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Summary  11 

As part of the Cradle to Cradle® (C2C) certification program, the C2C certification criterion 12 

“Renewable Energy and Carbon Management” (RE&CM) focuses on use of electricity from RE 13 

and direct greenhouse gas offsets in the manufacturing stage and to a limited extent on the cradle to 14 

gate only at the highest level of certification. The aim of this study is to provide decision-makers 15 

with a quantified overview of possible limitations of that C2C certification requirement and 16 

potential gains by introducing a full Life Cycle Assessment (LCA) perspective to the scheme. 17 

Scenario analysis was used to perform an LCA of an aluminum can system representing different 18 

levels of the C2C certification criterion RE&CM, considering different strategies to achieve 100% 19 

RE in the manufacturing stage. The adoption of a broader life cycle RE perspective was considered 20 

through the implementation of electricity from renewable sources from cradle to grave. Our results 21 

show that compliance with the current RE&CM certification framework offers limited benefits, i.e. 22 

significant reduction for climate change but negligible reductions for other environmental impacts, 23 

e.g. particulate matter and acidification. However, increasing the share of RE in the primary 24 

aluminum production from a full life cycle perspective can greatly increase the environmental 25 

benefits brought up by the C2C certification, not only for climate change, but for the broader range 26 

of impact categories. In our striving towards environmental sustainability, which often cannot be 27 

approximated by climate change impacts alone, we therefore recommend decision-makers in 28 

industries to combine the C2C certification with LCA when they define strategies for the selection 29 

of renewable energy and raw materials suppliers.   30 

 31 

Keywords (max 6): Life Cycle Assessment (LCA), aluminum, packaging, circular economy, C2C, 32 

decision support   33 
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<heading level 1> Introduction 34 

With the current political and business emphasis on circular economy, defined as a restorative or 35 

regenerative industrial system by intention and design (EMF 2013; EC 2015), the Cradle-to-Cradle® 36 

(C2C) design framework has gained an increasing visibility in industry (Toxopeus et al. 2015). C2C 37 

is a design framework oriented towards product quality and innovation, aiming to maximize the 38 

overall benefits of products to ecological and economical systems by designing “eco-effective” 39 

solutions. C2C relies on three key principles: “waste equal food”, “use current solar income” and 40 

“celebrate diversity”(McDonough and Braungart 2002). Until now in the circular economy context, 41 

efforts have largely focused on implementing the former, i.e. attempting to shift from a waste 42 

paradigm to a resource one, where waste from some industries can serve as resources for others. To 43 

allow companies to monitor and market their progress in C2C compliance, a certification program 44 

known as the Cradle to Cradle CertifiedTM Product Standard was established and recently updated 45 

(Cradle to Cradle Products Innovation Institute 2016). Applicants have to comply with a series of 46 

requirements for five categories: material health (MH), material reutilization (MR), renewable 47 

energy and carbon management (RE&CM), water stewardship (WS) and social fairness (SF), each 48 

of them being scored on a 5-grade scaling system, i.e. basic, bronze, silver, gold and platinum, 49 

reflecting an increased stringency in the C2C requirements.  50 

As already discussed in past studies (Bjørn and Hauschild 2013; Toxopeus et al. 2015), the trade-off 51 

between resource conservation and energy use is a weakness of the C2C design framework and 52 

therefore of the certification program. For all the grades but platinum in the scaling system, only 53 

electricity use and greenhouse gases (GHGs) emissions in the manufacturing stage of a product are 54 

thus considered. This means that for most of the grades the environmental impacts stemming from 55 

the raw materials extraction, production, construction, and decommissioning of the energy 56 

generation facilities are disregarded even though those stages may be important drivers of the 57 

environmental impacts. This is particularly relevant for energy production based on renewable 58 
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energy sources e.g. wind (Dolan and Heath 2012; Turconi et al. 2013; Asdrubali et al.  2015) or 59 

solar power (Hsu et al. 2012; Turconi et al. 2013; Asdrubali et al. 2015), for which life cycle 60 

assessment (LCA) showed relatively low environmental impacts in the use/operation stage 61 

compared to their production and disposal stages. Moreover, the need to include a broader range of 62 

impact categories than climate change to gauge the environmental sustainability when shifting 63 

electricity production from the use of fossils to the use of renewables has been pointed out (Laurent 64 

