysis technique.

Theorem 2 The equilibrium E∗ is globally asymptotically stable inside the region of
attraction Ω, if the following conditions are satisfied:[

k1Q/α0

(k12 +Q/α0)(k12 + F ∗)

]2
F ∗ <

rα0

λ1L
, (19)[

β1q̄/δm
(β12 + q̄/δm)(β12 +N∗)

]2
N∗ <

2α1β10
3θ1

, (20)

5m2[πδ + πδ1Cm]2

δα1
< min

{
2rδF ∗

5λ1Lη2α′2Z2
,

4m2δβ10N
∗

15θ1[π1α2 + π2β10(q̄/δm + P ∗)]2

}
,

(21)

δ21S
∗2

α2
3

max

{
4m2π

2

α1
,
m4

δ

}
< min

{
m2β10N

∗

3θ1λ211
,
m4δ

2

5δ22C
∗2

}
, (22)

where m2 and m4 are defined in the proof.

Proof: Can be easily proved by considering the Lyapunov function

V =
1

2
(F − F ∗)2 +m1

(
A−A∗ −A∗ ln

A

A∗

)
+
m2

2
(N −N∗)2

+m3

(
P − P ∗ − P ∗ ln

P

P ∗

)
+
m4

2
(S − S∗)2 +

m5

2
(C − C∗)2,

where m1, m2, m3, m4 and m5 are positive constants to be chosen appropriately.

Since, it is difficult to identify the exact form of some of the equilibria, we check the
existence of the equilibria by calculating them by using the parameter values given in
Table 1. The model (1) shows the following four equilibria with positive coordinates,
namely

E0 =


5
0

50.6
0
0
10

, E1 =


3.95
10.75
40.27

0
0.22
6.57

, E2 =


5
0

0.09
22.06
0.84
3.39

, E∗ =


3.95
10.75
0.07
19.62
1.20
2.62

.
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1. Point E0, where there is no agricultural production in the system as well as
there is no detritus and algae in the lake. As for the agricultural production free limit,
this point should be unstable (it should not be possible to observe it).

2. Point E1, where there is no algae in the lake, is stable.

3. Point E2, where there is no agricultural production in the system. As we already
discussed this equilibrium point must be unstable.

4. Finally, the point E∗, where all the six components exist in the system. This
coexistence equilibrium is very common in nature, thus it should be stable in some
ecosystems.

4 Numerical simulation

In this section, we check how different fertilizer input rates affect the system dynamics
by considering the set of parameter values given in Table 1.

4.1 System dynamics in the presence and absence of fertilizer

First, to explore the role of fertilizer on the bloom formation by algae and its effects
on the ecosystem, we compare the time evolution of all the variables in the absence
(Q = 0 kg/ha/day) and presence (Q = 2 kg/ha/day) of fertilizer input in the system
(Fig. 1). Although, the use of fertilizer increases agricultural production A (Fig. 1(b)),
it also supplies a huge amount of nutrient N (Fig. 1(c)) to the system, leading to the
formation of a huge bloom of algae P (Fig. 1(d)) which was not present in the absence
of use of fertilizer. Consequently, high runoff from agricultural fields and mortality of
algae increase the amount of detritus S (Fig. 1(e)). Now, when the amount of detritus
is low, the regeneration of nutrient from detritus needs very little DO and thus the
DO level remains high. However, when the amount of detritus becomes high, initially
the DO level in the water column increases due to the production from high algal
biomass, but as time progresses decomposition of detritus becomes important which
needs high amount of DO and the DO level depletes (Fig. 1(f)).

4.2 System dynamics at different fertilizer input rates

We also checked the equilibrium abundances of all the variables by continuously
varying the fertilizer input concentration (Q) in the system (Fig. 2). As the amount
of the use of fertilizer increases, the fertilizer concentration increases almost linearly
(Fig. 2(a)) whereas the agricultural production saturates (Fig. 2(b)) at high input
rates. An increase in fertilizer input increases equilibrium nutrient concentration (Fig.
2(c)) which results in a huge increase in algal biomass (Fig. 2(d)). High agricultural
production and algal mortality increase the amount of detritus (Fig. 2(e)). Finally,
regeneration of nutrient from detritus uses DO and keeps the DO level very low at
high fertilizer input rate (Fig. 2(f)).

