
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Error Mitigation in Computational Design of Sustainable Energy Materials

Christensen, Rune; Vegge, Tejs; Hansen, Heine Anton

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Christensen, R., Vegge, T., & Hansen, H. A. (2017). Error Mitigation in Computational Design of Sustainable
Energy Materials. Department of Energy Conversion and Storage, Technical University of Denmark.

http://orbit.dtu.dk/en/publications/error-mitigation-in-computational-design-of-sustainable-energy-materials(67625485-9476-4483-88f9-f4a2892eb06d).html


RUNE CHRISTENSEN

Error Mitigation in Computational

Design of Sustainable Energy Materials

PhD Thesis

November 2016

Department of Energy Conversion and Storage
Technical University of Denmark



Error Mitigation in Computational Design of Sustainable Energy Materials

Author

Rune Christensen
E-mail: runch@dtu.dk

Supervisors:

Tejs Vegge
Professor, Head of Section
Section for Atomic Scale Modelling and Materials
Department of Energy Conversion and Storage
Technical University of Denmark
E-mail: teve@dtu.dk

Heine Anton Hansen
Researcher
Section for Atomic Scale Modelling and Materials
Department of Energy Conversion and Storage
Technical University of Denmark
E-mail: heih@dtu.dk

Department of Energy Conversion and Storage
Atomic Scale Modelling and Materials
Technical University of Denmark
Fysikvej, Building 309
2800 Kgs. Lyngby
Denmark

www.energy.dtu.dk/
Tel: +45 46 77 58 00
E-mail: info@energy.dtu.dk

Release date: November 23. 2016
ISBN: 978-87-92986-58-0



A man of genius makes no mistakes.
His errors are volitional and are the portals of discovery.

- James Joyce, Ulysses
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Preface

This thesis is submitted in candidacy for a Ph.D. degree from the Technical Uni-
versity of Denmark (DTU). The work has been conducted between September
2013 and November 2016 at the Section of Atomic Scale Modelling and Materials
at the Department of Energy Conversion and Storage supervised by Tejs Vegge
and Heine Anton Hansen. Minor parts of the research has been conducted during
research stays at the SUNCAT Center for Interface Science and Catalysis at SLAC
National Accelerator Laboratory and Stanford University, and at the Catalyst
Design Lab at Brown University.

Parts of Chapter 3 resemble parts of my Master’s Thesis ”Investigation of sys-
tematic errors in density functional theory calculations for lithium-air battery reactions”.
The here presented work including all analysis and non-reference data is original
to this work and its included publications and based on a study separate from
that previously performed albeit with similarities in methodology.

Rune Christensen
November 2016
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Abstract
Transportation based on sustainable energy requires an energy carrier, which

is able to store the predominately electrical energy generated from sustainable
sources in a high energy density form. Metal-air batteries, hydrogen and synthetic
fuels are possible future energy carriers. Density functional theory calculations
contribute in research and development of these technologies.

Systematic errors are present in calculations with general gradient approxima-
tion functionals for all three technologies. Such functionals will in many cases be
the best compromise of computational cost and accuracy if not for the systematic
errors. In this thesis it is shown how the systematic errors can be mitigated.

For different alkali and alkaline earth metal oxides, systematic errors have
previously been observed. These errors are primarily caused by differences in
metal element oxidation state. The systematic errors can be significantly reduced
by using metal chlorides rather than pure bulk metals as point of reference for
metal oxide energies.

Systematic errors in gas phase CO2 reduction reactions have previously been
attributed a molecular O-C-O backbone structure. They are through error correla-
tions found to be caused by individual C=O bonds. Energy corrections applied to
C=O bonds significantly reduce systematic errors and can be extended to adsor-
bates.

A similar study is performed for intermediates in the oxygen evolution and
oxygen reduction reactions. An identified systematic error on peroxide bonds
is found to also be present in the OOH* adsorbate. However, the systematic
error will almost be canceled by inclusion of van der Waals energy. The energy
difference between key adsorbates is thus similar to that previously found.

Finally, a method is developed for error estimation in computationally inex-
pensive neural networks. The method can validate the use of a neural network for
emulation of density functional theory calculations for given atomic configuration.
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Resume
Transport baseret på vedvarende energi kræver en energibærer, som kan lagre
den primært elektriske energi, der genereres af vedvarende kilder, med høj en-
ergitæthed. Metal-luft batterier, hydrogen og syntetiske brændsler er mulige
fremtidige energibærere. Beregninger baseret på tæthedsfunktionaleteori bidrager
i forskning og udvikling af disse teknologier.

Systematiske fejl er til stede i beregninger med general–gradient–approksimation
funktionaler for alle tre teknologier. Sådanne funktionaler vil i mange tilfælde
være det bedste kompromis af beregningsmæssig omkostning og nøjagtighed,
såfremt der ikke var systematiske fejl. I denne afhandling vises, hvordan de
systematiske fejl kan identificeres og korrigeres.

For forskellige alkali- og jordalkalioxider er der tidligere blevet observeret
systematiske fejl. Disse fejl er primært forårsaget af forskelle i oxidationstrin af
metal elementerne. De systematiske fejl kan reduceres betydeligt ved at anvende
metalchlorider i stedet for rene metaller som energireference for metaloxider.

Systematiske fejl i gasfase CO2 redoxreaktioner er tidligere blevet tilskrevet en
O-C-O rygrad i molekylære strukturer. De er gennem korrelationer i fejl fundet
til at være forårsaget af individuelle C=O bindinger. Energikorrektioner anvendt
på C=O bindinger reducerer systematiske fejl signifikant og kan overføres til
adsorbater.

En lignende undersøgelse er foretaget for produkter af delreaktioner i oxygen-
udviklings– og reduktionsreaktioner. En identificeret systematisk fejl på peroxid-
bindinger er også til stede i adsorberet OOH*. Den systematiske fejl vil næsten
blive udlignet af inklusion af van der Waals energi. Energiforskellen mellem de
vigtigste adsorbater er derfor sammenlignelig med den tidligere fundne forskel.

Endelig er en metode til fejlestimering af beregningsmæssigt billige neurale
netværk blevet udviklet. Metoden kan anvendes til at validere brug af neurale
netværk til emulering af tæthedsfunktionaleteoriberegninger for en given atomar
konfiguration.
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CHAPTER 1

Introduction

1.1 Energy Supply from Fossil Fuels

Prior to the industrialization in the mid-19th century the demand for energy
was met by burning biofuels.1 Since the industrialization the demand for energy
has continued to increase. The increase in demand has mainly been met by
consumption of fossil fuels, i.e. coal, oil and natural gas. Considering only the
41 year time span from 1973 to 2014 the world’s primary energy supply has
more than doubled from an annual average supply of 8.1 TW to 18.2 TW.2, 3 Since
early use of coal in Britain in the 13th century as replacement for firewood, fossil
fuels have been used to fulfill the energy demand of continuous economic and
technological development.4 Even though the supply from non-fossil energy
sources has increased considerably between 1973 and 2014, fossil fuels have nearly
retained their share of the total energy supply changing from 87 % to 81 %.2

Fossil fuels have become and are expected to remain for at least several decades
completely dominant in the world energy supply, as fossil fuels are currently the
only cost effective energy sources able to scale with increasing demand across all
energy consuming sectors.4

1.1.1 Global Warming

Despite of their advantages, the drawbacks of fossil fuels will force humanity
to find replacements. If use continues, fossil fuel reserves will at some point
be depleted. In 2007, Shafiee and Topal5 calculated depletion times to be 35,
37 and 107 years for oil, gas and coal, respectively, assuming a ”business as
usual” scenario. However, some of the fossil fuel resources, which are currently
considered economically unfeasible, could become part of the accessible reserve
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through technological development or increasing fuel prices. An example of this
is shale gas extraction in USA.6 In addition, there are still undiscovered fossil fuel
resources, e.g. potential resources in the Arctic. The complexity and uncertainty in
fossil fuel depletion predictions is exemplified by the relatively large discrepancy
in predictions of oil reserves and production.7

Another drawback is related to security of supply. Fossil fuel reserves are
geographically concentrated. Nations without fossil fuel reserves have to rely
on imports. The political and economical implications of such reliance has the
potential to cause significant disruption to societies relying heavily on either
importing or exporting fossil fuels.8

The most urgent negative consequence of fossil fuel consumption is the emis-
sion of anthropogenic CO2 into the atmosphere. Upon extraction and combustion
of fossil fuels, carbon stored in geological deposits are reintroduced into the global
carbon cycle as CO2 at a highly accelerated rate compared to prehistoric times.
This has caused the CO2 concentration in the atmosphere to increase. It was 278
ppm in 1750, 317 ppm in 1960, and 401 ppm in 2015.9 The current concentration
is significantly higher than any concentration obtained from ice core data for the
previous 800.000 years, and the average rate of increase over the last century is
”with very high confidence, unprecedented in the last 22,000 years”.9 CO2 is a
green house gas able to absorb infrared radiation emitted from earth and reemit
the energy back towards earth. Changes in green house gas concentrations will
impact the radiative balance between incoming solar radiation and outgoing in-
frared radiation from earth. As an increasing share of infrared radiation will not
escape earth the global temperature will increase until the infrared radiation is
again able to balance the incoming solar energy.

The average global temperature in 2015 was 0.87 °C above the average for
the period 1951-1980.10, 11 This is a very significant increase for such a short
time period. In 2013, where the temperature was 0.65 °C above the average for
1951-1980,10, 11 Marcott et al.12 found that although the temperature had yet to
exceed prehistoric temperatures in the current interglacial period dating back
11.300 years, a general long term trend of cooling has been abruptly reversed. All
plausible green house gas emission scenarios predict significantly higher global
temperatures in 2100 than previously in the current interglacial period.12 It is
difficult to predict how the global average temperature increase will influence
the climate regionally, but it is highly likely to cause general climate changes and
increase the frequency of extreme weather conditions such as heat waves, drought,
heavy precipitation and flooding.9, 13



1.2. LIMITING EMISSIONS 3

1.2 Limiting Emissions

It is not an easy task to reduce global CO2 emissions to mitigate global warming.
To better comprehend the magnitude of the challenge, global CO2 emissions can
be written as a product of different factors as done in the Kaya identity.14, 15

FCO2 = P× G
P
× E

G
× FCO2

E
. (1.1)

FCO2 is the global CO2 emission from combustion of fossil fuels, P is the world
population, G is the global gross domestic product (GDP), and E is the global
energy consumption.

The world population, P, is expected to increase from the current 7.5 billion to
nearly 10 billion by 2050.16 Further, the average GDP per capita, G/P, is expected
to continue increasing.15 Many societies in developed countries are build on an
ambition of consistent economic growth. At the same time, a large majority of the
world’s population is currently living in countries with below average GDP per
capita. They will strive to improve their economic situation. The GDP and energy
consumption of a country are positively correlated as can be seen in Figure 1.1.
The fraction E/G is known as the energy intensity. It does depend on the type
of economy as some industries are more energy intensive than others, and it can
be lowered. However, the overall trend is that economic growth in developing
countries will require and/or produce an increase in energy consumption.

Figure 1.1: GDP, energy use and population of nations. All values are for 2011.17

The last factor in the Kaya identity, FCO2/E, is commonly referred to as the
carbon intensity. It is the average amount of CO2 released per unit of energy
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consumed. To offset population and economic growth a significant lowering of
the global carbon intensity is required.15 This can be done by increasing the share
of energy supplied from non-fossil sources such as nuclear fission, hydro, biomass,
photovoltaics, concentrated solar, geothermal, and wind power. In 2014 non-fossil
sources accounted for 18.9 % of the total energy supply.2 The largest contributions
were from biomass (10.3 %), nuclear (4.8 %), and hydro (2.4 %) with the remaining
1.4 % coming from the other less mature sources. The cost of energy production
from these other sources is decreasing18, 19 and in 2015 a record 153 GW increase
in global electricity capacity from renewable sources took place accounting for 55
% of total growth in electricity capacity.19

1.2.1 The Transport Sector Challenge

Even though options to reduced dependency on fossil fuels are available on a
total energy supply level and in particular in electricity generation, utilizing these
energy sources in the transportation sector is an additional challenge. Currently,
92.5 % of energy consumption in the transport sector is based on oil with an
additional 3.7 % from natural gas.2 In oil derived transportation fuels, such as
gasoline and diesel, the energy is stored as chemical energy in liquid phase. These
transportation fuels have large gravimetric and volumetric energy densities, are
easy to handle, simple to convert into propulsion using a combustion engine, and
relatively cheap.

For most sustainable energy sources the raw energy input, e.g. solar radiation,
kinetic wind energy, or potential energy of water in a reservoir, has to be converted
to electricity at some stationary facility such as a wind turbine of hydro power
plant before it can be utilized. With the exception of few cases where transportation
can be powered directly by the electrical grid, e.g. railroads, electrical energy
must be converted and stored in an energy carrier to be useful in our current
transportation infrastructure and in particular for use in personal vehicles.20

The exception is biomass, where plant photosynthesis has already performed
the conversion from solar radiation to chemical energy. Biomass can be converted
into biofuels such as bioethanol, which can be used in a similar manner as the
oil derived liquid fuels. However, the transportation sector account for 27.9 %
of the total energy consumption.2 Supplying energy for the transport sector
solely from biomass is problematic as there is a limited amount of arable land
on earth for both food and energy crops.20–22 Further, plants are not particularly
efficient at converting solar energy to chemical energy. An energy carrier based
on electrical energy as input is thus a key element in moving towards a fossil
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fuel free transportation sector.20 This will also allow better usage of the electricity
generated from intermittent sources such as wind and solar power at times where
supply exceeds demand.

1.3 Sustainable Energy Carriers

This thesis examines three different potential energy carriers for the trans-
portation sector. They can all use electrical energy from sustainable sources as
input.

1.3.1 Metal-Air Batteries

Metal-air batteries are attractive as both the gravimetric and volumetric en-
ergy density of such batteries can surpass state–of–the–art Li-ion batteries by
approximately an order of magnitude.23–25 Both the theoretical and the estimated
practical energy density is comparable to that of gasoline used as fuel in an internal
combustion engine.23 The general concept is that a pure metal anode is reacted
with oxygen either already present at the cathode of the system (metal-O2 battery)
or entering the electrochemical cell from ambient air (metal-air battery) to form
an oxide. Some of the most promising chemistries are Li-air, Na-air, Zn-air and
Mg-air batteries.23, 25, 26

For a battery to act as major transport sector energy carrier it must be secondary,
i.e. electrochemically rechargeable. Further, both discharge and charge should
occur at low overpotentials to ensure high cycle energy efficiency. For these
reasons, reducing O2 to peroxide O2−

2 or superoxide O−2 ions rather than the full
reduction to O2− ions can be advantageous and is attempted in Li-air and Na-air
batteries. Other requirements include large practical discharge capacity, high
power densities for fast discharge and charge rates, stability to obtain sufficient
cycle and shelf life, and low to moderate cost.23–26 All metal-air battery chemistries
have in common that fundamental understanding of reaction processes is limited.

1.3.2 Synthetic Fuels from Electrocatalytic CO2 Reduction

Replacement of liquid fossil fuels with (liquid) synthetic fuels is very attractive
from an infrastructural standpoint. In contrast to most alternatives, it can utilize
the already existing infrastructure for distribution and consumption.27–29 CO2

captured either directly from the atmosphere or from a highly concentrated steam,
e.g. exhaust gases, is electrochemically reduced. The electricity required to drive
the energetically uphill reduction process can be supplied from sustainable sources.
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CO2 can be reduced to CO, which in combination with electrochemically produced
H2 from water-splitting can be converted into long chain liquid fuels in the Fischer-
Tropsch process. CO2 can also be further electrocatalytically reduced directly
to fuels or other valuable chemicals. The produced synthetic fuels will upon
oxidation in an internal combustion engine or fuel cell release the originally
captured CO2. Many of the advantages of fossil transportation fuels can be
obtained this way with zero net CO2 emission by cycling CO2.

For the method to be viable, electrocatalysts able to catalyze CO2 reduction at a
reasonable rate, low overpotentials, and high selectivity towards a specific product
are required.30 This is especially challenging for direct electrocatalytic reduction
to fuels or chemicals. Further, the catalyst should be stable under operating
conditions and ideally be composed of only abundant non-toxic elements. Atomic
scale knowledge of catalytic processes on different heterogeneous catalysts can
prove essential in development of commercial CO2 reduction electrocatalysts.

1.3.3 Hydrogen

A third alternative is using hydrogen as energy carrier. Electricity from renew-
able sources can be used to generate H2 by water splitting in electrolyzer cells.
The energy stored in H2 molecules can be converted back to electricity on demand
electrochemically in a PEM hydrogen fuel cell.31, 32 In contrast to metal-air bat-
teries and synthetic fuels from CO2 reduction, the technology is commercially
available. Hydrogen cars are being mass produced and the required infrastructure
is under development.33–35 The gravimetric energy density of pure H2 is roughly
three times as large as that of gasoline.31 However, including the mass of the
system required to store the hydrogen, the gravimetric energy density is reduced
by more than one order of magnitude.36–39 Combined with modest volumetric
energy densities for both highly pressurized hydrogen gas and liquid hydrogen, it
is essential that the energy efficiency is high.

Energy conversion in electrolyzers and fuel cells is not limited by the Carnot
efficiency and can in theory be highly efficient.40, 41 To obtain high efficiency
and fast reaction rates, the reactions must be catalyzed. The oxygen reduction
reaction (ORR) at the fuel cell cathode and the oxygen evolution reaction (OER)
at the electrolyzer cell anode are challenging to catalyze efficiently.40, 42, 43 With
commercial Pt catalysts the majority of the total overpotential in fuel cell operation
is found to be caused by the ORR overpotential.42 For hydrogen fuel cells to
be dominant in the transportation sector, catalysts either composed of abundant
elements or with higher mass activity than the current Pt catalyst and preferably
with reduced overpotentials need to be developed.40, 44, 45
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1.4 Motivation

Numerous experimental and theoretical methods can be applied to obtain the
fundamental understanding required for efficient development of energy carrier
systems. One such theoretical method is Density Functional Theory (DFT), an
electronic structure method capable of providing fundamental knowledge at the
atomic level. It is described further in Section 2.1. DFT has been found useful in
research of many technologies including those mentioned above in Section 1.3, as
described in Chapters 3-5. It is in particular useful when applied in combination
with experimental methods.46–52 To obtain optimal synergetic effects from DFT
combined with experimental methods, the resource requirement, the accuracy,
and the atomic structure transferability in calculations must be considered and
balanced carefully.

The atomic structures studied should be sufficiently complex, so that knowl-
edge gained from DFT calculations is transferable to and useful for understanding
observed phenomena or hold predictive power. How complex atomic structures
need to be varies immensely. In some cases knowledge and insight gained from
relatively small idealized model structures will translate well into application,
e.g. for establishing catalytic trends. In other cases much larger or more complex
atomic structures are required, e.g. for determining the effect of trace amounts of
elemental doping in composite materials or effects at interfaces.

DFT calculations can be performed at different levels of accuracy. The level
is fundamentally adjusted by use of different exchange-correlation functionals
as described in Chapter 2. The used exchange-correlation functional must be
chosen such, that the resulting accuracy is sufficient for obtaining the desired
understanding or making the desired predictions. For instance, predicting which
catalyst is more reactive will generally require lower accuracy than predicting
accurate reaction rates or product selectivity.

For DFT calculations to be an integrated part in applied research and rapid
development of emerging technologies, calculations should be relatively fast
such that experiments and calculations can continuously be compared and the
synergetic benefits realized. The computational cost should be kept low compared
to available resources for efficient use in applied research.

Increasing the structure complexity and accuracy will in general make cal-
culations more resource demanding. The three factors must be balanced to the
point where the system complexity, accuracy, and computational cost are all at a
sufficient level for addressing a given research question. This balance is illustrated
in Figure 1.2. The situation where all three considerations are met is marked as
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the ”triple sufficiency”. The triple sufficiency requirement restricts which research
questions can reliably and efficiently be addressed using DFT.

Figure 1.2: System complexity, calculational accuracy, and computational cost
must be balanced in DFT calculations to ensure they are all sufficient to answer a
given research question.

This thesis describes previously documented and newly discovered systematic
errors in DFT when applied in metal-air battery, CO2 reduction, and ORR/OER
catalysis research. These errors are all observed with the GGA class of exchange-
correlation functionals described in Section 2.2. This class of functionals is the
workhorse theoretical surface science.53 The systematic errors can prevent DFT
calculations from being performed at triple sufficiency. The sources of systematic
errors are identified through analysis of error correlations in a set of GGA type
functionals. Errors are reduced either by applying alternative energy reference sys-
tems or transferable empirical corrections. Inspired by this approach a method for
estimating the validity of neural networks able to emulate more computationally
demanding atomic scale methods such as DFT is developed.
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1.5 Outline of Thesis
This thesis includes the following chapters:

• Chapter 1 – Introduction
The global energy supply and the challenge of limiting emissions are dis-
cussed with focus on the transport sector. Challenges in research and devel-
opment of sustainable energy carriers are stated along with requirements for
efficient use of DFT in solution of these.

• Chapter 2 – Applied Theory and Method
The fundamentals of DFT, different exchange-correlation functionals, and
the methods generally applied in this thesis are discussed.

• Chapter 3 – Metal-air Batteries
The systematic errors in calculation of formation enthalpies for alkali and
alkaline earth metal oxides are studied. It is shown how using a metal
chloride reference instead of pure metal can lead to cancellation of the
majority of the systematic error.

• Chapter 4 – CO2 Reduction
Systematic errors in CO2 reduction reactions are found to be caused by
carbon-oxygen double bonds and not an oxygen-carbon-oxygen structure as
previously claimed. This improves the correctional approach and allows it
to be extended to adsorbates.

• Chapter 5 – Oxygen Evolution and Reduction Reactions
A systematic error is identified for peroxide bonds and found also to be
present in OOH* adsorbates. The systematic error, which could potentially
alter the previously determined OOH*/OH* scaling relation, is found to be
largely canceled when previously neglected van der Waals interactions are
included.

• Chapter 6: Error Ensemble for Neural Networks
A neural network can upon training be used as a significantly less com-
putationally demanding emulator of DFT calculations. A computationally
efficient method for determining validity of neural network calculations is
developed and exemplified.

• Chapter 7: Conclusion and Outlook
Findings are summarized and possible future studies are proposed based on
the presented results and applied method.
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CHAPTER 2

Applied Theory and Method

This chapter gives an introduction to density functional theory. It proceeds
to present and discuss different exchange–correlation functional approximations
with emphasis on those central to this thesis. Finally, the general computational
method, the applied thermochemistry approach, an alternative oxygen reference,
and an exemplification of ensemble–based error estimation and correlation is
presented.

2.1 Density Functional Theory

A brief and by no means comprehensive introduction to density functional
theory (DFT) is given in this section. It begins with a short introduction to the fun-
damentals of modern DFT inspired by the textbooks of Kohanoff and Burke.54, 55

This is followed by a discussion of different exchange–correlation functional ap-
proximations. The reader is referred to the given references and general literature
for further details. Spin has for the sake of simplicity been omitted in the following
introduction.

2.1.1 Fundamentals for DFT

With the discovery and formulation of quantum mechanics in the early 20th
century a theoretical foundation for determining the electronic structure of a ma-
terial was laid. In principle, the electronic structure of a system can be determined
by solving the time–independent Schrödinger equation published in 1926:

ĤΨn(R, r) = EnΨn(R, r), (2.1)

where En are the energy eigenvalues of the eigenstates Ψn(R, r). Ψn(R, r) are wave
functions depending on nuclear coordinates R and electron coordinates r. The
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Hamiltonian for a system consisting of P nuclei and N electrons, each with kinetic
energy and interacting through electrostatic forces, can be expressed as:

Ĥ =−
P

∑
I=1

h̄2

2MI
∇2

I −
N

∑
i=1

h̄2

2m
∇2

i +
e2

2

P

∑
I=1

P

∑
J 6=I

ZiZJ

|RI −RJ |

+
e2

2

N

∑
i=1

N

∑
j 6=i

1
|ri − rj|

− e2
P

∑
I=1

N

∑
i=1

Zi

|RI − ri|
.

(2.2)

MI are the masses and ZI the charges of the nuclei. For even a modest number of
nuclei and electrons the pairwise interactions will leave the electronic structure
problem practically unsolvable as shown below.

The Born–Oppenheimer approximation

The extent of the problem can be reduced by decoupling the electrons and
nuclei using the Born–Oppenheimer approximation.56 Since the electron mass
is much smaller than the mass of the nuclei, the motion of electrons will be
significantly faster than that of nuclei. It can be argued54 that electrons can
be treated as instantaneously moving into the ground state for a given set of
nuclear positions R. This is commonly referred to as the adiabatic approximation.
Secondly, as the nuclear wave functions are localized in space with a narrow width,
e.g. of the order of 0.25 Å for a proton, they can be treated as classical particles.
These two approximations constitute the Born–Oppenheimer approximation. For
a given set of nuclei with coordinates R, the electronic structure can be determined.
The Hamiltonian is now reduced to

Ĥ = −
N

∑
i=1

h̄2

2m
∇2

i − e2
P

∑
I=1

N

∑
i=1

Zi

|RI − ri|
+

e2

2

N

∑
i=1

N

∑
j 6=i

1
|ri − rj|

. (2.3)

The interaction between nuclei and electrons can be considered as electrons inter-
acting with an external potential vext provided by the nuclei. Once the electronic
structure has been determined for a given R, the force acting on each classically
treated nuclei can be used to propose a new set of nuclei positions with a lower
potential energy.

The Quantum Many–Body Problem

Although the Born–Oppenheimer approximation does simplify the problem,
it continues to be practically unsolvable for all but the most simple cases. The
electrons cannot be treated as classical point charges in the same way as the nuclei.
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They must be represented by a wave function. Since all electrons interact pair–
wise, the total electronic wave function cannot be obtained from the product of
wave functions for each individual electron. Each electron has 3 spatial degrees of
freedom. This turns the problem into one of 3N dimensions. In the case where
each individual degree of freedom is sampled on a rather coarse grid of 10 points,
a total of 103N grid points are required to represent the wave function. For the
relatively simple case of a F2 molecule with 18 electrons, the number of required
grid points is thus 1054. In comparison, the total number of nucleons on earth,
which can be estimated from the total mass of earth,57 is of the order of 1051.

Various approaches have been developed in the effort to circumvent this math-
ematical obstacle. As early as 1927 and 1928, Thomas and Fermi independently
proposed a method for obtaining the electronic energy through the electron den-
sity rather than the total wave function.54 Considering the electron density rather
than the wave function reduces the dimensionality of the problem to 3 degrees of
freedom.

2.1.2 Modern DFT

The Hohenberg–Kohn theorems published in 1964 provides the formal the-
oretical basis for obtaining electronic energies through the electronic density.58

The first theorem states that the external potential and hence energy can be deter-
mined univocally from the electronic density of a system. The second theorem
states that the ground state energy of a system can be obtained from the electronic
density with a universal functional by application of the variational principle. The
universal functional remains unknown.

The theorems do not by themselves provide a practical method for obtaining
the electronic energy from the density. The Kohn–Sham equations published the
following year provided such a scheme.59 Rather than considering the system of
fully interacting electrons, a reference system with non–interacting electrons but
identical electron density is used. For such a reference system the Hamiltonian is
given by

ĤR =
N

∑
i=1

[
− h̄2

2m
∇2

i + vR(ri)

]
. (2.4)

The kinetic energy is calculated as that of non–interacting electrons. vR is the
reference potential, which makes the electron density for the reference system
identical to that of the fully interacting system, such that the ground state energy
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will also be identical. This greatly simplifies the eigenvalue problem as no direct
electron–electron interaction is present.

ĤRφi(r) = εiφi(r). (2.5)

The solutions are the energies εi of the single electron Kohn–Sham orbitals φi(r).
Given a set of Kohn–Sham orbitals the density ρ(r) can be obtained through

ρ(r) = 2
N

∑
i=1
|φi(r)|2. (2.6)

The total energy of the system is given by

E[ρ] = TR[ρ] + Vext[ρ] + EH[ρ] + Exc[ρ]. (2.7)

TR[ρ] is the kinetic energy of the non–interacting particles and obtainable from
the Kohn–Sham orbitals φi(r). Vext[ρ] is energy from interaction with the external
potential presented by the nuclei. The electron–electron interaction energy is now
separated into the Hartree energy, EH[ρ], which is simply the classical electrostatic
or Coulomb repulsion energy. It is given by

EH[ρ] =
1
2

∫ ∫
ρ(r)ρ(r′)
|r− r′| dr dr′. (2.8)

The last term is the exchange–correlation energy, Exc[ρ]. All other electron–electron
interactions are included in this term, which is non–trivial. In practice exchange–
correlation functionals must be approximated as discussed further in Section
2.2. From the energy expression the potential vR(ri) in equation (2.4) can be
determined to be

vR(r) = vext(r) +
∫

ρ(r′)
|r− r′|dr′ +

δExc[ρ]

δρ(r)
. (2.9)

This new reference potential can be used to calculate new Kohn–Sham orbitals
using equations (2.4) and (2.5). The density and ground state energy can thus be
obtained by solving the equations iteratively until convergence is achieved.

2.2 Exchange–Correlation Functionals

In Kohn–Sham DFT the approximations beyond the Born–Oppenheimer ap-
proximation are accumulated in the exchange–correlation functional. From an
application standpoint, the optimal exchange–correlation functional should be suf-
ficiently accurate for its intended use while remaining simple enough to limit the
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Figure 2.1: Different classes of DFT approximations ordered by increasing levels
sophistication going up the ladder. Rungs are named on the left and the added
components noted on the right. n is electron density. Reprinted with permission.61

amount of required computational resources as discussed in Section 1.4. Function-
als can in general be grouped by the components used to evaluate the exchange–
correlation energy. This can be visualized with a Jacob’s ladder, a biblical analogy,
as presented by Perdew and Schmidt and depicted in Figure 2.1.60, 61

Different classes of functionals and methods correspond to different rungs
on the ladder visually lifting the accuracy of DFT approximations from the so–
called ”Hartree world”, where exchange and correlation energies are neglected
altogether as in the Hartree approximation,61 towards chemical accuracy ”heaven”.
In this simplistic ranking of methods more advanced higher rung methods will in
general demand more computational resources in return for increased accuracy of
calculations. In practice this is not strictly true as functionals often perform well
for determining specific properties and worse for other.

In this section the four lower rungs of the ladder, the localized density approxi-
mation (LDA), the generalized–gradient approximation (GGA), the meta–GGA,
and the hybrid exchange–correlation functionals, will be briefly discussed. Em-
phasis is on GGA functionals, as calculations presented in the following chapters
have predominantly been performed at this level of applied theory.
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2.2.1 Local Density Approximation (LDA)

In the local density approximation (LDA) the exchange and correlation energies
depend solely on the local density ρ(r). The total exchange–correlation energy is
given by

ELDA
xc =

∫
ρ(r)εLDA

xc [ρ]dr. (2.10)

εLDA
xc [ρ] is the exchange–correlation energy for a homogeneous electron gas (HEG)

with electron density ρ. It is thus assumed that at any position r the electron
density can be treated as locally homogeneous. The total exchange–correlation
energy is determined as the sum of the exchange and the correlation energy,

ELDA
xc = ELDA

x + ELDA
c . (2.11)

For the HEG the exchange energy as function of the local density is known analyt-
ically.

εLDA
x [ρ] = −3

4

(
3
π

)1/3

ρ1/3. (2.12)

An equally simple analytical expression is not available for the correlation energy
εLDA

c . Instead several approximations have been proposed based on, e.g., quantum
Monte Carlo simulations.62 Some advantages of LDA functionals are the relatively
modest computational cost and the fairly good description of systems with slowly
varying electron densities such as many solids. When large variations in the
electron density are present, as is the case for many systems of chemical interest,
the LDA approximation can be expected to perform worse. The calculational
accuracy for gas–phase and adsorbed chemical species has been found to often be
prohibitively low for studying e.g. catalytic reactions.63–66

2.2.2 Generalized Gradient Approximation (GGA)

The second rung of the ladder is the Generalized Gradient Approximation
(GGA), in which not only the local density but also the density gradient is used as
input to calculate exchange and correlation energies. With this addition, chemistry
and surface science can be studied with in many cases reasonable accuracy while
remaining relatively computationally inexpensive.64, 65, 67 This has made this class
of functionals the workhorse in theoretical heterogeneous catalysis.53

An often used strategy for formulating GGA functionals has been to build
on LDA. LDA expressions for εx and εc are modified by addition of a term or
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multiplication with a factor commonly referred to as the enhancement factor.
These additive terms or enhancement factors will be a function of the density
gradient and in most cases also the density itself. In the limit of relatively small
gradients compared to the density, the LDA expressions will be re–obtained.

The mathematical expressions of the additive terms or the enhancement factors
are often lengthy and will in most part not be reproduced here. Two commonly
used GGA functionals, the BLYP functional68, 69 and the PBE functional,70 are
examples of the two main approaches to determining these mathematical expres-
sions. The BLYP exchange enhancement factor contains parameters, which are
fitted to reproduce empirical data for molecules. The PBE functional is constructed
such that it abides a range of formal properties and limits. For later reference, the
exchange energy is given by

EPBE
x =

∫
ρ(r)εLDA

x [ρ]FPBE
x (s)dr. (2.13)

FPBE
x (s) is the exchange enhancement factor given by

FPBE
x (s) = 1 + κ − κ

1 + µs2/κ
. (2.14)

µ and κ are constants. s is the unitless reduced density gradient given by

s =
|∇ρ|

2(3π)1/3ρ4/3 . (2.15)

s thus depends on both the density and the density gradient and will tend to
zero both when the gradient does and when the density itself is significantly
larger than the gradient. The PBE functional has been modified multiple times
to perform better in the description of a specifically desired property. One such
case is the functional known as revPBE,71 where the value of κ is changed to
improve atomization energies of molecules at the cost of less strict convergence
to the large gradient limit known as the Lieb–Oxford bound. This revision was
also found to perform well for determining chemisorption energies.72 This led
to formulation of the RPBE functional with a different mathematical expression
but numerically similar enhancement factor for low to moderate values of s as
the revPBE functional. For large s the enhancement factor converges to the local
Lieb–Oxford bound.72

Non–Local van der Waals Correlation

The LDA and GGA approximations are in nature local and semi–local. They
are unable to describe long–range non–local van der Waals (vdW) interactions.
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The method primarily used in this thesis is that of Dion et al.73 in various forms. It
has the advantage over post–processing methods for including vdW interactions,
that it can be applied in the Kohn–Sham scheme to obtain a self–consistent solution
including non–local vdW interactions. It further has the advantage that it makes
no prior assumptions about the interacting atomic structures, e.g., surfaces and
molecules. It can thus be viewed as a ”general purpose method” for including
vdW interactions.74 The vdW–DF,73 vdW–DF2,75 and BEEF–vdW64 functionals
are applied frequently in this thesis. In general, the vdW functionals can be
expressed as

EvdW
xc [ρ] = E0

xc[ρ] + Enl
c [ρ]. (2.16)

Enl
c [ρ] is the non–local vdW correlation energy, and E0

xc[ρ] is the exchange and
local correlation energy. For both the vdW–DF and vdW–DF2 functionals the
local correlation is given by the LDA expression and the exchange by a GGA.
Determining the non–local vdW correlation energy can be rather cumbersome.
However, once a general kernel describing the interaction between densities
ρ1(r) and ρ2(r’) separated by distance |r− r’| is determined, calculations can be
performed at a total computational cost often similar to that of a standard GGA
functional. In vdW–DF the used GGA exchange is that of revPBE. In vdW–DF2 it is
a revised version of the PW86 functional76 known as PW86R or rPW86.77 The vdW–
DF and vdW–DF2 functionals also differ slightly in Enl

c [ρ] as a different numerical
value of the so–called ”exchange gradient coefficient” is used. This improves
the description of vdW interactions for molecules in vdW–DF2 in comparison to
vdW–DF.