et al. 2012; Hertwich et al. 2014).  65 

These gaps in the RE&CM requirement of the C2C certification can induce important biases in the 66 

decision making process for companies, who might not be aware of such limitations and associated 67 

uncertainties. In this study, we therefore aim to provide decision-makers in industry a quantified 68 

overview of possible limitations of the RE&CM requirement and potential gains by introducing a 69 

full LCA perspective, as well as recommendations to alleviate these shortcomings in decision-70 

making processes.  71 

We build on the results of an existing LCA of aluminum beverage cans (termed “AlC system” in 72 

the following) (Niero et al. 2016). We focus on (primary) aluminum production, which belongs to 73 

those sectors, where energy consumption during manufacturing is an environmental hotspot of the 74 

technologies and systems (EAA 2013) and is thus fully relevant from a life cycle perspective (Liu 75 

and Müller 2012). Due to its rapid aluminum industry development in the last decade, China has 76 

become the largest primary aluminum producer in the world and now faces urgent needs to reduce 77 

associated environmental impacts (Sun et al. 2015). As a result, the longtime front-runner in 78 

aluminum production, Europe, is today the second largest producer (http://www.world-79 

aluminium.org/statistics/). Chinese and European aluminum productions differ from each other with 80 

regard to their supporting electricity mixes, which are mainly based on coal and hydropower, 81 

respectively. In the current study, we therefore consider different can systems including either 82 

China or Europe as aluminum-producing countries: (1) the AlC system as commonly in place 83 

(baseline scenario), (2) the AlC system with implementation of the C2C certification requirement at 84 

http://www.world-aluminium.org/statistics/
http://www.world-aluminium.org/statistics/


Niero et al. (2017) Journal of Industrial Ecology DOI: 10.1111/jiec.12594 

 

5 

the highest grades for the RE criterion (i.e. gold and platinum) using alternative renewable energy 85 

sources, and (3) the AlC system with adoption of a broader life cycle RE perspective, i.e. 86 

implementation of electricity from renewable sources from cradle to grave. 87 

 88 

<heading level 1> Materials and methods 89 

Aluminum cans systems have recently been evaluated by means of LCA, e.g. van der Harst and 90 

colleagues (2015). We consider here an AlC system for beer containment in the UK market 91 

previously used to model 20 different scenarios complying to different degrees with two of the C2C 92 

certification requirements, namely RE and MR (Niero et al. 2016). We followed the requirements of 93 

the ISO 14040-44 standards (ISO 2006a, 2006b) and the technical guidance provided by 94 

International Reference Life Cycle Data System (ILCD) handbook (EC-JRC-IES 2010). We also 95 

used the approach from the product environmental footprint (PEF) guide (EC 2013) to model the 96 

end-of-life (EoL) as it is the one recommended in the context of policy support applications 97 

(Allacker et al. 2014).  98 

 99 

<heading level 2> Goal and scope of the LCA 100 

The goal of the LCA study is to compare different AlC systems, some representative of different 101 

level of compliance with the requirements of the C2C certification for the RE&CM criterion, and 102 

some going beyond C2C certification through the inclusion of RE in a life cycle perspective, 103 

considering the average primary aluminum production in either Europe or China. Since the aim of 104 

the LCA is to provide decision support related to product development, with small scale changes in 105 

the background system, i.e. in terms of energy supply and material supplier, then the decision 106 

context is a situation A type according to the ILCD Handbook, i.e. micro-level decision support 107 

(EC-JRC-IES 2010). The considered functional unit is “the containment of 1 hl of beer until the 108 
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expiry date”, in accordance with the draft version of the PEF category rules for beer published in 109 

the context of the beer PEF pilot (Technical Secretariat for the Beer Pilot 2015). In the case of 33 cl 110 

aluminum cans, with average weight of 13.5 g, 4.22 kg of material per functional unit is required 111 

(Niero et al. 2016). Only the primary packaging, i.e. the materials which come into direct contact 112 

with the product, is considered, being the object of the C2C certification. The product system under 113 

study includes the supply of raw materials, i.e. the aluminum alloys used for the lid (21% of the can 114 

weight) and the body (79% of the can weight), the manufacturing of the lid and body, as well as 115 

their assembly, the filling of the can and its final EoL. The system boundaries are presented in 116 