4.3 Sensitivity analysis

The model simulation demonstrates that high input of fertilizer (Q) in the system
results in an increase in algal biomass and decrease in the DO level. Now, to check
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how these variables are affected with variations in fertilizer input rate compared to
other parameters, we perform a formal sensitivity analysis technique. In comparison
with the effects of simply varying the parameters to look at the outcome of the model,
the techniques of sensitivity analysis are mathematically more sophisticated. In the
present case, we use a basic differential analysis approach. Use of this technique can
be found in several other articles and text books [25–29].

The semi-relative sensitivity solutions with respect to some of the important pa-
rameters corresponding to the six state variables are computed. Here, the semi-relative
sensitivity of the model solutions for a variable X to a parameter y is given by

y
∂X(t, y)

∂y

and is computed by formally differentiating the ODE system (1) with respect to y
and interchanging the order of time and parameter derivative. Since we have 6 state
variables, we get a system of 6 equations for the sensitivity functions Xy(t, y) =
∂X

∂y
(t, y) :

d

dt

(
∂X(t)

∂y

)
=

∂f

∂X

∂X(t)

∂y
+
∂f

∂y
, (23)

with initial conditions
∂X(0)

∂y
= 0. Here,

∂f

∂X
represents the Jacobian of the ODE

system (1) and
∂f

∂y
is the derivative of the right side of system (1) (which is represented

by f(t,X, y)) with respect to y. To get the sensitivity functions, first we solve system
(23) for Xy(t, y) by coupling it with the original system of ODE given in (1) (total 6+6
equations). The values of the sensitivity functions provide the rates of change of the
variables with respect to the change in the chosen parameter (y) as time progresses.
For example, Pβ1(50, 0.067) = 55 means that the derivative of algal density P (µgN/L)
with respect to the maximum nutrient uptake rate β1 at time t = 50 days and nutrient
uptake rate β1 = 0.067 1/day is 55 µgN-days/L. Finally, the semi-relative sensitivity
solutions are calculated by simply multiplying the unmodified sensitivity functions by
the parameter y, i.e., yXy(t, y), which provides the amount the state will change when
that parameter y is doubled (i.e., a perturbation on the order of y). The semi-relative
sensitivity solutions can be viewed as the Fréchet derivatives in the ‘direction’of the
corresponding parameter y (see, [30]).

The sensitivities of algal density (P ) and DO level (C) are plotted for six most
sensitive relevant parameters (Q, q, γ, β1, β10 and δ2) (Fig. 3). Among these param-
eters, Q, q and β10 can be influenced by human activities. From the graph, it is clear
that the perturbations of the parameters exhibit their greatest influences early in the
simulation, with a large initial expected variation in the algal density and DO level.
Fig. 3(a) suggests that the doubling of Q, q and γ will yield sudden increase of algal
biomass by time around t = 60 days. On the other hand, β1 results in a huge increase
in algal biomass around day 50, followed by a sudden huge decrease just after few
days. Such decrease in algal density is due to the decrease of nutrient availability
(not shown in figure). In contrary, the doubling of β10 results in the decrease in algal
density. Doubling of all these parameters results in decrease in DO level (Fig. 3(b)).
However, different parameters have different strength of influences; β1 has its greatest
influence on DO level, followed by δ2, γ, Q, β10 and q, respectively.

Next, we look at the logarithmic sensitivity solutions

∂log(X)

∂log(y)
(t) =

y

X(t, y)
Xy(t, y), (24)
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with respect to all of the previously mentioned parameters (Fig. 3(c), (d)). These
quantities are dimensionless and indicate what percentage change of the variables
can be expected from a doubling of a parameter y. Thus, to get a complete idea
about the sensitivity of the solutions on a particular parameter, it is best to calculate
both types of sensitivity solutions. Fig. 3(c) shows that the doubling of β1, γ, Q
and q results in 260%, 80%, 70% and 15% increase in algal density during the initial
days, respectively, whereas β10 results in 35% decrease. On the other hand, DO level
decreases 280%, 150%, 130%, 120%, 50% and 25% due to the doubling of β1, δ2, γ,
Q, β10 and q respectively (Fig. 3(d)).

5 Discussion

Fertilizers enhance the growth of plants but its excess use can be detrimental to
aquatic health. Scientists have long suspected that many algal blooms are fueled by
fertilizer runoff from farming operations, which in many regions pour tons of excess
nitrogen and other nutrients into rivers that eventually flow into lakes and coastal
waters [31]. Using these excess nutrients, algae show a sudden population explosion
that disrupt the aquatic ecosystems and even produce dead zones (low-oxygen zones)
[32]. Apart from fertilizers, there are also other important human induced factors
resulting in algal blooms. For example, eutrophication due to other sources than
fertilizers [33] and overfishing [34]. In the present paper, we propose a mathematical
model to comprehend the effect of fertilizers used in agriculture on the occurrence of
algal blooms and compare the above mentioned three human induced activities on
the occurrence of algal blooms and DO level.