BEEF–vdW Functional

The BEEF–vdW functional is another GGA functional with added vdW inter-
action.64 Since it, and in particular its ensemble property, is essential for methods
presented in this work, it is described in more detail than the other functionals.

The BEEF–vdW functional has an energy expression following the general
form in equation (2.16).

Exc =
M−1

∑
m=0

amEGGA−x
m + αcELDA−c + (1− αc)EPBE−c + Enl−c. (2.17)

The non–local correlation Enl−c is identical to that of the vdW–DF2 functional.
The total correlation is a linear combination of LDA and PBE correlation. The
parameter αc determines the ratio of LDA and PBE correlation in such a manner
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that the sum of the correlation prefactors is always 1. The exchange is unlike that
of prior functionals. The basic concept is as in BLYP to fit parameters to reproduce
desired reference data. For each term in the exchange energy sum, EGGA−x

m , the
energy is calculated as in (2.13) with an enhancement factor given by

FGGA−x
m (s) = Pm[t(s)], (2.18)

where Pm[t(s)] is the Legendre polynomial of order m in a so–called transformed
reduced density gradient t given by

t(s) =
2s2

4 + s2 − 1, −1 ≤ t ≤ 1. (2.19)

The total enhancement factor is thus given by

FGGA−x(s) =
M−1

∑
m=0

amPm[t(s)], (2.20)

The total enhancement factor can thus be viewed as an expansion of Legendre
polynomials. 30 Legendre polynomials have been used, i.e., M = 30. Expansion
coefficients are fitted to obtain the total enhancement factor which best reproduces
reference data. Representing the enhancement factor as an expansion of 30 Leg-
endre polynomials does result in a very long mathematical expression. It does,
however, allow the individual terms EGGA−x

m to be calculated independently using
(2.18),

EBEEF−vdW
x =

29

∑
m=0

amEGGA−x
m =

29

∑
m=0

am

∫
ρ(r)εLDA

x [ρ]Pm[t(s)]dr. (2.21)

For small changes to these fitted expansion coefficients, such that the density and
thus individual EGGA−x

m can be assumed constant, the resulting change in the total
energy can be calculated at very low computational cost.

In the making of the BEEF–vdW functional, an objective has been to formulate
a functional which performs well for a range of important properties in surface
science and catalysis. The reference data includes gas–phase molecular formation
and reaction energies, gas–phase molecular reaction barriers, non–covalent inter-
actions, solid–state cohesive energies and lattice constants, and chemisorption
energies.

The fitting procedure is somewhat complicated and ensures the following: (1)
The parameters are not overfitted. (2) The obtained exchange enhancement factor
will be relatively smooth as function of s. (3) The exchange enhancement factor
will not be very qualitatively different from that of PBE. The ideal parameters
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of am and αc differ for each type of reference data. A compromise weighing
the importance of each set of reference data was made to determine the global
optimal values for am and αc used in the BEEF–vdW functional. The optimal
local correlation is 0.6 LDA correlation and 0.4 PBE correlation. The exchange
enhancement factor is depicted in Figure 2.2. It is seen to be similar to the RPBE
enhancement factor but slightly larger in the, for application purposes, relevant
region s < 2.5.71 In addition to the main BEEF–vdW functional an ensemble of

Figure 2.2: The exchange enhancement factor for different GGA functionals.
Reprinted with permission.64

functionals are also formed in a process ”inspired by Bayesian statistics”.64 The
ensemble is constructed in such a way that the uncertainty of the calculation can
be quantified. When calculating an energy for one of the properties the functional
has been fitted to, it can be done not only with the main BEEF–vdW functional but
also a large number of ensemble functionals. The standard deviation in calculated
energies acts as a quantitative error estimate. The method can be viewed as a
formalized way of calculating an energy of interest with a ”mindfully selected
range of functionals” as proposed by Sabbe, Reyniers and Reuter.49 The method
will in most cases produce an uncertainty estimate, which is equal to or larger
than the calculational error.64, 65

Besides being useful for quantitative error estimation, the BEEF ensemble is in
this thesis also used as a computationally highly efficient method of obtaining e.g.
reaction enthalpies with several thousand GGA+vdW level functionals. Although
some randomness goes into the creation of the ensemble, functionals are accepted
into the ensemble with a probability based on how well they reproduce the
reference data. The ensemble will thus mostly consist of functionals, which
perform reasonably well in calculation of the used reference data. The ensemble
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functionals differ only from the main BEEF–vdW functional in the expansion
coefficients am and the correlation balancing parameter αc. The individual energy
contributions EGGA−x

m for m=0,1,..,29, ELDA−c, EPBE−c, and Enl−c can be evaluated
based on the density obtained from a calculation where the Kohn–Sham equations
have been solved self–consistently using the BEEF–vdW functional. Single-point
energy calculations based on this density can then be obtained for ensemble
functionals by simply multiplying the energy terms with the prefactors in Equation
(2.17) determine for a given ensemble functional before summation. The BEEF–
vdW functional form thus eliminates the need to calculate energies from the
density independently for each ensemble functional. Such calculations would be
significantly more resource demanding considering that more than a thousand
ensemble functionals can be required for convergence of the standard deviation.
BEEF ensembles consist of 2000 functionals in the calculations presented in this
thesis.

Hubbard U Correlation

Another approach to optimize LDA and GGA class functionals at modest
additional computational cost is the addition of Hubbard U correlation.78, 79 With
such addition the functional is referred to as the old functional abbreviation +U,
e.g. PBE+U. It punishes fractional orbital occupation and can mitigate some of the
negative effects of electrons interacting with their own electron density, the so–
called self–interaction error. Self–interaction is in particular problematic for highly
localized electrons. The Hubbard U correlation is only applied to selected orbitals.
In most cases the U correlation is applied to atomic orbitals and the method used to
improve description of localized f – and d–electrons. It can also be applied to, e.g.,
Wannier orbitals.80 In this thesis it is applied to oxygen p–orbitals. The strength of
the added correlation is decided by the value of the parameter U. A theoretically
sound value of U can be calculated,80 but is in practice often determined by tuning
the parameter until some desired empirical result is reproduced, e.g., a specific
band gap.

2.2.3 Meta–GGA

The functionals on the third rung of the ladder are the meta–GGA functionals.
In meta–GGA’s the kinetic energy density τ is considered in addition to the density
and density gradient.

τ(r) =
occ.

∑
i

1
2
|∇φi(r)|2. (2.22)
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τ is preferred as extension over the perhaps more intuitive Laplacian ∇2ρ as it
allows fulfillment of more fundamental constraints.81 Where GGA functionals will
often be unable to describe many different properties very well simultaneously
and have to be optimized for a specific use, meta–GGA functionals do not seem to
suffer as severely from this.64, 82 It is not evident that they are significantly and
systematically better than GGA functionals for catalysis and surface science.49

They will, however, require more computational resources. Meta–GGA functionals
have not been used to obtain results presented in this thesis.

2.2.4 Hybrid Functionals

The fourth rung on the ladder are hybrid functionals. In these a lower rung
exchange–correlation density functional is combined with exact exchange energy
calculated as in the Hartree–Fock method. An example is the PBE0 functional,83

where the exchange–correlation energy is given by

EPBE0
xc = αEHF

x + (1− α)EPBE
x + EPBE

c . (2.23)

The value of α is 0.25. Including exact exchange can be very computationally
demanding. This is especially true for solid–state systems. The HSE functional is
similar to the PBE0 functional but is a ”screened Coulomb potential” functional
meaning that exact exchange is only considered for short–range interactions.84

Long–range interactions are treated purely with the PBE functional. This decreases
the computational cost for condensed matter.84, 85 An improved numerical value
of the so–called exchange screening parameter, ω, separating short–range and
long–range interactions was determined in 2006 by Krukau et al.85 This version of
the HSE functional referred to as HSE06 with α = 0.25 and ω = 0.2 Å−1 has been
used in this thesis.

2.3 General Computational Method

In the making of this thesis, the VASP computational code86–89 with plane–
wave basis sets has been used as the main electronic–structure code. In general, rel-
atively large plane–wave cut–off energies and projector–augmented wave (PAW)
potentials with higher accuracy than those recommended90 and typically found
in literature have been applied as specified in the individual Chapters 3–5. This
improves calculational accuracy but increases computational cost. The motivation
for this is to reduce errors related to the choice of computational code, basis set,
and potentials to better be able to identify and quantify errors intrinsic to the used
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exchange–correlation functionals. For consistency, all calculations are performed
with the PAW potentials optimized for the PBE functional distributed with the
VASP code. This is expected to cause only minor errors when other functionals
than PBE are used. The applied fast Fourier transform mesh could have been
increased with a similar argument but has been kept at the default setting. The
Atomic Simulation Environment (ASE) has been used as interface to the VASP
calculator and for initial and post–processing of atomic structures and computed
data.91

Ionic positions are optimized until the maximum force is at most 0.05 eV/Å and
0.01 eV/Å when vibrational frequencies are subsequently calculated. vibrations
are calculated using the harmonic approximation for small ionic displacements.
Lattice constants have been determined independently for each applied self–
consistent functional for periodic systems. Lattice constants pertaining to each
specific functional have thus been used in slab systems. For oxide species, lattice
constants and ionic positions have been optimized simultaneously without use
of internal VASP optimizers, as they are prone to error for small cell volume
changes.90

Various slab systems are used throughout this thesis. They have in common,
that they are periodic in the two directions parallel to the surface with amble
vacuum in the direction perpendicular to the surface. They are initialized with
bulk crystal structure and interatomic distances. The lower layers are immobilized
during ionic optimization to simulate a large underlying bulk. Molecules are
calculated in relatively large cells such that the interatomic distances through
periodic boundary conditions are 10 Å or larger. A single k–point, the Γ–point,
is used in all gas–phase calculations. Dipole corrections are applied for both
molecules and slabs to reduce the amount of required vacuum. Energies are
converged to within 10 meV with respect to the unit cell size.

2.3.1 Thermochemistry

This thesis relies heavily on comparisons between calculated and experimental
enthalpies. In calculating these enthalpies, gaseous species have been treated as
ideal gas. The enthalpy, H, is given by

H = Eelec + EZPE +
∫ T

0
CPdT, (2.24)

where Eelec is the electronic energy, and EZPE is the vibrational zero–point energy.
In the used approximation the heat capacity under constant pressure, CP, is given
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by

CP = kB + CV,trans + CV,rot + CV,vib. (2.25)

The translational contribution under constant volume,CV,trans is 3/2 kB. The
rotational contribution, CV,rot, is kB and 3/2 kB for linear and nonlinear molecules,
respectively. They are constants of temperature leaving the integration of CV,vib as
the only nontrivial term.

∫ T

0
CV,vibdT =

vib DOF

∑
i

εi

eεi/kBT − 1
. (2.26)

The sum is over all vibrational degrees of freedom with vibrational energies εi.
Adsorbates are assumed constrained such that no translational and rotational

degrees of freedom are present. All degrees of freedom are treated as vibrational
with the harmonic approximation. The expression for H in (2.24) is used with
CP = CV,vib, and the heat capacity integral given as in (2.26).

For the bulk enthalpies in Chapter 3, the heat capacity integral has been ne-
glected, i.e., assumed to be 0, unless otherwise stated.

The enthalpy of a given reaction is calculated simply by subtracting the calcu-
lated enthalpy of all reactants from the calculated enthalpy of all products.

2.3.2 Alternative Oxygen Reference

To avoid the known significant error in the calculated energy of O2(g),92 an
alternative oxygen reference is applied.93, 94 The reference enthalpy for O2 is
inferred from the calculated enthalpies of H2O and H2. This is done through the
water formation reaction.

2 H2(g) + O2(g)→ 2 H2O(g). (2.27)

The standard enthalpy of reaction, ∆H°
r , is given by

∆H°
r = 2 H°[H2O]− H°[O2]− 2H°[H2]. (2.28)

H°[X] is the standard enthalpy of species X calculated as in (2.24). Using the
experimental standard enthalpy of formation for gaseous water, ∆H°

f , exp[H2O],
which is -2.506 eV95 and per definition half of the enthalpy of the reaction in (2.27),
(2.28) can be rewritten

H°[O2] = 2
(

H°[H2O]− H°[H2]− ∆H°
f , exp[H2O]

)
. (2.29)

The RHS of (2.29) can thus be used as an alternative to calculating the enthalpy of
gaseous O2.
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2.4 BEEF Ensemble Error Correlation

Error correlations between functionals in the BEEF ensemble are frequently
determined in this thesis. The basic principle is exemplified below and in Paper
VI. The enthalpy of reaction is calculated for two CO reduction reactions, A and B,
which can occur in the Fischer–Tropsch process,

CO(g) + 3 H2(g)→ CH4(g) + H2O(g). (Reaction A)

CO(g) + 5
2 H2(g)→ 1

2 C2H6(g) + H2O(g). (Reaction B)

Written in this form, both reactions involve one reactant CO and one product H2O.
An additional reaction given by the net difference, Reaction B - Reaction A, is also
considered,

CH4(g)→ 1
2 C2H6(g) + 1

2 H2(g). (Reaction B-A)

The BEEF–vdW functional is used to calculate the enthalpies of reactions as
described in Section 2.3.1. The BEEF ensemble standard deviations, σBEEF, are
determined and used as uncertainty estimates. They are reported in Table 2.1.

Table 2.1: Enthalpies of reaction and errors in eV

Exp.a BEEF–vdW Error σBEEF
Reaction A -2.14 -1.86 -0.28 ±0.25
Reaction B -1.80 -1.53 -0.27 ±0.25
Reaction B-A 0.34 0.33 0.02 ±0.02

a From NIST95

The estimated uncertainties are similar to the errors. The error is considerable
for Reaction A and Reaction B. Both the predicted uncertainty and the calculated
error are more than an order of magnitude smaller for Reaction B-A. To understand
why, the enthalpies of Reaction A and Reaction B calculated not only with the
self–consistent BEEF–vdW functional but also with five functionals from the BEEF
ensemble are shown in Figure 2.3.

Considering only the self–consistent BEEF–vdW calculations and the error
bars obtained from σBEEF, it appears that the uncertainty is such, that it cannot be
concluded which reaction has the lowest enthalpy of reaction. However, the calcu-
lated enthalpies of the two reactions are strongly correlated with any functional
within the GGA+vdW class, as is illustrated with the ensemble functionals plotted
in Figure 2.3. The relative uncertainty between reactions is thus significantly
smaller.
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Figure 2.3: The enthalpy of Reaction A and Reaction B calculated with the self–
consistent BEEF–vdW functional and five selected BEEF ensemble functionals.
Error bars are given by σBEEF.

CO and H2O are absent in the net reaction difference, Reaction B-A. This
absence could indicate that σBEEF and the errors are mainly caused by CO and/or
H2O. Such conclusion can, however, not be drawn from two very similar reactions.
After further analysis it appears that σBEEF is mainly caused CO and H2O. The
errors are, however, caused by H2. This is shown in Section 4.6.



27

CHAPTER 3

Metal–Air Batteries

3.1 Introduction

DFT has been used in metal–air battery research to obtain fundamental under-
stand at the atomic level. Several areas such as reaction processes in growth and
dissolution of discharge product,96–104 electron and ion conduction,96, 101, 105–113

electrolyte effects,114, 115 and parasitic reactions116 have been studied.

3.2 Challenge

A major challenge that limits application of DFT for metal–air battery research
is documented systematic errors in the description of alkaline and alkaline earth
bulk oxide species. The systematic errors are reproduced with several different
exchange–correlation functionals.97, 104, 117 They can be visualized with plots de-
picting the calculated versus experimental enthalpies of formation as shown in
Figures 3.1 and 3.2.

The calculated enthalpies of formation have been found to differ systematically
from experimental values depending on the ionic state of the oxygen.104, 117, 118 In
Figure 3.2 this is illustrated with three lines of the form,

∆H° calc
f = ∆H° exp

f + b. (3.1)

b is a constant fitted independent for each of the three oxygen ion species, i.e.
superoxides, O−2 , peroxides, O2−

2 , and single atom oxygen ions, O2−. Metal oxides
containing O2− ions are for clarity here referred to as metal monoxides. The
presence of an offset in comparison of calculated and experimental enthalpies is
not surprising, as the enthalpy of gaseous O2 is notoriously difficult to determine
accurately with DFT.92, 117 This is probably at least in part due to the triplet spin
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Figure 3.1: Comparison of experimen-
tal and calculated enthalpies of forma-
tion per oxygen atom. The RPBE func-
tional has been used. Reprinted with
permission.97

Figure 3.2: Comparison of experimen-
tal and calculated enthalpies of forma-
tion per O2. The PBE functional has
been used. Reprinted with permis-
sion.104

ground state of O2. However, when the enthalpy of formation is calculated per
O or O2, the offset should be constant for all metal oxides if no other systematic
errors were present. It has previously been suggested that the error for gaseous
O2 is in part also present in description of the superoxide ion, O−2 , and peroxide
ion, O2−

2 . The systematic differences in error are ”due to the different degrees in
which the O=O double bond is broken”.104 If this is the case, a functional with
improved description of the O2 bond should reduce the systematic error.

The systematic errors have previously been mitigated in studies by empirical
corrections.97, 104 Alternatively, the systematic errors can be nearly removed by
using the higher level Random–Phase Approximation (RPA) method.118 This
method is, however, too computationally demanding for many types of studies.
The empirical corrections are non–ideal. They either do not treat the systematic
difference in errors for different oxides, or require the oxygen ions in a calculation
to be well defined for them to be applied.

In this Chapter and Paper I these systematic errors are studied to find ways
to mitigate errors without use of corrections determined from fitting to empirical
data. The role of electron localization is also examined.
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3.3 Method
Enthalpies of formation are calculated with a range of different exchange–

correlation functionals and compared to experimental enthalpies in search for
a functional approach without the systematic errors. This approach is similar
to the one applied previously by Christensen.117 Several crude approximations
in the previous study have not been made in the current study. As an example
have lattice constants previously been assumed to be identical for all exchange–
correlation functionals.

Table 3.1: Reference data for oxide species.97

Oxide Space group ∆H°
f /f.u. [eV] ∆H°

f /O [eV]
Li2O Fm3m -6.208 -6.208
Li2O2 P63/mmc -6.561 -3.280
LiO2 Pnnm -2.995 -1.498
Na2O Fm3m -4.332 -4.332
Na2O2 P62m -5.317 -2.658
NaO2 Pnnm -2.705 -1.353
K2O Fm3m -3.762 -3.762
K2O2 Ccme -5.141 -2.570
KO2 I4/mmm -2.949 -1.474
Rb2O Fm3m -3.420 -3.420
Rb2O2 Immm -4.892 -2.446
RbO2 I4/mmm -2.892 -1.446
Rb2O3 I43d -5.462 -1.821
Cs2O R3m -3.586 -3.586
Cs2O2 Immm -5.160 -2.580
CsO2 I4/mmm -2.966 -1.483
Cs2O3 I43d -5.856 -1.952
MgO Fm3m -6.229 -6.229
MgO2 Pa3 -6.457 -3.228
CaO Fm3m -6.581 -6.581
CaO2 I4/mmm -6.768 -3.384
SrO Fm3m -6.136 -6.136
SrO2 I4/mmm -6.571 -3.285
BaO Fm3m -5.680 -5.680
BaO2 I4/mmm -6.519 -3.260
H2O2 gaseous -1.411 -0.705

Calculations have been performed for the alkali metal and alkaline earth metal
oxides seen in Table 3.1. The oxide species considered by Hummelshøj et al.97

shown in Figure 3.1 are studied in this work except BeO, which has been omitted.
The reference enthalpies of formation and crystal structures are the same as used
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by Hummelshøj et al.97 This is to ensure consistent comparison with previous
findings. The used enthalpies of formation are given both per formula unit and
per oxygen atom in Table 3.1. The space groups of the oxide structures used in
calculations are also specified. Atomic structures can be obtained from various
databases.119–122

The two sesquioxides, Rb2O3 and Cs2O3, differ from the other oxides by con-
taining both peroxide and superoxide ions as shown in Figure 3.3. Other metal
oxides will contain only one type of oxygen ion. Sesquioxides are particularly

Figure 3.3: Rb2O3 unit cell containing 8 Rb atoms (purple) and 12 O atoms either
as superoxide ions (red) or peroxide ions (yellow).

interesting, as they can be used to examine the ability of exchange–correlation
functionals to converged the electron density into correctly localized election
states. Further, they could potentially be used to decouple different systematic
errors.

In addition to bulk metal oxides, the formation enthalpy of H2O2(g) has also
been included for comparison. The inclusion of H2O2 introduces another peroxide
species. Held against calculations for bulk metal peroxides it can be seen whether
the presence of a peroxide bond will result in similar errors.

For a given oxide species MxOy, where M is the metal ion element, the standard
enthalpy of formation is calculated as

∆H°
f [MxOy] = H°[MxOy]− xH°[M]− y

2
H°[O2]. (3.2)
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The individual enthalpies are calculated as described in Section 2.3.1. H°[M] is
the enthalpy of bulk crystalline metal M and H°[O2] the standard enthalpy of
gaseous molecular oxygen. The enthalpies of formation are calculated per oxygen
atom in order to reduce possible oxygen reference errors to a constant for all
calculations,97, 117

∆H°
f [MxOy]/O =

1
y

H°[MxOy]− x
y

H°[M]− 1
2

H°[O2]. (3.3)

Using the alternative oxygen reference described in Section 2.3.2, equation (3.3)
can be rewritten as

∆H°
f [MxOy] =

1
y

H°[MxOy]− x
y

H°[M]

−
(

H°[H2O(g)]− H°[H2(g)]− ∆H°
f , exp[H2O(g)]

)
. (3.4)

Using this expression the known error on O2(g) is avoided. However, if the error
in O2(g) or part of it is present in the bulk oxygen ions, using the alternative water
reference can prevent possible error cancellation.

The ratio of metal atoms to oxygen in the bulk oxide species depends directly
on the type of oxygen ions present in the metal oxide. In equation (3.3) this can be
seen by the factor in front of the enthalpy of the used reference metal H°[M]. As
a result, systematic errors in the oxidation of metal atoms will correlate with the
type of oxygen ion. Although the systematic errors appear to depend on the type
of oxygen ion, this could be an indirect observation of systematic errors in the
oxidation energy of alkali and alkaline earth metals. An alternative metal atom
reference similar in principle to that applied for O2(g) is introduced to examine
this further.

Following the example of the O2(g) reference in Section 2.3.2, the formation of
alkali and alkaline earth metal chlorides are used as reference reactions.

M(s) +
z
2

Cl2(g)→ MClz(s). (3.5)

The enthalpy of reaction in (3.5) is identical to the enthalpy of formation for the
general metal chloride MClz given by

∆H°
f [MClz] = H°[MClz]− H°[M]− z

2
H°[Cl2]. (3.6)

Using experimental enthalpies of formation ∆H°
f , exp[MClz], which are readily

available,95 (3.6) can be rearranged

H°[M] = H°[MClz]− z
2

H°[Cl2]− ∆H°
f , exp[MClz]. (3.7)
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This expression can be inserted in (3.3) and (3.4).

∆H°
f [MxOy]/O =

1
y

H°[MxOy]

−x
y

(
H°[MClz]− z

2
H°[Cl2]− ∆H°

f , exp[MClz]
)

−1
2

H°[O2]. (3.8)

∆H°
f [MxOy]/O =

1
y

H°[MxOy]

−x
y

(
H°[MClz]− z

2
H°[Cl2]− ∆H°

f , exp[MClz]
)

−
(

H°[H2O(g)]− H°[H2(g)]− ∆H°
f , exp[H2O(g)]

)
. (3.9)

This gives in total 4 different combinations of reference systems for the calculation
of ∆H°

f [MxOy]/O: (3.3), (3.4), (3.8), and (3.9). For H2O2, H takes the role of M.
HCl(g) and 1

2H2(g) is used as reference states similarly to MClz and M, respectively.

3.3.1 Functionals and Calculation Details

Calculations have been performed with three GGA functionals (PBE, RPBE,
and rPW86), three GGA+vdW functionals (vdW–DF, vdW–DF2, and BEEF–vdW),
a GGA functional with Hubbard U correction (PBE+U), and a hybrid functional
(HSE06). They are all discussed in Section 2.2. The rPW86 functional is included
to examine the difference between rPW86 and vdW–DF2, which have identical
exchange and differ only in correlation. Different GGA+vdW functionals are
included to determine whether a lack of van der Waals interaction in the standard
GGA functionals is the cause of the systematic errors.

The addition of a Hubbard U has been shown to improve calculated enthalpies
of formation for oxides.123 That was, however, for transition metal oxides with
U correlation applied to the localized d–orbitals. In this work the Hubbard U
is applied to the p–orbitals of oxygen atoms. Such addition has proven useful
for localizing polarons in peroxide and carbonate ions in Li2O2 and Li2CO3.106

Enthalpies have been calculated with different values of U. In the used computa-
tional implementation of Hubbard correlation,124 the parameter controlling the
Hubbard correlation strength is Ueff=U - J. In this implementation negative values
of U can in rare cases be optimal as discussed by Nakamura et al.125 Negative
values of U have thus also been considered for completeness. Hubbard correlation
is implemented differently for different electronic structure codes. Optimal values
of U obtained with one code might thus not be transferable to another code.
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The HSE06 hybrid functional is the only non–second–rung functional applied.
It is significantly more computationally demanding than the GGA–type function-
als, but is also expected to give more accurate enthalpies of formation and be
able to localize electrons on the ions. However, previous work did not find the
systematic errors to be smaller with the HSE06 functional than with the GGA–type
functionals.117

For non–metallic elements, O, H, and Cl, hard PAW potentials have been
used. Potentials explicitly including semi–core s– and p–electrons (”sv” potentials)
are used for metals with the exception of Mg, for which semi–core p–electrons
but not semi–core s–electrons are included (”pv” potential). A plane wave basis
set cut–off energy of 600 eV has been applied. An even number of k–points in
each dimension distributed around the Γ–point in a Monkhorst–Pack grid with a
spacing less than 0.05 Å−1 has been used for the bulk species. As molecular oxygen
and superoxide ions have a non–zero spin ground states, all calculations have
been spin polarized. Magnetic moments for each atom are examined qualitatively
to confirm convergence into the expected ground state spin configuration. Initial
magnetic moments have been specified for few structures, e.g., the sesquioxides.

Vibrations have been calculated using the RPBE and PBE functionals. The two
functionals yielded similar zero–point energies and integrated heat capacities for
gas species. These energies have been used for all functionals to obtain enthalpies
from the calculated electronic energies.

3.4 Enthalpies of Formation

Enthalpies of formation have been calculated with the different functionals.
Plots similar to Figure 3.1 are displayed in Figure 3.4 for the PEB and RPBE
functionals. Similar figures for the other applied functionals and for different
values of U can be found in Appendix A. For each functional, the enthalpy of
formation is plotted using the four different reference energy options. Since
enthalpies are plotted per oxygen atom, the only difference between using a direct
O2 reference (solid points) or the water reference (hollow points) is a constant
offset for all oxides. Comparing enthalpies calculated with a standard metal
reference (circles) and with the metal chloride reference (diamonds) a difference
in error pattern is observed.

The error pattern is similar to that previously observed97, 104, 117 with the RPBE
and PBE functionals and the metal reference (circles). Metal superoxides are
calculated to be more stable relative to the experimental value, i.e., lower in energy
relative to the ideal line ∆H° calc

f = ∆H° exp
f , than the metal peroxides, which in
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(a) PBE

(b) RPBE

Figure 3.4: Calculated enthalpies of formation per oxygen atom, ∆H°
f /O, for oxide

species versus experimental enthalpies. The four different combinations of energy
references are shown.
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turn are more stable relative to experiment than the metal monoxides. H2O2 does
not display a similar error as the metal peroxides.

Systematic differences in calculated stability compared to experiment, i.e., sys-
tematic difference in error, are summarized in Figure 3.5 for different functionals.
An empirical correction has been applied to the oxygen reference energy to mini-

Figure 3.5: Performance of different functionals with fitted oxygen reference.
Black bars are the post–fitting mean absolute error. Red bars are the differences in
average error for peroxides and superoxide species. Blue bars are the differences
in average error for monoxide and peroxides species. Top: Bulk metal reference.
Bottom: Metal chloride reference.

mize the mean absolute error (MAE). The MAE is then a quantitative measure of
the scatter around the best possible line given by Equation (3.1) with a single value
of b for all oxide species. The values of b for each functional of choice of reference
can be found in Appendix A. Similar results are obtained if the root mean square
error (RMSE) is used instead of the MAE. With the bulk metal reference, the MAE
is highly functional–dependent and is between 0.10 eV and 0.35 eV. Not only is
the MAE in most cases significantly reduced with the metal chloride reference, the
variation between functionals is also diminished. The MAE is in range 0.07–0.15
eV and reduced from 0.25 eV to 0.12 eV for the RPBE functional.
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The red bars in Figure 3.5 are the differences in average error between alkali
metal peroxides and superoxides. These average error differences correspond to
the offset between the green and the red line in Figure 3.2. It is this systematic error
which is particularly troublesome in studies of charge and discharge reactions. The
systematic error is of considerable magnitude with the metal reference. The error
is 0.44 eV and 0.31 eV for the RPBE and PBE functionals, respectively. Adding U
correlation does not improve this, as the U is found to apply similarly to peroxide
and superoxide ions. The systematic error is larger than 0.20 eV with all functionals
except for vdW–DF2 and HSE06, where it is 0.09 eV and 0.19 eV, respectively. The
systematic error is significantly reduced with the metal chloride reference. The
error with the BEEF–vdW functional, 0.21 eV, is the only one larger than 0.20
eV. For several functionals, i.e., PBE, vdW–DF2, rPW86 and HSE06, the error is
reduced to approximately 0.05 eV. This is within the normally expected accuracy
for this type of DFT calculations.

The blue bars in Figure 3.5 are differences in average errors between alkali
and alkaline earth metal monoxides and peroxides. These average error differ-
ences correspond to the offset between the red and the blue line in Figure 3.2.
This systematic error changes significantly for different values of U. This can be
understood from the absence of an oxygen–oxygen bond in the monoxides. This
systematic error is highly functional–dependent regardless of the used metal refer-
ence. If the error from gaseous O2 is also to some degree present in superoxide
and peroxide ions but not in monoxide ions, as previously suggested,104 this can
explain such systematic errors. In Figure 3.4(a) it can be seen how the calculated
enthalpies of formation for superoxides, sesquioxides and peroxides are similar to
the experiment when a metal chloride and gaseous oxygen reference is used (blue
diamonds). The monoxides fall on a straight line (dashed blue line) parallel to but
below the ideal. The error in gaseous O2 appear to be present to some degree until
the oxygen–oxygen bond is fully broken. The reduction of systematic errors thus
also pertains to a favorable error cancellation between superoxide and peroxide
species. The offset for monoxides can be reduced by an addition of Hubbard U
correlation.

The smallest differences are observed for the vdW functionals when the re-
sults with the bulk metal reference and metal chloride reference are compared.
Although they have nearly identical exchange, the vdW–DF functional outper-
forms the RPBE functional significantly with the metal reference. The vdW–DF2
functional also appears better overall than the rPW86 functional. These findings
agree with previous reports that van der Waals interactions have a considerable
impact on bulk alkali and alkaline earth metal calculations.89
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The HSE06 hybrid functional does not perform significantly better than the
GGA functionals when the metal reference is used. It is the functional with the
smallest MAE and systematic errors when the metal chloride reference is used.
The detailed performance of HSE06 is shown in Figure 3.6. When a metal chloride
and water reference is used (Equation 3.9), the MAE is obtained with b = 0 in
Equation (3.1).

Figure 3.6: Enthalpies of formation per oxygen atom, ∆H°
f /O, calculated with

HSE06 versus experimental enthalpies for oxide species. The four different combi-
nations of energy references are shown.

3.5 Error Correlation Analysis

Both the magnitude of errors and variation between the considered functionals
are reduced when a metal chloride reference is used as compared to a bulk metal
reference. The BEEF ensemble is used to test whether this is generally valid. The
standard deviation in enthalpy of formation per oxygen is calculated with 2000
BEEF ensemble functionals. The standard deviations are presented for all oxide
species in Figure 3.7. The standard deviations are approximately 2 times larger
with the metal reference than with the metal chloride reference. Enthalpies are
thus generally less functional–dependent when the metal chloride reference is
used. Further, it can be seen that the standard deviation depends on the ratio of
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metal to oxygen atoms. Metal monoxides have the largest standard deviation and
the alkali superoxides have the smallest. This is true with either metal element
references and shows that some functional–dependence caused by description
of the metal atoms remain when the metal chloride reference is applied. H2O2

Figure 3.7: BEEF ensemble standard deviation for oxide species entahlpy of
formation

does not display the same systematic errors as the metal peroxides calculated
with the metal reference. Even with the metal chloride reference, H2O2 has a
smaller standard deviation than the metal oxides. To examine this further, the
experimental and calculated enthalpies of formation for Na2O2 and H2O2 are
plotted versus each other in Figure 3.8. This type of plot is used extensively in
Chapters 4 and 5. All axes in Figures 3.8(a) and 3.8(b) span 4.8 eV to illustrate
the difference between the scatter in Figure 3.8(a) and in Figure 3.8(b). The
experimental enthalpies of formation and enthalpies calculated with a number
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of functionals are shown. The small semi–transparent gray points are 2000 BEEF
ensemble functionals. A line with slope 1 is drawn through the BEEF–vdW
functional point.

Similar variation along the x– and y–axis would be seen if the enthalpies of
the two reactions were equally sensitive to the choice of exchange-correlation
functional. If the functional–dependence for the two reactions were also correlated
1:1 as in the example presented in Section 2.4, the points would be located on the
blue line. It can be seen how the points form a (wide) line. The general scatter
around the line is caused by other contributions to functional–dependence than the
most dominating one. The scatter is significant in Figure 3.8(a), where the metal
reference is used. The scatter is smaller in Figure 3.8(b), where the metal chloride
reference is used. There is no common feature dominating functional–dependence
in the two reactions when the metal reference is used. The functional–dependence
is significantly larger for the calculated enthalpy of formation for Na2O2 than for
H2O2.