Figure 1: the main exclusions regard the distribution and use stages, since these are assumed 117 

identical for all compared systems. The influence of transports on the overall environmental impact 118 

of AlC systems cans is usually minor compared to the other life cycle stages, and the use stage, e.g. 119 

refrigeration of the beverage, is typically not included as it is assumed that the beverage is 120 

consumed shortly after the purchase (Amienyo and Azapagic 2016).  121 

 122 
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123 
Figure 1. Life cycle stages of the aluminum can (AlC) system considered, with indication of 124 

main inputs and outputs; excluded processes are marked with dashed box.   125 
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<heading level 2> Data collection and system modelling  126 

In line with the identified decision context situation A of the ILCD guidelines (see previous 127 

section), the Life Cycle Inventory (LCI) modelling framework chosen is attributional with the use 128 

of system expansion to model process multi-functionality (EC-JRC-IES 2010). The ecoinvent 3.1 129 

database (attributional default) was used to build the LCI (Weidema et al. 2013), considering the 130 

avoided impacts from the average market situation to model recycling at the EoL (EC-JRC-IES 131 

2010). The LCI model was built in the LCA software SimaPro v.8.0.4.30 (PRé 2013). The 132 

foreground system was modelled with primary data, e.g. using electricity and heat consumption data 133 

from the filling facilities (Niero et al. 2016), while secondary data were used for modelling the 134 

background system, i.e. primary aluminum production (Stichling and Nguyen-Ngoc 2009), can 135 

manufacturing (e.g. lacquering (Li and Qiu 2013)) and the EoL management, which includes 136 

recycling and landfilling (Stichling and Nguyen-Ngoc 2009). We considered the current recycling 137 

rate for aluminum cans in UK (65%) (EAA 2015), and an average % of recycled content of 67.8% 138 

(PE Americas 2010). We used the default ecoinvent 3.1 datasets to model the input materials, i.e. 139 

average primary aluminum production both in Europe and China, secondary aluminum production, 140 

lacquer composition and EoL treatment. We modelled the can components, i.e. body and lid, 141 

according to their actual aluminum alloy composition: AA5182 for the lid and AA3004 for the 142 

body, respectively, as suggested in Niero and Olsen (2016). We considered the maximum threshold 143 

values of alloying elements allowed for the two abovementioned alloys (The University of 144 

Liverpool 2015). The main modifications to the default datasets in the scenario analysis consisted of 145 

changed energy input, i.e. the electricity used during manufacturing, primary aluminum production 146 

and recycling.  147 

  148 
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<heading level 2> The C2C requirement for RE&CM  149 

The intention of the RE&CM category of the C2C certification program is “to provide a 150 

quantitative measure of the percentage of renewably generated energy that is utilized in the 151 

manufacture of the product. Purchased electricity and direct on-site emissions associated with the 152 

final manufacturing stage of the product, as well as embodied energy associated with the product 153 

from Cradle to Gate, are considered, depending on the level of certification” (Cradle to Cradle 154 

Products Innovation Institute 2016). The product under analysis is indeed graded based on 155 

quantitative parameters, e.g. the proportion of electricity coming from renewable sources (termed 156 

“% RE” in the following) and the proportions of direct GHGs emissions which are offset (named 157 

“% GHGs offset” in the following), and qualitative ones, e.g. the development of strategy for 158 

energy use and carbon management. Direct GHG emissions in scope for this requirement are those 159 

that are either emitted directly during the product’s final manufacture or on-site treatment of process 160 

wastes or associated with purchased heat (Cradle to Cradle Products Innovation Institute 2016). We 161 

focus here on the quantitative aspects and consider the highest levels for the RE&CM criterion, i.e. 162 

gold (G) and platinum (P), which are achieved if the manufacturing stage of the product (see Fig. 163 

1), meets the two following conditions: (i) 50% (for gold) and 100% (for platinum) of purchased 164 

electricity is renewably sourced or offset with renewable energy projects, and (ii) the same 165 

proportions of direct on-site GHG emissions are offset (Cradle to Cradle Products Innovation 166 

Institute 2016). For the platinum level additional requirements apply that comprise the supply chain, 167 

and therefore a “cradle to gate” perspective (see Fig. 1): iii) the accounting of the embodied GHG 168 

emissions; (iv) the definition of a strategy to optimize the embodied GHG of the product; (v) the 169 

coverage of at least 5% of the embodied energy associated with the product (cradle to gate) by 170 

offsets or other mechanisms, e.g. projects with suppliers, product re-design, savings during the use 171 

phase (Cradle to Cradle Products Innovation Institute 2016).  172 

  173 
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<heading level 2> Scenarios definition 174 