HABs caused by hypoxic events (low-oxygen situations) are known as one of the
most scientifically complex and economically damaging coastal issues worldwide that
challenge our ability to protect the health of coastal ecosystems. In the last few
decades, the number of hypoxic events has increased several folds [35]. During this
event, the amount of DO becomes very low in the water column. DO is essential for
many forms of life, including fish, invertebrates, aerobic bacteria and plants. These
organisms need DO for respiration, similar to terrestrial organisms. Fish and crus-
taceans get the necessary oxygen for respiration through their gills, while aquatic
plants and algae need dissolved oxygen for respiration in the absence of light. The
amount of DO needed by different organisms is different. For example, bottom feed-
ers, oysters, crabs and worms require minimal amounts of DO (1-6 mg/L), while the
required amount of DO for shallow water fish is a little bit higher (4-15 mg/L). Nor-
mally, the DO content in a healthy aquatic system ranges from 6 to 13 mg/L [36].
However, when the level of DO goes below 2 mg/L which is necessary to sustain most
animal life, the committee on environment and natural resources defined it as hypoxia
[37]. Our study shows similar high DO level in the water column (9.5 mg/L) in the
absence of the use of fertilizer. However, when fertilizer is used at high amounts in
the agricultural field, algae start getting more nutrient from external sources due to
agricultural runoff that results in a huge bloom of algae. When these algae die, the
bacterial decomposition of the dead algal cells uses up very high amount of DO and
leaves very little DO (0.5 mg/L) for organisms living in the aquatic system. This re-
sults in a typical hypoxic condition where organisms living in the water column start
dying because of insufficient DO. In a report by Diaz et al. [38], currently there are
more than 500 hypoxic systems covering over 240000 km2 around the globe related
to human activities. These events also have economic impacts, including lost income
for fisheries, lost recreational opportunities, decreased business in tourism industries,
public health costs of illness, and expenses for monitoring and management [39].
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In natural systems, algal blooms result from the combination of several factors.
Thus to control algal blooms, it is important to know which factor is the most in-
fluential one. However, from the observation it is difficult to measure and identify
the effects of different factors on bloom dynamics. At this point, mathematical model
serves as an useful tool to solve this problem. In the present paper, we compare several
factors including three human induced activities (fertilizer input in agricultural field,
eutrophication of aquatic systems due to other sources than fertilizers, and overfish-
ing) on the bloom dynamics and DO level by using a sophisticated sensitivity analysis
technique. Our findings show that the increasing use of fertilizers in agricultural field
causes more rapid algal blooms and decreases DO level much faster than eutrophi-
cation from other sources and overfishing. However, overfishing can also have large
impact on the bloom development and DO level depletion [34]. Identification of the
most responsible factor would help to determine the strategy for the policy makers
to control algal blooms. It is to be noted that the outcome greatly depends on the
parameterization of the system.

Occurrence of HABs can be controlled by regulating biological productivity in
aquatic systems that happens due to the supply of nutrients to surface waters from
agricultural fields. Reduction in external input of nutrients will help to reduce the
occurrence and intensity of algal blooms. By using fertilizers sparingly, testing soil
quality to measure the amount of fertilizer needed, by not using fertilizes before a rain
storm, using organic fertilizers that release nutrients more slowly, etc., are some of
the useful steps for the reduction of algal blooms in lakes. Thus, the most important
challenge in the future is to integrate agriculture and aquaculture management in
such a way that addresses the multiple needs of humans but also protects ecosystem
services and functions that humans depend on.
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Appendix

A1 = α1 +
β1β12P

∗

(β12 +N∗)2
+ β10P

∗ + δ + δ1C
∗ + α3 + δ2S

∗,

A2 = β10P
∗
(
α1 +

β1β12P
∗

(β12 +N∗)2

)
+

θ1β1β12P
∗

(β12 +N∗)2
β1N

∗

β12 +N∗

+(δ + δ1C
∗ + α3 + δ2S

∗)

(
α1 +

β1β12P
∗

(β12 +N∗)2
+ β10P

∗
)