The enthalpy of reaction for Na2O2 formation is significantly less functional–
dependent using the NaCl and HCl references as seen in Figure 3.8(b). The points,
especially those for the self–consistent functionals, are much closer to the line with
slope 1. The significant functional–dependence in formation enthalpy of Na2O2 is
not caused by the formation of a peroxide ion when the Na metal reference is used.
The functional–dependence is reduced considerably with the NaCl reference, and
a reasonable correlation between the two reactions is established. The remaining
error and functional–dependence seen in Figure 3.8(b) can be attributed to similar
features in the two reactions, e.g., the formation of a peroxide.
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(a) Metal and water reference

(b) Metal chloride and water reference

Figure 3.8: The experimental and calculated enthalpies of formation for H2O2 and
Na2O2 plotted versus each other for multiple functionals including 2000 BEEF
ensemble functionals (semi–transparent gray points).
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3.6 Electron Localization

The ability to localize electrons with different functionals is also examined.
Such ability is essential for calculation of electron conductivity. It can also be
important in growth and depletion reactions of Li2O2, where an intermediate
reaction can involve the formation of a superoxide ion on the surface of Li2O2.97

The ability of different functionals to describe localized electrons can also indicate,
whether such ability is important for further reduction of the above discussed
systematic errors.

The Rb2O3 structure seen in Figure 3.3 is used to test the ability to localize
electrons. The unit cell contains distinct superoxide and peroxide ions. The
challenge is to localize an electron on each peroxide ion rather than having it
delocalized over 3 oxygen ions. The ability to localize the electron can be evaluated
from differences between the oxide ions such as the oxygen–oxygen bond length
and the local magnetic moment of each atom.

All functionals have a tendency to convergence the electronic density in a
delocalized state with equal partial electron charge on all oxygen ions, O1.33−

2 . The
lattice constants of the Rb2O3 structure is optimized in this delocalized state. Sub-
sequently, the oxygen–oxygen distances are changed for peroxide and superoxide
ions to the distances in the optimized Rb2O2 and RbO2 structures, respectively.
Calculations are initialized with magnetic moments of 0.5 µB for oxygen atoms in
superoxide ions.

With this initial configuration, the HSE06 functional is the only functional
capable of producing the localized electron state with distinct peroxide and super-
oxide ions. It is expected that such a state can be obtained with HSE06, as hybrid
functionals have previously been found to be able to capture electron localization
in Rb2O3.126 Bond lengths of 1.32 Å and 1.49 Å are obtained for superoxide and
peroxide ions, respectively. These lengths are in agreement with experimental
data within 0.01 Å.127

Most functionals will continue to converge into the delocalized state if the
atomic configuration and wave function obtained using HSE06 functional is used
as starting point. The exception is the PBE+U functional for sufficiently large
values of U. As observed in Figure 3.9, localization begins to occur at values
of U between 6 eV and 7 eV. This can be seen from the difference in oxygen–
oxygen bond for peroxide and superoxide ions (Figure 3.9(a)). A difference in
local magnetic moment is also observed for oxygen atoms in the two different
ions (Figure 3.9(b). At U = 10 eV the difference in oxygen–oxygen bond length
converges to 0.15 Å as compared to 0.17 Å for the HSE06 functional. The local
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(a) Difference in oxygen–oxygen bond length
for designated O−2 and O2−

2 ions for HSE06 and
PBE+U using different values of U.

(b) Difference in local magnetic moment for
atoms in designated O−2 and O2−

2 ions for HSE06
and PBE+U using different values of U.

Figure 3.9: Gradual electron localization for increasing values of U.

magnetic moments for oxygen atoms in the delocalized case, e.g. obtained with
PBE, are not 0.33 µB, as predicted, but 0.20–0.22 µB. An explanation is that the
volume around each nuclei, in which the magnetic moment is evaluated, does
not fully cover the spatial distribution of the electron. For the oxygen atoms in
superoxide ions, the magnetic moment when increasing U up to U=12 eV appears
to converge at ≈ 0.34 µB. For U=16 eV and HSE06 the magnetic moment is 0.37 µB

and 0.32 µB, respectively. The value is below the expected 0.5 µB by approximately
a third, just as the magnetic moment in the delocalized case.

The HSE06 functional can capture the correct electron localization and out-
performs the GGA level functionals when the metal chloride reference is used.
They ability of a functional to describe localization thus appears the influence the
errors in enthalpies of formation. PBE+U with values of U=8–12 eV gave modest
systematic errors with the metal chloride reference (Figure 3.5). As it also capable
of localizing electrons it will in many cases be the best compromise of accuracy
and computational cost.

3.7 Application

The metal chloride reference is useful for calculating the energy of intermediate
reactions in growth of Na2O2 and NaO2 as done in Paper II. The equilibrium
potentials are predicted from experimental standard free energies of formation of
bulk Na2O2 and NaO2. The equilibrium potentials are very close at -2.33 V and
-2.27 V for Na2O2 and NaO2, respectively. Na2O2 is thermodynamically preferred
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over NaO2. High charging overpotentials (¿ 1.3 V) and poor rechargeability
(¡ 10 cycles) is observed in experiments where Na2O2 is found to be the main
discharge product.128–131 NaO2 is observed to be the main discharge product
in some experiments.132–135 Rechargeability and overpotentials are improved
when NaO2 is the main discharge product.136 Thermodynamic energy barriers for
intermediate charge and discharge reactions can be determined from the energies
of intermediate reactions. Such barriers can cause overpotentials and can prevent
the formation of Na2O2.

With a small difference in equilibrium potential at 0.06 V, a systematic error
over–stabilizing NaO2 versus Na2O2 might lead to a wrong conclusion. Applying
empirical corrections based on the type of oxygen ion is difficult, as molecular
oxygen and Na atoms are gradually added such that the ionic state of the oxygen
at the surface is not always well defined. Using the metal chloride reference to
reduce systematic errors, the thermodynamic overpotentials for the growth of
Na2O2 and NaO2 can be consistently compared.

Equilibrium potentials are calculated and compared with experimental ref-
erences. Calculations presented in this section have been performed with the
PBE functional and the GPAW computational code137, 138 using a real–space basis
with a grid spacing of 0.18 Å. Bulk free energies of formation can be converted to
potentials using the Na equivalent of the computational hydrogen electrode.139

The equilibrium potential, U0, can be calculated as

U0 = ∆G/ne. (3.10)

∆G is the free energy of the considered reaction, which in this case is identical to
the free energies of formation for Na2O2 and NaO2. n is the number of electrons
transferred in the process. That is 2 and 1 for Na2O2 and NaO2, respectively. Free
energies are given by

G = H − TS. (3.11)

Enthalpies have been calculated as described in Section 2.3.1. The entropies are
obtained experimental reference data.95

An energy correction is applied to the O2(g) reference energy. The reference
energy correction is fitted to reduce errors in enthalpies of formation. Calculated
standard enthalpies and equilibrium potentials are presented in Table 3.2. Cal-
culations are observed to compare reasonably well with experiments giving the
correct quantitative behavior without individual corrections for the NaO2 and
Na2O2 species. Considering ∆H°

f , the errors correspond to an overstabilization
of NaO2 vs Na2O2 by 0.03 eV/O. This is slightly lower but similar to the average
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Table 3.2: Calculated enthalpies of formation, ∆H°
f , and equilibrium potentials,

U0, for NaO2 and Na2O2 are compared with experimental values.95 This is done
with both a Na metal reference and a NaCl reference.

∆H°
f ,exp [eV] U0[V]

Space group exp. NaCl ref. Na ref. exp. NaCl ref. Na ref.
Na2O2 P62m -5.32 -5.29 -5.01 -2.33 -2.32 -2.18
NaO2 Pa3 -2.71 -2.74 -3.05 -2.27 -2.30 -2.61

overstabilization between superoxides and peroxides of 0.05 eV/O seen in Figure
3.5. A metal reference applied in an otherwise identical approach yields predicted
enthalpies of formation of -5.01 eV and -3.05 eV for Na2O2 and NaO2, respec-
tively. This will result in both quantitative and a qualitative error for equilibrium
potentials.

3.8 Chapter Conclusion

Systematic errors in calculation of enthalpies of formation for alkali and al-
kaline earth metal superoxides, peroxides, and monoxides were found using a
range a exchange–correlation functionals. The errors are caused primarily by the
difference in metal atom oxidation state in oxides and bulk crystalline metals. This
error and the functional–dependence of results can be significantly reduced by
applying a metal chloride reference as replacement for the bulk metals in a scheme
similar to one previously used to circumvent known errors on the O2 molecule.
A smaller residual error related to the oxygen–oxygen bond is present for many
GGA functionals. The hybrid HSE06 functional is seen to perform very well when
the metal chloride reference is applied and is further able to capture the local-
ization of electrons. It is, however, computationally demanding for calculation
of surface reactions. The PBE+U functional with a value of U in range 8–12 eV
appears to provide a good balance between accuracy, ability to localize electrons
and computation cost.
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CHAPTER 4

CO2 Reduction

4.1 Introduction

DFT can aid in the search for efficient and selective CO2 reduction electrocata-
lysts.140–163 DFT can among other applications be used to estimate the catalytic
properties for a range of different materials and propose candidates for experi-
mental testing. DFT can also be used to explain and understand experimental
findings at an atomic level. DFT has, e.g., been used to investigate why copper as
the only transition metal electrocatalysts is found to reduced CO2 to a range of
different products.141, 142, 160, 164, 165

4.2 Challenge

Enthalpies of gas-phase CO2 reduction reactions have previously been found
to be significantly different from experimental enthalpies95 when calculated with
the RPBE and BEEF–vdW functionals.141, 166, 167 The functionals are optimized for
heterogeneous catalysis and found the perform well for calculation of adsorption
energies.64, 65, 168 The significant gas-phase errors were first identified for the
RPBE functional by Peterson at al.141 They proposed the error to be caused by
a systematic error on gas–phase molecules with a so–called O–C–O backbone
structure, e.g., CO2 and HCOOH. An empirical energy correction was added to
the calculated energy of molecules with a O–C–O backbone. A correction of 0.45
eV was found through a minimization of the mean absolute error (MAE) for CO2

and CO reduction reactions. The PBE functional did not cause systematic errors
for molecules with O–C–O backbones, but a significant error of 0.51 eV was found
for the calculated energy of CO(g).141 An empirical correction to CO calculated
with the PBE functional has subsequently been applied.169
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A similar approach has been taken by Studt et al. for the BEEF–vdW func-
tional.166, 167 A 0.09 eV energy correction was applied to the energy of H2 in ad-
dition to a 0.33 eV166 or 0.41 eV167 correction of the O–C–O backbone depending
on the used computational code. Although the magnitude of optimal corrections
vary, significant and qualitatively similar errors are found with the DACAPO,141

GPAW,166 Quantum Espresso,167 and VASP computational codes. This confirms
that the error is intrinsic to the functionals. The correction approach is easy to
apply in data treatment. It has been accepted and applied in a number of scientific
papers with more than 20 directly citing Peterson at al.141 or Studt et al.166 for use
of the O–C–O correction including some articles with very high impact.142, 170

A noteworthy case where this correction does not perform well is the reduction
of CO2 to HCOOH. The enthalpy of reaction has been calculated to 0.26 eV,141 0.30
eV,166 and 0.32 eV167 with the corrections applied. The experimental enthalpy is
0.15 eV.95 Errors of this magnitude will influence prediction of theoretical limiting
potentials as exemplified in Section 4.8.

Electrocatalytic reduction of CO2 to formic acid is of commercial interest for a
number of reasons.28, 171, 172 The direct reduction of CO2 to formic acid is endother-
mic. Formic acid is industrially produced from methanol and CO. Electrocatalytic
reduction of CO2 to formic acid is in theory a simple two electron process able
to run at an applied potential of 0.08 eV. The electricity cost is low compared
to other possible electrocatalytic products and the commercial value of formic
acid at a level, where operation could be profitable even without considering
potential environmental benefits.171 In the future, formic acid can also be used in
transportation as a liquid phase hydrogen carrier or directly as a fuel in a formic
acid fuel cell.28, 171, 172

It can be problematic to determine energy corrections through minimization
of the MAE. The minimized MAE can vary by as little as 0.01 eV for different
possible corrections.166 This leaves the method sensitive to minor calculational
and experimental uncertainties. An energy correlation scheme is used instead. The
objective is to identify the dominant cause of errors and introduce an improved
energy correction such that errors can be consistently reduced.

4.3 Method

4.3.1 Reactions

The enthalpies of the reactions in Table 4.1 have been calculated. All reactions
have been normalized to one CO2 reactant molecule as done previously.141, 166, 167

This simplifies data treatment and comparison of errors.
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Table 4.1: CO2 reduction reactions and the used experimental enthalpy of reaction,
∆H◦r , in eV.

Primary set Reac ∆H◦r [eV]a

H2+CO2 → CO+H2O (0) 0.43
4 H2+CO2 → CH4+2 H2O (1) -1.71

H2+CO2 → HCOOH (2) 0.15
3 H2+CO2 → CH3OH+H2O (3) -0.55
3 H2+CO2 → 1

2 C2H5OH+3
2 H2O (4) -0.89

10
3 H2+CO2 → 1

3 C3H8+2 H2O (5) -1.30
7
2 H2+CO2 → 1

2 C2H6+2 H2O (6) -1.37
3 H2+CO2 → 1

2 C2H4+2 H2O (7) -0.66
11
4 H2+CO2 → 1

4 C4H6
b+2 H2O (8) -0.65

2 H2+CO2 → 1
2 CH3COOH+H2O (9) -0.67

2 H2+CO2 → 1
2 HCOOCH3

c+H2O (10) -0.17
Verification set

2 H2+CO2 → CH2Oc+H2O (11) 0.37
3
2 H2+CO2 → OCHCHO+H2O (12) 0.47
7
3 H2+CO2 → 1

3 C2H5COOHd+4
3 H2O (13) -0.84

7
3 H2+CO2 → 1

3 CH3COOCH3+4
3 H2O (14) -0.68

3 H2+CO2 → 1
2 CH3OCH3+3

2 H2O (15) -0.64
5
2 H2+CO2 → 1

2 CH3CHO+3
2 H2O (16) -0.57

Adsorbate set
2 H2O+CH4 → HCOOH + 3 H2 (*1a) 1.86

2 H2O+CH3* → COOH* + 3 H2 (*1b) –
aData from NIST;95 b1,3-Butadiene; cAlternative reference available;95, 173

dPropanoic acid; *Adsorbate on Cu(111).

The molecular structures of the primary products are shown in Figure 4.1. The
”Primary set” contains the CO2 reduction reactions used previously to determine
corrections.141, 166, 167 Previously, reactions for reduction of CO to the main prod-
ucts of Reactions (1)-(10) were also included as separate reactions. They are just
the a linear combination of Reaction (0), the reverse water-gas shift reaction, and
one of the other reactions. They thus contain no additional information. Including
such reactions will have no other impact on results than increasing the statistical
weight of Reaction (0). They have thus been omitted here.

A ”Verification set” has been added. With the exception of reduction to
dimethyl ether, Reaction (15), the main products of the reactions in the ”Veri-
fication set” contain at least one carbon-oxygen double (C=O) bond. By including
these reactions it can be determined, whether the systematic errors are caused by
the presence of an O–C–O backbone or individual C=O bonds. CO2 is present



48 CHAPTER 4. CO2 REDUCTION

(a) CO
Reac (0)

(b) CH4
Reac (1)

(c) HCOOH
Reac (2)

(d) CH3OH
Reac (3)

(e) C2H5OH
Reac (4)

(f) C3H8
Reac (5)

(g) C2H6
Reac (6)

(h) C2H4
Reac (7)

(i) C4H6
Reac (8)

(j) CH3COOH
Reac (9)

(k) HCOOCH3
Reac (10)

(l) CH2O
Reac (11)

(m) OCHCHO
Reac (12)

(n) C2H5COOH
Reac (13)

(o) CH3COOCH3
Reac (14)

(p) CH3OCH3
Reac (15)

(q) CH3CHO
Reac (16)

(r) COOH*
Reac (*1b)

Figure 4.1: Main reaction products in Reactions (0)–(16) and (*1b) in Table 4.1



4.4. SYSTEMATIC ERRORS 49

in all reactions in the ”Primary set” and ”Verification Set” and will carry large
statistical weight in corrections based on the MAE. As consequence, applying
energy corrections to either the O–C–O backbone or individual C=O bonds will
yield similar net energy correction to CO2. The net energy correction for other
molecules containing either a O–C–O backbone, one or more C=O bonds, or both
but in a different ratio than CO2(1:2) will depend on whether corrections are
applied to O–C–O backbones or C=O bonds. The reactions in the ”Verification set”
can be used to determine whether an applied energy correction does effectively
counter the systematic error.

An ”Adsorbate set” consisting of two reactions is also included. They are in
Section 4.7 used to establish whether systematic errors also apply to adsorbates, in
this case specifically COOH* on a Cu(111) surface. This adsorbate is particularly
interesting, as it is one of two possible first intermediate species for CO2 reduction
reactions. Enthalpies calculated for the gas–phase Reaction (*1a) and adsorbate
Reaction (*1b) can be compared. This is based on the initial assumption, that the
only difference between the two reactions is the replacement of a C-H bond with a
C-Cu bond as both CH3* and COOH* adsorbs ontop a copper atom.

Many of the reactions in Table 4.1 should not be viewed as likely outcomes
of electrocatalytic CO2 reduction. They can be viewed merely as a set of cou-
pled linear equations, which allow calculated enthalpies to be compared against
experimental enthalpies.

4.3.2 Computational Method

Enthalpies of reactions have been calculated with a number of GGA-level
functionals (PBE, RPBE, BEEF–vdW, vdW–DF and vdW–DF2) all described in
Section 2.2.2. Gas–phase calculations are routinely performed with higher level
methods, but the ambition is to improve the accuracy of adsorption energies
relative to gas–phase energies. The GGA-level often offers the best compromise
between accuracy and computational cost for adsorption energies.49, 168

Calculations in this chapter are with the exception of results in Section 4.8
obtained with the VASP code using a 650 eV plane–wave energy cut-off. Hard
PAW potentials distributed with the code have been used for O, C, and H. Calcu-
lations are performed as described in Chapter 2. Vibrations calculated with the
RPBE functional are in good agreement with those previously found.141 Energies
calculated from the vibrations have been used for functionals. The calculational
slab used to model the Cu(111) surface consists of three closed pack 3×3 layers.
The default PAW potential is used for Cu. A (4,4,1) k–point grid is used.
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Figure 4.2: Errors, ∆H◦ DFT
r - ∆H◦ ref

r , in calculated enthalpies of Reactions (0)–(16)
in Table 4.1 with GGA-level exchange–correlation functionals. Error bars for the
BEEF–vdW functional are the BEEF ensemble standard deviations.

4.4 Systematic Errors
The errors in calculated enthalpies of Reactions (0)–(16), ∆H◦ DFT

r - ∆H◦ ref
r ,

are shown in Figure 4.2 for the different functionals. Reactions (1), (3)–(8), and
(15) are simple in the sense that the product is not CO and contains neither an
O–C–O backbone nor a C=O bond. Similar errors are observed for these reactions
with a given functional. Notable outliers are Reaction (0), the reverse water gas
shift reaction, and Reaction (2), formation of formic acid. Reactions (9)–(12) have
lower but varying errors in comparison to the simple product reactions in the
”Primary set”. The error for Reactions (13)–(16) in the ”Verification set” also appear
systematic.

Error will generally be smaller than 0.1 eV with the PBE functional. The
exceptions are Reaction (0), as expected from the previously found errors on
CO with the PBE functional, and Reactions (10) and (11). The reason the latter
two have larger errors might be the choice of reference enthalpy for HCOOCH3

and CH2O. Besides the newest reported and here used experimental gas–phase
enthalpies, significantly different experimental enthalpies can be found for these
molecules in the NIST database.95

For HCOOCH3(g) the enthalpies in the NIST database span from -3.49 eV,
which has been used here and in previous studies,141, 166, 167 to -3.75 eV. Taking
into account the stoichiometry of Reaction (10), using an alternative experimental
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reference can shift the calculated enthalpies by as much as 0.13 eV. The errors for
Reaction (10) then becomes similar to those observed in Reaction (9). The relatively
large variation is caused by significantly different enthalpies for geometrical
isomers. Consulting the ATcT database,173–176 in which enthalpies are computed
from an automated weighted average of a large amount of experimental data, the
two possible geometrical isomers are reported to have enthalpies of -3.49 eV and
-3.71 eV.

Two different enthalpies are reported in the NIST database for CH2O(g). The
enthalpy used as reference is -1.20 eV. The alternative enthalpy is -1.13 eV. The
errors for Reaction (11) will be similar to those for Reaction (2) when the alternative
enthalpy is used. The ATcT database173–176 reports the enthalpy of CH2O(g) to be
-1.13 eV. Of all experimental enthalpies, those two molecules are the only cases
with large variations in NIST database values. The errors with PBE for Reaction
(10) and (11) can thus be explained as a consequences of erroneous reference
data. The reference data is, however, not changed in the following analysis.
This servers two purposes: Firstly, by using identical reference data as previous
correction studies,141, 166, 167 direct consistent comparisons can be made. Secondly,
applying the erroneous reference data will illustrate how the correlation approach
applied here to identify systematic errors is insensitive to errors in reference data
in contrast to minimization of the MAE.

Comparing the different functionals in Figure 4.2, RPBE generally gives the
second smallest errors followed by BEEF–vdW, vdW–DF and vdW–DF2. This
order is true for all other reactions than Reaction (0). This once again indicates
that the description of CO can be challenging. The errors are highly functional–
dependent for all other reactions with variations as large as 0.9 eV. This is also
reflected in the BEEF ensemble standard deviation plotted as error bars. They
do, however, underestimate the errors. It is further observed, that the functional
variation appears to be correlated with the magnitude of the error. A dominant
systematic error, which is partially canceled in some of the reactions, can cause
such correlation.
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4.5 Error Correlation Analysis

(a) Reaction (6) vs Reaction (1)

(b) Reaction (4) vs Reaction (3)
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(c) Reaction (2) vs Reaction (3)

(d) Reaction (11) vs Reaction (3)

Figure 4.2: Correlations in calculated enthalpies of reaction for various gas–phase
reactions in Table 4.1. Semi-transparent gray points are 2000 BEEF ensemble
functionals. A blue line is drawn through the BEEF–vdW functional point with a
slope determined by the change in number of C=O bonds in reactions.
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Large differences in errors are obtained with PBE and RPBE. The only differ-
ence between PBE and RPBE is the exchange enhancement factor. The magnitude
of the dominant systematic error must thus be highly dependent on the exchange
enhancement factor. The BEEF ensemble contains functionals with different ex-
change enhancement factors. It can be used to examined correlations in the
functional dependence of reaction enthalpies. The dominant systematic error
can be deduced from these correlations. The enthalpies of reactions in Table 4.1
have been calculated with 2000 BEEF ensemble functionals in addition to the five
self–consistent functionals.

Error correlations are examined graphically as in Section 3.5. The enthalpies
calculated for one reaction are plotted versus those calculated for another reaction
to identify pairwise correlation. The experimental reference enthalpies are also
included. Plots is this type are shown in Figure 4.2. The calculated enthalpies are
sensitive to choice of functional, as already seen in Figure 4.2. The points in Figure
4.2 tend to form a line. This will be the case if a common feature is dominating the
functional–dependence in the two reactions making the errors strongly correlated.
The slope of the line will be given by the ratio, in which the feature causing
functional–dependence is present in the reactions. Additional minor contributions
to functional–dependence can cause scatter which makes the line wider. An
example of this can be seen by comparing Figure 4.3(a) and Figure 4.3(b). In
Figure 4.3(a) strong correlation is observed with a very narrow correlation line
when reduction to C2H6 is plotted versus reduction to CH4. In Figure 4.3(b), where
reduction to C2H5OH is plotted versus reduction to CH3OH, the scatter around
the line is larger. This is likely due to the different amount of H2O in the balanced
reactions. The energy of H2O is identified as functional–dependent in Chapter 5. A
minor cause to functional–dependence can also influence the correlation line slope,
if it is itself correlated with the dominating cause to functional–dependence as
discussed further in Section 4.5.2. A likely error in the used experimental enthalpy
of CH2O was discussed above. As a result of this, the experimental point does not
fall on the correlation line in Figure 4.3(d).

Blue lines going through the BEEF–vdW points are drawn in all plots in Figure
4.2. The line has slope 1.0 in Figures 4.3(a) and 4.3(b) and slope 0.5 in Figures 4.3(c)
and 4.3(d). In all cases, these drawn lines are seen to coincide with the trend lines
formed by the functional points.

The products formed in reactions plotted in Figures 4.3(a), 4.3(b), and 4.3(d)
do not contain an O–C–O backbone. All considered gas–phase reactions contain
one O–C–O backbone in the reactant CO2 molecule. The change in number
of O–C–O backbones is thus 1 in all reactions plotted in Figures 4.3(a), 4.3(b),
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and 4.3(d). The correlation lines would thus have slopes of 1.0 in these plots,
if functional–dependence was caused by the O–C–O backbone. In Reaction (2),
which is plotted as dependent reaction in Figure 4.3(b), the O–C–O backbone
is retained in the product HCOOH (See Figure 4.1(c)). As a consequence, the
correlation line slope should be near 0.0 if functional–dependence was caused
by the O–C–O backbone. It could be non-zero if a minor cause to functional–
dependence was present. However, the slopes predicted from O–C–O backbones
are not observed for Figures 4.3(c) and 4.3(d).

The slopes are instead predicted under the assumption that individual C=O
bonds are the dominating cause to functional–dependence. The number of in-
dividual C=O bonds on the reactant side is 2 for all considered reactions in the
”Primary” and ”Verification set”. In most reactions plotted in Figure 4.2, no C=O
bonds are present in the products. The net change in number of C=O bonds is thus
-2. Reactions (2) and (11) are plotted as independent reactions in Figures 4.3(c)
and 4.3(d), respectively. The main products, HCOOH and CH2O, are formed in a
1:1 ratio with reactant CO2. Both contain a single C=O bond. The net change in
number of C=O bonds is thus -1 for these reactions. The correlation line slopes,
axy, can be predicted,

axy =
∆(C=O)y

∆(C=O)x
. (4.1)

∆(C=O)y and ∆(C=O)x are the net changes in number of C=O bonds in the
dependent and independent reactions, respectively. The correlation slope will
upon visual inspection be similar to the predicted for most pairwise correlations.

4.5.1 C=C Bond Error

Correlation line slopes are different from the predicted axy when Reactions (7)
and (8) are involved. An example is shown in Figure 4.3.

The main products in Reactions (7) and (8) are C2H4 and C4H6, respectively.
They do not contain C=O bonds but do contain carbon-carbon double (C=C)
bonds. C=C bonds are also cause to functional–dependence. The functional–
dependence caused by C=O bonds and C=C bonds is correlated. This means, that
any two functionals with a relatively large energy difference in the description of
C=O bonds will also have a relatively large energy difference in the description
of C=C bonds. The presence of a C=C bond will thus alter the correlation line
slope and not simply increase the scatter. The correlation line slope is not 1.0,
as predicted solely from the C=O bonds, but found with linear regression to be
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Figure 4.3: Error correlation for Reaction (7) versus Reaction (6) in Table 4.1. The
plot is similar to those shown in Figure 4.2. The correlation line (gray points) is
diffrent from the predicted (blue line).

0.83. By considering alternative reactions where CO2 is removed as reactant and
replaced by CH4, the functional–dependence caused by the C=O bond and the
C=C bond can be separated.

The reaction used as independent reaction in the LHS plot in Figure 4.4 is

2 CH4 → C2H6 + H2. (4.2)

No C=C bonds are formed in this reaction. The functional–dependence for this
reaction is small. One C=C bond is formed in the dependent reaction

2 CH4 → C2H4 + 2H2. (4.3)

The functional–dependence is significantly larger for this reaction. A correlation
line similar to those in Figure 4.2 is not present. The reaction in (4.3) is also used
as dependent reaction in the RHS plot in Figure 4.4. The independent reaction in
this plot is

4 CH4 → C4H6 + 5H2. (4.4)

Two C=C bonds are formed in this reaction. A correlation line is observed. The
self–consistent functionals, the BEEF ensemble, and the experimental reference are
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Figure 4.4: Error correlation for reactions where CH4 is used to form other hydro-
carbons as shown on the axes. The plot is similar to those shown in Figure 4.2. A
blue line with slope 0.5 is drawn through the BEEF–vdW point in the RHS plot.

seen to all be located on the blue line drawn with slope 0.5 through the BEEF–vdW
point. This is the expected slow if C=C bonds dominate the functional–dependence
in these reactions. Although the C=C bond description is functional–dependent,
the resulting systematic errors are smaller than observed for the C=O bond. The
experimental point is for reactions in Figure 4.4 surrounded by functional points
in contrast to the CO2 reduction reactions, where all functionals (except PBE)
overestimate the enthalpy. The functional–dependence on the energy of C=C
bonds can be included in the prediction of correlation line slopes. The predicted
slope axy will be

xy =
∆(C=O)y + α∆(C=C)y

∆(C=O)x + α∆(C=C)x
. (4.5)

∆(C=C)x and ∆(C=C)y are the number of C=C bonds formed in the independent
and dependent reactions, respectively. α is a fitted parameter which quantifies
the functional–dependence caused by the C=C bond relative to that cause by the
C=O bond. It is fitted by minimized the difference between correlation line slopes
predicted with Equation (4.5) and found with linear regression on BEEF ensemble
functionals. α is 0.78.
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(a) Difference between predicted and fitted
slopes.

(b) Coefficient of determination in linear regres-
sion.

Figure 4.5: Comparison of correlation line slopes predict and found with linear
regression. The relative difference is calculated as (apredict − alin reg)/alin reg.

4.5.2 Slope Fitting

The difference between slopes predicted with Equation (4.5) and found with
linear regression relative to the slopes found with linear regression,
(apredict − alin reg)/alin reg, are shown for all possible combinations of Reactions
(1)–(16) in Figure 4.5(a). 2/3 of the predicted slopes will be different from 1.

The predicted slope mostly agrees well with the slope found with linear regres-
sion on the BEEF ensemble data points. The predicted and fitted slopes are seen
to be different if Reactions (2), (11), or (12) are involved. Reactions (2), (11), and
(12) have the smallest change in number of C=O bonds. The differences between
predicted and fitted slopes for these reactions are caused by lower ”signal to noise
ratio”. The BEEF ensemble scatter in the correlation plots involving Reactions
(2), (11), or (12) is large in comparison to the most dominant cause to functional–
dependence. The scatter is quantified with the coefficient of determination (R2) in
the linear regression. The BEEF-ensemble data points generally follow correlation
lines with relatively low scatter, and R2 values are in most cases close to 1 as seen
in Figure 4.5(b). The value of R2 is lower for the correlations where the predicted
and fitted slopes were most different. The differences between predicted and fitted
slopes are caused by non-uniformity in the BEEF-ensemble. This is exemplify in
Figure 4.6.
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Figure 4.6: The predicted correlation line (black) for Reaction (3), [3 H2 + CO2→
CH3OH + H2O], versus Reaction (2), [H2 + CO2 → HCOOH], visually follows
the 2000 BEEF ensemble (semi-transparent gray), self–consistent functional, and
experimental data points. The red line has been determined with linear regression
on BEEF ensemble data points.

4.6 Energy Corrections

The energy correction per C=O bond is determined for the BEEF–vdW func-
tional with the same procedure as used by Studt et al.166, 167 An energy correction
is also applied to H2 to make the performance of corrections 1:1 comparable with
previous corrections. Applying a correction to C=C bonds will have close to no im-
pact on errors. Although the C=C bond is functional–dependent, the BEEF–vdW
functional describes it relatively well. Further, the total number of C=C bonds
in the balanced gas–phase reactions is significantly smaller than the number of
C=O bonds and H2 molecules. The magnitudes of the energy corrections are fitted
to minimize the MAE of reactions in the ”Primary set”. The difference between
applying an energy correction to O–C–O backbones and individual C=O bonds
can be seen in Figure 4.7.

The difference in MAE is small for the two different energy corrections. The
MAE is 0.05 eV for O–C–O corrections and 0.03 eV for C=O corrections. Notable
outliers with residual errors are present with correction of O–C–O backbones. This
is in particular true for reactions in the ”Verification set”. The residual errors are
smaller with the C=O correction. Reaction (10) is the only outlier. If the alternative
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Figure 4.7: Residual errors after energy correction of H2 and O–C–O backbones
(top), and H2 and individual C=O bonds (bottom). Error bars are the standard
deviations in the BEEF ensembles after correction. Grey points mark alternative
reference enthalpies as discussed in Section 4.4

enthalpy for HCOOCH3(g) is used as discussed in Section 4.4, all residual errors
are below 0.05 eV in magnitude.

Energy corrections are determined for all BEEF ensemble functionals. The
standard deviations after energy correction are plotted as error bars. Standard
deviations for the reactions with a C=O bond in the product are with the O–C–
O energy correction larger than standard deviations for the reactions without
a C=O bond in the product. The standard deviations after energy corrections
show whether the applied correctional approach is universally applicable for
GGA+vdW functionals. Standard deviations are generally reduced with the C=O



4.7. ADSORBATES 61

energy correction. The reduction in standard deviation is most notable for Reaction
(2). The enthalpies of CO2 and H2 are corrected by 0.31 eV (0.15 eV for each C=O
bond) and 0.09 eV, respectively, with both O–C–O and C=O energy corrections.

The post-correction results for Reaction (0) are interesting. The error for Re-
action (0) with the BEEF-vdW functional is small but the functional–dependence
significant after corrections of either O–C–O backbones or C=O bonds. It appears
from the standard deviations that the energy of CO is functional–dependent, but
that only a small error is present in calculations with the BEEF–vdW functional.

The error on H2 is discussed in Section 5.4.1.

4.7 Adsorbates

It is next determined, whether the observed systematic error on C=O bonds
is also present for adsorbates. The initial protonation of CO2 results in either
adsorbed carboxyl, COOH*, adsorbing through the carbon atom, or formate,
OCHO*. Formate is on many surfaces found to be a bidentate adsorbate binding
to the surface through both oxygen atoms. COOH* adsorbed in an ontop site on a
Cu(111) surfaces can be seen in Figure 4.1(r). The adsorption energy of especially
COOH* is often important in calculation of limiting potentials. A C=O bond
appears to be present in COOH* by visual inspection. The presence of a C=O
bond can be examined with a correlation plot for reactions in the ”Adsorbate set”
in Table 4.1.

The two reactions are in terms of chemical bonds very similar with one C-H
bond in the gas–phase reaction (*1a) replaced by a C-Cu bond in reaction (*1b)
on both reactant and product side. CH3* is also adsorbed in an ontop site. The
chemisorption energy is expected to be functional–dependent. However, the
presence of the C-Cu bond on both reactant and product side of (*1b) with the
C atom in identical adsorption sites leads to cancellation of the majority of the
functional–dependence caused by chemisorption. The formation of one C=O bond
in both reaction (*1a) and (*1b) is expected to dominate the correlation line slope.