In the development of the scenarios we refer to the % RE in the electricity mix used for the life 175 

cycle stages included in the C2C certification up to platinum level, i.e. body and lid manufacturing 176 

and filling, as well as the stages included only partially in the platinum level, i.e. primary aluminum 177 

production and excluded from the certification, i.e. the EoL, as shown in Fig. 1. Since can 178 

manufacturing and filling are assumed to take place in the UK, the electricity mix for UK was used 179 

taking the default ecoinvent 3.1 unit processes as a starting point. In the C2C certification program, 180 

renewable electricity that is already a standard part of the grid mix does not count toward this 181 

requirement, “unless the applicant is participating in a voluntary green pricing program or the 182 

applicant has verified that their utility is delivering renewable electricity that may be claimed by the 183 

utility customer without being double-counted elsewhere in the system” (Cradle to Cradle Products 184 

Innovation Institute 2016). For the AlC system under study we assumed that the applicant is 185 

involved in a voluntary green pricing program. To take into account of the variability in renewable 186 

energy sources different scenarios, including different mixes of renewable electricity, were 187 

considered for the highest certification level, i.e. platinum. In terms of direct GHGs we accounted 188 

only for those associated with purchased heat by the utility during the manufacturing stage (Fig. 1) 189 

and deducted their contribution from the climate change impact category, according to the 190 

requirements set by the certification level (i.e. 50% for gold and 100% for platinum). No impacts 191 

generating from the actions undertaken to provide the offset are considered, therefore the case 192 

modelled represents the best case scenario. Table 1 provides an overview of all scenarios assessed 193 

in the study. The details of the datasets used in the LCI modelling for the electricity from RE, 194 

primary aluminum production and heat (from natural gas) are reported in Table S1, in the 195 

Supplementary Information (SI). 196 

  197 
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Table 1 Summary of the 16 scenarios considered for the aluminum can (AlC) system, where EU refers 198 

to manufacturing in Europe and CN in China, respectively. The detail of the ecoinvent datasets used is 199 

reported in Table S1, in the Supplementary Information (SI). 200 

Designation Scenario description (In 

brackets the C2C 

certification level) 

Primary Al alloy 

production 

Manufacturing 

Electricity mix GHGs 

offset 

1-B-EU  
Baseline AlC system in 

Europe  
Default Europe  Current (2015) 

UK el. mix (21% 

RE)a 

- 

1-B-CN Baseline AlC system in China  Default China  

2-C2C/G-EU AlC in Europe (Gold)  Default Europe  Current (2015) 

UK el. mix 

adjusted to 50% 

REb  

50% 

GHGs 

from heat 2-C2C/G-CN AlC in China (Gold)   Default China  

3-C2C/P(2015UK)-EU 
AlC in Europe (Platinum) with 

current UK mix  
Default Europe  

Current (2015) 

UK el. mix 

adjusted to 100% 

REc 

100% 

GHGs 

from heat 3-C2C/P(2015 UK)-CN 
AlC in China (Platinum) with 

current UK mix 
Default China 

4-C2C/P(solar)-EU 
AlC in Europe (Platinum) with 

100% solar energy  
Default Europe  

100% solar energy 

(single-Si) 

100% 

GHGs 

from heat 
4-C2C/P(solar)-CN 

AlC in China (Platinum) with 

100% solar energy  
Default China 

5-C2C/P(wind)-EU 
AlC in Europe (Platinum) with 

100% wind energy  
Default Europe  

100% wind energy 

(on-shore >3MW) 

100% 

GHGs 

from heat 
5-C2C/P(wind)-CN 

AlC in China (Platinum) with 

100% wind energy  
Default China 

6-LC(2015 UK)-EU 

AlC in Europe, current UK 

mix (100%RE) + life cycle 

perspective for RE  

Europe with 100% 

REd  
Current (2015) 

UK el. mix 

adjusted to 100% 

REc 

100% 

GHGs 

from heat 

6-LC(2015 UK)-CN 

AlC in China, current UK mix 

(100%RE) + life cycle 

perspective for RE 

China with 100% REe  

7-LC(solar)-EU  
AlC in Europe, (100% solar) + 

life cycle perspective for RE  

Europe with 100% 

REd  100% solar energy 

(single-Si) 

