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Polycrystalline bulk materials are ubiquitous in everyday life including biological, geological, and 

engineered structural and functional materials. Their fundamental units are individual grains which 

are characterized by their microstructure, i.e. the arrangement of lattice defects. The microstructure 

usually influences the materials properties critically.  

It has been demonstrated that by using high-energy synchrotron radiation, diffraction peaks off 

individual grains can be recorded in-situ during processing [1, 2]. Important information such as the 

orientation, average strain, and size of individual grains can be obtained even if the peak shapes are 

commonly not analyzed. However, it is also well known that the shape of diffraction peaks, if 

observed with sufficient resolution, contains significant information about the microstructure. While 

the intensity distribution in reciprocal space of a perfect lattice consists of delta functions located at 

the reciprocal lattice points, defects induce characteristic peak broadening. For exploiting the wealth 

of microstructural information contained in broadened diffraction peaks, the intensity distribution 

has to be characterized in all three-dimensions of reciprocal space. Distinguished directions are the 

radial direction, parallel to the reciprocal lattice vector g and quantified by differences in the 

scattering angle 2, and the azimuthal directions, perpendicular to the reciprocal lattice vector and 

quantified by the angles  and  (cf. Figure 1). Conventional radial profile (line shape) analysis 

techniques average over many grains with possibly significantly different microstructure. Under 

conditions of single grain diffraction these limitations are overcome and the intensity distributions 

along all three directions of reciprocal space are accessible.  

Large reciprocal space coverage is desirable since the anisotropy of lattice defect arrangements can 

be characterized if a sufficient number of projections (reciprocal lattice vectors) are measured. High 

resolution is desirable as individual subgrains become discernable. However, since the number of 

independent pixels of available detectors is limited, two distinct experimental setups have been 

developed and the respective methodologies and case studies are described below. 

For a moderately high resolution, g/g  10-3 (g=2sin/ indicating the length of the diffraction 

vector), a large reciprocal space coverage can be realized (all reflections from lattice planes with 

interplanar spacings above about 1 Ǻ, see section on large reciprocal space coverage with high 

angular resolution), through emulating a large detector by translating a single detector to a few 

adjacent grid positions. The line profile data presented here have been recorded at 1-ID at APS with a 

sample-to-detector distance of 2.5 m. 

For an even higher resolution, g/g  10-4 in all three dimensions, a dedicated set-up, limited to a 

single diffraction peak (see section on high resolution reciprocal space mapping), has been realized at 



beam line 1-ID at APS [3] and recently recreated at beam line P07 at PETRA III [4]. A highly 

monochromatic and partially focused beam of low divergence is utilized, and a detector with small 

pixel size is placed about 4 m behind the sample. 

 

Large reciprocal space coverage with high angular resolution 

The substructure of polycrystalline bulk materials is usually heterogeneous on different length scales: 

Within individual grains it is heterogeneous on the subgrain scale [6, 7] and within the bulk 

polycrystal it is heterogeneous on the grain scale [8]. In hexagonal close packed (hcp) materials an 

additional heterogeneity prevails because of the many different slip modes and Burgers vector types 

[9]. On all scales all microstructural properties, e.g. dislocation densities, slip modes, Burgers vector 

types and populations, planar defect types and densities, subgrain size or subgrain orientation 

distribution, can vary and can be heterogeneous. The different types of heterogeneities have very 

different implications on the different behavior and performance of materials [10, 11, 12]. 

Conventional X-ray diffraction experiments on bulk polycrystalline samples provide average 

information about the volume illuminated by the beam. In the following the principles of a novel 

synchrotron procedure are described which characterizes the substructure of a large number of 

individual grains in bulk polycrystalline aggregates. In this procedure, averaging is restricted to the 

individual grains despite that the illuminated volume in the sample comprises of several hundred 

grains. 