In Figure 4.8 the correlation between reactions (*1a) and (*1b) can be seen.
The BEEF ensemble and the self–consistent van der Waals functionals form a
correlation line with slope 1. This line shows, that the systematic error on C=O
found in the gas–phase species is also present for COOH*. An energy correction
applied to the C=O bond in HCOOH should thus be equally applied to COOH*.
The scatter around the correlation line is larger than previously observed. The
increase in scatter is likely due to the chemisorption energies not fully canceling.
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Figure 4.8: Error correlation for ”Adsorbate set” reactions. The plot is similar
to those shown in Figure 4.2. A blue line with slope 1.0 is drawn through the
BEEF–vdW point. The red line marks the experimental enthalpy of reaction (*1a).

The GGA–functional points are located above the correlation line. This is because
the van der Waals stabilization of COOH* and CH3* does not cancel.

The functional–dependence of chemisorption must to large degree be canceled
in reaction design to obtain a correlation between gas–phase reactions and adsor-
bates strong enough to determine whether similar systematic errors are present.
This makes the approach difficult to apply for some adsorbates such as bidentate
formate.

4.8 Application
The following study of electrocatalytic HCOOH formation on metal surfaces is

discussed here to exemplify application of the C=O correction. See Paper IV for
the full study.

Calculation of theoretical limiting potentials for reduction of CO2 to HCOOH
and CO as well as the hydrogen evolution reaction (HER) have been performed
with the BEEF–vdW functional on various metal surfaces using the quantum
espresso code.177 The purpose is to identify catalysts, which could be both efficient
and selective for reduction to HCOOH. This is not given but possible if the limiting
potential for reduction to HCOOH is significantly (numerically) lower than the
limiting potentials for reduction to CO and HER.
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Figure 4.9: Theoretical limiting potentials vs RHE for CO2 reduction to HCOOH
(blue) and CO (orange) and for HER (red) on different metal surfaces. The blue
and orange horizontal lines mark theoretical equilibirum potentials. Error bars
are BEEF ensemble standard deviations.(Paper IV)

The considered reactions are two electron reactions. The energy of the inter-
mediate adsorbates, i.e. H*, OCHO*, and COOH*, relative to the energy of the
reactants and products calculated in gas–phase determines the limiting potential.
The calculated limiting potentials are shown in Figure 4.9.

Systematic errors in energies must be mitigated for accurate comparison of
limiting potentials for the different reactions. C=O energy corrections are applied
to CO2(g), COOH*, and HCOOH. The C=O correction will in comparison to the
O–C–O correction increase the energy of COOH* and decrease the energy of
HCOOH; both by 0.20 eV.167 This will influence the theoretical limiting potentials
for HCOOH and CO by as much as 0.4 V and 0.2 V, respectively. The change
depends on the alignment of adsorption energies with the gas–phase energies.
Differences in limiting potentials with a C=O energy correction and a O–C–O
energy correction, ∆UL, can be seen in Table 4.2.

The blue horizontal line in Figure 4.9 marks the theoretical equilibrium poten-
tial for CO2 reduction to HCOOH. It is here calculated to be -0.17 V. If the O–C–O
backbone energy correction was used it would be -0.27 V.

The product formation trends agree with experiments performed by Hori et
al.164, 165 for all other metals than Ag. The Ag and Pb surfaces marked in Figure
4.9 have low theoretical overpotentials for HCOOH formation on stepped surfaces
and significantly lower theoretical limiting potentials for HCOOH formation
than for CO formation and HER. They could thus be both efficient and selective
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Table 4.2: Difference in limiting potential with a C=O energy correction and a
O–C–O energy correction. The limiting potential is for negative values numerically
smaller with the C=O energy correction.

Surface ∆ UL(HCOOH) [V] ∆ UL(CO) [V]
Cu(111) -0.07 0.20
Cu(211) 0.10 0.20
Ag(111) -0.02 0.20
Ag(211) -0.21 0.20
Au(111) 0.05 0.20
Au(211) 0.00 0.20
Ni(111) -0.40 -0.19
Ni(211) -0.40 -0.19
Pd(111) -0.09 -0.05
Pd(211) -0.20 -0.20
Pt(111) -0.06 -0.20
Pt(211) -0.20 -0.20
Fe(110) -0.40 -0.16
Fe(100) -0.34 -0.04
Rh(111) -0.26 -0.19
Rh(211) -0.40 -0.19
Zn(0001) -0.11 0.20
Zn(1010) 0.20 0.20
Cd(0001) -0.20 0.20
Cd(1010) -0.20 0.20
Tl(0001) -0.20 0.20
Tl(1010) -0.21 0.20
Pb(111) -0.21 0.20
Pb(211) -0.25 0.20
Sn(001) -0.10 0.17

catalysts for CO2 reduction to HCOOH. For Ag(211), Pb(111), and Pb(211), the
limiting potentials for CO formation were numerically increased by 0.20 eV with
the C=O energy correction in comparison to the O–C–O energy correction. The
limiting potentials for HCOOH were numerically decreased by >0.20 eV.

Pb surfaces have previously been found to reduce CO2 to HCOOH with
faradaic efficiencies > 90 % at applied potentials of -0.7 ∼ -1.0 V vs. RHE.178

Ag is experimentally found to produce mainly CO and small amounts of HCOOH
at potentials of -0.6 ∼ -1.4 V vs. RHE.179, 180 The potential is relatively low (numer-
ically large) compared to the theoretical limiting potential for HCOOH formation
on Ag. Low potentials are applied experimentally to obtain sufficient current. It
is possible that the thermodynamic limiting potential for HCOOH formation is
numerically small, but the reaction limited by kinetic barriers. Calculations of
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kinetic barriers are required to determine this.

4.9 Chapter Conclusion

Systematic errors have previously been identified for gas–phase CO2 reduction
reactions and an energy correction applied to molecules containing an O–C–O
backbone. The errors are functional–dependent and through correlation analysis
determined to be caused by individual C=O bonds. Applying an energy correction
to C=O bonds rather than the O–C–O backbone, errors can be reduced, e.g., for
the reduction of CO2 to HCOOH. Correlation analysis is extended to adsorbates.
An C=O bond error is present for COOH* adsorbed on a copper surface. The dif-
ference between applying C=O energy corrections and O–C–O energy corrections
is exemplified in a study of formic acid formation trends on metal catalysts.
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CHAPTER 5

Oxygen Evolution and Reduction
Reactions

5.1 Introduction

Development of inexpensive, stable, and efficient catalysts for the oxygen
evolution reaction (OER) and oxygen reduction reaction (ORR) is a key challenge
in the commercialization of hydrogen electrolyzers and fuel cells.40, 42–45, 181–185

DFT has in recent years been applied in a number of studies to obtain funda-
mental knowledge and establish guiding principles in the search for better cat-
alysts.43, 93, 139, 186–191 The energies of each intermediate reaction in the reaction
processes are of particular interest, as they can be used to determine theoreti-
cal minimum overpotentials. The full ORR associative process catalyzed by a
heterogeneous electrocatalyst consist of the following intermediate reactions,

O2 + H+ + e− + ∗ → OOH∗ (5.1)

OOH ∗+H+ + e− → H2O + O∗ (5.2)

O ∗+H+ + e− → OH∗ (5.3)

OH ∗+H+ + e− → H2O + ∗. (5.4)

Each reaction step includes both the transfer of a proton and an electron. ∗ denotes
a catalyst adsorption site. The computational hydrogen electrode approach139 can
be used to calculated the energy of each intermediate reaction with DFT at certain
reaction conditions.

G[H+ + e−] = 1
2 G[H2]. (5.5)
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The OER intermediate reactions are the reverse of the ORR reactions.189 The full
net reaction of (5.1)–(5.4) is

O2 + 4(H+ + e−)→ 2 H2O. (5.6)

The free energy of the full reaction is -4.92 eV. The ideal catalyst does not have a
thermodynamic overpotential. This requires the O*, OH* and OOH* adsorption
energies to align such that the intermediate reactions (5.1)–(5.4) all have a free
energy of -1.23 eV at zero applied potential.

Adsorption energies have been found to correlate for many species on catalytic
surfaces. As a result, one adsorption energy can be predicted from another.48 These
relationships in adsorption energies are referred to as scaling relations and are
very useful in the search for new catalysts. They can be used to construct so-called
volcano plots, which simplify activity predictions by turning a multidimensional
problem into one with fewer variables. Predicted volcano plots for ORR and OER
activity have been shown to be in good agreement with experiment.43, 45, 48, 192

A fundamental scaling relation in ORR and OER is that between the ad-
sorption energies of OH* and OOH*.48, 93, 187–190, 193–195 Expressed in free en-
ergy187, 193(Appendix B) it is

∆GOOH* = ∆GOH* + 3.2± 0.2 eV. (5.7)

∆GOOH* denotes the adsorption free energy of OOH*. The scaling relation is
unchanged when expressed in electronic energies with an added correction for
electrolyte stabilization.189, 190 The 1:1 change in OOH* and OH* adsorption
energies (the scaling relation slope is 1) can be explained with bond order conser-
vation,196 as OH* and OOH* binds similarly to the surface. The scaling relation
offset is 3.2 eV. The adsorption energy difference between OOH* and OH* will
be 3.2 ± 0.2 eV on surfaces where the scaling relation applies. A 3.4 eV energy
difference is observed experimentally between OOH−(aq) and OH−(aq).197, 198

The ± 0.2 eV does in this case not refer to calculational uncertainty of individual
calculations but variations in the scaling relation offset for different catalytic sur-
faces.48, 189, 190, 193, 194 Notable scatter is observed around the ”best fit” line when
∆GOOH* is plotted vs ∆GOH*.189, 190, 193, 194 For a subclass of catalysts, e.g., Pt alloys,
the deviation from the ”best fit” line is systematic. The ± 0.2 eV is the uncertainty
introduced when the adsorption energies are predicted with a single universal
scaling relation for a range of different catalytic surfaces.

The scaling relation dictates that the sum of reaction energies for reaction (5.2)
and (5.3) will be -3.2 ± 0.2 eV at zero applied potential. The combined -3.2 eV
energy of reactions (5.2) and (5.3) is significantly larger than the ideal -2.46 eV. The
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scaling relation with slope 1 and offset 3.2 eV will thus for both ORR and OER
force a minimum theoretical ovepotential of (3.2 ± 0.2 eV - 2.46 eV)/2e = 0.4 ± 0.1
V for all intermediate reactions to become exergonic.

5.2 Challenge

The scaling relation in Equation (5.7) is determined from calculations per-
formed with the RPBE functional. In Chapter 3 it was after removal of the metal
oxidation state error shown, that a systematic error pertained to oxygen-oxygen
bonds. The error was found for ions in metal peroxides and H2O2. An oxygen-
oxygen bond is present in the OOH* adsorbate. This bond could be similar to
the bond in H2O2. A systematic error on the oxygen-oxygen bond could cause
the adsorption energy of OOH* to be systematically underestimated. The scaling
relation offset will thus also by systematically underestimated. A larger offset will
result in larger minimum thermodynamic overpotentials.

In this chapter it is examined whether systematic errors are present in peroxide
bonds in gas–phase species with GGA–level functionals. It is determined whether
systematic errors are also present for the OOH* adsorbate an various metal sur-
faces. The procedure is similar to that applied for CO2 reduction reactions in
Chapter 4.

5.3 Method

Enthalpies are calculated for a number of reactions shown in Table 5.1 with
multiple GGA-level functionals including 2000 BEEF ensemble functionals. In the
reactions in the ”Gas–phase set”, two O-H bonds are broken in the formation of a
peroxide bond and a H2 molecule. If a significant systematic error is present in
the description of the peroxide bond, correlated errors in enthalpy of reaction can
be expected.

A peroxide bond is not formed in the reactions in the ”Verification set”. Only
common molecules, which are not expected to cause significant unknown errors,
are part of these reactions. ”Verification set” reactions are used as accuracy refer-
ence to confirm that observed systematic errors in the ”Gas–phase set” reactions
are only present when a peroxide bond is formed.

The ”Adsorbate set” consists of surface reactions between OH* and OOH*
adsorbed on three different metal fcc(111) surfaces. The metals, i.e., Pt, Pd, and
Ag, span the relevant reactivity range for ORR catalysts. Through correlation in
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Table 5.1: Reaction sets and experimental enthalpies of gas–phase reactions.

Gas–phase set Reac ∆H◦r [eV]a

2 H2O → H2 + H2O2 (1) 3.60
CH3OH + H2O → H2 + CH3OOH (2) 3.23

C2H5OH + H2O → H2 + C2H5OOHb (3) 3.24
2 CH3OH → H2 + CH3OOCH3 (4) 2.87

C3H7OH + H2O → H2 + C3H7OOHb (5) 3.25
(CH3)2CHOH + H2O → H2 + (CH3)2CHOOH (6) 3.29

2 C2H5OH → H2 + C2H5OOC2H5 (7) 2.86
(CH3)3COH + H2O → H2 + (CH3)3COOH (8) 3.31

Adsorbate set
OH*Pt

a + H2O → H2 + OOH*Pt
c (*1) –

OH*Ag
b + H2O → H2 + OOH*Ag

d (*2) –
OH*Pd

a + H2O → H2 + OOH*Pd
c (*3) –

Verification set
2 CH4 → H2 + C2H6 (v1) 0.69

CH4 + H2O → H2 + CH3OH (v2) 1.20
CH4 + C2H6 → H2 + C3H8 (v3) 0.56
C2H6 + H2O → H2 + C2H5OH (v4) 0.94

aData from NIST95 unless otherwise specified; b∆H° from;199

cOntop adsorption site; dhcp hollow adsorption site;

functional–dependence it can be established whether a systematic error in gas–
phase species is also present in OOH* adsorbates. The enthalpies of reactions in
the ”Adsorbate set” is equal to the differences in adsorption enthalpies of OOH*
and OH*. A systematic error in the reactions in the ”Adsorbate set” is thus also a
systematic error in the OH*/OOH* scaling relation offset.

Experimental enthalpies for gas–phase species have in most cases been ob-
tained from the NIST database.95 Experimental data with sufficient precision is
not available for ethyl hydroperoxide, C2H5OOH, and n-propyl hydroperoxide,
C3H7OOH. Cross–verified enthalpies calculated with high accuracy quantum
chemistry methods have been used instead.199 The combination of enthalpies
obtained with experimental and higher level theoretical methods is an advantage.
It can be difficult to determine standard enthalpies experimentally for molecules,
which are in condensed phase at standard conditions and interact strongly, e.g.,
through hydrogen bonds. If identical systematic errors are observed for the re-
actions, in which experimental and quantum chemistry reference enthalpies are
used, such methodological inaccuracies can be dismissed as cause.
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5.3.1 Computational Method

As in Chapter 4, enthalpies of reaction are calculated with several GGA func-
tionals (PBE, RPBE, BEEF–vdW, vdW–DF, vdW–DF2 ). The BLYP functional is
also used. Calculations are performed as described in Section 2.3. A 650 eV
plane–wave cut–off is used with hard PAW potentials for C, O, and H. Potentials
explicitly including 4p-electrons are used for Pd and Ru (Section 5.8), i.e. the
”pv” potentials. Default PAW potentials are used for Ag and Pt. All calculations
allow spin polarization. Vibrations are calculated independently with the PBE,
RPBE and BEEF–vdW functionals. The energies calculated from the vibrational
frequencies are similar for the three functionals. These energies are also used for
the vdW–DF, vdW–DF2, and BLYP functionals.

Metal slab structures consist of 5 closed pack layers with 4 atoms in each. The
surface coverage is 1/4 monolayer. The two lower layers are constrained with
interatomic distances as in bulk. A (4,4,1) k-point sampling is used for all slab
structures.

5.4 Gas–Phase Errors

Table 5.2: Errors in ∆H◦r [eV] with different exchange-correlation functionals for
gas–phase reactions in Table 5.1.

Reac PBE RPBE BEEF–vdW vdW–DF vdW–DF2 BLYP
(1) 0.25 0.29 0.26 0.41 0.44 0.35
(2) 0.19 0.24 0.22 0.36 0.40 0.30
(3) 0.21 0.24 0.22 0.36 0.39 0.29
(4) 0.17 0.18 0.21 0.36 0.39 0.25
(5) 0.21 0.24 0.24 0.39 0.41 0.31
(6) 0.21 0.23 0.21 0.37 0.42 0.27
(7) 0.14 0.14 0.19 0.34 0.36 0.21
(8) 0.24 0.25 0.27 0.42 0.46 0.33

avg.a 0.20 0.22 0.23 0.38 0.41 0.29
SDb 0.03 0.04 0.02 0.03 0.03 0.04
(v1) 0.01 -0.01 -0.01 0.00 -0.05 -0.04
(v2) 0.05 0.05 0.06 0.11 0.10 0.07
(v3) -0.03 -0.06 -0.03 -0.03 -0.08 -0.10
(v4) 0.02 0.00 0.03 0.08 0.08 0.03

avg.c 0.01 -0.01 0.01 0.04 0.01 -0.01
aAverage error and bstandard deviation for reactions (1)–(8).

c Average error for reactions (v1)–(v4).
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Enthalpies of reactions are calculated for reactions in the ”Gas–phase set” and
Verification set” (Table 5.2). Both the average and individual errors are relatively
small. This is especially true for the PBE, RPBE, and BEEF–vdW functionals,
where the maximum error is 0.06 eV. A pattern in errors can be seen. The signed
error is for all functionals smallest for reaction (v3) followed by reaction (v1), (v4),
and (v2) in that order. The error pattern could be due to the used experimental
references, but could also, at least in part, be due to a minor systematic error for
H2O, which is present in reactions (v2) and (v4).

Systematic errors are present for reactions (1)–(8) in the ”Gas–phase set” where
a peroxide ion is formed. The errors are nearly constant for the eight reactions
with a given functional. The average error and the standard deviation in errors is
calculated. The average error is 0.22 eV and the standard deviation in errors 0.04
eV for the RPBE functional used to determine the scaling relation offset to be 3.2
eV. Reaction (1) consistently gives a larger error than the average for reactions in
the ”Gas–phase set”. The errors for reactions (4) and (7) are consistently below
the average error. A minor error on H2O can explain this pattern, as two H2O
molecules are present on the reactant side of reaction (1), and none present in
reactions (4) and (7). One H2O molecule is present as reactant in the remaining
reactions. An error for H2O is further discussed in Section 5.6.1.

5.4.1 H2 Error

The energy of H2 calculated with the BEEF–vdW functional is in Chapter 4 and
literature166, 167 corrected by 0.09 eV to minimize CO2 reduction reaction errors.
A 0.09 eV energy correction is applied to H2 energies calculated with all three
vdW functionals. This correction decreases the errors in calculated enthalpies of
reaction shown in Table 5.2. The enthalpy is changed by 0.09 for all reactions as
one H2 molecule is formed in all reactions. The H2 energy correction will thus not
impact the error pattern.

The average error for reactions in the ”Verification set” is with the correction
applied -0.01 eV to 0.01 eV for all other functionals than the vdW–DF functional,
where it is 0.04 eV. It has previously been found that an energy correction to
H2 is not required with the RPBE functional.141, 166 Further, H2 molecules do
not appear to contribute significantly to functional–dependence within the BEEF
ensemble. The non-local van der Waals correlation is identical in the vdW–DF2
and BEEF–vdW functionals. Applying the same energy correction to H2 for these
two functionals will reduce the average error of reactions in the ”Verification set”
to the average error of non–vdW functionals. A slightly different van der Waals
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correlation is used in the vdW–DF functional. Here a slightly (≈ 0.03 eV) larger
energy correction would reduce the average ”Verification set” errors to the average
of the non–vdW functionals. All these findings point towards a systematic error
on H2 in large part caused by the non-local van der Waals correlation. As the
non-local van der Waals correlation is identical in all BEEF ensemble functionals, it
will not influence correlation line slopes. The error on H2 will displace all the van
der Waals functional points relative to the experimental point in correlation plots.
The displacement is in the direction of the correlation line if the same number of
H2 is present in the two plotted reactions. The error on H2 will cause the pure GGA
functional data points to be located slightly of or towards one side of the BEEF
ensemble correlation line in correlation plots, if the number of H2 are different in
the two plotted reactions. This can be observed, e.g., in Figure fig:chap4:scaling5.

The errors in Table 2.1 for reactions in Section 2.4 are reexamined. 3 and 2.5
H2 are present as reactants in Reactions A and Reaction B, respectively. 0.5 H2 is
present as product in the net reaction, Reaction B-A. If errors in these reactions
are solely cause by an error of 0.09 eV per H2, the errors will be, -0.27 eV, -0.23
eV and 0.05 eV. For comparison, the calculated errors are -0.28 eV, -0.27 eV, and
0.2 eV. With the findings in this and the prior chapter, it thus seems that the BEEF
ensemble standard deviations for reactions in Section 2.4 are caused primarily by
CO and H2O, whereas to errors in the reactions are caused by H2. This example
serves to show that the causes of functional–dependence and errors are not always
identical and one should be careful drawing conclusions based on limited data.

5.5 Functional–Dependence

The errors in Table 5.2 are different for the six functionals. The variation in reac-
tion enthalpies with choice of functional can be quantified with the BEEF ensemble
standard deviation, σBEEF. Standard deviations are calculated for all considered
reactions including the reactions in the ”Adsorbate set” and are reported in Table
5.3. σBEEF is similar for the reactions in the ”Gas–phase set” and the ”Adsorbate
set”. σBEEF is 0.19± 0.02 eV. The average error for the reactions in the ”Gas–phase
set” is 0.23 eV with the BEEF–vdW functional. Using the standard deviation as
an error estimate will thus give slightly underestimated errors. The calculational
uncertainty in the scaling relation offset is with the standard deviation estimated
to be 0.19 eV. The same calculational uncertainty estimate is found by Deshpande,
Kitchin and Viswanathan.195 The calculational uncertainty is not to be confused
with the previously discussed ± 0.2 eV uncertainty in the scaling relation.
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Table 5.3: The standard deviation in reaction enthalpies calculated with the BEEF
ensemble before and after an energy correction applied to the oxygen-oxygen
bond.

Reac σBEEF [eV] σBEEF, corrected [eV]
(1) 0.17 0.04
(2) 0.19 0.04
(3) 0.19 0.04
(4) 0.20 0.06
(5) 0.18 0.04
(6) 0.19 0.05
(7) 0.20 0.05
(8) 0.19 0.05
(*1) 0.19 0.05
(*2) 0.19 0.04
(*3) 0.19 0.05
(v1) 0.03 0.03
(v2) 0.05 0.05
(v3) 0.05 0.05
(v4) 0.06 0.06

The calculated standard deviation is smaller for reaction (1) and larger for
reactions (4) and (7) than for the other reactions in the ”Gas phase set” and the
”Adsorbate set”. These differences in standard deviations are in agreement with
H2O as a minor cause of functional–dependence and error. The standard devia-
tions for reactions in the ”Verification set” are significantly smaller at 0.05± 0.02 eV.
The smaller standard deviations for the reactions in the ”Verification set” further
indicates, that the energy of the oxygen-oxygen bond is functional–dependent.

An energy correction to cancel for functional–dependence cause by the oxygen-
oxygen bond is determined independently for each BEEF ensemble functional.
For a given ensemble functional f , the energy correction is c f . The correction is
calculated as

c f =
1
11 ∑

r

(
EBEEF−vdW,r − E f ,r

)
. (5.8)

r denotes the 11 reactions in the ”Gas–phase set” and ”Adsorbate set”. EBEEF−vdW,r

is the electronic energy of reaction r calculated with the self-consistent BEEF–vdW
functional. E f ,r is the electronic energy of reaction r calculated with the ensemble
functional f . The standard deviations decrease to 0.05± 0.02 eV when the energy
corrections to the oxygen-oxygen bond are applied as seen in Table 5.3. After
correction, the functional–dependence is the same for all reactions. The estimated
calculational uncertainty and the functional–dependence of the scaling relation
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offset is reduced from 0.19 eV to 0.05 eV when an energy correction is applied to
oxygen-oxygen bond in OOH*.

5.6 Error Correlation

Error correlation plots as those presented in Chapter 4 are made to confirm
that the systematic oxygen-oxygen bond error found for gas–phase species is the
major cause of functional–dependence.

Error correlation plots for reactions in the ”Gas phase set” are shown in Figure
5.1. A linear regression line is calculated with the BEEF ensemble data points.
Significant functional–dependence with only small scatter around the regression
line is observed in both Figure 5.1(a) and 5.1(b). The scatter is larger in Figure
5.1(b) than in Figure 5.1(a). This is expected as the former includes (CH3)3COOH.
This is a molecule of considerable size and complexity where many features can
potentially be minor causes to functional–dependence and generate scatter. If
the functional–dependencies in the dependent and independent reactions are
correlated 1:1, the slope of the regression line will be 1. The fitted slopes are
0.99 and 1.02. The experimental point does not fall on the line in Figure 5.1(b).
When errors versus experiment are calculated, reaction (8) will thus have slightly
different errors than the other reactions in the ”Gas–Phase set” as can be seen in
Table 5.2. However, the correlation plot reveals that the functional–dependence
is the same in this reaction as in the other reactions in the ”Gas–Phase set”. This
indicates that one of the experimental reference enthalpies used to calculate the
enthalpy of reaction (8) can be inaccurate.
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(a) Reaction (3) versus reaction (2)

(b) Reaction (8) versus reaction (3)

Figure 5.1: Correlations in calculated enthalpies of reactions in the ”Gas phase set”
in Table 5.1. Semi-transparent gray points are 2000 BEEF ensemble functionals.
A linear regression line is depicted and the slope obtained with linear regression
noted in the legend.
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5.6.1 H2O Error

Figure 5.2: Correlation in calculated enthalpies of reaction for reaction (5) versus
reaction (4) in the ”Gas phase set” in Table 5.1. Semi-transparent gray points are
2000 BEEF ensemble functionals. A linear regression line with a slope of 0.89 is
shown.

A correlation plot for reactions (4) and (5) can be seen in Figure 5.2. Reaction (4)
does not contain H2O. The linear regression line has a slope of 0.89. The slope is
different from the slope of 1 expected, if the formation of an oxygen-oxygen bond
was the only cause to functional–dependence. This is an additional indication that
H2O can be a minor cause of functional–dependence.

Correlation line slopes are determined with linear regression for all pairwise
combinations of reactions in the ”Gas phase set”. The difference from the expect
slope of 1 is shown in Figure 5.3(a).

The correlation line slopes will for pair-wise correlations with reactions (1),
(4) or (7) be different from 1.0. Correlation line slopes can be predicted with
functional–dependence on H2O also taken into consideration. The predicted
slopes, apredicted, are given by

apredicted =
1− αnH2O,y

1− αnH2O,x
. (5.9)

The number of H2O molecules in the independent and dependent reaction is
nH2O,x and nH2O,y, respectively. α is fitted to reduce the differences between fitted
and predicted slopes. α can be interpreted as the impact of H2O on the correlation
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(a) Difference between fitted slopes and a slope
of 1

(b) Difference between fitted slopes and slopes
predicted with minor functional–dependence
cause by H2O

Figure 5.3: Differences between correlation line slopes from linear regression on
BEEF ensemble functionals and expected/predicted correlation line slopes.

line slope relative to the impact of the oxygen-oxygen bond. α=-0.08 has been used
in Figure 5.3(b). The fitted and predicted slopes now agree significantly better.

5.7 Adsorbate Errors

Correlation line slopes are determined with linear regression for all pairwise
combinations of reactions in Table 5.1. The slopes are shown in Figure 5.4.

With some exceptions due to H2O as discussed above, a correlation line slope
close to 1 is found for pairwise correlations between reactions in the ”Gas phase
set” and ”Adsorbate set”. Reactions in the ”Verification set”, where an oxygen-
oxygen bond is not formed, have significantly smaller functional–dependence than
the other reactions. This causes the correlation line slopes obtained with linear
regression to approach 0 or be large (> 2), when a reaction from the ”Verification
set” is used as either dependent or independent reaction, respectively.

The functional–dependence of reactions in the ”Gas phase set”, which contain
a systematic error on the oxygen-oxygen bond, are seen to correlate with the
functional–dependence of reactions in the ”Adsorbate set”. A correlation plot for
reactions (2) and (*1) can be seen in Figure 5.5. The GGA+vdW functional points
including the BEEF ensemble functionals fall on or near a line with a fitted slope
of 1.01. The dominating cause to functional–dependence is identical in the two
reactions. The systematic error on the oxygen-oxygen bond is thus present in
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Figure 5.4: Correlation line slopes from linear regression on BEEF ensemble
functionals for reactions in Table 5.1.

Figure 5.5: Correlations in calculated enthalpies of reaction (*1) versus reaction (2)
in Table 5.1. A correlation line with a slope of 1.01 is found from linear regreesion
on the BEEF ensemble functionals (semitransparent gray points). The experimental
enthalpy of reaction (2) is marked by a red dashed line. Diamonds mark PBE and
RPBE calculations with added vdW correlation using the Tkatchenko-Scheffler
(TS) method.200
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the OOH* adsorbate. Since a reliable high accuracy experimental energy is not
available for reaction (*1), an experimental point cannot be plotted. It can not
be concluded that an energy correction to the OOH* adsorbate will result in the
correct enthalpy of reaction (*1), as other errors might be present.

The enthalpy of reaction is with the plain GGA functionals (PBE, RPBE, BLYP)
overestimated relative to the GGA+vdW functional correlation line. Such relative
overestimation is not seen for gas–phase reactions (Figures 5.1 and 5.2). Enthalpies
have been recalculated with addition of van der Waals correlation to PBE and
RPBE using the Tkatchenko-Scheffler (TS) method.200, 201 The inclusion of van
der Waals interactions does not significantly change calculated enthalpies for
gas–phase molecules. The adsorption enthalpies of OH* and OOH* are decreased
by on average 0.15 eV and 0.25 eV, respectively, with inclusion of van der Waals
interactions. The result is a net decrease of 0.1 eV in enthalpy of reactions in the
”Adsorbate set”. The RPBE+TS and PBE+TS points will with the van der Waals
stabilization move to the GGA+vdW correlation line as seen in Figure 5.5.

The systematic error on the oxygen-oxygen bond in OOH* and the lack of
van der Waals correlation in RPBE will both influence the scaling relation offset
previously found to be 3.2 eV with the RPBE functional. Energy corrections
to mitigate the systematic errors will make the energy of the scaling relation
offset significantly less sensitive to the used exchange-correlation functional. The
energy corrections can also improve the accuracy of individual calculations. The
computational uncertainty will decrease from 0.19 eV to 0.05 eV, as seen in Table
5.3. The offset value of 3.2 eV obtained with the RPBE functional will, however, not
be significantly changed. The systematic error on the oxygen-oxygen bond, which
with RPBE is 0.22 eV, and the error caused by lack of van der Waals correlation
in the RPBE functional will partly cancel. The scaling relation offset is changed
by 0.1 eV to 3.3 eV by the energy corrections of systematic errors. Considering
the ± 0.2 eV offset variations for different catalytic surfaces, the universal scaling
relation is not a significant improved by the energy corrections. The RPBE scaling
relation is thus found to be remarkably close to a scaling relation corrected for
systematic errors.

5.8 Metal Oxide Catalysts

The functional–dependence is shown to correlation for gas–phase reactions and
adsorbate reactions on metal surfaces. Functional–dependence is also examined
for an adsorbate reaction on the (110) rutile RuO2 surface. A correlation plot
similar to Figure 5.5 is made for adsorbates on RuO2 (Figure 5.6).
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Figure 5.6: Correlations in calculated enthalpies of reaction for adsorbates on
RuO2 versus reaction (2) in Table 5.1. A correlation line with slope 0.87 is found
with linear regreesion on the BEEF ensemble functionals (semitransparent gray
points). The experimental enthalpy of reaction (2) is marked by a red dashed line.

A correlation line is present, but it does not have a slope of 1.0. The slope is
with linear regression found to be 0.87. This slope could be due to a change in
the oxygen-oxygen bond in OOH* adsorbed on RuO2 in comparison to OOH*
adsorbed on the metals and the peroxide bonds in gas–phase. If the oxygen-
oxygen is changed, adsorption energies of OH* and OOH* might not follow an
adsorption energy scaling relation with a slope of 1. It is thus possible that the
scaling relation between OH* and OOH* adsorption energies is different on some
oxide catalysts. Further studies are required to determine this.

5.9 Chapter Conclusion

An systematic error on peroxide bonds is identified for gas–phase reactions.
The error is 0.22 eV with the RPBE functional. The systematic error was through
correlations in functional–dependence found to be equally present in OOH* ad-
sorbed on metal surfaces. An energy correction to mitigate the oxygen-oxygen
bond will also change the scaling relation between OH* and OOH* adsorption en-
ergies. An error caused by lack of van der Waals correlation in the RPBE functional
is, however, found to partly cancel the change in scaling relation. Considering the
± 0.2 eV variations in scaling relation offset for different catalysts, the scaling rela-
tion is not significantly changed by the energy corrections. The energy corrections
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will decrease the calculational uncertainty in scaling relation offset from from
0.19 eV to 0.05 eV. It is possible that the error correlation approach can be used
in future studies to identify metal oxides, which do not follow the OH*/OOH*
scaling relation.
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CHAPTER 6

Error Ensemble for Neural Networks

6.1 Introduction

Although error cancellations and corrections to systematic errors in GGA
functionals increase the applicability of DFT, there are still numerous cases where
sufficient computational cost, accuracy, and system complexity cannot be obtained
simultaneously. A plausible solution is to combine DFT with computationally less
expensive methods, e.g., neural networks.202–207 Neural networks require data for
training. If the neural network is fitted to data obtained with a DFT calculator,
a successfully trained neural network can be used as an emulator for the DFT
calculator for atomic structures similar to those used in training.

Possible cases where a combination of DFT and neural network calculators
could be advantageous include Nudged Elastic Band (NEB) calculations,208, 209

ionic optimization of large disordered structures, e.g. liquids, genetic algorithm
calculations, e.g. to determine the structure and composition of large nanoparticles,
and long molecular dynamics simulations.

6.2 Challenge

There are challenges associated with using neural networks as DFT emulators.
Sufficient DFT data must be available to train the neural network. Training a
neural network can be resource demanding. In addition, it can be very difficult to
estimate the accuracy of a neural network for atomic structures not in the training
data.

A committee approach can be used to estimate the accuracy of neural network
calculations. Calculations are performed with a committee consisting several
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individually trained neural networks. Discrepancies in the outputs are used to
estimate the accuracy of the calculations.202

An alternative approach inspired by the BEEF functionals64, 65, 210 is presented
here. Rather than retraining a number of independent calculators, an ensemble of
calculators can be made by perturbing the parameters of a single trained neural
network. The ensemble can be used to qualitatively identify whether the neural
network generates inaccurate results for a given atomic configuration. Forming an
ensemble by perturbing the parameters in a single trained neural network will in
many cases require significantly less computational resources than the committee
approach.