100% 

GHGs 

from heat 
7-LC(solar)-CN  

AlC in China, (100% solar) + 

life cycle perspective for RE 
China with 100% REe  

8-LC(wind)-EU  
AlC in Europe, (100% wind + 

life cycle perspective for RE  

Europe with 100% 

REd  100% wind energy 

(on-shore >3MW) 

100% 

GHGs 

from heat 
8-LC(wind)-CN  

AlC in China, (100% wind) + 

life cycle perspective for RE 
China with 100% REe  

 201 

a Based on UK-DECC (2014) 202 

b Based on the current (2015) mix distribution (UK-DECC 2014), but adjusted with 50% RE, i.e. wind 203 

(34%), heat and power co-generation from biogas (12%) and biomass (2%), hydro (2%) 204 

c Based on the current (2015) mix distribution, but with adjusted with 100% RE, i.e. wind (67%), heat and 205 
power co-generation from biogas (23%) and biomass (5%), hydro (5%). 206 

d Modelled considering 80% hydropower and 20% wind power  207 

e Modelled considering 10% hydropower and 90% wind power  208 

 209 

 210 
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<heading level 3> Baseline scenarios 211 

For the baseline scenarios (1-B-EU, 1-B-CN) we considered the current UK electricity mix for the 212 

manufacturing processes based on the reference scenario described by the UK Department of 213 

Energy and Climate Change (UK-DECC 2014). This leads to the following distribution: hard coal 214 

(35%), natural gas (26%), nuclear (17%), oil (1%), wind (14%), heat and power co-generation from 215 

biogas (5%) and biomass (1%), hydro (1%). Overall, the share of RE is equal to 21%.  216 

 217 

<heading level 3> Gold scenarios 218 

For the scenarios representing gold certification (2-C2C/G-EU, 2-C2C/G-CN), the relative 219 

distribution of each renewable and non-renewable energy source as in the current electricity mix 220 

were kept and adjusted so that the aggregated contributions of RE and non RE sources amount to 221 

50:50% of the modelled electricity mix, respectively. Therefore, the electricity mix considered is: 222 

hard coal (22%), natural gas (16.4%), nuclear (11%), oil (0.6%), wind (34%), heat and power co-223 

generation from biogas (12%) and biomass (2%), hydro (2%). 224 

 225 

<heading level 3> Platinum scenarios 226 

With regard to platinum certification, corresponding to 100% RE, different scenarios were built 227 

using: the current UK RE mix (for scenarios 3-C2C/P(2015UK)-EU and 3-C2C/P(2015 UK)-CN); 228 

100% RE from solar energy (for 4-C2C/P(solar)-EU and 4-C2C/P(solar)-CN), represented by the 229 

single-Si panel technology (choice subject to limited data availability) and 100% RE from wind 230 

source (5-C2C/P(wind)-EU; 5-C2C/P(wind)-CN), assuming on-shore wind technology, which 231 

currently is more mature and is foreseen to support a larger share of electricity generation than off-232 

shore wind power technology (IEA 2013). The selection of wind and solar power was motivated by 233 

their relatively lower reported environmental impacts, their anticipated role in future electricity 234 

generation landscapes and their contribution to energy security (Asdrubali et al. 2015; 235 
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Hosenuzzaman et al. 2015). Moreover, to model the offset of 5% of the embodied energy associated 236 

with the product, we reduced by 5% the electricity used in the manufacturing stage.  237 

 238 

<heading level 3> Life cycle scenarios 239 

For including the life cycle perspective from cradle to grave in the AlC system we considered 240 

additional sets of scenarios, built on the platinum certification level, but assuming an increase of RE 241 

for electricity in the raw materials extraction and production (i.e. prior to the manufacturing stage) 242 

and EoL stages (see Fig. 1). Primary aluminum production is very energy intensive, and hence the 243 

location of production plants is often determined by access to large amounts of cheap electricity, 244 

which often results in an electricity mix that is different from the general grid mix of the countries 245 

where the production plants are located, thus aluminum industry specific electricity markets were 246 

used (Moreno Ruiz et al. 2014). Therefore, we modified the electricity mix used in primary ingot 247 

production, as well as in the primary liquid aluminum production (including bauxite mine 248 

operations, Al hydroxide, Al oxide). We assumed that the current fraction of non-renewable energy 249 