 

The 3D grain mapping procedure [1, 13] was extended to determine the microstructure of individual 

grains in polycrystalline aggregates [14, 15, 16, 17]. Dislocation densities, slip modes, Burgers vector 

populations, subgrain size and planar defects were determined in large number of individual grains in 

bulk polycrystalline specimens of tensile deformed CoTi and CoZr alloys [17], in an MgGeO3 post-

perovskite [15] and in stishovite synthesized in-situ in diamond anvil cells at the synchrotron 

beamline [16]. The specimens are either free standing thin needle-shape rods in atmospheric 

ambient surroundings or kept under high pressure in diamond anvil cells with large openings. The 

free standing specimens are rotated at least 180 around a single axis. The specimens at high 

pressure are turned around the rotation axis by angles permitted by the openings of the anvil cell. 

Diffraction images are recorded with two dimensional detectors at a closer and a farther distance. 

The close detector images are used to determine the orientation matrices of the grains in the X-rays 

illuminated volume. The angular resolution achieved for the images obtained by the far detector is 

good enough to carry out line profile analysis. 

 

Diffraction line profile analysis proves to be a powerful tool for determining the sub-structure of 

crystalline materials [18, 19, 14, 20]. The convolutional multiple whole profile (CMWP) procedure 

[14] is based on physically modeled profile functions for the different microstructural elements. 

Microstrain is assumed to be produced by the presence of dislocations and the corresponding strain 

profiles are built up using the Wilkens model [21]. The Fourier transform of the strain profiles, 

𝐴ℎ𝑘𝑙
𝐷 (𝐿), are: 
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where L is the Fourier variable and 〈𝑔,𝐿
2 〉 is the means square strain. For dislocations 〈𝑔,𝐿

2 〉 is [21]: 
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where , Chkl and b are the density, the hkl dependent contrast factor and the Burgers vector of 

dislocations, respectively. The 𝑓 (
𝐿

𝑅𝑒
) function is logarithmic at small L values and hyperbolic at large 

L values. In a conventional powder diffraction pattern averaging over the permutations of the Miller 

indices hkl obscures the orientation dependence of dislocation contrast. Such experiments provide 

dislocation densities or Burgers vector population averaged over polycrystalline aggregates [22, 23]. 

One of the aims of single grain diffraction experiments is to obtain dislocation densities and Burgers 

vector populations on the level of individual grains. Elastic strains along the diffraction vector 

essentially broaden the radial intensity distribution, whereas lattice rotations or shear strains blur 

the intensity distribution in the perpendicular, i.e. the azimuthal directions. The first is usually called 

line broadening, whereas the latter is known as rocking curve broadening [21]. The dislocation 

density and Burgers vector population is provided by line broadening [21, 24]. In a single crystal 

diffraction experiment the three dimensional intensity distribution, Ihkl(2,,), is integrated over the 

azimuthal intensity distributions, i.e.  and  [14]: 

 

Ihkl(2) = ∫ 𝐼ℎ𝑘𝑙(2,,) 𝑑𝑑 .       (3) 

 

The technical details about determining the orientation matrix and integration of the intensity 

distributions over  and  can be found in references [14, 17]. 

 

Analysis of the strain anisotropy in powder diffraction proved to be a powerful method to determine 

average Burgers vector populations in polycrystalline materials [25, 26]. The single grain procedure 

extends this method to single crystals. It is based on matching measured contrast values, 𝐶ℎ𝑘𝑙
𝑚𝑒𝑎𝑠, with 

theoretical contrasts, 𝐶ℎ𝑘𝑙
𝑡ℎ𝑒𝑜𝑟, where the indices hkl are orientation dependent, signed values.  