The approach share some similarities with the ”Bayes by Backprop” method,211

in which an ensemble of neural networks is formed simultaneously during training
of the neural network by assigning distributions rather than numerical values to
parameters. The here presented approach has the advantage that it can be used as
an add–on to a basic neural network when desired.

6.3 Atomistic Machine-learning Package

The Atomistic Machine-learning Package (AMP) is used to generate neural
networks able to predict energy and forces for atomic structures.202 Calculators
trained with AMP can be used with the ASE91 code. ASE makes it easy to switch
between AMP calculators and calculators from a range of different DFT codes.

Neither the AMP code nor theoretical background on machine-learning and
neural networks will be described in detail here. The interested reader is referred
to Khorshidi and Peterson202 and other literature. In the presented examples a
Gaussian descriptor has been used to convert atomic positions into ”fingerprint”
vectors as described by Behler.212 The Gaussian descriptor is a functional of
pairwise atomic distances and three-atom angles within a cut-off radius of 6.5 Å.
The fingerprints are used as input to a neural network.

A neural network consists of an input layer, a number of hidden layers, and
an output layer. Relatively small neural networks with 5 hidden layers, each
consisting of 5 nodes per element, have been used to exemplify the ensemble
method. A neural network contains a number of parameters often referred to as
weights and scalings. The parameters are optimized during a training process.
After successful training, the neural network becomes an emulator for the calcu-
lator used to generate the training data. This has the distinct advantage that it
allows seamless switching between the neural network calculator and the original
calculator.
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6.4 Ensemble Creation

There are certain parallels between the BEEF-vdW functional64 and a neural
network. They both have a fixed structure, i.e., the neural network architecture
and the exchange-correlation functional form, in which a number of parameters
are optimized to reproduce training data. An ensemble of functionals is made
around the BEEF-vdW functional by perturbing the parameters. New functionals
were included in the ensemble with a probability based on how well they were
able to reproduce reference data.

A similar approach with perturbation of parameters is taken to create an
ensemble of neural networks from a fully trained neural network. A training set
of N images is used to construct the ensemble. This training set can be identical
to the training data used to optimize the first neural network calculator, as is the
case in presented examples, but could be a subset of the training data to reduce
computational cost. The goal is to form an ensemble of neural networks, where
all neural networks perform well for atomic configurations similar to those in
the training set. This ensures low variation in energy for atomic configurations,
where the trained neural network calculator is expected to perform well. However,
sufficiently large differences are required between the neural networks in the
ensemble in order to ensure that they do not fail collectively when the main neural
network does. In such a case the ensemble energy variation will be small even
when the error is significant.

The potential energy error, ε0,i, is calculated with the AMP neural network
calculator, C0(p), for each atomic configuration, i, in the training set. p is a
list containing the parameters in the neural network, p0, p1, ..., pi, ..., pM. The
probability of obtaining the error ε0,i is determined for each individual error under
the assumption that the errors are normally distributed with µ = 0. The product of
individual error probabilities is used as a baseline probability, P0, in the formation
of the ensemble,

P0 =
N

∏
i=1

1
σ
√

2π
e−(ε2

0,i/2σ2). (6.1)

Equation (6.1) can also be written as

P0 =
1

(
σ
√

2π
)N e

−
(

N
∑

i=1
ε2

i /2σ2
)

. (6.2)



86 CHAPTER 6. ERROR ENSEMBLE FOR NEURAL NETWORKS

At this point the standard deviation, σ, of the normal distribution is unknown.
The σ that maximizes the probability for a given set of errors is equal to the RMSE
(See Appendix C) given by

σ =

√√√√ N

∑
i=1

ε2
0,i/N. (6.3)

Inserting (6.3) into (6.2),

P0 =




N

2π
N
∑

i=1
ε2

i




N/2

e−N/2. (6.4)

Once parameters are perturbed by γγγ as described in Section 6.4.1, the errors εγγγ,i

are calculated with the new calculator C(p + γγγ). This calculator is included in the
neural network error ensemble with probability

Pγγγ

P0
=




N
∑

i=1
ε2

0,i

N
∑

i=1
ε2

γγγ,i




N/2

. (6.5)

6.4.1 Parameter Perturbation

The magnitude of the proposed perturbations, γγγ, to parameters is essential
for obtaining an ensemble that can identify when the neural network is prone
to errors. If too small perturbations are suggested, the ensemble will consist of
calculators that are too similar to the main neural network calculator, C0(p), such
that the variations in ensemble energies will not increase with the error. If too
large perturbations are suggested, the probability of accepting a calculator with
perturbed parameters into the ensemble becomes low and the computational cost
advantage of forming the ensemble through perturbations of an already trained
neural network will diminish.

An appropriate magnitude of perturbations is determined for each parameter
by investigating how sensitive the acceptance probability is to changes in each
parameter.

Pi =
P[C(p + βi)]

P[C0(p)]
(6.6)

The RHS is evaluated as in Equation (6.5). The perturbation βi is applied only to
parameter pi while all other parameters are identical in the two calculators. Pi
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is a target probability. The value of βi is optimized until the target probability is
reached. This is done for all M parameters to generate a list, βββ, with appropriate
perturbation magnitudes for each parameter. Once βββ is generated, parameter
perturbations γγγ can be proposed. γγγ is a list of perturbations drawn from normal
distributions with µ = 0 and σ2 = βββ2.

The target probability, Pi, depends on the desired average acceptance probabil-
ity, Paccp, for a calculator with perturbations γγγ. Paccp is specified as a parameter
when βββ is determined. The following crude assumptions are made: (1) All param-
eters influence the acceptance probability. (2) The influence is independent for
each parameter. (3) The acceptance probability as a function of the magnitude of
individual perturbations is normally distributed. In this case

PM
i = Paccp (6.7)

The crude approximations are rarely true, and the observed average acceptance
probability when obtaining the error ensemble is rarely Paccp. However, Paccp can
be used as a parameter to tune the acceptance probability. For the error ensembles
used in the examples below, the values of Paccp are chosen such that 1 %–5 % of
proposed perturbed calculators, C(p + γγγ), are accepted into the ensemble.

If a parameter pi has a low impact on the output energy it will also have
little influence on the acceptance probability. It might not be possible to find a
value of βi which can fulfill Equation (6.6). In such cases βi = 1000× pi. Instead
of assuming the probability P[C(p + βi)] to be symmetric around βi = 0, two
different values can be found for βi; a negative β−i and a positive β+

i . γi can then
be drawn from N (0, (βi

−)2) for γi < 0 and N (0, (βi
+)2) for γi > 0.

6.5 Examples

Two examples are used to assess the applicability of the method. The standard
deviation in the calculated energies for 50 ensemble calculators, σE, has been
used to quantify the ensemble variation. Other statistical measures, e.g., the 90%
percentile, could also be used.

6.5.1 H2 Dissociation

H2 dissociation is used to exemplify the method. The energy has been calcu-
lated for 25 images with H-H distances near the bond length and 25 images with
H-H distances larger than 3 Å. A VASP calculator with the PBE functional and
default parameter values are used. The 50 images are used to train an AMP neural
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network. The neural network has 82 parameters. It is trained to a RMSE in energy
of 0.8 meV and a 2.6 meV maximum error on any image. The potential energy
is calculated for a range of H-H distances with both the neural network and the
VASP calculator. The potential energy can be seen in Figure 6.1.

Figure 6.1: Potential energies at various H-H distances calculated with VASP and
a neural network trained on images with distances marked by blue points.

The neural network is seen to perform well in the regions where the training
data are present. It gives a correct energy in the region around the minimum
and for distances above 3.0 Å. For regions with no nearby training points the
neural network and DFT calculator give very different results. The neural network
underestimates the repulsion at short distances and is different from the DFT
calculator from 1.3 Å to 2.5 Å.

An ensemble of 50 neural networks is trained. 4 % of perturbed calculators
were accepted into the ensemble. Training the independent neural network re-
quires 1500 iterations, in which the errors on all training images are calculated. A
similar number of iterations is required to construct the ensemble. The absolute
error and σE are shown in Figure 6.2. The absolute error and σE correlate. Un-
like the BEEF ensembles, the neural network error ensemble is bot a quantitative
method for error estimation. σE differs from zero when the error is zero. A baseline
ensemble variation can be established from images known to be very similar to
the training images.
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Figure 6.2: Absolute error (blue left axis) and σE (red right axis) for H2 dissociation.
The training data is marked as blue points.

6.5.2 Pd Adatoms on a Pt Surface with Vacancies

A series of molecular dynamics (MD) simulations at 500 K for adatoms on a
surface is performed. The simulations are performed at constant total energy with
a time step of 5 fs. The momenta of atoms in the initial configuration are decided
from a Boltzmann distribution. The EMT calculator, which is an integrated part of
ASE,91 is used as a computationally efficient method to obtain the training data
and to determine the accuracy.

The initial structure is shown in Figure 6.3. The surface is a 6×6 Pt(111) surface
with two vacancies in the top layer. The slab consists of two Pt layers and 4 Pd
adatoms. The positions of all Pt atoms in the surface are fixed. 500 K is a relatively
high temperature for such an unphysical system, where the Pd atoms are not able
to transfer kinetic energy to the surrounding atoms. With this structure, a relative
small neural network with 5 nodes for each element in 5 hidden layers can be used
and easily trained. Using Pd adatoms rather than Pt adatoms has the advantage
that the two types of atoms are considered separately in the inputs. A larger neural
network is required to accommodate a good description of the Pt atoms in the
surface and Pt adatoms simultaneously. Interesting trends in the selectivity of CO2

reduction to HCOOH as a function of pH have been observed for Pd deposited
on a Pt electrode.213 Such a phenomenon are very computationally demanding
to examine with DFT calculations but can possibly be addressed with a neural
network. The procedure outline in the flowchart in Figure 6.4 is followed.
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(a) Seen from top. (b) Unit cell seen from side.

Figure 6.3: The used initial atomic configuration for molecular dynamics of Pd
adatom defusion on a Pt(111) surface with vacancies.

The initial atomic configuration is added to the MD trajectory file. A MD
simulation starting with this atomic configuration has been run for 500 steps with
the EMT calculator. The images and energies obtained with EMT are stored in a
training set file and used to train the AMP neural network calculator and an error
ensemble. Training the ensemble of 50 neural networks requires approximately as
many iterations as training a single independent neural network.

The initial atomic configuration stored in the MD trajectory file is used as the
starting point for a MD simulation with the AMP neural network calculator. This
simulation runs for 200 steps. The potential energy is subsequently calculated
on the 200 images with the error ensemble. The implementation could easily be
changed such that the ensemble calculations are performed immediately after
each MD step. The potential energy is also calculated for each image with the
EMT calculator to determine the error.

The absolute error is at most 40 meV for the first 200 steps (Figure 6.5). σE is
below 0.50 meV. The 200 images are added to the MD trajectory file. We wish to
continue the MD simulation. The MD simulation is resumed from the last image
in the MD trajectory file.

Two Pd atoms come close to each other during the next ps of the MD simulation.
Such a situation has not occurred in the training set. The neural network calculator
is unable to predict a repulsion force between the two Pd atoms as they approach
each other. As a result, the two nuclei will move very close to each other. This
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Figure 6.4: Flowchart of the molecular dynamics procedure.
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Figure 6.5: Absolute error versus EMT (left, blue) and ensemble standard deviation
(right, red) for the MD simulation.

situation can be seen in Figure 6.6. This is followed by one of the Pd atoms leaving
the surface.

Figure 6.6: Atomic configuration obained in MD simulation with neural network.
The nuclei of two Pd atoms (green) are seperated by a short distance.

The short distance between the two nuclei will obviously result in a large
potential energy with the EMT calculator and a large error. The potential energy
can be seen in Figure 6.7(a). The EMT calculator predicts a large (70 eV) increase in
potential energy. The neural network predicts the potential energy to decrease as
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(a) Potential energy calculated with EMT and
the neural network.

(b) Absolute error versus EMT (left, blue) and
ensemble σE (right, red)

Figure 6.7: MD simulation from 1.00 ps to 2.00 ps.

the two Pd atoms collide. The absolute error and σE are shown in Figure 6.7(b). σE

increases at approximately the same time as a significant error begins to appear.

Figure 6.8: Absolute versus EMT (left, blue) and ensemble σE (right, red) for the
MD simulation from 1.00 ps to 1.35 ps.

Figure 6.8 shows the absolute error and σE for the MD simulation from 1.00 ps
to 1.35 ps. From 1.00 ps to 1.25 ps the error is lower than 20 meV and σE remains
approximately constant at 0.2 meV. After 1.28 ps the error begins to increase as the
two Pd atoms should begin to repel each other. σE increases with the error. σE has
a minimum at 1.25 ps. The images from 1.00 ps to 1.25 ps are stored in the MD
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trajectory file. We would like to continue the MD simulation beyond 1.25 ps. The
potential energy of the 150 images from 1.25 ps to 2.00 ps has been calculated with
EMT. The images are added to the training set and the neural network calculator
retrained. A new error ensemble is constructed for the retrained neural network
and increased training set. The MD simulation is restarted from 1.25 ps. The

Figure 6.9: Absolute versus EMT (left, blue) and ensemble σE (right, red) for the
MD simulation from 1.25 ps to 2.25 ps with retrained neural network.

Pd atoms now repel each other at shorter distances. They continue to be single
adatoms for the next 1.00 ps. The absolute error and σE are shown in Figure 6.9.
The errors are larger (up to 35 meV) with the retrained neural network. This is
likely because the neural network has been retrained to a less homogeneous set of
training images. Errors can be reduced by increasing the size of neural network.
σE fluctuates between 0.3 and 0.8 meV.

The procedure of retraining when a large standard deviation is observed can
be continued until the MD simulation has run as long as desired. When applied
in practice, the initial training set should contain atomic configurations that the
user expects to be important. The error ensemble approach should not be viewed
as a replacement for mindful selection of training data. Images with Pd dimers on
the Pt surface could have been included in the initial training data to avoid the
errors observed in this example.
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6.6 Chapter Conclusion

Neural networks trained to DFT data can be used as DFT emulators. Neu-
ral networks are useful when many similar calculations are required. An error
ensemble method has been developed. This method can determine when low
accuracy should be expected for neural network calculations. The method has
been demonstrated for H2 dissociation and a molecular dynamics simulation of
Pd adatoms on a Pt surface.
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CHAPTER 7

Conclusion and Outlook

7.1 Conclusion

The global energy supply is highly reliant on fossil fuels. Non-fossil energy
sources are required to curb CO2 emissions. In the transport sector it is particularly
difficult to replace fossil fuels, as oil derived products have large gravimetric and
volumetric energy densities. DFT can be used in research and development of
new energy carriers based on sustainable electrical energy.

It can be difficult to balance computational cost and accuracy of DFT cal-
culations for large atomic structures. The accuracy of the workhorse class of
functionals for surface science, i.e., the GGA–level functionals, is hampered by
systematic errors. Systematic errors have previously been found for metal-air
battery discharge products and CO2 reduction reactions. A systematic error is also
found in the OOH* intermediate in the oxygen reduction and oxygen evolution
reactions.

The BEEF-vdW functional and its ensemble have been used extensively. The
BEEF ensemble formalism enables calculations with 2000 different ensemble func-
tionals at low computational. Correlations in functional dependence have been
used to identify dominating systematic errors.

The dominating error in metal-air battery discharge products is identified. The
error is caused by the different oxidation state of metal elements in the metal
oxides and the bulk crystalline metals used as reference states. By using metal
chlorides as reference states the systematic errors in metal superoxides, peroxides,
and monoxides are reduced. This allows, e.g., significantly better prediction of
equilibrium potentials.

In gas–phase CO2 reduction reactions the dominating systematic error is
caused by C=O bonds. Energy corrections applied on a C=O bond basis give
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significantly smaller residual errors than the previously applied energy correc-
tions. Energy corrections can be extended to adsorbates through correlations in
functional–dependence. The improvement in energy correction approach will
change predicted limiting potentials, e.g., for CO2 reduction to formic acid.

The adsorption energy difference between the OOH* and OH* intermediates
in ORR and OER is 3.2 ± 0.2 eV on a range of catalytic surfaces. The constant
adsorption energy difference dictates a theoretical minimum overpotential of 0.4
V for both ORR and OER. Systematic errors found in gas–phase peroxides are also
present in OOH*. The change in the adsorption energy difference between OOH*
and OH* caused by the systematic error is, however, almost canceled by inclusion
of van der Waals interactions.

Neural networks can be used to emulate DFT calculations for large systems
and long simulations. An ensemble method inspired by the BEEF ensemble is
developed. The method can identify when a given neural network can no longer
be used to emulate DFT calculations.

7.2 Outlook

The neural network ensemble method is in its current form computationally
inefficient. The code has been written in an easily readable and adaptable from
with python during development. The computational efficiency can be improved
with fortran modules and by removing redundant operations. The ensemble
construction can in theory be as computationally efficiently as training an inde-
pendent neural network with AMP. Training an independent neural network is
currently several orders of magnitude faster per iteration. Once the computational
efficiency is improved the error ensemble method can be used for larger and more
advanced systems.

The methodology used to identify dominant errors in CO2 reduction reactions
and the systematic error in gas–phase peroxides can be used for other reactions.
Preliminary calculations show that systematic errors could also be present in large
organic molecules and in particular aromatic molecules. Mitigating such errors
could improve the accuracy of GGA–level DFT for heterogeneous catalysis of
large organic molecules.

The correlation approach can also be used to reveal when the functional–
dependencies for systems do not correlate as expected. This can be used to
identify subtle fundamental differences, which could otherwise not be resolved
with the accuracy of GGA–level DFT. An example is correlations in the OH*/OOH*
adsorption energy differences on metal and metal oxide surfaces. If the correlation
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is not 1:1 it could be because the oxygen-oxygen bond in OOH* is either weaker or
stronger on the metal oxide than on the metal. This type of knowledge can be used
in strategies to discover catalysts which break to OH*/OOH* scaling relation.

The main differences between the GGA–level functionals used in this thesis are
the exchange enhancement factors and whether non–local van der Waals correla-
tion is included. The exchange enhancement factors vary most when the reduced
density gradient, s, is larger than 1, as can be seen in Figure 2.2. If an obtained
electronic density at some point in space has both a significant density and s > 1,
the energy contribution from this point in space will vary more with choice of
exchange–correlation functional than energy contributions from other points in
space. The converged electronic density could thus potentially be used to identify
large functional–dependence for the energy of a given atomic structure. The spe-
cific part of an atomic structure causing the energy to be functional–dependent
could be identified with a single calculation and without use of reference data.
This method for identifying functional–dependence and thus also possible errors
remains to be tested.
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J. Hjelm, P. Norby, and T. Vegge, “Communication: The influence of CO2

poisoning on overvoltages and discharge capacity in non-aqueous Li-Air
batteries,” The Journal of Chemical Physics, vol. 140, no. 12, 2014.

[117] R. Christensen, “Investigation of systematic errors in density func-
tional theory calculations for lithium-air battery reactions,” Master’s
thesis, Technical University of Denmark, DTU, 2013. Master’s thesis,
http://findit.dtu.dk/en/catalog/2292742185.



BIBLIOGRAPHY 111

[118] J. Yan, J. S. Hummelshøj, and J. K. Nørskov, “Formation energies of group
I and II metal oxides using random phase approximation,” Phys. Rev. B,
vol. 87, p. 075207, Feb 2013.

[119] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia,
D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, “The Materials Project:
A materials genome approach to accelerating materials innovation,” APL
Materials, vol. 1, no. 1, p. 011002, 2013.

[120] M. Hellenbrandt, “The Inorganic Crystal Structure Database (ICSD)– Present
and Future,” Crystallography Reviews, vol. 10, no. 1, pp. 17–22, 2004.

[121] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, “Materials
Design and Discovery with High-Throughput Density Functional Theory:
The Open Quantum Materials Database (OQMD),” JOM, vol. 65, no. 11,
pp. 1501–1509, 2013.

[122] S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Rühl,
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“The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu-Based
Catalysts,” ChemCatChem, vol. 7, no. 7, pp. 1105–1111, 2015. Correctional
approach documented in Supporting Information.

[168] B.-T. Teng, X.-D. Wen, M. Fan, F.-M. Wu, and Y. Zhang, “Choosing a Proper
Exchange-Correlation Functional for the Computational Catalysis on Sur-
face,” Phys. Chem. Chem. Phys., vol. 16, pp. 18563–18569, 2014.

[169] F. Calle-Vallejo and M. T. M. Koper, “Theoretical Considerations on the
Electroreduction of CO to C2 Species on Cu(100) Electrodes,” Angew. Chem.,
Int. Ed., vol. 52, no. 28, pp. 7282–7285, 2013.

[170] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen,
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Appendix A

Functional Performance for Oxides

Table 1: Oxygen reference correction [eV] to minimize MAE in enthalpies of
formation of oxides in Chapter 3 for different functionals with the four different
possible reference options.

Functional O2, M ref. H2O, M ref. O2, MCly ref. H2O, MCly ref.
RPBE -0.725 -0.393 -0.012 0.320
PBE+U(-4) -0.385 -0.423 0.218 0.180
PBE -0.515 -0.323 0.068 0.260
PBE+U(4) -0.630 -0.174 -0.051 0.405
PBE+U(8) -0.776 -0.047 -0.214 0.515
PBE+U(12) -0.941 0.078 -0.407 0.612
vdW-DF -0.148 0.287 -0.015 0.420
vdW-DF2 0.181 0.576 0.245 0.640
rPW86 -0.329 -0.074 0.094 0.350
BEEF-vdW -0.370 0.031 -0.071 0.330
HSE06 -0.500 -0.303 -0.219 -0.015
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(a) vdW-DF

(b) vdW-DF2
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(a) BEEF-vdW

(b) rPW86
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(c) PBE+U (U=-4)

(d) PBE+U (U=4)
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(e) PBE+U (U=8)

(f) PBE+U (U=12)

Figure 1: Calculated enthalpies of formation per oxygen atom, ∆H°
f /O, for oxide

species versus experimental enthalpies.
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Appendix B

Scaling Relation in Free Energy

The scaling relation between OH* and OOH* adsorption energies has previ-
ously mainly been given in electronic energies adjusted to included electrolyte
stabilization of the adsorbates.93, 187–190

EOOH* = EOH* + 3.2 eV ± 0.2 eV (1)

The following is used to convert it to Gibbs free energy:

G = H − TS = Eelec + EZPE +
∫ T

0
CPdT − TS. (2)

The scaling relation in free energy will be different from that expressed in electronic
energies if inclusion of theses terms change the adsorption energy, ∆Eads of OH*
relative to that of OOH*. The used values are seen in Table 2.

EZPE and
∫ T

0 CPdT are calculated as described in Section 2.3.1. For TS, exper-
imental values have been used for the gas phase species.95 For H2O the used

Table 2: Energies [eV] used for converting electronic energies to free energies.

EZPE
∫ T

0 CPdT TS ∆Eads
H2 0.270 0.090 0.408 –
H2O 0.571 0.103 0.676 –
OH*Pt 0.338 0.064 0.128 0.252
OOH*Pt 0.44 0.095 0.204 0.263
OH*Pd 0.323 0.074 0.178 0.197
OOH*Pd 0.431 0.099 0.231 0.231
OH*Ag 0.316 0.064 0.111 0.247
OOH*Ag 0.407 0.110 0.251 0.198
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entropy is for a pressure of 0.035 bar. This is approximately the room temperature
equilibrium vapor pressure of H2O. For adsorbates, the harmonic approximation
is used to calculate

∫ T
0 CPdT and TS from vibrational energies. They are thus

given by

∫ T

0
CPdT =

harm DOF

∑
i

εi

eεi/kBT − 1
. (3)

TS = TkB

harm DOF

∑
i

[
εi

kBT(eεi/kBT − 1)
− ln

(
1− e−εi/kBT

)]
. (4)

The calculation of enthalpies is very sensitive to small errors in the low fre-
quency vibrational modes. Using the values in Table 2, the scaling relation offset
is found to change with values in the range -0.05 eV to 0.03 eV depending of the
surface. This is in reasonable agreement with a previously found change of 0.04
eV on a Co-Fe-W oxy-hydroxide surface.214

Considering the relatively small and near zero average offset change as well
as the calculational variation and uncertainty in calculations, the scaling relation
expressed in free energies is taken to be identical to that expressed in electronic
energies.
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Appendix C

Most Probable σ for Normally Distributed Errors

The product of individual probabilities for N images with error εi can be
written as

P =
N

∏
i=1

1
σ
√

2π
e−(ε2

i /2σ2) (5)

=
1

(
σ
√

2π
)N e

−
(

N
∑

i=1
ε2

i /2σ2
)

(6)

To determine the most probable standard deviation based on the errors, the total
probability is differentiated.

dP0

dσ
=

1
(

σ
√

2π
)N e

−
(

N
∑

i=1
ε2

i /2σ2
)

1
σ

(
N

∑
i=1

ε2
i /σ2 − N

)
. (7)

The maximum probability can thus be found from

0 =
N

∑
i=1

ε2
i /σ2 − N ⇔ (8)

Nσ2 =
N

∑
i=1

ε2
i ⇔ (9)

σ =

√√√√ N

∑
i=1

ε2
i /N ⇔ (10)

the RHS of (10) is the root mean squared error (RMSE).
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ABSTRACT: Density functional theory calculations can be used to gain valuable insight
into the fundamental reaction processes in metal−oxygen systems, e.g., metal−oxygen
batteries. Here, the ability of a range of different exchange-correlation functionals to
reproduce experimental enthalpies of formation for different types of alkali and alkaline
earth metal oxide species has been examined. Most examined functionals result in
significant overestimation of the stability of superoxide species compared to peroxides and
monoxides, which can result in erroneous prediction of reaction pathways. We show that if
metal chlorides are used as reference structures instead of metals, the systematic errors are
significantly reduced and functional variations decreased. Using a metal chloride reference,
where the metal atoms are in the same oxidation state as in the oxide species, will provide
a computationally inexpensive and robust approach to significantly improve accuracy. The
approach can potentially be applied to improve accuracy of calculations more generally.

■ INTRODUCTION

The potential for very large specific energy and the ability to
possibly be operated as secondary batteries make metal-air
batteries promising candidates for developing a battery
technology for personal transportation truly competitive with
fossil fuels. Some of the challenges for developing metal−air
batteries include increasing round trip efficiency, stability,
capacity, power density, and cyclability.1

Fundamental understanding of the reaction mechanisms at
an atomic scale, which is currently infeasible from experimental
methods, would be a great aid in the development of superior
materials. Calculations based on density functional theory
(DFT) have previously been applied to achieve such under-
standing.2−18 However, the level of calculational accuracy
prohibits detailed understanding of key processes in metal−air
batteries. One example is the triplet ground state of the O2
double bond, which is significantly overstabilized with common
DFT methods.19−24 This error can to some extent also be
anticipated in superoxide (O2

−) and peroxide (O2
2−) ions.25 As

a result, calculational errors are expected to vary for peroxide,
superoxide, and monoxide species; all of which are possible
reaction intermediates. Although correction schemes to the
calculated energy2,16 can mitigate some of this error, it can still
potentially cause errors in the description of charge and
discharge reactions. Although surfaces and surface reactions are
in many respects very different from bulk, the current relative
understabilization of peroxide versus superoxide may result in
intermediate reaction steps with formation of peroxide species
being artificially unfavored in comparison to intermediate
reactions with formation of superoxide species. This may result
in erroneous prediction of overpotential, limiting reaction step,
or even reaction path. As a specific example, the relative

stability of Li2O2 facets with different surface terminations
calculated by Hummelshøj, Luntz, and Nørskov2 could change
in favor of less oxygen rich surfaces.
In this work, we have applied an approach similar to those

previously used, e.g., by Hummelshøj, Luntz, and Nørskov2 as
well as Kang et al.,16 by calculating enthalpies of formation for
various oxide species and comparing these to experimental data.
It has previously been shown that significant improvements can
be made using exact exchange followed by random phase
approximation calculations.26 These calculations are, however,
computationally demanding. The purpose of this work is to
determine the performance of different and less computation-
ally demanding exchange-correlation functionals useful for
extensive studies of large complex oxide structures, e.g., to
obtain increased insight into reactions barriers in surface
reactions. A functional with reduced systematic errors in the
calculated enthalpies of formation for different bulk oxide
species is expected to give improved accuracy in the
determination of such reaction processes where oxygen changes
oxidation state.
It is possible that a correct description of localized electrons

will be decisive for reduction of systematic errors. For this
reason the ability of the functionals to localize electrons
properly in the superoxide and peroxide ions in cases where
both are present has been examined to determine the
importance of such ability for reducing systematic errors in
enthalpies of formation. The ability of a functional to describe
localized states is also among other properties important for
studying polaronic conduction.6,9
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■ THEORETICAL METHODS

The VASP code has been applied with the projector
augmented-wave (PAW) approach.27−30 In the used imple-
mentation of PBE+U,31 U is an effective parameter, Ueff = U −
J, and can in principle be negative as described by Nakamura et
al.32 Negative values of U have been included for completeness.
In general, computational parameters have been chosen such
that as little error as possible will be related to parameters other
than the exchange-correlation functional, while keeping
calculations computationally feasible. Computational details
can be found in Supporting Information.
The examined functionals include the common generalized

gradient approximation (GGA) functionals, PBE33 and
RPBE;20 van der Waals correlation functionals, vdW-DF,34

vdW-DF2,35 and BEEF-vdW;36 and addition of Hubbard U
correlation, PBE+U.31 These functionals are chosen for
examination as they have GGA type exchange and thus are
considered to be of sufficiently low computational cost for
larger future studies.
In addition, a hybrid functional, HSE06,37 with 25% exact

exchange is also considered. Hybrid functionals are known to
be able to describe localized electronic states.38 The HSE06
functional has been included in the study despite its
significantly higher computational cost in order to examine
the importance of a correct description of localized states.
From evaluation of the ability of these functionals to

reproduce experimental enthalpies of formation in a similar
manner, it is not only possible to evaluate the performance of
the functionals individually, but also to determine if increased
accuracy can be achieved without increased computational cost.
The standard GGA functionals have been chosen due to their

widespread use. Furthermore, a revised version of the PW86
functional,39 rPW86, which constitutes the exchange part of the
vdW-DF2 functional, has been included for comparison. Van
der Waals correlation functionals and Hubbard correlation are
examined as these represent relative computationally inex-
pensive methods to include additional correlation effects. The
hybrid functional is included to determine if partial exact
exchange can reduce errors and improve the description of
localized electrons.
In order to depict systematic errors in the description of

oxide, peroxide, and superoxide ions as thoroughly as possible,
the, to our knowledge, most extensive set of non-transition-
metal oxide species has been analyzed. Alkali metal (Li, Na, K,
Rb, Cs) oxide, peroxide, and superoxide species and alkaline
earth metal (Mg, Ca, Sr, Ba) oxide and peroxide species are
included. In addition, rubidium and cesium sesquioxides have
also been included. Sesquioxides, which have previously been
studied mainly for their magnetic properties,40,41 are partic-
ularly interesting as superoxide and peroxide ions are
simultaneously present in the crystal structure in the ratio
2:1. The sesquioxides are thus also useful for investigating if
proper localization of electrons can be described. Gaseous
hydrogen peroxide is also included for comparison with the
metal peroxides. An error intrinsic to the peroxide ion can be
expected to be similar in metal peroxides and hydrogen
peroxide. The use of the comprehensive set of different oxide
species mitigates individual calculational or reference data
uncertainties from skewing conclusions. As reference data
originates from different sources, we do not expect large
systematic errors to be present in the experimental reference
data.

Previously, H2O has been used for gaseous reference in place
of O2 to avoid the known energy error for gaseous O2.

3,23,42 In
this work, both references for oxygen are applied as described
below. Using the O2 reference, error cancellation can possibly
take place for the peroxide and superoxide ions. Enthalpies are
all calculated per oxygen atom in the product oxide rather than
per formula unit such that errors related to the oxygen
reference will give a constant shift versus the experimental
enthalpies for all oxide species as also discussed by Yan et al.26

The relative stability between oxide species is thus unaffected
by errors in this reference. In addition, an alternative to a
standard metal reference is also considered. Metal chlorides,
which have simple structures and are similar to oxides in terms
of metal oxidation states, have been applied as metal atom
reference using a similar approach as for the oxygen reference.
By also using this reference, it can be examined whether the
error caused by a change in the metal atom oxidation state or
the different degrees in which the oxygen−oxygen double bond
is broken in the different oxygen ions dominates the systematic
errors. The latter has been suggested previously by Kang et al.16

The expression for enthalpy of formation per oxygen ΔH′ with
O2 and metal references is

Δ ′ = − −H
y

E
x
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E E
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where E(X) is the calculated energy per formula unit of X.
Using the following expressions
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where ΔHX,exp are experimental enthalpies of formation,43 the
enthalpy of formation per oxygen using water and metal
chlorides as references is thus given as
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Notice how pure metal and O2 calculations are not used to
determine ΔHMxOy′. For H2O2,

1/2H2 replaces M, and HCl
replaces MClz.

■ RESULTS AND DISCUSSION
Using pure metal as reference, the discrepancy between
experimental and calculated enthalpies of formation is, as
previous studies also conclude,16,26 found to depend on the
oxidation state of the oxygen, i.e., O2−, O2

−, or O2
2−.

Experimental and calculated enthalpies of formation are
compared for PBE in Figure 1. For similar figures for other
functionals, see Supporting Information.
The previously observed behavior of calculated enthalpies of

formation larger than the experimental values and the trend of
increasing calculated stability relative to experimental values for
monoxides, peroxides, and superoxides2,16,25,26 is recognized for
most functionals using the metal as reference. The error for
sesquioxides falls in between that of superoxides and peroxides
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as expected from their composition. With metal chlorides as
reference, a different trend is observed. Now the differences
between experiments and calculations are much more similar
for superoxides, sesquioxides, and peroxides. For PBE, using O2
as oxygen reference gives close to no error for these.
Monoxides are calculated to be on average 0.26 eV/O more
stable than the experimental values. This can be understood
from cancellation of the error associated with the oxygen−
oxygen bond.25 A similar trend is observed for other examined
functionals, i.e. RPBE, vdW-DF, rPW86, and BEEF-vdW (see
Supporting Information).
The performance of each examined functional has been

evaluated quantitatively using both metal and metal chlorides
(Figure 2) as reference. Here, the oxygen reference has been
fitted to minimize the mean absolute error (MAE). Using the
metal reference, the MAE is between 0.1 and 0.4 eV and highly
functional dependent. For the metal chloride reference, the
MAE is in general significantly reduced, e.g., from 0.25 to 0.12
eV for the RPBE functional. The MAE also displays less
variation from one functional to another. The same conclusions
are reached using RMSE as measure of performance.
The MAE with corrected oxygen reference is a good measure

of how consistently each functional is reproducing experimental
data for the data set as one entity, i.e., how well a functional
performs with a possible constant error on the oxygen reference
accounted for. To reveal systematic errors within the data set
and quantify these, the difference in average error for alkali
peroxides and superoxides is compared (Figure 2, red bars).
This reveals whether one oxide type systematically displays
different errors than another. A similar comparison is made
between alkali and alkaline earth monoxide and peroxide
species (Figure 2, blue bars). The depicted average error
differences are equivalent to the average error per oxygen atom
for the oxidation reaction of superoxide to peroxide (red bars)
and peroxide to monoxide (blue bars).