+(δ + δ1C
∗)(α3 + δ2S

∗)− δ1δ2S∗C∗,

A3 =

{
β10P

∗
(
α1 +

β1β12P
∗

(β12 +N∗)2

)
+

θ1β1β12P
∗

(β12 +N∗)2
β1N

∗

β12 +N∗

}
(δ + δ1C

∗ + α3 + δ2S
∗) + {(δ + δ1C

∗)(α3 + δ2S
∗)− δ1δ2S∗C∗}(

α1 +
β1β12P

∗

(β12 +N∗)2
+ β10P

∗
)

−π(δ + δ1C
∗)(π1α2 + 2π2β10P

∗)
θ1β1β12P

∗

(β12 +N∗)2
,
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A4 =

{
β10P

∗
(
α1 +

β1β12P
∗

(β12 +N∗)2

)
+

θ1β1β12P
∗

(β12 +N∗)2
β1N

∗

β12 +N∗

}
{(δ + δ1C

∗)(α3 + δ2S
∗)− δ1δ2S∗C∗}

−π(δ + δ1C
∗)(π1α2 + 2π2β10P

∗)(α3 + δ2S
∗)
θ1β1β12P

∗

(β12 +N∗)2

+λ11δ1S
∗π(δ + δ1C

∗)
θ1β1β12P

∗

(β12 +N∗)2
.
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Figure and table captions:
Fig 1: Time series of (a) fertilizer (F ), (b) agricultural production (A), (c) nutrient

concentration (N), (d) algal biomass (P ), (e) detritus (S), and (f) DO level (C) in
the absence (Q = 0 kg/ha/day; solid line) and presence (Q = 2 kg/ha/day; dashed
line) of fertilizer input in the system.

Fig. 2: Equilibrium abundances of (a) fertilizer (F ), (b) agricultural production
(A), (c) nutrient concentration (N), (d) algal biomass (P ), (e) detritus (S), and (f)
DO level (C) at different input concentrations of fertilizer (Q kg/ha/day).

Fig. 3: Semi-relative sensitivity solutions of (a) algal density (P ) and (b) DO
level (C) with respect to Q, q, β10, β1, δ2 and γ. Logarithmic sensitivity solutions of
(c) algal density (P ) and (d) DO level (C) with respect to the same parameters. Here
the initial conditions are chosen as (10,5,1,1,10,0.1).

Table 1: Parameter values in the model system (1)
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Table 1.

Parameters/ Descriptions Units Values
Variables

F Concentration of fertilizer kg/ha —
A Density of agricultural production ton/ha —
N Concentration of nutrients µgN/L —
P Density of algae µgN/L —
S Density of detritus µgN/L —
C Concentration of DO mg/L —
Q Rate of using fertilizers kg/ha/day 0.5
α0 Natural depletion rate of fertilizers 1/day 0.1
k1 Maximum utilization rate of fertilizer kg/ton/day 0.01
k12 Half saturation constant kg/ha 0.1
λ1 Conversion of fertilizer into agricultural production ton/kg 1
r Intrinsic growth rate of agricultural production 1/day 0.001
L Carrying capacity of agricultural production ton/ha 1
q Input rate of nutrients independent of agriculture µgN/L/day 0.006
γ Input rate of nutrients through agricultural runoff 1/L/day 0.1
α Nutrient content per unit of fertilizer µgN/kg 1
Z Area of farmland ha 1
α1 Natural depletion rate of nutrients 1/day 0.01
β1 Maximum uptake rate of nutrients 1/day 0.067
β12 Half saturation constant µgN/L 0.17
θ1 Conversion of nutrient into algae — 1
α2 Natural death rate of algae 1/day 0.001
β10 Algal mortality due to higher predation L/µgN/day 0.001
η Growth rate of detritus due to crop residual 1/L/day 0.01
α′ Nutrient content per unit of agricultural production µgN/ton 1
π1 Proportionality constant — 0.5
π2 Proportionality constant — 0.5
δ Depletion rate of detritus in the absence of oxygen 1/day 0.1
δ1 Depletion rate of detritus in the presence of oxygen L/mg/day 0.06
π Proportionality constant — 0.01
qc Inflow rate of DO due to surface re-aeration mg/L/day 0.5
α3 Natural depletion rate of DO 1/day 0.05
λ11 Inflow rate of DO by unit algal density mg/µgN/day 0.0005
δ2 Depletion rate of DO due to recycling of detritus L/µgN/day 0.12