 

We can assume that the total dislocation density, , consists of the sum of the fractional dislocation 

densities, fract(bn,ln), where their broadening effect is scaled with the corresponding Burgers vectors, 

bn, and contrast factors, Ctheor(g,bn,ln,ci,j). The subscript in C refers to theoretically calculated contrast 

factors [27], ln are the line vectors of dislocations and ci,j are the elastic constants of the material. The 

strain profiles in each measured diffraction peak provide average, measured contrasts, CCMWP(ghkl), 

where the subscript refers to values provided by the CMWP procedure. The measured and 

theoretically calculated contrasts are matched by minimizing the difference between the measured 

and calculated mean square strain values [17]: 
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where bCMWP is a formal input value for running the CMWP software [14]. Once the difference in eq. 

(4) has been minimized the following relation is obtained: 
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2   is the scaling factor between the measured and theoretically calculated 

contrast factors. The fractional dislocation densities in the different slip systems are obtained as: 
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The procedure is illustrated by an example: 

Single crystals of CoTi and CoZr intermetallics of the B2 type, CsCl structure, can only deform 

plastically if they are oriented for a particular slip-mode such that <001>{110} slip systems  become 

activated [28, 29, 30]. When deformed in other orientations they respond with early brittle fracture 

[31, 28]. The <001>{110} slip-mode, often called soft-mode, provides only three independent slip 

systems. This would not be sufficient for the generalized criterion of the number of slip systems 

required to accommodate arbitrary strains in polycrystalline specimens [32, 33]. Despite the limited 

number of slip systems in the soft slip-mode, the polycrystalline specimens of these alloys exhibit 

significant ductility [29, 30]. Lattice strain measurements by in-situ neutron diffraction experiments 

supported by polycrystal plasticity modeling have shown that during deformation of polycrystalline 

CoTi and CoZr the slip systems of the soft mode are accompanied by the activation of <110>{110} 

and/or <111>{111} slip systems [29]. The latter are often called hard mode slip systems. Recent 

transmission and scanning electron microscope (TEM and SEM) and electron backscatter diffraction 

(EBSD) confirmed the presence of dislocations with <110> and <111>-Burgers vectors [34]. However, 

only a small number of grains were analyzed and no quantitative dislocation density information was 

obtained. Analysis of the line broadening from synchrotron single grain experiments gave soft and 

hard slip-mode distributions along with partial and total dislocation densities in well above 100 grains 

in each specimen [17]. The partial and total dislocation densities in the CoTi alloy are shown in 

inverse pole figures in Figure 2. The results show that data which were formerly relegated to the 

transmission electron microscope are now available from this novel 3D synchrotron x-ray diffraction 

procedure. Since a very large number of grains was analyzed in the two B2 structure alloys, it can be 

concluded that plastic deformation in CoTi and CoZr is carried by the combined activation of soft-

mode (b=<100>) and hard-mode (b=<110> and <111>) dislocations, in agreement with TEM 

observations of the same materials. The results provide an extensive experimental data base for 

polycrystal plasticity modeling. 

 

 

High resolution reciprocal space mapping 

High-resolution reciprocal space mapping (HRRSM) enables identification and monitoring of 

individual subgrains in the deformation microstructure of selected grains in polycrystalline materials 

[3, 35, 37, 36]. Three-dimensional reciprocal space maps are achieved by acquiring a series of two-

dimensional intensity distributions while rocking through small, subsequent intervals  of the 

rocking angle. A detector image obtained during rocking through a small rocking interval of 0.015° 

from a single, selected grain in a tensile deformed polycrystalline sample of copper is shown in the 

insert of Figure 1. Owing to the high-angular resolution, the diffracted intensity does not manifest 

itself as broad, smooth distribution, rather distinct features emerge and several peaks of high 

intensity are revealed [3, 38]. These high-intensity peaks are sharp in all three dimensions of 

reciprocal space, show neither broadening from microstrains, nor from their sizes and originate from 



almost dislocation-free volumes of about 1 to 2 µm3 (from integrated intensity). As they share these 

characteristics (except the smaller size) with diffraction peaks from undeformed grains, they are 

considered to arise from individual subgrains of slightly different orientation [3, 38]. Polycrystalline 

material not developing ordered dislocation structures with dislocation walls separating dislocation 

free regions (e.g. non-cell forming metals as AlMg alloys) develop rather smooth intensity 

distributions without any high-intensity peaks [39]. 