For the peroxide−superoxide comparison using the metal
reference, the average difference is generally found to be larger
than 0.2 eV with the exceptions of the vdW-DF2 and HSE06
functionals, where differences are 0.09 and 0.19 eV,
respectively. It is noted that applying a Hubbard U will in all
cases increase this error difference. With metal chlorides as
reference, much smaller and less functional dependent
differences between the superoxides and peroxides are
observed, with only the BEEF-vdW functional displaying a
difference slightly larger than 0.20 eV. In a comparison of the
peroxides with monoxides using the metal reference, the results
are highly dependent on the functional with peroxides
calculated to be more stable relative to experiment for all
functionals except vdW-DF2. With the metal chloride
reference, this pattern has been reversed, such that monoxides
are now more stable compared to experiment.
The smallest difference between using the metal and metal

chloride reference is observed for the van der Waals functionals.
The vdW-DF2 functional is the best performing functional with
the metal reference. This suggests that van der Waals
interactions are important for a consistent description of
oxide and metal structures. It has previously been found that
inclusion of van der Waals interactions can significantly
influence description of alkali and alkaline earth metals.30

While the HSE06 functional only performs moderately well
with the metal reference, it outperforms the less computation-
ally demanding functionals with the metal chloride reference
and only gives rise to systematic errors on the order of 0.05 eV

Figure 1. Experimental versus calculated enthalpies of formation using
various references. The dashed blue line illustrates offset for
monoxides using metal chloride and O2 references.

Figure 2. Performance of the functionals to reproduce experimental
enthalpies of formation. The mean absolute error, MAE, (left black
bars), has been calculated with the oxygen reference fitted to minimize
MAE. Red bars (middle) show the average difference in error between
alkali peroxides and alkali superoxides. Blue bars (right) similarly
compare all metal peroxides with the monoxides. (A) Calculations
using metal as reference. (B) Calculations using metal chlorides as
reference.
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per oxygen. With a water reference, further fitting of the oxygen
reference to minimize the MAE is not required. The errors for
gaseous hydrogen peroxide and the bulk metal peroxides are
similar, when the metal chloride reference is used. This further
confirms the metal chlorides to be the better choice of
reference. The better performance of the metal chloride
reference can be viewed as error cancellation when comparing
metal atoms of similar oxidation state. Delocalized conduction
electrons are present in the metals where only relatively
confined electronic orbitals are present around the metal ions
in both metal oxides and metal chlorides.
The approach of using a reference with the metal atoms in

similar oxidation state as in the system of interest is potentially
able to generally improve accuracy of computationally
inexpensive functionals. Multiple references, e.g., metal
chlorides and pure metals, could be used simultaneously if
metal atoms of the same element are present in different
oxidation states.
The ensemble capability of the BEEF-vdW functional can be

used to examine the robustness of results against functional
changes at a low computational cost.36 With the electron
density obtained with the BEEF-vdW functional, non-self-
consistent calculations are performed for a set of predefined
ensemble functionals generated through perturbations of the
BEEF-vdW functional. The ensemble has been created such
that the ensemble standard deviation will represent the general
uncertainty of a calculation. We refer to Wellendorff et al.36 for
further details regarding the ensemble. The functional depend-
ence is here quantified using the standard deviation in
calculated enthalpies of formation for an ensemble of 2000
functionals.
The ensemble standard deviations per oxygen atom are

shown in Figure 3. In general, the metal references will result in

significantly larger standard deviations than the metal chloride
references. Thus, using metal chlorides as a reference will result
in a smaller difference between functionals in accordance with
Figure 2. Further, the standard deviations when using a metal
reference (blue bars in Figure 3) will to a good approximation
scale with the metal to oxygen ratio. This supports that much of
the systematic error in the calculation of enthalpies of
formation can be attributed to the metal reference. Using
metal chlorides as a reference, the standard deviations shown
on Figure 3 (red bars) are significantly reduced. For peroxides
and superoxides they are in most cases between 0.15 and 0.20
eV, which is in the range of expected standard deviations using
the BEEF-vdW ensemble method.36 The standard deviations
are approximately twice as large for the monoxides. With
stoichiometry taken into account, the standard deviations are
similar per formula unit using the metal chloride reference.
Localization of electrons can be obtained using the HSE06

functional for sesquioxides (see Supporting Information). For
rubidium sesquioxide, the situation with properly localized
electrons can be expressed as Rb+4(O2

−)2O2
2−; i.e., two distinct

superoxide ions and one peroxide ion are present for every four
rubidium ions. Superoxide and peroxide ions are clearly
distinguishable with significantly different bonding distances,
1.32 Å for O2

− and 1.49 Å for O2
2−. The difference can also

clearly be seen from a Bader charge analysis44 and the magnetic
moments, as oxygen atoms in superoxide and peroxide ions
have nonzero and zero magnetic moment, respectively.
With the HSE06 optimized geometry and wave functions, it

was possible to obtain proper localization of electrons with PBE
+U. With ion bond lengths and local magnetic moments as
measure, the degree of localization changes gradually from U =
6 to U = 10, where proper localization of electrons is obtained.
For all other examined functionals it was not possible to obtain
proper localization of the electrons. Although, PBE+U with
large values of U can describe localization, this does not reduce
systematic errors. Similarly, HSE06, which can also describe
localization, does not reproduce experimental enthalpies of
formation better than the GGA-exchange functionals with a
metal reference. On the basis of this it is improbable that the
correct description of electron localization alone is decisive for
reduction of systematic errors.

■ CONCLUSIONS

The ability to reproduce experimental enthalpies of formation
for bulk alkali and alkaline earth oxide, peroxide, superoxide,
and sesquioxide species has been examined for a large range of
exchange-correlation functionals. With metal crystal structures
as reference, systematic errors were observed as reported
previously.2,16 These were shown to be highly dependent on
functional choice. However, when using metal chlorides for
reference, it is found that calculated enthalpies are less
functional dependent and the systematic error is significantly
reduced. This shows that the systematic errors are dominated
by changes in metal atom oxidation state rather than difference
in oxygen ions. This insight provides a computationally fast and
robust approach to improve calculational accuracy of the
examined metal oxide species at the GGA level by using metal
chlorides as reference species. The approach of adapting a
metal reference with similar metal atom oxidation state as the
structure of interest rather than a bulk metal reference can
potentially improve calculational accuracy for a wider range of
materials.

Figure 3. Standard deviations in the BEEF-vdW ensemble for
calculation of enthalpy of formation per oxygen atom using metal
(top, blue) and metal chloride (bottom, red) references.
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Abstract 
 

The NaO2 system holds great potential as a low cost, high energy density battery, but under 

normal operating conditions, the discharge is limited to sodium superoxide (NaO2), whereas the 

high capacity peroxide (Na2O2) remains elusive. Here, we apply density functional theory 

calculations with an improved error-correction scheme to determine equilibrium potentials and free 

energies as a function of temperature for the different phases of NaO2 and Na2O2, identifying NaO2 

as the thermodynamically preferred discharge product up to ~120 K, after which Na2O2 is 

thermodynamically preferred. We also investigate the reaction mechanisms and resulting 

electrochemical overpotentials on stepped surfaces of the NaO2 and Na2O2 systems, showing low 

overpotentials for NaO2 formation (dis = 0.14 V) and depletion (cha = 0.19 V), whereas the 

overpotentials for Na2O2 formation (dis= 1.05 V) and depletion (cha = 0.67 V) are found to be 

prohibitively high. These findings are in good agreement with experimental data on the 

thermodynamic properties of the NaxO2 species and provide a kinetic explanation for why NaO2 is 

the main discharge product in NaO2 batteries under normal operating conditions.  
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I. Introduction 

In the last decade, significant efforts have been paid to the development of next generation battery 

technologies. In particular metalair batteries (e.g. Li, Na, Mg, Al, Fe and ZnO2 batteries) in 

either aqueous or non-aqueous (aprotic) electrolytes have gained significant attention,1,2 especially 

for its possible use in electric vehicles. The cost of commercially available Liion batteries is 

generally too high and the energy storage capacity too low to solve the increasing demands on 

batteries for sustainable transportation 3. Metalair batteries have high theoretical specific energies 

since the technology, once mature, would apply metal as the anode and oxygen gas from air on 

the cathode side. The discharge products are generally peroxides and/or superoxides, depending 

on the experimental conditions and cell components used in the system. The oxygen reduction 

(ORR) and oxygen evolution reaction (OER) are the two main reactions taking place reversibly 

during discharge and charge, respectively. However, metalair battery technologies are limited by 

a number of drawbacks and challenges, which must be resolved before becoming commercially 

viable, i.e. low accessible capacity (sudden death), poor electronic conductivity and rechargeability, 

limited chemical and electrochemical stability of electrodes 4,5, electrolytes 6 and salts 7, and high 

sensitivity to air impurities such as water and CO2. 
8–13 

Among the rechargeable metal-oxygen battery systems reported so far, the Li−O2 couple offers 

higher equilibrium potential (~2.96 V) and specific capacity (~3,842 mAh/g), which is comparable to 

the gravimetric energy density of gasoline 14 and nearly an order of magnitude higher than current 

Liion batteries. 15 However, in practice, non-aqueous LiO2 batteries suffer from poor 

rechargeability and high overpotentials, particularly for the charging process. 16,17Although the 

capacity and equilibrium potential is lower, the Na−O2 battery system displays certain advantages 

over the Li−O2 battery and similar batteries. The non-aqueous secondary Na−O2 battery operates 

at low dis/charge overpotentials (< 200 mV) even at higher current densities (0.2 mA/cm2) and 

yields high electrical energy efficiency (90 %), which can be observed over multiple cycles. 18–22 

The theoretical specific capacity of the Na−O2 battery is ~1,500 mAh/g 20, when NaO2 is deposited 

on carbon nanotubes. If, however, the peroxide, Na2O2, could be formed reversibly as for Li−O2, it 

would be possible to increase the specific capacity to ~2,800 mAh/g. 23  

Hartmann et al. 19,24, McCloskey et al. 25 and Tarascon et al.  26 have reported sodium superoxide 

(NaO2) as the dominant reaction product.  Whereas, Kim et al. 23, Li et al. 27, Lie et al. 28 and Hu et 

al. 29 have reported sodium peroxide (Na2O2) as the dominant discharge product. Poor 

rechargeability (< 10 cycles) and high charging overpotential (> 1.3 V) is exhibited when Na2O2 is 

formed at the cathode at room temperature, which are similar to the drawbacks observed in the 
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Li−O2 system. However, sufficiently lower dis/charge overpotentials and higher rechargeability are 

observed when NaO2 is formed. 20  Moreover, it has been also argued on the basis of density 

functional theory (DFT) calculations that the reason for NaO2 formation over Na2O2 could be due to 

the poor conduction and differences in conduction mechanism 30, solvents31 and the presence of 

proton sources like water. 32  

Scanning electron microscopy (SEM) images have revealed that highly ordered cubic NaO2 

particles are grown at the carbon cathode surface. 19, 24, 25 A computational study by Kang et al. 

reports that NaO2 is more stable at the nanoscale level (up to about 5 nm), whereas bulk Na2O2 is 

thermodynamically stable at standard conditions (in agreement with experimental observations). 

For electrochemical growth during battery discharge, the size of the NaO2 particles is, however, 

found in the micrometer range (1-50 m).19 The observed stoichiometry of the particles can 

therefore not be explained solely from the effect of the differences in surface energy, nor the effect 

of e.g. increased oxygen partial pressure or temperature, which may lead to the formation of 

somewhat larger NaO2 particles (up to 20 nm based on the calculations by Kang et al. 
33). This is 

further supported by the reported effect of the discharge rate on the sizes and distribution of NaO2 

on carbon nanotubes, where relatively small sizes (~50500 nm) with a wide distribution are 

observed at low rate and large sizes (~2 m) with a narrow distribution are observed at higher 

rates. 34    

Regarding the NaO2 charge/discharge mechanism, Hartmann et al. have reported computational 

and experimental work, which indicates that large amounts of NaO2 can be formed at the cathode. 

This is due to high solubility of NaO2 in the liquid electrolyte, i.e. forming superoxide ions (O2
−), 

followed by precipitation in the presence of sodium ions to form solid sodium superoxide. 

Therefore, the discharge mechanism may also follow a solution-precipitation mechanism in 

addition to the direct electrochemical growth of NaO2 investigated here.26,35 

The reaction for non-aqueous NaO2 cathode electrochemistry using ether based electrolytes like 

diglyme, is shown below. 25  

                           Na+ + e- + O2  NaO2,                        E
o = 2.27 V vs. Na/Na+ 

Here, we apply DFT calculations to investigate the thermodynamic and kinetic properties of the 

materials and reactions in NaO2 batteries. We will discuss the thermodynamic stability and kinetic 

overpotentials for the growth/depletion pathways of NaO2 and Na2O2 on selected stepped model 

surfaces, i.e. (001) for NaO2 and (11̅00) for Na2O2 and the equilibrium potential of different phases 

of bulk NaO2 and Na2O2 as a function of temperature. The stepped surfaces are likely to give 
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accessible barriers and favorable nucleation sites for the minimum overpotential mechanism, as it 

has been reported in case of Li−O2. 
36   

 

It should be noted that the correct description of the thermodynamics of reactions involving 

superoxide vs. peroxide species (i.e. to describe the relative stability of NaO2 vs. Na2O2 at finite 

temperatures) is computationally challenging, mainly due to the precession of misaligned 

superoxide species in the high temperature pyrite phase of NaO2 (Fm3m above 231 K) relative to 

the low temperature pyrite phase (𝑃𝑎3̅, between 200 K and 231 K) (see Figure 1). Such effects 

and energetics are generally not accounted for in standard density functional theory (DFT) 

calculations, making it highly challenging to calculate the stability at finite temperatures. Systematic 

work on the modeling of alkali superoxides and peroxides using DFT+U and hybrid functional 

calculations is currently ongoing, but in the following, we describe a comparatively simple GGA-

level computational approach using metal chloride reference energies 37, which yields excellent 

agreement with the experimental observations.   

II. COMPUTATIONAL METHODOLOGY 
 

Calculations are performed using the PBE (Perdew-Burke-Ernzerhof) 38 exchange correlation 

functional as implemented in the GPAW package 39 using the Atomic Simulation Environment 

(ASE). 40 A real space grid basis set on the projector augmented wave (PAW) function method with 

frozen core approximation has been used with 0.18 Å grid point spacing. 41,42 Dipole corrections 

have been applied in the direction perpendicular to the slab surface and ionic optimization 

converged to a maximum residual force of 0.03 eV/Å. The NaO2 growth/depletion mechanism is 

studied on the stepped (001) surface of NaO2 in the Pa3̅ space group, thus neglecting the 

precession of the superoxide ions. We have used the ferromagnetic phase of NaO2 in all the 

calculations (i.e., the initial magnetic moment value of each O atom in NaO2 was set to 0.5 since 

previous theoretical studies reported it to be more stable than the antiferromagnetic phase by 15 

meV per formula unit. 30 The k-points are sampled with a 2 × 4 × 1 Monkhorst-Pack mesh and the 

supercell consists of 60-72 atoms. A vacuum layer of 21.2 Å is used. A stepped (11̅00) surface of 

Na2O2 (space group P6̅2m) with a super cell consisting of a 88-96 atoms slab with a 20 Å vacuum 

layer is used to study the Na2O2 growth/depletion mechanisms. This surface termination has been 

extensively studied in pristine form as well as in the presence of defects like steps and kinks for 

LiO2. 
10,36,43–46 The k-points are sampled with a 2 × 2 × 1 Monkhorst-Pack mesh.  
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Figure 1: a) Pnnm NaO2 orthorhombic structure (Marcasite) with lattice constants a = 4.26 Å, b = 5.44 Å, c 

= 3.36 Å. b) Face-centered cubic 𝑷𝒂𝟑̅ NaO2 structure (Pyrite) with lattice constant a = 5.523 Å. This 

phase occurs between 200 K and 231 K. Above 231 K the superoxide ions hop freely between the eight 

equivalent (111) orientations in a cube. Thus, the space group becomes Fm3m above 231 K. c) 

Hexagonal Na2O2 structure space group of 𝑷𝟔̅𝟐𝒎 with lattice constants of a = 6.39 Å, b = 6.39 Å and c = 

4.6 Å. Color: Yellow (Sodium), Red (Oxygen). 

The computational sodium electrode approach is used in the free energy calculations, analogous to 

the lithium electrode approach used for Liair batteries. 43,47 At zero potential, U = 0, the bulk Na 

anode and Na ions in solution are assumed to be in equilibrium (Na  Na+ + e-). The free energy 

change of the reaction is shifted by –neU at an applied bias, where n is the number of electrons 

transferred.  

At neutral bias, all reaction steps are downhill in free energy, but at a given potential, the free 

energy difference changes for each step calculated as,  

                            ΔGi,U = ΔGi   eU                                                                                           (1) 

The limiting discharge potential (Udischarge) is the lowest free energy step, ΔGi,min, along the 

reaction path, as this the first step to becomes uphill at a given potential. Likewise, the largest free 

energy step, ΔGi,max, that is last to become downhill for the reverse charging reaction giving the 

limited charge potential (Ucharge): 

                           Udischarge = min[ΔGi/e]  and  Ucharge = max[ΔGi/e]                                          (2) 

The calculated effective equilibrium potential can be obtained as Uo = ΔG/ne.  

Large systematic errors in the DFT description of superoxides, peroxides and monoxides have 

previously been documented by various groups and accounted for in various ways. 36,33,37 Here, we 
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adopt the recent approach of Christensen et al. 37 using NaCl as an indirect reference for sodium in 

order to better account for the oxidation state of Na in the NaO2 system. In line with Christensen 

et al. 37 an energy correction is applied to O2 (g), which is notoriously difficult to describe correctly 

with DFT. With the computational approach used here, the optimal energy correction of O2 (g) is 

0.33 eV. The approach is chosen as it reduces the systematic errors significantly, while allowing 

consistent calculation of surfaces with oxide species in different oxidation states required for 

studying reactions in NaO2 batteries. 

III. RESULTS AND DISCUSSIONS 
 

3.1. Enthalpy of Formation and Equilibrium Potential 

To evaluate the accuracy of the calculations, bulk enthalpies of formation are compared with 

experiments 48 as seen in Table 1. The calculated formation enthalpies are converted to free 

energies at standard conditions (Hform  Gform) using experimental entropies 48 and the 

equilibrium potentials are then calculated.  As an alternative to using the experimental entropies, 

we also determine the equilibrium potentials using the simple approximation that the entropy can 

be described without explicitly considering the vibrational contributions to the entropy, as they are 

similar in O2 (g) and the O2
- and O2

2- ions.  As the superoxide ions are known to rotate easily in the 

NaO2 pyrite phase at room temperature, the rotational degrees of freedom will to a good 

approximation also be similar for O2 (g) and the superoxide ions. This is not the case for Na2O2, 

where the orientation of peroxide ions is well-defined at all relevant temperatures. This simple 

approximation has obvious flaws, e.g. will it not be able to capture the low temperature structural 

changes of NaO2 due to differences in the rotational degrees of freedom of superoxide ions in 

different phases. It does, however, have the advantage of being simple to calculate with standard 

thermodynamic approaches. Comparison with experiment also proves the simple assumption to be 

reasonable (see Figure 2). It can also be seen that the experimental data for NaO2 at 0 K is 

identical to the calculated result for the low temperature Pnnm structure.  
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Figure 2: DFT-based equilibrium potentials predicted with the approximation that the temperature 

dependence is only due to the translational and rotational degrees of freedom for O2 (g). This simple 

approximation is in good agreement with experimental data and reproduces relatively small free energy 

differences between Na2O2 and NaO2.  

 

As seen in Table 1, the difference in equilibrium potential for NaO2 and Na2O2 at standard 

conditions is less than 0.1 V for the experimental results, the calculated enthalpies with 

experimental entropies, and the purely theoretical calculations with approximated entropies. This 

indicates that required overpotentials in the electrochemical reactions to Na2O2 and NaO2 could be 

decisive for the product selectivity. 
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Table 1: Calculations for Na2O2 and the pyrite phase of NaO2 are compared with experimental values 
48

 in 

parentheses. Equilibrium potentials are calculated both using experimental entropies (U0, exp ΔS)  and with a 

simple approximation to temperature dependence (U0, approx. ΔS).  

 ΔfH° [eV] 

(ΔfH°exp) 

U0, exp. ΔS [V] 

(U0, exp) 

U0, approx. ΔS [V] 

𝑷𝒂𝟑̅ NaO2 -2.74 (-2.71) -2.30 (-2.27) -2.29 

𝑷𝟔̅𝟐𝒎 Na2O2 -5.29 (-5.32) -2.32 (-2.33) -2.39 

 

3.2. NaO2 Growth/Depletion Mechanisms on Stepped Surfaces 

The thermochemical properties of the four steps in the NaO2 growth/depletion are investigated on a 

stepped (001) NaO2 surface. The method does not include specific effects of the electrolyte or 

possible kinetic barriers associated with the transport of the ions/molecules. DFT calculations can 

determine the preferred pathways for the discharge/charge mechanisms by comparing the free 

energies of the adsorbed species at every single step. The stepped surface is constructed from the 

bulk crystal in a specific direction in such a way that four sodium superoxide species are added 

(removed) at the step site for the complete pathways of growth (depletion).  

 

In general, the NaO2 growth/depletion mechanisms on stepped (001) NaO2 surface follows a four 

step mechanism; each step involving the deposition (depletion) of either Na* or NaO2* species 

(electrochemical steps) or O2 species (chemical step) and both are taken into account to generate 

all likely pathways. The thermodynamically favorable path, i.e. the lowest overpotential path is 

selected. Thus, as shown in Figure 3, the first step for the (001) surface is the adsorption of NaO2 

at the bottom left site. This is the potential limiting step for discharge (-2.20 V) and is followed by 

adsorption of the second NaO2 species at the bottom right site with a binding energy of -2.42 eV; 

the third and the fourth NaO2 species are adsorbed by -2.22 eV and -2.54 eV, respectively. The 

fourth step is the limiting charge potential step and the growth mechanism is completed by forming 

4 sodium superoxide species with equilibrium potential of -2.34 eV. The charging or desorption 

process follows the same reaction steps applied in reverse order (right to left), as shown in Figure 

3 and Figure 4.  
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The studies of the growth/depletion mechanisms on the stepped NaO2 surface revealed that the 

fundamental overpotentials for both charge and discharge are very low, which has also been 

observed experimentally <sup>25</sup><sup>25</sup><sup>25</sup><sup>25</sup>25 A 

discharge (charge) overpotential of dis = 0.14 V (cha = 0.19 V) for the growth (depletion) 

mechanism is observed. The calculated equilibrium potential at the surface (Uo,surf 2.34 V) is 

marginally higher than the calculated bulk value of Uo,bulk = 2.30 V, which is expectedly a 

consequence of the size of the supercell. 

All pathways involving a purely thermochemical step for O2 ab/desorption are found to be inactive, 

due to high overpotential for the electrochemical steps (> 1.0 V).  

 

Figure 3: A 4 step growth/desorption mechanism on the (001) step surface of NaO2. In a) and b) NaO2 

species adsorbs to the bottom site. In c) and d) NaO2 adsorbs to the top site to complete the 4 formula units 

NaO2 reaction mechanism. Color: Na (purple) and O (red). Highlighted deposited ions: Na (yellow) and O 

(green). 

a b 

c d 
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3.3. Na2O2 Growth/Depletion Mechanisms on Stepped (𝟏𝟏̅𝟎𝟎) Surfaces 

 

The Na2O2 discharge and charge pathways are studied on a stepped (11̅00) Na2O2 surface. 

Several pathways consisting of both chemical and electrochemical species have been 

investigated. As illustrated in Figure 5 and 6, the preferred growth (depletion) mechanism is found 

to be the path that has four electrochemical species, i.e. either Na* or NaO2*, adsorbed to the step 

surface successively to grow (deplete) two formula units of Na2O2. This path becomes possible at 

minimum discharge (charge) overpotential of dis = 1.05 V (cha = 0.67 V). The first step is 

adsorption of Na* species (Figure 5a) with a binding energy of 2.67 eV and followed by the addition 

of NaO2* (Figure 5b) with a binding energy of 3.00 eV, which is the potential limiting step for the 

charge process. The last two steps are additions of NaO2* and Na*, respectively, with binding 

energies of 2.36 eV and 1.28 eV (the last step is the potential limiting step for discharge), as shown 

Figure 4: The calculated free energy diagram for NaO2 growth/desorption mechanisms on stepped (001) 

NaO2 surface. 
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in Figures 5c and 5d. The full growth mechanism is accomplished with the growth of two formula 

units of Na2O2 at the step surface with an equilibrium potential of U0 = 2.32 V. The calculated 

equilibrium potential is here in agreement with that calculated for bulk Na2O2. The charging 

process follows the same reaction steps as the discharge but in reverse order (from d to a in 

Figure 5 and right to left in Figure 6). All pathways involving a purely thermochemical step are 

found to be inactive due to high overpotential for the electrochemical steps (> 1.5 V). The identified 

growth mechanism is similar to the one previously reported for Li2O2, 
10,43 but the fundamental 

overpotentials for charge/discharge of Na2O2 are found to be substantially higher than those for 

Li2O2. 

We thus find the overpotentials for growth (depletion) of Na2O2 of 1.05 V (0.67 V) to be prohibitively 

large compared to the low overpotential mechanism on NaO2 (0.14 V and 0.19 V) and this 

therefore effectively blocks the formation of the thermodynamically preferred Na2O2, explaining 

why NaO2 is the primary discharge product at standard conditions, as observed experimentally.  

 

 

 

 

5 

 

 

 

 

 

 

 

 

a b 

c d 

Figure 5: A 4 step Na2O2 growth pathway on a stepped Na2O2 (11̅00) surface during discharge. a) Na b) 

NaO2 c) NaO2 and d) Na consecutively adsorbs to the step surface to complete the growth of 2 formula units 

of Na2O2. Color: Na (purple) and O (red). Highlighted deposited ions: Na (yellow) and O (green). 
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Figure 6: Calculated free energy diagrams for a four step Na2O2 growth mechanism on a stepped 

(11̅00) Na2O2 surface, resulting in discharge (charge) overpotential of dis = 1.05 V (cha = 0.67 V).  

IV. CONCLUSIONS 
 

The equilibrium potential and free energy as a function of temperature for different phases of NaO2 

and Na2O2, as well as the discharge and charge pathway mechanisms on selected stepped 

surfaces have been investigated computationally using DFT calculations. Using a new metal 

chloride reference scheme, which accounts for the change in the oxidation state of the metal 

atoms, and a simple approximation to the entropic contributions, it is possible to describe the free 

energies of formation as a function of temperature for NaO2 and Na2O2 in good agreement with 

experimental data. The experimentally found reaction product at room temperature, i.e. NaO2, is 

slightly less thermodynamically stable than the expected Na2O2 product, but we show that the 

formation and depletion of Na2O2 is limited by large discharge and charge overpotentials of 
dis

= 

1.05 V and 
cha

 = 0.67 V), respectively. In contrast, the overpotentials for formation and 

dissolution of NaO2 are small (
dis

= 0.14 V and 
cha

= 0.19 V). The large difference in 

U0 = 2.2 V  

dis = 0.3 V  

ch = 0.5 V  
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overpotentials, compared to the small difference of 0.10 eV in equilibrium potential can explain how 

epitaxial growth during discharge of a NaO2 battery results in the formation of sodium superoxide 

(NaO2) as a dominant discharge product over the thermodynamically more stable Na2O2 in non-

aqueous NaO2 batteries as observed in experiments.  

Finally, it is important to note that the effect of the solvent is not included in the present analysis 

and, e.g. the solvent-solute interaction and/or the interaction with water impurities will likely also 

influence the product formation.  
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Using CO2 reduction reactions as examples, we present a widely

applicable method for identifying the main source of errors in

density functional theory (DFT) calculations. The method has

broad applications for error correction in DFT calculations in

general, as it relies on the dependence of the applied exchange–

correlation functional on the reaction energies rather than on

errors versus the experimental data. As a result, improved energy

corrections can now be determined for both gas phase and

adsorbed reaction species, particularly interesting within

heterogeneous catalysis. We show that for the CO2 reduction

reactions, the main source of error is associated with the CO

bonds and not the typically energy corrected OCO backbone.

Electroreduction of CO2 using electricity from renewable
sources has the potential to supply carbon neutral
transportation fuels, but improved electrocatalysts are
needed. Although research within this area has been
conducted for decades,1,2 current challenges include low
efficiency, product selectivity and stability of the catalysts. In
recent years, significant progress in understanding catalytic
activity from fundamental reaction mechanisms has been
made for a variety of different heterogeneous electrocatalysts
using density functional theory (DFT).3,4 Within DFT, several
levels of calculational complexity in describing the exchange–
correlation functional exist. Although higher level methods
can be used in some cases, computational cost will often
limit treatment of the exchange energy to be performed using
the Generalized Gradient Approximation (GGA) for extensive
studies of heterogeneous catalysis.5 For this reason, this work
focuses solely on improving the accuracy of calculations
relying on functionals with GGA type exchange.

The RPBE6 and BEEF-vdW7 exchange–correlation func-
tionals have been developed for catalysis studies and showed
to be well-suited for determining chemisorption energies.8,9

However, experimental gas phase reaction enthalpies for CO2

reduction to products of interest can, in many cases, not be
reproduced within an error of 0.5 eV per CO2, due to signifi-
cant systematic errors.10–12 These inaccuracies can prevent,
e.g., accurate determination of product selectivity. To remain
at a sufficiently low level of computational cost while improv-
ing accuracy, energy corrections have previously been applied
in a fitting procedure, where the mean absolute error (MAE)
versus experimental data has been minimized for a given set
of reactions.10–12 As a result, energy corrections were previ-
ously applied to molecules containing an oxygen–carbon–oxy-
gen (OCO) backbone structure, e.g. CO2 and HCOOH, for the
RPBE functional10 with an additional correction on the H2

molecule for the BEEF-vdW functional.11,12 This correction
scheme has subsequently been widely accepted and applied
in a large number of high impact papers.10,13,14

The minimized MAE can vary by as little as 0.01 eV for dif-
ferent choices of corrections,11 making the choice of correc-
tions based solely on the minimized MAE vulnerable to both
minor calculational and experimental inaccuracies. Here, we
present a new and robust approach for identification of the
specific molecules or molecular components requiring an
energy correction to obtain the needed accuracy. Here, we
demonstrate it for CO2 reduction reactions, but the approach
is generally applicable, e.g. in studies of heterogeneous catal-
ysis of organic compounds or oxygen reduction.

Although inferior to RPBE and BEEF-vdW for determina-
tion of chemisorption energies,8,9 we find the PBE func-
tional,15 which is also frequently used within heterogeneous
catalysis, able to reproduce most experimental gas phase
enthalpies of reaction for CO2 reduction reactions with suffi-
cient accuracy. The PBE and RPBE functionals differ only in
enhancement factor in the GGA exchange energy.6 If the cal-
culated energy of one specific molecule or molecular compo-
nent is particularly sensitive towards changes in the
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enhancement factor, it will dominate the ability to reproduce
the experimental enthalpies of reaction. Sensitivity towards
changes in the enhancement factor can be probed by calcu-
lating the enthalpies of reaction with GGA type functionals
with different enhancement factors. The enhancement factor
in the BEEF-vdW functional is composed of a sum of Legen-
dre polynomials with expansion coefficients determined in a
machine learning process to obtain the best GGA functional
for a range of databases containing different data such as
enthalpies of formation, chemisorption energies, reaction
barriers and van der Waals interactions. Intrinsic to the func-
tional is an ensemble of functionals with perturbed expan-
sion coefficients. Perturbations are included in the ensemble
of functionals based on how well the perturbed functional
performs and a “temperature” parameter such that one stan-
dard deviation in a quantity calculated using the generated
ensemble of functionals corresponds to the predicted calcula-
tional error.7 The use of ensemble functionals is a computa-
tionally very efficient method for calculating enthalpies of
formation with a large number of functionals with different
enhancement factors. Here, 2000 different ensemble func-
tionals have been examined. The vdW-DF16 and vdW-DF217

functionals are also examined for comparison as they contain
vdW correlation similar to that of BEEF-vdW.

Here, the reaction enthalpy is calculated for a range of dif-
ferent CO2 reduction reactions listed in Table 1. The gas
phase reactions in the ‘primary set’ are identical to those
examined previously for establishing general energy
corrections.†10–12 In addition to the primary set, a ‘verifica-
tion set’ is also introduced. With the exception of the reduc-
tion to dimethyl ether, i.e. reaction (15), the verification set
consists of reactions with product molecules containing car-
bon–oxygen double bonds (CO). The stoichiometry of all
gas phase reactions is normalized to one CO2 reactant mole-
cule. This is not required but this simplifies data treatment.

In addition to gas phase molecules, functional depen-
dent errors can, in contrast to previously used correctional
approaches, also be examined for surface adsorbates. A highly
important example – carboxyl (COOH*) adsorption on a Cu
(111) surface – is presented. By comparing the functional
dependence of a surface reaction with a similar gas phase
reaction, it can be determined whether a similar correction
should be applied for the two. To obtain functional depen-
dence comparable to the gas phase, adsorbed methyl (CH3*)
has been used as the reactant as both COOH* and CH3*
bond to a single copper atom through a carbon atom with 3
additional covalent bonds. The compared reactions, (*1a)
and (*1b), can be seen in Table 1.

All calculations have been performed using the Vienna ab
initio Simulation Package (VASP)18–21 and the Atomic Simula-
tion Environment (ASE),22 which has been used to generate
the ensembles.†

Examples of correlated reaction enthalpies can be seen in
Fig. 1. The observed linear correlations indicate that the func-
tional dependence is dominated by a single molecule or
molecular component, or by linearly dependent molecules or

molecular components. By assuming a specific molecule or
molecular component to dominate the functional depen-
dence, it is possible to predict the slope by dividing the
change in the number of occurrences in the y-axis reaction
with the change in the x-axis reaction as exemplified below.
The predicted slope can subsequently be validated against
the observed slope. Assuming molecules with an oxygen–car-
bon–oxygen (OCO) backbone structure to be the major source
of functional dependence and, thus, error,10–12 the slope for
the reactions in Fig. 1a is predicted to be 1.0 (−1/−1) since in
both reactions an OCO backbone is present in the CO2 reac-
tant, but not in the product, giving a change of −1 in both
reactions. This fits well with the observed slope.