The main advantage of HRRSM is that the technique enables not only a thorough characterization of 

an established deformation structure, but also to investigate the evolution of deformation structures 

in-situ during plastic deformation. For instance, the emergence of ordered dislocation structures 

during the course of deformation has been proven in uninterrupted tensile tests [35, 40]. The 

technique has been exploited for uniaxial tension [3, 38], stress relaxation and unloading [42] where 

the evolution of subgrain structures is monitored in-situ during varying mechanical loads. The 

method can also be applied to pre-deformed specimens, which are mechanically loaded in-situ to 

follow the enforced changes in the deformation structure, for instance, when a pre-deformed 

specimen is re-loaded along a different direction [35, 5]. Due to the change in strain path, the 

originally developed structure becomes alien and has to be replaced by one conform to the new 

deformation conditions.  

As an example, the particular case where the new tensile direction is orthogonal to the tensile axis of 

the pre-deformation is discussed [43, 40]. Dog-bone shaped specimens were cut from coarse-grained 

copper sheets pre-deformed by 5% in uniaxial tension such that the new tensile axis is perpendicular 

to the tensile direction of the pre-deformation. Grains with their crystallographic 100 direction 

close to the new tensile axis were selected. The specimen was tensile deformed in-situ and reciprocal 

space maps of their 400 diffraction peak were acquired at a minimal elastic strain of 0.03% (i.e. 

essentially before any strain path change) and for eight strain increments to a total additional strain 

of 1% after the strain path change. 

Figure 3 presents azimuthal projections from one grain before and after the strain path change. In 

each projection, individual subgrains can be clearly revealed due to their unique orientation. After 

0.2% tensile deformation, only minor changes have occurred and a lot of the initially present high-

intensity peaks can still be identified. A completely new orientation distribution is observed after 1% 

tensile deformation, indicating that the initial subgrain structure has been replaced by one conform 

to the new deformation condition. 

The corresponding radial profiles before and after the strain path change are shown in Figure 4(a). 

After the strain path change, the profile is shifted towards lower diffraction angles (due to the 

applied load causing elastic straining of the lattice), broadened (due to the increased dislocation 

density) and asymmetric with a tail at low diffraction angles. Such an asymmetry of the radial profile 

is characteristic for ordered deformation structures with dislocation walls of high dislocation density 

separating dislocation-depleted regions [44] and can be rationalized in terms of the composite model 

[44, 45] or its refined version [40]: compatible deformation of ordered deformation structures 

requires forward stresses in the dislocation walls and back stresses in the dislocation-depleted 

regions. These back stresses lead to elastic distortions with compressive elastic strains along the 

tensile direction (axial case) and tensile elastic strains in the perpendicular directions (side case)[37]. 

Compressive elastic strains cause shorter interplanar spacings. For diffraction vectors parallel to the 

tensile axis (axial case), the high-intensity peaks from individual subgrains hence arise at larger 



diffraction angles than the average position of the grain (cf. Fig. 4(a)). The peak maximum occurs at 

larger diffraction angles than the average; the tail at smaller diffraction angles is due to the 

dislocation walls under forward stresses. 