Fig. 1b and c show the functional dependence approxi-
mately following lines with a slope of 0.5. This disagrees with
the general assumption that the OCO backbone dominates
the functional dependence, as this assumption predicts a
slope of 0 for Fig. 1b, since the OCO backbone is present in
both reactant and product (HCOOH), giving a change of 0 in
the y-axis reaction (0/−1), and a slope of 1.0 for Fig. 1c, which
is similar to Fig. 1a in terms of changes in the OCO back-
bones. The observed slopes do, however, fit with the CO
bonds dominating the functional dependence. In both reac-
tions plotted on the y-axis, one of the double bonds in the
CO2 reactant is preserved in the product (HCOOH and H2CO)
and both are broken in reaction (3) plotted on the x-axis,
resulting in a predicted slope of 0.5 (−1/−2). In a more in-
depth quantitative analysis of the total reaction set, one can
find the slopes obtained through linear regression to agree

Table 1 Reactions examined
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very well with the slopes predicted under the assumption that
the CO bonds dominate the functional dependence.†

Fig. 1d compares the two reactions in the adsorbate set.
They are observed to show the same functional dependence,
and COOH* (carboxyl) should thus be corrected with the
same energy correction as HCOOH (formic acid). From the
geometry and bond lengths, this is expected as the CO
bond appears to be present in COOH*.† Dispersion forces
included in the vdW functionals have an effect on the adsor-
bate reactions as the vdW functionals appear to be on a lower
but parallel line to the non-vdW functionals, although too
few non-vdW data points are present for definite conclusions.
The offset does not impact the analysis of the functional
dependence.

Having identified the CO bond to be dominating the
functional dependence, energy corrections are applied based
on the number of CO bonds in a molecule rather than to
molecules with an OCO backbone. The magnitude of the
energy correction is then determined by minimizing the MAE
versus the experimental data for the primary set of reactions
shown in Table 1 in a procedure identical to the one previ-
ously applied for determining corrections using the same
reference data.10–12 To make a direct comparison with the
previously used corrections for the BEEF-vdW functional, cor-
rections are also applied to the H2 molecules. A comparison
of corrections can be seen in Fig. 2. For both types of

corrections (CO and OCO), the optimal magnitudes of cor-
rections are 0.10 eV for the H2 molecules and 0.29 eV for CO2

(0.15 eV per CO bond). These are similar although not
identical to what have been found previously (0.09 eV and
0.33 eV,11 and 0.09 eV and 0.41 eV (ref. 12)). The magnitude
of corrections is the same within 0.01 eV per bond if the reac-
tions in the verification set are included in the minimization
of the MAE. By applying a correction to CO instead of
OCO, a significant reduction in post-correction errors are
observed for the reactions, where the main product either
has the OCO backbone but with only one CO bond or has
the CO bond without the OCO backbone structure (see
Fig. 2). This is seen to be the case in both the primary and
the verification sets. This trend is also observed for the RPBE
functional. In the case of the reduction to HCOOH (reaction
(3)), the post-correction error in the calculations with BEEF-
vdW changes from 0.13 eV to −0.02 eV. Previously, errors of
0.15 eV11 and 0.17 eV12 were obtained for this reaction using
the OCO backbone and H2 corrected BEEF-vdW functional.
For HCOOCH3 (reaction (10)) and CH2O (reaction (11)), sig-
nificantly different experimental gas phase enthalpies of for-
mation are available in the NIST database, which is used as
the source for all reference data.23 The previously used exper-
imental value for HCOOCH3 is by far the highest in the data-
base and is extrapolated from the liquid phase enthalpy of
formation.23 Using one of the three alternative experimental

Fig. 1 Correlations in the calculated enthalpies of reaction (eV) for
various reactions (a–d). Functional dependence on energies is
observed to correlate linearly for different reactions including surface
reactions (d). Blue lines are drawn with predicted slopes equal to the
ratio of broken/formed CO bonds in the compared reactions. Larger
points are self-consistent calculations using different functionals,
crosses (red line in d) are the experimental reference values,23 and the
smaller grey semi-transparent points represent the values for the 2000
BEEF-ensemble functionals.

Fig. 2 Comparison of remaining errors after correction of the OCO
backbone (above) or the CO bonds (below). Error bars show one
standard deviation for the corrected ensemble. The grey points mark
the error with alternative experimental references present in the NIST
database.23
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references in the NIST database, the error for reaction (10)
follows the trend of the other reactions and can be decreased
to a few meV after the CO correction.

The effect of changing the correction scheme and applying
corrections to the adsorbate can be very significant as exem-
plified by the reduction of COOH* to HCOOH. Computed
using the BEEF-vdW functional, the reaction energy changes
significantly from having a free energy change of −0.82 eV
with OCO corrections, to −1.11 eV with CO corrections.

Optimal magnitudes of corrections have been determined
for all ensemble functionals. The standard deviation is then
calculated for the ensemble of corrected functionals and plot-
ted as error bars in Fig. 2. This can be used as a measure of
how well the correction performs for the class of functionals.
The ensemble standard deviation is generally decreased with
the CO correction for reactions where it applies differently
than the OCO correction, e.g. for reaction (2), the reduction
to formic acid. With the CO corrections, the standard devi-
ation for reaction (0) is significantly larger than for the other
reactions. As this is the only depicted reaction including CO,
the relatively large standard deviation suggests that the
energy of CO could also be functional dependent and require
correction on the order of 0.2 eV with certain functionals. CO
has previously been found to require corrections using the
PBE functional.9,24 A functional dependent error is also
found for carbon–carbon (CC) double bonds, as described
in the ESI.† It is, however, of minor importance for the reac-
tions considered here.

The demonstrated method is not limited to the presented
case or catalytic reactions and can be used to identify a domi-
nating, error-causing structure, molecule or molecular compo-
nent in other cases, where functional dependence is observed.

For the different GGA functionals, the difference in the
enhancement factor will be small for low density gradients
and increase as the density gradient increases.7 This can
explain why functional dependence is most notable for the
CO bond, the CC bond, and the CO molecule, as they
probably give rise to the largest density gradients for the spe-
cies in the reactions. In the future, the reduced density gradi-
ent could potentially be used directly for qualitative identifi-
cation of molecules or molecular components with large
functional dependence.

Acknowledgements

The authors acknowledge the support from the Catalysis for
Sustainable Energy (CASE) initiative funded by The Danish
Agency for Science, Technology and Innovation.

References

1 Y. Hori, Modern Aspects of Electrochemistry, Springer, New
York, 2008, vol. 42, pp. 89–189.

2 J. Qiao, Y. Liu, F. Hong and J. Zhang, Chem. Soc. Rev.,
2014, 43, 631–675.

3 Y. Li, S. H. Chan and Q. Sun, Nanoscale, 2015, 7, 8663–8683.
4 S. Lysgaard, J. S. G. Myrdal, H. A. Hansen and T. Vegge,

Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/C5CP00298B.
5 M. K. Sabbe, M.-F. Reyniers and K. Reuter, Catal. Sci.

Technol., 2012, 2, 2010–2024.
6 B. Hammer, L. B. Hansen and J. K. Nørskov, Phys. Rev. B:

Condens. Matter Mater. Phys., 1999, 59, 7413–7421.
7 J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold,

D. D. Landis, J. K. Nørskov, T. Bligaard and K. W. Jacobsen,
Phys. Rev. B: Condens. Matter Mater. Phys., 2012, 85, 235149.

8 B.-T. Teng, X.-D. Wen, M. Fan, F.-M. Wu and Y. Zhang, Phys.
Chem. Chem. Phys., 2014, 16, 18563–18569.

9 J. Wellendorff, T. L. Silbaugh, D. Garcia-Pintos, J. K.
Nørskov, T. Bligaard, F. Studt and C. T. Campbell, Surf. Sci.,
2015, 640, 36–44.

10 A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and
J. K. Nørskov, Energy Environ. Sci., 2010, 3, 1311–1315.

11 F. Studt, F. Abild-Pedersen, J. B. Varley and J. K. Nørskov,
Catal. Lett., 2013, 143, 71–73.

12 F. Studt, M. Behrens, E. L. Kunkes, N. Thomas, S. Zander, A.
Tarasov, J. Schumann, E. Frei, J. B. Varley, F. Abild-Pedersen,
J. K. Nørskov and R. Schlögl, ChemCatChem, 2015, 7,
1105–1111.

13 A. A. Peterson and J. K. Nørskov, J. Phys. Chem. Lett., 2012, 3,
251–258.

14 M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F.
Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep,
M. Tovar, R. W. Fischer, J. K. Nørskov and R. Schlögl,
Science, 2012, 336, 893–897.

15 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1996, 77, 3865–3868.

16 M. Dion, H. Rydberg, E. Schröder, D. C. Langreth and B. I.
Lundqvist, Phys. Rev. Lett., 2004, 92, 246401.

17 K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist and D. C.
Langreth, Phys. Rev. B: Condens. Matter Mater. Phys.,
2010, 82, 081101.

18 G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter
Mater. Phys., 1996, 54, 11169–11186.

19 G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter
Mater. Phys., 1999, 59, 1758–1775.

20 P. E. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys.,
1994, 50, 17953–17979.

21 J. C. V. Klimeš, D. R. Bowler and A. Michaelides, Phys. Rev.
B: Condens. Matter Mater. Phys., 2011, 83, 195131.

22 S. Bahn and K. W. Jacobsen, Comput. Sci. Eng., 2002, 4,
56–66.

23 NIST Chemistry WebBook, NIST Standard Reference Database
Number 69, ed. P. J. Linstrom and W. G. Mallard, National
Institute of Standards and Technology, 2005.

24 F. Calle-Vallejo and M. T. M. Koper, Angew. Chem., Int. Ed.,
2013, 52, 7282–7285.

Catalysis Science & Technology Communication

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Se

pt
em

be
r 

20
15

. D
ow

nl
oa

de
d 

on
 2

5/
10

/2
01

6 
21

:1
3:

47
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online



PAPER IV 163

Paper IV

Theoretical Insight into the Trends that Guide the Electrochemical Reduction of
Carbon Dioxide to Formic Acid
Jong Suk Yoo, Rune Christensen, Tejs Vegge, Jens K. Nørskov, and Felix Studt
ChemSusChem, 2016, 9 (4), pp 358–363

The author of this thesis applied energy corrections to data.





Theoretical Insight into the Trends that Guide the
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Introduction

Modern society relies heavily on the utilization of fossil fuels to
supply our high energy needs, particularly in the transporta-

tion sector. With the growing world population and rising
standards of living, there has been an increased stress on our

environment as expressed in, for example, elevated concentra-

tions of CO2 in the atmosphere. To curb CO2 emissions and
reduce our dependence on fossil fuels, we must turn to renew-

able energy sources such as wind, solar, and hydro power.[1–3]

For the transportation sector, this accentuates the need to de-

velop alternatives to the internal combustion engine. Hydro-
gen fuel cells offer such an alternative, generating electricity
without pollution. However, several practical issues prevent

the large-scale implementation of hydrogen fuel cells. One of
the most critical ones is perhaps the storage of hydrogen in
high volumetric and gravimetric capacities.[3–5]

Recently, formic acid (HCOOH) has been suggested as a suit-
able hydrogen storage material because it has a high volumet-

ric (53.4 g L¢1) and a moderate gravimetric (4.4 wt %) hydrogen
storage capacity in ambient conditions.[6, 7] Hydrogen stored in

HCOOH can be released on demand by selectively decompos-

ing HCOOH into CO2 and H2 in the presence of a suitable cata-
lyst.[8–10] Alternatively, HCOOH can be employed directly to

generate electricity (and CO2) using direct formic acid fuel
cells.[11, 12] However, these formic-acid-based technological solu-

tions for hydrogen storage inevitably emit large quantities of
CO2. To achieve a CO2-neutral hydrogen storage cycle, we must
develop a sustainable process of producing HCOOH from

CO2.[13–16] Nowadays, HCOOH is mostly produced from CO and
CH3OH,[17] as its formation from CO2 and hydrogen is relatively
endothermic [see Equation (1)] .

CO2 þ H2 ! HCOOH DH298 K ¼ þ14:8 kJ mol¢1 ð1Þ

HCOOH production via the electrochemical reduction (elec-
troreduction) of CO2 is therefore attracting widespread interest,

as the endothermicity of a catalytic reaction is often greatly al-
leviated by applying an electrochemical potential rather than

thermal energy. In addition, the electroreduction of CO2 to
HCOOH is only a 2-proton/electron reaction that consists of

two elementary steps. As a consequence, there should be no

theoretical limit towards achieving catalyst materials with small
overpotentials (see Supporting Information, Figure S1), as op-

posed to, for example, the 4-proton/electron O2 oxygen reduc-
tion/evolution,[18, 19] the 6-proton/electron reduction of N2 to

NH3,[20, 21] and the 8-proton/electron reduction of CO2 to CH4.[22]

From a theoretical point of view, it should be less of a problem

The electrochemical reduction (electroreduction) of CO2 to

formic acid (HCOOH) and its competing reactions, that is, the

electroreduction of CO2 to CO and the hydrogen evolution re-
action (HER), on twenty-seven different metal surfaces have

been investigated using density functional theory (DFT) calcu-
lations. Owing to a strong linear correlation between the free

energies of COOH* and H*, it seems highly unlikely that the
electroreduction of CO2 to HCOOH via the COOH* intermediate

occurs without a large fraction of the current going to HER. On
the other hand, the selective electroreduction of CO2 to

HCOOH seems plausible if the reaction occurs via the HCOO*

intermediate, as there is little correlation between the free en-

ergies of HCOO* and H*. Lead and silver surfaces are found to
be the most promising monometallic catalysts showing high

faradaic efficiencies for the electroreduction of CO2 to HCOOH
with small overpotentials. Our methodology is widely applica-

ble, not only to metal surfaces, but also to other classes of ma-
terials enabling the computational search for electrocatalysts
for CO2 reduction to HCOOH.
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to find good catalyst materials for the electroreduction of CO2

to HCOOH, compared to other multi-proton/electron products.

Previously, Hori et al. conducted experiments of electrore-
duction of CO2 on various metal electrodes in 0.1 m of KHCO3

(pH 6.8), and the electrodes were classified according to their
product selectivities.[23] Lead, mercury, thallium, indium, tin,
cadmium, and bismuth electrodes produced mostly formate,
whereas gold, silver, zinc, palladium, and gallium electrodes
produced mostly CO gas and nickel, iron, platinum, and titani-

um electrodes were selective to hydrogen production.[23] How-
ever, it is important to note that the experiments were con-
ducted at very negative potentials (¢0.91~¢1.63 V vs. SHE), as
the product distribution of a metal electrode can change

greatly depending on the applied potential.[24, 25] On copper
electrodes, for example, CH4 and C2H4 were the major products

of CO2 reduction at potentials more negative than ¢0.95 V vs.

SHE, whereas hydrogen was dominantly produced at poten-
tials more positive than ¢0.95 V vs. SHE.[26–28]

In this study, theoretical methods will outline important
characteristics of catalyst materials that are selective for the

electroreduction of CO2 to HCOOH. The computational hydro-
gen electrode model[18] is used to obtain the theoretical limit-

ing potentials for the electroreduction of CO2 to HCOOH on

twenty-seven different metal surfaces, and they will be com-
pared to those for two competing reactions, namely electrore-

duction of CO2 to CO, and the hydrogen evolution reaction
(HER). By examining the thermochemical trends among differ-

ent metal surfaces, we will discuss the necessary requirements
for a catalyst material to be active and selective for the electro-

reduction of CO2 to HCOOH, purely based on thermodynamic

arguments. Because the requirements of an ideal catalyst ma-
terial are obtained at the thermodynamic limit (i.e. , by compar-

ing the limiting potentials for different electrocatalytic reac-
tions) they may not be sufficient to pinpoint only the best cat-

alyst materials. More sufficient requirements can only be ach-
ieved by considering the electrochemical activation barriers.

However, it is important to mention that the descriptors ob-

tained purely based on the thermodynamics of electrocatalytic
reactions (i.e. , without considering the kinetics) have been

shown to represent the catalytic trends in electroreduction of
CO2 to CH4 and CH3OH on transition-metal surfaces reasonably
well.[29–31]

Results and Discussion

First, we start by identifying relevant reaction pathways for the

electroreduction of CO2 and the HER. As shown in Scheme 1,
the transfer of a first proton/electron pair to CO2 leads to a for-

mation of either the formate (HCOO*) or carboxyl (COOH*)
species. Both HCOO* and COOH* can be reduced to HCOOH

upon the transfer of a second proton/electron pair. However,

COOH* can also be reduced to CO (+ H2O), whereas HCOO*
can also be reduced to biformate (H2COO*), which competes

with HCOOH formation. Both CO* and H2COO* are often
quoted to be reaction intermediates for other multi-proton/

electron CO2 reduction reactions, for example, CO2 to CH4,
C2H6, or CH3OH.[28–34] Therefore, we limit this study to consider

only the 2-proton/electron CO2 reduction reactions (i.e. , CO2 to

HCOOH, and that to CO) because the limiting potential for

a full multi-proton/electron CO2 reduction reaction cannot be
less negative than that for the electroreduction of CO2 to CO*

(or H2COO*). Finally, we consider another 2-proton/electron re-
duction reaction that is known to be parasitic in many electro-

chemical reduction reactions, namely the HER, which occurs
via the H* intermediate (see Scheme 1).

In order to examine the preference of a catalyst surface to-

wards the three different products (HCOOH, CO, and H2), we
need to compare the free energies of different reaction inter-

mediates. However, these free energies are often not inde-
pendent due to scaling relations between similar classes of ad-

sorbates.[35–37] For example, Figure 1 shows the scaling relation
between the free energies of COOH* and H* on various metal

surfaces (see Supporting Information, Figures S2–S5 for other

scaling relations). There is a scaling relation between the free
energies of COOH* and H*, although non-transition-metals,

such as zinc, cadmium, lead, thallium, and tin, tend to deviate

Scheme 1. Reaction pathways for the electroreduction of CO2 to different
products (top), and the competing hydrogen evolution reaction (bottom).

Figure 1. Scaling between the free energies of COOH* and H* on various
transition-metal (blue circles) and non-transition-metal (red circles) surfaces.
The free energies are given relative to gas-phase H2 and CO2, and the blue
line indicates the scaling relation obtained when only the transition-metal
surfaces have been used for the linear fit. The error bars are obtained using
the ensemble of the BEEF-vdW exchange-correlation functionals (see Sup-
porting Information, Table S2 for values). This ensemble has also been used
to calculate the errors on the slope and y-intercept of the scaling line
shown in blue.
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from the scaling relation obtained by considering only the
transition-metals. Interestingly, both the close-packed (fcc(111),

hcp(0001) and bcc(110)) and stepped (fcc(211), hcp(1010) and
bcc(100)) facets fall nearly on the same scaling line. On the

other hand, the scaling relation is found to be extremely weak
(or absent) between the free energies of HCOO* and H* (see

Figure S2). The free energies of HCOO* scale well with only
those species that bind to the surface through oxygen atoms

(e.g. , H2COO*, as shown in Figure S3).[10] Thus, we conclude

that it is more plausible to alter the free energies of HCOO*
and H* independently than those of COOH* and H* by choos-
ing different catalyst materials.

If the electroreduction of CO2 to HCOOH occurs via the

COOH* intermediate on a metal surface, the HER will always
be a strongly competing sidereaction as the equilibrium poten-

tial for HER (0 V vs. RHE) is more positive than that for CO2 to

HCOOH (¢0.17 V vs. RHE). Because the chemisorption energies
for COOH* and H* are strongly linearly correlated, it would be

difficult to find metals or alloys that can selectively produce
HCOOH via the COOH* intermediate. Although lead, thallium,

zinc, tin, and cadmium surfaces (see red circles in Figure 1) are
not fully obeying the scaling relation shown in Figure 1, their

DGCOOH values are extremely positive, indicating large overpo-

tentials for the electroreduction of CO2 to HCOOH via the
COOH* intermediate. The selective production of HCOOH rela-

tive to HER seems much more plausible if the electroreduction
of CO2 to HCOOH occurs via the HCOO* intermediate for the

following reasons: (1) the scaling relation between DGH and
DGHCOO is extremely weak, thus there is a good chance of find-

ing a metal surface whose DGHCOO is close to the equilibrium

potential for HCOOH production, while its DGH is far from the
equilibrium potential for HER (see Figure S2); (2) the reduction

of HCOO* to H2COO* instead of HCOOH is not favorable on
most metal surfaces because H2COO* is rather high in free

energy compared to HCOOH (see Supporting Information,
Table S1 for values). Thus, in order to obtain a high faradaic ef-
ficiency for the electroreduction of CO2 to HCOOH, one would

need to find a catalyst material that produces HCOOH via the
HCOO* intermediate, while binding H* very weakly (to sup-
press HER).

Figure 2 shows the theoretical limiting potentials for electro-

reduction of CO2 to HCOOH via the lowest energy pathway
(i.e. , COOH* vs. HCOO* pathway; see Supporting Information,

Figure S6) vs. HER on various metal surfaces. The figure shows
that there are many transition-metal surfaces whose limiting
potential for HER is higher (more positive) than the equilibrium
potential for the electroreduction of CO2 to HCOOH (¢0.17 V
vs. RHE), thus showing a strong preference for HER compared

to electroreduction of CO2 to HCOOH. On the other hand,
there are only a few surfaces (e.g. , silver and lead) whose over-

potential for electroreduction of CO2 to HCOOH is small while

that for HER is relatively large. However, we also need to check
whether these metal surfaces prefer electroreduction of CO2 to

HCOOH over another competing reaction, namely the electro-
reduction of CO2 to CO.

In this study, the theoretical limiting potentials for the elec-
troreduction of CO2 to CO on various metal surfaces are ob-

tained based on the assumption that gas-phase CO is pro-

duced via only the electrochemical steps shown in Scheme 1
(i.e. , CO2 + H+ + e¢!COOH* + H+ + e¢!CO + H2O). This ap-

proach excludes the pathway where gas-phase CO is produced
via thermal desorption of CO*, which can be important for

metals that bind CO* very strongly (i.e. , nickel, palladium, plati-
num, rhodium, and titanium; see Supporting Information,

Table S7 for the binding energies of CO* on various surfaces).

However, under ambient reaction conditions these surfaces
have a large coverage of CO*, and adsorbate-adsorbate inter-

actions of CO* as well as between CO* and other intermedi-
ates have to be considered in order to more accurately deter-

mine their catalytic performance. This is beyond the scope of
the current study, thus we choose to make the assumption

above, while keeping in mind that the limiting potential for
the electroreduction of CO2 to CO is not well defined on some
reactive metal surfaces.

Figure 3 shows a comparison of the theoretical limiting po-
tentials for all three 2-proton/electron reduction reactions on

various metal surfaces (see also Figures S4 and S5 for separate
comparisons). Note that the equilibrium potential (¢0.12 V vs.

RHE) for the electroreduction of CO2 to CO is in between that

for HER (0 V vs. RHE) and that for the electroreduction of CO2

to HCOOH (¢0.17 V vs. RHE). Therefore, from a thermodynamic

point of view, HCOOH production is not only disadvantageous
vs. HER but also vs. CO production. We find that silver, lead,

cadmium, thallium, and tin favor the electroreduction of CO2

to HCOOH, whereas platinum, rhodium, nickel, and titanium

Figure 2. Theoretical limiting potentials (at pH 0) for the electroreduction of
CO2 to HCOOH vs. those for HER. The black dashed lines show the theoreti-
cal equilibrium potentials for electro-reduction of CO2 to HCOOH and HER.
The diagonal red line shows where the potential for HCOOH production
equals that for HER, and the blue and red areas indicate where UHCOOH<UH2

and UHCOOH>UH2
, respectively. Various transition-metal and non-transition-

metal surfaces are depicted in blue and red, respectively. All metal surfaces
have been calculated according to their corresponding crystal structures.
The flat fcc(111), hcp(0001) and bcc(110) surfaces are shown as circles where-
as the stepped fcc(211), hcp(1010) and bcc(100) surfaces are shown as
squares. Full circles and squares indicate that formic acid production pro-
ceeds via the carboxyl intermediate whereas empty circles and squares indi-
cate that it proceeds via the formate intermediate.
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favor HER, and palladium, gold, copper, and zinc do not partic-
ularly favor any one reaction. These results are generally in

agreement with electrochemical measurements performed by

Hori et al. ,[42] although we find one major exception: the silver
surfaces. However, one has to keep in mind that Hori et al.

measured the performance of the electrodes at a high current
density, hence at a very negative potential, and the faradaic ef-

ficiencies toward different products can change profoundly
with the applied potential, as has been shown for copper elec-

trodes.[26–28] We will discuss this in more detail below.

As can be seen from Figure 3, silver and lead surfaces are
found to be the most promising monometallic surfaces for the

electroreduction of CO2 to HCOOH. Cadmium, thallium and tin
surfaces are also found to be selective towards HCOOH pro-

duction, but require relatively high overpotentials (0.2~0.4 V).
Lead has indeed been shown to be a good catalyst for HCOOH
production from CO2 with faradaic efficiencies of >90 % at po-

tentials (U) between ¢0.7~¢1.0 V vs. RHE.[38] This is in good
agreement with the results of our calculations, that only
¢0.17 V vs. RHE is required for the electroreduction of CO2 to
HCOOH on lead, whereas a minimum of ¢1.22 or ¢0.95 V vs.

RHE is required for the electroreduction of CO2 to CO or HER,
respectively, indicating that only HCOOH is produced under

the experimental conditions of U =¢0.7~¢1.0 V vs. RHE. Previ-
ously, tin electrodes were also shown to exhibit steady-state
faradaic efficiencies of 5~10 % for CO formation, 19 % for
HCOOH formation, with the remainder of the current going to
HER at U =¢0.7 V vs. RHE.[39] This is also in good agreement

with the results of our calculations, that only HCOOH forma-
tion and HER are feasible under the experimental condition of

U =¢0.7 V vs. RHE, because the calculated limiting potentials

for the electroreduction of CO2 to HCOOH and HER on Sn(001)
are ¢0.50 V and ¢0.58 V vs. RHE (more positive than ¢0.7 vs.

RHE), respectively, whereas that for the electroreduction of CO2

to CO is ¢0.81 V vs. RHE (more negative than ¢0.7 V).

Although we predict silver to be a good catalyst for the elec-
troreduction of CO2 to HCOOH with an overpotential of ~0.1 V,

silver is experimentally found to produce mostly CO with
minor amounts of HCOOH at U =¢0.6~¢1.4 V vs. RHE.[25, 40]

This apparent discrepancy to our prediction can have multiple

reasons: (1) the product selectivity of an electrocatalyst can
change significantly with the applied potential, but electroca-

talytic measurements are often performed with large overpo-
tentials in order to obtain sufficient current ;[23–25, 40, 41] (2) the ki-

netics for the reduction of CO2 to HCOOH on silver may be
slow, thus changing the reaction pathway. For example, al-

though we predict the electroreduction of CO2 to HCOOH to

occur via HCOO* rather than COOH* on silver surfaces (see
Supporting Information, Figure S6 and then Table S5 for

values), the proton transfer to the carbon atom of CO2 to form
HCOO* may be kinetically hindered compared to the transfer

to the oxygen atom of CO2 to form COOH*, as shown to be
the case for Pt(111).[42] If this is indeed the case for silver as
well, the limiting potential for the electroreduction of CO2 to

HCOOH (now via COOH*) would be approximately ¢1.0 V vs.
RHE, which is comparable to the limiting potential for the elec-
troreduction of CO2 to CO.

We just discussed the possibility of the electroreduction of

CO2 to HCOOH being more difficult on some surfaces due to
kinetic reasons. The same argument may also apply regarding

the limiting potentials of H2 and CO formation. In this case, H2

and CO formation would be kinetically hindered, thus favoring
the formation of HCOOH. This may be the case for some palla-

dium-based catalysts. Recently, it was found that Pd¢H[43] and
Pd¢Pt nanoparticles[44, 45] can reduce CO2 to HCOOH with high

faradaic efficiencies (80~100 %) at U =¢0.2~¢0.4 V vs. RHE
(note how the onset potential matches well with our limiting

potential for HCOOH formation on palladium surfaces; see

Figure 3 and Supporting Information, Table S3). This is partially
in disagreement with our analysis of palladium as an active

catalyst for both, the electroreduction of CO2 to HCOOH and
HER (Figure 3). It is likely that HER is kinetically suppressed on

Pd¢H and Pd¢Pt catalysts despite its low limiting potential.
A more detailed analysis of the selectivities of these catalysts

Figure 3. Theoretical limiting potentials (at pH 0) for the electroreduction of CO2 to formic acid (blue bars), HER (red bars) and the electroreduction of CO2 to
CO (orange bars) on various metal surfaces (see Supporting Information, Table S3 for values). The blue and orange lines indicate theoretical equilibrium po-
tentials for formic acid (¢0.17 V vs. RHE) and carbon monoxide (¢0.12 V vs. RHE), respectively (note that the equilibrium potential for hydrogen evolution is
0 V vs. RHE). The blue boxes highlight silver and lead surfaces because they show promising properties, that is, low overpotentials and high faradaic efficien-
cies for the electroreduction of CO2 to formic acid. The error bars are obtained using the BEEF–vdW ensemble of exchange-correlation functionals (see Sup-
porting Information, Table S4 for values).
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can only be obtained when electrochemical barriers are also
considered. However, calculations of electrochemical barriers

are considerably more complex, and approximation schemes
need to be developed in order to quickly obtain electrochemi-

cal barriers for a large range of systems.[46]

Lastly, we turn our discussion to another important require-

ment a surface must satisfy in order to provide the free sites
needed for the reduction of CO2 in aqueous solutions. Figure 4
shows the coverages of oxygen and hydroxyl species on metal

surfaces as a function of the applied potential and DGO of the

corresponding metal surface (see Supporting Information,
Table S6 for values). Since the free energies of O* and OH*
scale linearly with each other (Figure S6),[35] one can derive the

surface coverage as a function of DGO only. It can be seen that
metal surfaces are more easily covered by OH* than O* at neg-
ative potentials (i.e. , under reducing conditions). Silver surfaces
are calculated to be free of oxygen species at their limiting po-

tentials for the electroreduction of CO2 to HCOOH, thus provid-
ing the free sites needed to facilitate the catalytic reaction. On

the other hand, lead surfaces require potentials slightly more
negative than their limiting potentials for the electroreduction
of CO2 to HCOOH in order to be free of OH*. We can also see

from Figure 4 that the surface poisoning by OH* can be severe
for surfaces having very strong oxygen binding energies, re-

quiring large overpotentials to be free of oxygen adsorbates in
aqueous solutions.

Conclusions

Theoretical methods were used to investigate the electrore-
duction of CO2 to HCOOH on twenty-seven different metal sur-

faces. Our analysis is purely based on thermodynamic argu-
ments, thus we have identified only the necessary (but not suf-

ficient) requirements for catalyst materials to be suitable for
the electroreduction of CO2 to HCOOH competing with two

other reactions, that is, the electroreduction of CO2 to CO and
the hydrogen evolution reaction. Due to a strong scaling be-

tween the free energies of carboxyl and hydrogen, it seems
highly unlikely that a selective catalyst is designed based on

optimal carboxyl binding energies. On the other hand, we find
that the selective electroreduction of CO2 to HCOOH via the
formate intermediate is more plausible. Lead and silver surfa-

ces are identified as the most promising among the twenty-
seven different monometallic surfaces. Our methodology is
widely applicable, not only to metal surfaces, but also to other
classes of materials, enabling the computational search for
electrocatalysts for CO2 reduction to HCOOH.

Computational Details

Periodic DFT calculations employing the BEEF–vdW function-

al[47] were carried out using the Atomic Simulation Environ-
ment (ASE)[48] in connection with the Quantum ESPRESSO

code.[49] The BEEF–vdW functional was used here as it has

been shown to describe the chemisorption and physisorption
properties of adsorbates on transition-metal surfaces well.[50]

For example, the BEEF–vdW functional has yielded quite accu-
rate energetics of CO2 hydrogenation to CH3OH via formic

acid.[51–53] The BEEF–vdW functional is also capable of assessing
the reliability of the calculated results through an ensemble of

functionals representing its known computational errors.[54]

A kinetic energy cut-off of 500 eV and a density energy cut-off

of 5000 eV were used for all calculations. The ionic cores were

described using Vanderbilt ultrasoft pseudopotentials.[55] The
slab models were created by infinitely repeating a 2 Õ 2 Õ 4 su-

percell, separated by more than 13 æ of vacuum space in the
direction perpendicular to the surface plane. In the slab

models, the top two atomic layers were allowed to relax
whereas the bottom two layers were fixed at their bulk posi-

tions. The Brillouin zones were sampled using a 4 Õ 4 Õ 1 Mon-

khorst–Pack k-point mesh.[56] The convergence criterion for the
energy optimization was a maximum force of 0.03 eV æ¢1 per

atom. Convergence with respect to the slab model thickness,
k-point sampling, and cut-off energies has been confirmed as

shown elsewhere.[10] The energies of the gas-phase CO2,
HCOOH, H2 and the adsorbed COOH* were corrected by

+ 0.41 eV, + 0.20 eV, + 0.09 eV, and + 0.20 eV, respectively, in
order to account for the systematic DFT errors that originate
from inaccurate descriptions of carbon-oxygen double bonds

as discussed elsewhere.[52, 57] We also corrected the binding en-
ergies of COOH* and OH* by ¢0.25 eV and ¢0.5 eV, respective-

ly, in order to roughly account for the stabilization of H-bond-
ing species in aqueous solutions.[28, 29]

Supporting Information

The Supporting Information includes raw data for all figures
shown here, scaling relations, and comparison of the theoreti-

cal onset potentials for CO2 to formic acid, CO2 to CO, and hy-
drogen evolution.

Figure 4. Coverages of surfaces as a function of potential (U) and the
oxygen binding free energy (DGO), at pH 0 and T = 300 K. Different regions
in the figure are determined by the most stable surface configuration at
given variables, that is, U and DGO, where the phase borders are defined by
the equilibrium between different oxygen species. O*, OH* and * denote
atomic oxygen, hydroxyl and free sites, respectively. DGO for lead and silver
surfaces are shown as green and blue circles, respectively. The red line indi-
cates the equilibrium potential for the reduction of CO2 to HCOOH.
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ABSTRACT: A widely used adsorption energy scaling relation between OH* and OOH*
intermediates in the oxygen reduction reaction (ORR) and oxygen evolution reaction
(OER), has previously been determined using density functional theory and shown to
dictate a minimum thermodynamic overpotential for both reactions. Here, we show that
the oxygen−oxygen bond in the OOH* intermediate is, however, not well described with
the previously used class of exchange-correlation functionals. By quantifying and correcting
the systematic error, an improved description of gaseous peroxide species versus
experimental data and a reduction in calculational uncertainty is obtained. For adsorbates,
we find that the systematic error largely cancels the vdW interaction missing in the original
determination of the scaling relation. An improved scaling relation, which is fully
independent of the applied exchange−correlation functional, is obtained and found to
differ by 0.1 eV from the original. This largely confirms that, although obtained with a
method suffering from systematic errors, the previously obtained scaling relation is
applicable for predictions of catalytic activity.

■ INTRODUCTION

Development of efficient, highly stable, and inexpensive oxygen
evolution reaction (OER) and oxygen reduction reaction
(ORR) catalysts are key challenges in large scale commercial-
ization of water electrolyzers and hydrogen fuel cells,
respectively.1−5 In these efforts detailed fundamental knowl-
edge of the catalytic processes is required.
In recent years, a number of studies applying Density

Functional Theory (DFT) has provided new insight into the
fundamentals of OER and ORR.6−13 A significant finding is a
scaling relation between the adsorption energy of OH* and
OOH* intermediates found for a large variety of catalysts and
catalytic sites.9−12,14−18 When expressed in terms of the free
energy the scaling relation is ΔGOOH* = ΔGOH* + 3.2 ± 0.2
eV9,15 with the 3.2 eV offset determined using the RPBE
exchange-correlation functional.19 The 3.2 eV free energy
difference compares favorably to an experimental free energy
difference of 3.4 eV between OH−(aq) and OOH−(aq).20,21

The optimal adsorption free energy difference between OH*
and OOH* is 2.46 eV for both ORR and OER.9,11,21 The
scaling relation forces a minimum thermodynamic over-
potential, at which all intermediate reaction steps are exergonic,
of (3.2 ± 0.2 eV − 2.46 eV)/2e = 0.4 ± 0.1 V for both
reactions. Based on the scaling relation, it is possible to use
adsorption free energies as predictors for catalyst activity. For
ORR, the adsorption free energy of OH* can be used as
predictor with the optimum at (4.92 eV − 3.2 ± 0.2 eV)/2 =
0.9 ± 0.1 eV. Catalysts which adsorb OH* slightly (∼0.1 eV)

weaker than Pt have been found to display improved activity
over Pt.7,22 Predictions of catalyst activity based on the OH*
adsorption free energy relative to Pt have been shown to agree
well with experimental findings.7,22 Similarly, the adsorption
free energy difference between O* and OH* is used as a
descriptor for highest OER activity.11 The highest activity is
predicted at a difference of (3.2 ± 0.2 eV)/2 = 1.6 ± 0.1 eV.
It is important to stress that the ±0.2 eV reported for the

scaling relation does not refer to the calculation accuracy in any
individual calculation but how well adsorption free energies
calculated for a multitude of different surfaces follow the scaling
relation.11,12,15,16 Although the general trend is a 3.2 eV
difference in adsorption energy between OH* and OOH*,
there is notable scatter around this “best fit” trend line. The
±0.2 eV is thus an uncertainty introduced by considering the
scaling relation as ”universal”11 for all surfaces and not to be
confused with the general calculational uncertainty at the
applied level of theory. When considering a narrow class of
materials such as Pt skins on Pt alloys, the scatter is significantly
less than 0.2 eV.12

The calculational accuracy for a given calculation is not
known a priori. The largest contribution to the calculational
uncertainty is expected to be the exchange−correlation
functional. This has become increasingly true as electronic
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structure codes have been developed to the point where results
are largely converged across different codes.23 The magnitude
of the uncertainty related to the exchange-correlation functional
can be difficult to estimate although methods for it have been
developed as discussed below.24 Recently, Deshpande et al.18

have applied these methods to evaluate the calculational
uncertainty in studies of heterogeneous ORR catalysts. An
extension to the error estimation method is applied here to
determine whether systematic errors are present when
calculating the adsorption free energy difference between
OH* and OOH* with the applied class of exchange-correlation
functionals. The extended approach has previously been used
for identifying systematic errors in calculated energies for CO2
reduction reactions.25 This knowledge improved accuracy of
calculations and has been applied in studies of CO2 reduction
to formic acid.26

A major difference between OH* and OOH* is the presence
of an oxygen−oxygen bond in the OOH* intermediate. This
bond can to some extent be assumed to be similar to the
oxygen−oxygen bond in a peroxide. The triplet ground state of
molecular oxygen is known to be very difficult to describe using
DFT.27 Although peroxides are not spin polarized, systematic
errors in calculated enthalpies of metal oxides and metal
peroxides for several exchange−correlation functionals includ-
ing the RPBE functional have been attributed to the difference
in oxygen ions.28−31 We here seek to determine whether a
systematic error is indeed present and determine how it
influences the OH*/OOH* scaling relation and predictions
based on it. If a systematic error is present in the description of
the oxygen−oxygen bond, the adsorption free energy of OOH*
is likely also to be systematically inaccurate. The previously
determined free energy difference between OH* and OOH*,
i.e., the scaling relation offset of 3.2 eV, will thus also be
systematically inaccurate and lead to inaccuracies in predictions
of the minimum thermodynamic overpotentials and optimal
adsorption free energies. By quantifying the systematic error
not only can the calculational uncertainty for a given surface be
reduced, but the accuracy of predictions previously made using
the scaling relation also be evaluated.

■ THEORETICAL METHODS
To test for systematic errors in the description of peroxide
species, the enthalpy of reaction is calculated for different
reactions with known reaction enthalpies. Eight representative
gas phase reactions (“gas phase set” in Table 1), where a
peroxide is formed, have been examined and the enthalpies of
reaction have been compared to experimental values.32

In the case of ethyl hydroperoxide, C2H5OOH, and n-propyl
hydroperoxide, C3H7OOH, experimental data obtained with
sufficient precision is unavailable. Instead, cross verified
enthalpies calculated using quantum chemistry methods,
which are well suited for highly accurate description of gaseous
molecules, are used for these species.33 To test whether errors
are related to the formation of a peroxide specie, four
verification reactions similar to the others but without the
formation of peroxide are examined in a similar manner
(“verification set” in Table 1). We expect the enthalpy of
reaction for the verification reactions to be well-described.
To determine whether systematic errors are not only present

in gas phase peroxides, but also for surface bound OOH*, the
difference in adsorption enthalpies of OH* and OOH* are
calculated on different metal surfaces, which span the full range
of relevant OH*/OOH* adsorption energies for ORR, i.e., the

(111) facets of Pt, Ag, and Pd.8 The enthalpy is calculated for
an “adsorbate set” (Table 1) of reactions similar to those in the
“gas phase set”. Important aspects such as coverage and
electrolyte effects, which should be included to obtain
adsorption free energies under realistic ORR/OER conditions,
have purposely been disregarded as including these effects will
make it difficult to isolate the oxygen−oxygen bond functional
dependence.
The reaction enthalpies are calculated with a range of

different generalized gradient approximation (GGA) func-
tionals. Here, we focus on the GGA functionals, as this level of
functional complexity is often the best applicable for practical
trend studies of heterogeneous catalysis.34 Besides the RPBE
functional19 originally used to establish the OH*/OOH*
scaling relation, we also consider the common GGA functionals
PBE35 and BLYP.36,37 In addition, three functionals with
nonlocal van der Waals correlation, vdW-DF,38 vdW-DF2,39

and BEEF-vdW,24 are included.
The BEEF-vdW functional is constructed with catalysis

studies in mind and demonstrated to describe many adsorption
energies well.24,40 As the BEEF-vdW functional and the
associated ensemble are critical to the applied method, it will
here be presented in some detail. For a more thorough
description of the functional and ensemble the reader is
refereed to Wellendorff et al.24

The BEEF-vdW exchange−correlation energy is given by

∑ α α= + + −

+
=

− − −

−

E a E E E

E

(1 )xc
m

m m c c
0

29
GGA x LDA c PBE c

nl c (1)

Em
GGA−x is the exchange energy obtained with the GGA

approximation applying the Legendre polynomial of order m
as enhancement factor. ELDA−c and EPBE−c are LDA and PBE
correlation energies. The Enl−c term is nonlocal van der Waals
correlation identical to that applied in the vdW-DF2 functional.
In a machine learning process, the exchange energy

expansion parameters, am, and the correlation weighting, αc,
are determined such that the functional is optimized to

Table 1. Reaction Sets

aOntop adsorption site. bhcp hollow adsorption site.
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reproduce energies in selected data set, i.e. formation and
reaction energies, reaction barriers, chemisorption energies, van
der Waals interactions, and cohesive energies. The optimal
parameter values for am and αc determined in this approach are
used for the main BEEF-vdW functional. In addition to the
optimal parameters, an ensemble of functionals using
suboptimal parameter values is created in a process inspired
by Bayesian statistics. A set of suboptimal parameters, which
reproduces database energies relatively well, is more likely to be
accepted into the ensemble of functionals than a worse
performing set of parameters.
The ensemble can be used to quantify an estimate of the

error and thus also calculational uncertain related to the specific
choice of exchange-correlation functional for a given calcu-
lation. This is done by computing the energy of interest with a
number of ensemble functionals (generally convergence is
reached at 2000).24 The standard deviation in calculated
energies across the ensemble has been shown to be a good
quantitative error estimate.24 The procedure can be viewed as
an improved method for testing the robustness of the results by
recalculating with a range of “mindfully selected” functionals, as
discussed by Sabbe et al.34

All ensemble functionals differ from the main BEEF-vdW
functional only in the weight given to the individual energy
terms in (1). Once a self-consistent BEEF-vdW calculation has
been performed and the energy of each term obtained, the
energy for all ensemble functionals can easily be evaluated at
single point level accuracy by simply multiplying a matrix
containing the parameters am and αc for the ensemble
functionals with a vector containing the individual energy
terms. The method does not only help quantify error estimates
but is also useful for obtaining energies computed with a large
range of functionals very efficiently.
The VASP code using the projector augmented-wave (PAW)

method has been used for all calculations.41−44 To reduce
errors related to choice of PAW potentials, high accuracy hard
potentials distributed with the code have been used for H, O,
and C. Default potentials have been used for Pt and Ag, and a
potential treating the 4p electrons as valence electrons has been
used for Pd (pv potential). A plane wave energy cutoff at 650
eV has been used. Both molecular oxygen and superoxide ions
are spin polarized. Although the oxygen−oxygen bonds present
in the examined structures are not expected to exhibit spin
polarization, calculations allowing spin polarization were
performed. See the Supporting Information for further
calculational details.

■ RESULTS AND DISCUSSION
The enthalpy of reaction has been calculated for the reactions
in Table 1. The errors versus reference data are shown in Table
2 for reactions in the “gas phase set” and the “verification set”.
The vdW functionals have been adjusted for a previously

identified systematic error of 0.09 eV on the H2 molecule using
the BEEF-vdW functional.25,26,45,46 This generally decreases the
errors. Reactions 1−8 have similar errors with a given
functional as seen in Table 2, where the average error (avg.)
and the standard deviation on the error (SD) are also reported.
The verification reactions v1−v4 do not display the same
systematic error, indicating a systematic error related to the
formation of a peroxide bond.
The error is consistently above the average in reaction 1 and

below the average in reactions 4 and 7. A likely explanation is
that the amount of reactant H2O is different for reaction 1 (two

H2O) and reactions 4 and 7 (no H2O) as compared to the
other reactions (one H2O). For a given functional, the small
variation in error within the “gas phase set” and the “verification
set” can thus largely be explained by an error of 0.02−0.05 eV
per H2O molecule. This is discussed further below.
Having established that the formation of a peroxide is the

dominant reason for the systematic errors, it is examined
whether such systematic errors are also present when
comparing free energies of OH* and OOH* adsorbed on
catalytic surfaces, where accurate experimental values remain
elusive. First, calculational uncertainties are quantified using the
BEEF ensemble. For each reaction, the enthalpy has been
calculated with the ensemble of functionals and the standard
deviation determined (Table 3). The standard deviation is 0.19

± 0.02 eV for reactions in the “gas phase set” and “adsorbate
set” and 0.05 ± 0.02 eV for the reactions in the Verification Set.
The functional dependence of the result and thus the
calculational uncertainty is found to be significantly larger for
reactions in the “gas phase set” and the “adsorbate set” than for
reactions in the Verification Set. Further, the functional
dependence is seen to be similar in magnitude for the “gas

Table 2. Errors in Calculated ΔHr° (eV) for Reactions in
Table 1 with Diffferent Exchange-Correlation Functionals

aAverage error. bStandard deviation for reactions 1−8.

Table 3. BEEF Ensemble Standard Deviation (eV) before
and after Correction of the O−O Bond

reac std. dev. std. dev. corrected

(1) 0.17 0.04
(2) 0.19 0.04
(3) 0.19 0.04
(4) 0.20 0.06
(5) 0.18 0.04
(6) 0.19 0.05
(7) 0.20 0.05
(8) 0.19 0.05
(*1) 0.19 0.05
(*2) 0.19 0.04
(*3) 0.19 0.05
(v1) 0.03 0.03
(v2) 0.05 0.05
(v3) 0.05 0.05
(v4) 0.06 0.06
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phase set” reactions and the “Adsorbate Set” reactions. We
further note that 0.19 eV is comparable to the scaling relation
offset uncertainty found by Deshpande et al.18 calculated from
separate uncertainties on OH* and OOH* using statistical
measures. It is also worth noting that the ensemble standard
deviation is a good quantitative estimate of the errors observed
with the BEEF-vdW functional in Table 2, although it is slightly
smaller than the on average 0.23 eV error for the “gas phase
set” reactions.
To examine whether the increased functional dependence for

the “gas phase set” and “adsorbate set” is due to the presence of
an oxygen−oxygen bond, the effect of applying an energy
correction to the oxygen−oxygen bond is examined. For each
of the ensemble functionals, the average difference from the
electronic energy calculated with the BEEF-vdW functional is
determined for the reactions in the “gas phase set” and the
“adsorbate set” and applied as an energy correction for that
particular ensemble functional. The energy correction cf for a
given ensemble functional f is thus given by

∑= −−c E E
1

11
( )f

r
r f rBEEF vdW, ,

(2)

where r is the 11 reactions in the “gas phase set” and the
“adsorbate set”. EBEEF−vdW,r and Ef,r are the electronic energies of
reaction r calculated with the BEEF-vdW functional and the
ensemble functional f, respectively. After a correction has been
applied to each ensemble functional, Ef,r,corrected = Ef,r + cf, the
standard deviation for each reaction is recalculated using the
corrected energies and found to be significantly smaller and in
agreement with those observed for the verification reactions
(Table 3). It is thus shown to be generally valid for GGA-vdW
type functionals that the functional dependence can be
minimized effectively through an identical energy correction
to the reactions in the “gas phase set” and the “adsorbate set”
and be brought to the level of the reactions in the “verification
set”. The systematic error causing significant functional
dependence observed for the reactions in the “gas phase set”
hence applies identically to the reactions in the “adsorbate set”.
An illustrative way to examine correlations in the functional

dependence is by plotting the calculated enthalpies of reactions
for two reactions versus each other with several functionals.25

In Figure 1, the calculated enthalpies of the gas phase formation
of methyl hydroperoxide from methanol (reaction 2) is
compared to the enthalpy difference between OH* and
OOH* adsorbed on Pt (reaction *1).
The 2000 functionals in the BEEF ensemble form a straight

line with a slope of 1.01 determined through linear regression.
The variation in the calculated enthalpy of reaction is as large as
1.0 eV. The presence of a straight line (coefficient of
determination R2 = 0.987) with slope 1 indicates that the
feature dominating functional dependence is identical in the
two reactions. The three primary vdW functionals are placed on
or close to this line. The inclusion of vdW interactions will
likely stabilize OOH* more than OH* due to the size
difference.47 This explains why the non-vdW functionals deviate
slightly from the line toward a larger enthalpy of reaction for
reaction *1. To examine this the isolated effect of vdW
interactions has been probed by adding vdW interactions to
RPBE and PBE using the Tkatchenko−Scheffler48 (TS)
method using a scaling parameter sR = 0.94 and reoptimizing
geometries. The inclusion of the vdW interactions does not
change the gas phase enthalpies significantly, but stabilizes

OH* by ∼0.15 eV and OOH* by ∼0.25 eV causing a relative
downshift of ∼0.10 eV in ΔHr° for reaction *1. This downshift
brings the non-vdW functionals onto the line.
Similar correlation analyses are made for all the considered

reactions. The obtained slopes found through linear regression
are depicted in Figure 2. A straight line with a slope close to 1 is

obtained for all possible combinations of reactions in the “gas
phase set” and the “adsorbate set”. When reactions from the
“verification set” are compared in a similar manner to reactions
in the “gas phase set” and the “adsorbate set”, the results are
significantly different. As the functional dependence is much
smaller for reactions in the “verification set”, which does not
contain peroxide bonds, the fitted slopes will be large (>2) or
close to 0 depending on whether the “verification set” reaction
is used as independent or dependent variable, respectively.
In addition to identifying the oxygen−oxygen bond as

dominant source of functional dependence and establishing
that identical functional dependence is observed for all
reactions in the Gas Phase Set and Adsorbate Set, the

Figure 1. Enthalpies of reaction for reactions 2 and *1 calculated with
various functionals and plotted versus each other. Diamonds mark
functionals with added vdW correlation using the Tkatchenko−
Scheffler (TS) method. The BEEF-ensemble functionals (semi-
transparent gray points) fall on a straight line with a fitted slope of
1.01. The dashed red line marks the experimental enthalpy of reaction
2.

Figure 2. Heat plot depicting the slopes obtain through linear
regression on the BEEF ensemble for all possible combinations with
the 15 total reactions examined.
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correlation heat map in Figure 2 can also be used to identify an
additional minor contribution to functional dependence. As
mentioned above, the trend in errors obtained with the self-
consistent functionals (Table 2) suggest that H2O can cause a
minor error. The same trend with reactions 1, 4, and 7 differing
from the rest is observed for the uncorrected standard
deviations in Table 3. We examine whether the trend is also
reflected in the slopes obtained from linear regression for
correlations in the “gas phase set” as seen in Figure 3. In Figure
3a, the difference between the slope obtained through linear
regression and a slope of 1 is depicted. The most significant
differences are observed in cases where reactions 1, 4, or 7 are
involved. The pattern fits well with the cause being two reactant
H2O molecules in reaction 1, none in reactions 4 and 7, and
one in the other reactions. To test this hypothesis, the slopes
are predicted, apredicted, taking the possibility of H2O
contributing to functional dependence into account.

α
α

=
−
−

a
n

n

1

1
x

y
predicted

H O,

H O,

2

2 (3)

nH2O,x and nH2O,y are the number of H2O molecules in the
independent and dependent reactions, respectively. α is a
parameter which relates the influence of H2O on the slope with
that of the peroxide bond. In case H2O contributes to the
functional dependence in a manner which correlates with the
functional dependence of the peroxide bond, the optimal value
of α is different from 0. Using α = −0.08, the predicted and
fitted slopes are very similar for all reactions as observed in
Figure 3b. Each reactant H2O molecule thus influences the
slope with an impact of approximately 8% of that of the
peroxide bond. The negative value of α is caused by H2O being
a reactant molecule and the peroxide bond being present in the
product molecule.
The difference between correcting for errors due to the

oxygen−oxygen bond and H2O independently, as opposed to
correcting for a combined total error is insignificant for the
purpose of correcting the OH*/OOH* scaling relation. This is
due to both the common presence of both species in most
reactions and the apparent error caused by H2O being 1 order
of magnitude smaller than the error caused by the oxygen−
oxygen bond.

With correlation in functional dependence between reactions
in the “gas phase set” and “adsorbate set” established, the
systematic error of 0.22 eV found for the “gas phase set”
reactions with the RPBE functional can be applied to update
the scaling relation between OH* and OOH*. The lack of van
der Waals interaction in the RPBE functional is in principle
included in the 0.22 eV systematic error for gaseous molecules.
However, using the TS method for adding vdW interactions,
we found the stabilizing effect to be significant only for
adsorbates. This must be considered when transferring the
systematic error observed in gas phase to adsorbates. The
difference in the missing vdW stabilization for OH* and
OOH*, ∼0.1 eV, will to some degree counteract the systematic
error on the oxygen−oxygen bond. Based on this, the scaling
relation offset can be corrected by 0.1 eV such that it is now
largely functional independent.
The more robust scaling relation is ΔGOOH* = ΔGOH* + 3.3

eV ± 0.2 eV. The ±0.2 eV still denotes the uncertainty induced
by modeling scattered data with a straight line and not the
calculational uncertainty for a given surface. The latter is now
quantified and as seen in Table 3 to be reduced from 0.19 to
0.05 eV after correction of the systematic error.
Using the functionally independent scaling relation, more

robust predictions of minimum overpotentials and optimal
adsorption free energies can be performed for a given surface.
In general, the minimum thermodynamic overpotential of ∼0.4
eV will increase by 0.05 eV. Predictions of optimal catalyst
reactivities are also modified. For ORR catalysts, the optimal
adsorption free energy of OH* (∼0.8 eV) predicted from the
improved scaling relation requires a slightly more reactive
catalyst, which adsorbs OH* 0.05 eV stronger, than previously
predicted. For OER, the predicted optimum adsorption free
energy difference between O* and OH* (∼1.7 eV) has
increased by 0.05 eV. This requires a slightly less reactive
catalyst than previously predicted.
The relatively small changes in optimal adsorption energies

and theoretical minimum overpotential will arguably have little
impact on the search for new catalysts, especially considering
that the scaling relation has only been shown universally valid
with 0.2 eV accuracy across different catalytic surfaces. More
important is the realization that in spite of being a relatively
simple functional approach suffering from a here documented
systematic error and lacking description of van der Waals

Figure 3. (a) Difference between the slope found through linear regression and a slope of 1. (b) Difference between the slope found through linear
regression and a slope predicted with a H2O molecule impacting the slope with 8% relative to the impact of the peroxide bond.
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interactions, previous determination of the scaling relation
offset based on RPBE calculations has come remarkably close
to the functional independent scaling relation offset obtained
here. This, in combination with the now quantified and reduced
calculational uncertainty, strengthens the applicability of the
scaling relation in both prior and future predictions and
modeling of catalyst activity.

■ CONCLUSIONS
We have identified systematic errors on the order of 0.2 eV in
the description of peroxide gas phase species using GGA level
density functionals. The systematic error was shown to also be
present for adsorbed OOH*. It thus impacts the constant free
energy difference in the scaling relation previously discovered
between adsorption free energies of OH* and OOH*, which
are intermediate adsorbates in both ORR and OER. By
identifying and correcting for the systematic error, which for
adsorbates was partially canceled by inclusion of van der Waals
interaction not previously considered, the calculational
uncertainty can be significantly reduced from 0.19 to 0.05 eV
and a functional independent scaling relation determined. The
scaling relation offset is changed from 3.2 to 3.3 eV. This
directly alters predictions of optimal adsorption energies and
theoretical minimum potential by 0.05 eV. The relative small
change from the earlier version of the scaling relation confirms
that, although derived using a method suffering from systematic
errors, the earlier version of the scaling relation is sufficiently
accurate to be applicable in catalysis research.
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Abstract

The Atomic Simulation Environment (ASE) is a software package written in the Python

programming language with the aim of setting up, steering, and analyzing atomistic simula-

tions. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined

with the NumPy array library make it possible to perform very complex simulation tasks. For

example, a sequence of calculations may be performed with the use of a simple “for-loop”

construction. Calculations of energy, forces, stresses and other quantities are performed

through interfaces to many external electronic structure codes or force fields using a uniform

interface. On top of this calculator interface, ASE provides modules for performing many

standard simulation tasks such as structure optimization, molecular dynamics, handling of

constraints and performing nudged elastic band calculations.

1 Introduction

The understanding of behaviour and properties of materials at the nanoscale has developed

immensely in the last decades. Experimental techniques like scanning probe microscopy and

electron microscopy have been refined to provide information at the sub-nanometer scale. At

the same time, theoretical and computational methods for describing materials at the electronic

level have advanced and these methods now constitute valuable tools to obtain reliable atomic-

scale information [1].

The Atomic Simulation Environment (ASE) is a collection of Python modules intended to set

up, control, visualise, and analyse simulations at the atomic and electronic scales. ASE provides

Python classes like “Atoms” which store information about the properties and positions of

individual atoms. In this way, ASE works as a front-end for atomistic simulations where atomic

structures and parameters controlling simulations can be easily defined. At the same time, the

full power of the Python language is available so that the user can control several interrelated

simulations interactively and in detail.

The execution of many atomic-scale simulations requires information about energies and forces

of atoms, and these can be calculated by several methods. One of the most popular approaches

is density functional theory (DFT) which is implemented in different ways in dozens of freely

available codes [2]. DFT codes calculate atomic energies and forces by solving a set of eigenvalue

equations describing the system of electrons. A simpler but also more approximate approach

is to use interatomic potentials (or so-called force fields) to calculate the forces directly from

the atomic positions [3]. ASE can use DFT and interatomic potential codes as backends called

“Calculators” within ASE. By writing a simple Python interface between ASE and, for example,

a DFT code, the code is made available as an ASE calculator to the users of ASE. At the same

time, researchers working with this particular code can benefit from the powerful setup and

simulation facilities available in ASE. Furthermore, the uniform interface to different calculators

in ASE makes it easy to compare or combine calculations with different codes. At the moment,

ASE has interfaces to about 30 different atomic-scale codes as described in more detail later.

A few historical remarks: In the 1990s, object-oriented programming was widespread in many

fields but not used much in computational physics. Most physics codes had a monolithic char-

acter written in compiled languages like Fortran or C using static input/output files to control
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the execution. However, the idea that physics codes should be “wrapped” in object-oriented

scripting languages was put forward [4]. The idea was that the object-oriented approach would

allow the user of the program to operate with more understandable “physics” objects instead

of technical details, and that the scripting would encourage more interactive development and

testing of the program to quickly investigate new ideas. One of the tasks was therefore also

to split up the Fortran or C code to make relevant parts of the code available individually to

the scripting language. Also in the mid-nineties, the book on Design Patterns [5] was published

discussing how to program efficiently using specific object-oriented patterns for different pro-

gramming challenges. These patterns encourage better structuring of the code, for example by

keeping different sub-modules of the code as independent as possible, which improves readability

and simplifies further development.

Inspired by these ideas, the first version of ASE [6] was developed around the turn of the

century to wrap the DACAPO DFT code [7] at the Center of Atomic-scale Materials Physics at

the Technical University of Denmark. DACAPO is written in Fortran and controlled by a text

input file. It was decided to use Python both because of the general gain in popularity at the

time – although mostly in the computer science community – and because the development of

numerical tools like Numeric and NumArray, the predecessors of NumPy [8], were under way.

Gradually, more and more features, like atomic dynamics, were moved from DACAPO into ASE

to provide more control at the flexible object-oriented level.

A major rewrite of ASE took place with the release of both versions 2 and 3. In the first version

of the code, the “objectification” was enthusiastically applied, so that for example the position

of an atom was an object. This meant that the user applying the “get position” method to

an Atom object would receive such a Position object. One could then query this object to

get the coordinates in different frames of reference. Over time, it turned out that too much

“objectification” made ASE more difficult to use, in particular for new users who experienced a

fairly steep learning curve to become familiar with the different objects. It was therefore decided

to lower the degree of abstraction so that for example positions would be described by simply

the three coordinates in a default frame of reference. However, the general idea of creating code

consisting of independent modules by applying appropriate design patterns has remained. One

example is the application of the “observer-pattern” [5], which allows for development of a small

module of code (the “Observer”) to be called regularly during a simulation. By just attaching

the Observer to the “Dynamics” object, which is in control of the simulation, the Observer

calculations will automatically be performed as requested.

ASE has now developed into a full-fledged international open-source project with developers in

several countries. Many modules have been added to ASE to perform different tasks, for example

the identification of transition states using the nudged elastic band method [9, 10]. Recently,

a database module which allows for convenient storage and retrieval of calculations including a

web-interface has also been developed. More calculators are added regularly as backends, and

new open-source projects like Amp (Atomistic Machine-learning Package) [11] build on ASE

as a flexible interface to the atomic calculators. The refinement of libraries like NumPy allows

for more and more tasks to be efficiently performed at the Python level without the need for

compiled languages. This also opens up new possibilities for both inclusion of more modules in

ASE and for efficient use of ASE in other projects.
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9.1 Estimation of exchange–correlation errors

The major approximation within DFT is the exchange–correlation functional. The BEEFEnsemble

class in ASE provides tools for estimating errors due to the choice of exchange-correlation func-

tional. The most efficient method is tightly linked with the BEEF functionals [122, 123, 124].

The BEEF-vdW functional [123], which we will use to explain and exemplify the method, has

the functional form

Exc =
29∑

m=0

amE
GGA−x
m + αcE

LDA−c + (1− αc)EPBE−c + Enl−c, (21)

where EGGA−x
m is GGA exchange with the Legendre polynomial of order m used as enhancement

factor. ELDA−c, EPBE−c, and Enl−c are LDA, PBE, and non-local van der Waals correlation, re-

spectively. The exchange sum expansion coefficients am and the correlation weighting parameter

αc are fitted to databases such that the functional performs well for a range of different proper-

ties [123, 125]. In addition to the best set of coefficients, which constitutes the main BEEF-vdW

functional, an ensemble of functionals with perturbed coefficients are constructed in a procedure

inspired by Bayesian statistics, such that the computed ensemble standard deviation for a given

calculation is a good estimate of the uncertainty and thus also the potential errors for a range

of different properties like reaction enthalpies [123]. The energy of the individual terms in (21)

can be parsed from any interfacing calculator to ASE, which contains the ensemble coefficient

matrices and generates an energy ensemble using simple multiplication operations without any

calls back to the calculator. It is currently implemented for the GPAW and VASP calculators.

As an example, consider two possible reactions in the industrial Fischer–Tropsch process.

CO + 3 H2 → CH4 + H2O (Reaction 1)

CO + 5
2 H2 → 1

2 C2H6 + H2O (Reaction 2)

The enthalpies of the reactions are calculated and the errors estimated using the ensemble.

In addition, the net reaction difference between the two is simultaneously considered as an

independent reaction.

CH4 → 1
2 C2H6 + 1

2 H2 (Reaction 3)

Upon comparison with experimental data, see Table 2 and Figure 12, it is found that the errors

Table 2: Enthalpies of reaction

Calc. [eV] Est. error [eV] Exp.† [eV] Error [eV]

Reaction 1 -1.86 ±0.25 -2.14 -0.28

Reaction 2 -1.53 ±0.25 -1.80 -0.27

Reaction 3 0.33 ±0.02 0.34 0.02
†Reference [126]

versus experimental data and the calculated error estimates are of similar size. Errors and

uncertainties within DFT are often systematic, making relative errors much smaller. Considering

Reaction 3, both the error and the error estimate are one order of magnitude smaller than for
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Figure 12: Experimental and calculated enthalpies. The error is well estimated using the ensem-

ble standard deviation. The enthalpy difference between the two reactions is nearly functional

independent as illustrated by 5 selected functionals from the ensemble.

the other reactions, since the errors obtained with any given functional are similar in Reaction

1 and Reaction 2 as illustrated on Figure 12.

Another method for testing possible favorable error cancellation to reduce uncertainty without

relying on reference data is by establishing correlations in functional dependence for a set of

reactions as demonstrated by Christensen et al. [127]. In addition to error cancellation such

analysis can also be used to reveal causes of systematic errors.
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[118] Ivano E. Castelli, Falco Hüser, Mohnish Pandey, Hong Li, Kristian S. Thygesen, Brian

Seger, Anubhav Jain, Kristin A. Persson, Gerbrand Ceder, and Karsten W. Jacobsen.

New light-harvesting materials using accurate and efficient bandgap calculations. Advanced

Energy Materials, 5(2):1400915, 2015.

[119] J. Tersoff and D. R. Hamann. Theory of the scanning tunneling microscope. Phys. Rev.

B, 31:805–813, Jan 1985.

[120] Hendrik J. Monkhorst and James D. Pack. Special points for Brillouin-zone integrations.

Phys. Rev. B, 13(12):5188–5192, 1976.

[121] Wahyu Setyawan and Stefano Curtarolo. High-throughput electronic band structure cal-

culations: challenges and tools. Computational Materials Science, 49:299–312, 2010.

[122] J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Nørskov, J. P. Sethna, and

K. W. Jacobsen. Bayesian error estimation in density-functional theory. Phys. Rev. Lett.,

95:216401, Nov 2005.

[123] Jess Wellendorff, Keld T. Lundgaard, Andreas Møgelhøj, Vivien Petzold, David D. Landis,

Jens K. Nørskov, Thomas Bligaard, and Karsten W. Jacobsen. Density functionals for

surface science: Exchange–correlation model development with Bayesian error estimation.

Phys. Rev. B, 85:235149, Jun 2012.

[124] Jess Wellendorff, Keld T. Lundgaard, Karsten W. Jacobsen, and Thomas Bligaard.

mBEEF: An accurate semi-local Bayesian error estimation density functional. The Journal

of Chemical Physics, 140(14), 2014.

[125] Jess Wellendorff, Trent L. Silbaugh, Delfina Garcia-Pintos, Jens K. Nørskov, Thomas

Bligaard, Felix Studt, and Charles T. Campbell. A benchmark database for adsorption

bond energies to transition metal surfaces and comparison to selected DFT functionals.

Surface Science, 640:36 – 44, 2015. Reactivity Concepts at Surfaces: Coupling Theory

with Experiment.

[126] P. J. Linstrom and W. G. Mallard, editors. NIST Chemistry WebBook, NIST Standard

Reference Database Number 69. National Institute of Standards and Technology, June

2005.

[127] Rune Christensen, Heine A. Hansen, and Tejs Vegge. Identifying systematic DFT errors

in catalytic reactions. Catal. Sci. Technol., 5:4946–4949, 2015.

[128] R. Landauer. Spatial variation of currents and fields due to localized scatterers in metallic

conduction. IBM Journal of Research and Development, 1(3):223–231, July 1957.

[129] Rolf Landauer. Electrical resistance of disordered one-dimensional lattices. Philosophical

Magazine, 21(172):863–867, 1970.

58




	Preface
	Acknowledgements
	Abstract
	Resume
	List of Papers
	Contents
	List of Figures
	List of Tables
	Introduction
	Energy Supply from Fossil Fuels
	Limiting Emissions
	Sustainable Energy Carriers
	Motivation
	Outline of Thesis

	Applied Theory and Method
	Density Functional Theory
	Exchange–Correlation Functionals
	General Computational Method
	BEEF Ensemble Error Correlation

	Metal–Air Batteries
	Introduction
	Challenge
	Method
	Enthalpies of Formation
	Error Correlation Analysis
	Electron Localization
	Application
	Chapter Conclusion

	CO2 Reduction
	Introduction
	Challenge
	Method
	Systematic Errors
	Error Correlation Analysis
	Energy Corrections
	Adsorbates
	Application
	Chapter Conclusion

	Oxygen Evolution and Reduction Reactions
	Introduction
	Challenge
	Method
	Gas–Phase Errors
	Functional–Dependence
	Error Correlation
	Adsorbate Errors
	Metal Oxide Catalysts
	Chapter Conclusion

	Error Ensemble for Neural Networks
	Introduction
	Challenge
	Atomistic Machine-learning Package
	Ensemble Creation
	Examples
	Chapter Conclusion

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Appendix A
	Functional Performance for Oxides

	Appendix B
	Scaling Relation in Free Energy

	Appendix C
	Most Probable  for Normally Distributed Errors

	Included publications
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Extract of Paper VI