Further support for this interpretation can be gained from the 80 largest subgrains (for the details of 

the procedure cf. [41]). The normal probability plot in Figure 4(b) reveals that their radial peak 

positions are Gaussian distributed and in average larger than the radial peak position of the grains 

after 1% tensile deformation, i.e. the individual subgrains all experience relative compressive elastic 

strains slightly different from each other. This is different for the 80 largest subgrains in the pre-

deformed specimen, i.e. before the strain path change: their radial peak positions are similarly 

Gaussian distributed (with a lower variation), but occur at lower diffraction angles than the average 

of the grain indicating the presence of relative tensile elastic strains. These tensile elastic strains are a 

consequence of the pre-deformation and the circumstance that the initial tensile direction is 

perpendicular to the chosen diffraction vector (side case). This difference in elastic strain of the 

subgrains is reflected in the radial profile obtained before the strain path change in Figure 4(a) which 

is less broad and has its tail at higher diffraction angles. With increasing tensile strain after the strain 

path change, the asymmetry of the radial profile becomes reversed, due to the subgrains developing 

compressive elastic strains instead of the tensile elastic strains from the pre-deformation [37, 43]. 

This highlights, how reorganization of deformation structures in individual grains in polycrystalline 

specimens and details about individual subgrains can be revealed in-situ by high resolution reciprocal 

space mapping during a change in loading conditions, e.g. during strain path changes [37] or cyclic 

deformation [4]. 

 

Conclusion and outlook 

Two techniques of single grain three-dimensional reciprocal space mapping by high-energy 

synchrotron radiation are described. They are distinguished by their resolution and reciprocal space 

coverage. Grains deep in the bulk can be investigated non-destructively in-situ during mechanical (or 

thermal) loading. At large reciprocal space coverage, a large number of reflections per grain can be 

recorded simultaneously. From the strain anisotropy, as evaluated from radial peak profiles, the 

dislocation densities on particular slip systems can be determined for a large number of grains. At 

very high resolution, only one reflection is investigated at a time, but diffraction off individual 

subgrains is discernable. The behavior of a significant number of subgrains can be characterized 

during mechanical loading revealing for instance the reorganization of deformation structure in 

individual grains during a change in loading conditions.  

Dramatic improvements of the present temporal (and/or reciprocal space) resolution are anticipated 

from technological advances. First, flat panel detector arrays with ten thousand pixel diagonals are 

becoming a realistic option and efficient CdTe pixel detectors are becoming commercially available. 

Second, ongoing upgrades of high-energy synchrotron facilities by multi-bend achromat lattices 

promise a significant improvement of the beam emittance and brightness which would directly 

translate into intensity gains. Eventually, coherent diffraction might under favorable conditions 

enable three-dimensional spatial resolution within individual subgrains. However, the incoherent 

techniques presented here would not become obsolete due to the much faster data acquisition and 

optional averaging over entire grains if desirable.  
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Figure 1: Principal sketch of the setup for three-dimensional high resolution reciprocal space 

mapping. The insert shows an intensity distribution along the radial direction (2) and an azimuthal 

direction (). Mapping of the third dimension of reciprocal space is achieved by rocking () in small 

intervals (). (from [5]) 

 

 

 

Figure 2: Slip mode fractions (a-c) and total dislocation densities (d) in 24 grains measured in one 

specimen section of the tensile deformed CoTi alloy [17]. The fractions of the [100]{001} type soft 

slip-mode (a), the [110]{1-10} type hard slip-mode (b) and the [111]{1-10} type hard slip-mode (c). (d) 

The total dislocation density. 



(a) (b) (c)

 

Figure 3: Azimuthal projections (,) of the 400 diffraction peak from a single grain in a pre-

deformed polycrystalline copper specimen (a) before (actually 0.03%) and after a strain path change 

after further tensile deformation by (b) 0.2% and (c) 1%. 

 

 

(a)  (b)  

Figure 4: (a) Radial profiles (scaled to same maximum intensity) of the 400 diffraction peak from a 

single grain in a pre-deformed polycrystalline copper specimen before (0.03%) and after a strain path 

change (1%). Radial profiles (intensity scaled by 500) of high-intensity peaks corresponding to five 

individual subgrains are added in each case.  (b) Radial peak position of the 80 most intense high-

intensity peak relative to the average position of the entire grain before (0.03%) and after strain path 

change after tensile deformation. 

 