(termed “non-RE” in the following) in the aluminum specific electricity markets, i.e. 20% for 250 

Europe and 90% for China, can be substituted with the most competitive RE source, i.e. on-shore 251 

wind power (IEA 2013). An extension to 100% RE from hydropower is not deemed realistic due to 252 

the already high exploitation of hydropower capacity in these regions, e.g. hydropower is already 253 

extensively developed and with little further expansion potential left in Europe  (IEA 2012). This 254 

leads to electricity mixes of 80:20% and 10:90% hydropower (current share):wind power sources 255 

throughout primary aluminum production in Europe and China, respectively. These grid mixes, in 256 

particular that of China, should be regarded as explorative mixes as a share of 90% wind power in 257 

the electric mix in China would imply effective grid management systems including storage 258 

capacity, which are not encompassed in this study due to lack of data. 259 

 260 

<heading level 2> Life Cycle Impact Assessment and sensitivity analysis 261 
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The life cycle impact assessment (LCIA) was performed using the ILCD 2011 recommended 262 

methodology v1.05 (Hauschild et al. 2013) as embedded in SimaPro LCA software (PRé 263 

Consultants, 2015). The covered impact categories include climate change (CC), stratospheric 264 

ozone depletion (OD), human toxicity, considering both cancer effects (HT-c) and non-cancer 265 

effects (HT-nc), particulate matter (PM), ionizing radiation impacting human health (IR-HH), 266 

photochemical ozone formation (POF), acidification (Ac), terrestrial eutrophication (TE), 267 

freshwater eutrophication (FE), marine eutrophication (ME), freshwater ecotoxicity (FET), water 268 

use (WU), land use (LU) and resource depletion (RD), including mineral, fossil and renewable 269 

resources. To assess water use, significant advances have been made since the review of the 270 

methods leading to the ILCD recommendations was conducted; the water scarcity index (WSI) 271 

method developed by Pfister and colleagues (2009) was thus considered instead. Furthermore, given 272 

the focus on the energy aspect we considered the non RE Cumulative Energy Demand (CED) v1.09 273 

(Frischknecht et al. 2007) as an LCI indicator since it has been proven to provide insights for 274 

product comparison in the beverage packaging sector (Scipioni et al. 2013). To illustrate the 275 

differences observed between the different scenarios for each impact category, we performed 276 

‘division-by-baseline’ internal normalization, i.e. dividing results obtained for a given impact 277 

category for each scenario by the corresponding impact results of the baseline scenario (thus taken 278 

as a reference) (Laurent and Hauschild 2015). This enables to quantify the impact reductions 279 

brought by the implementation of the different scenarios compared to the baseline scenario. We 280 

assumed a cut-off of 10% to identify a significant difference among the alternatives, following e.g. 281 

Humbert et al. (2009); this cut-off was arbitrarily defined and does not necessarily reflect the actual 282 

uncertainty assessment. As a sensitivity check at the impact assessment level, a different LCIA 283 

methodology, i.e. ReCiPe 2008 midpoint, hierarchist v.1.11 (Goedkoop et al. 2009) was 284 

additionally used.  285 

 286 

<heading level 1> Results and discussion 287 
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The detailed characterized impact scores for the aluminum can system are reported in Table S2 and 288 

S3 for Europe and China, respectively in the SI. Table 2 reports the normalized results of the 289 

progression from the baseline to the C2C gold and platinum grades and “life cycle” scenarios (as 290 

defined in Table 1) for 4.22 kg of aluminum cans manufactured in the UK with primary aluminum 291 

produced in Europe. Normalized impact results for China are reported in a similar way in Table S4 292 

in the SI. 293 

Table 2 Normalized impact scores for the aluminum can system (indexed based on the 294 

baseline scenario) according to different C2C certification levels and scenarios defined in 295 

Table 1 (Europe). The color coding is used to indicate the ranking of the scenarios, where the 296 

option with higher environmental impact are marked with red and the one with the lower 297 

environmental impact are marked with green, according to the following legend: above 1.10 298 

(dark red); 1.00-1.09 (red); 0.90-0.99 (orange); 0.80-0.89 (dark yellow); 0.70-0.79 (yellow); 299 

0.60-0.69 (light green); 0.50-0.59 (green); below 0.49 (dark green). Results for China are 300 

provided in Table S4. 301 

Impact category 

1- 

B  

 

-EU 

2- 

C2C/G  

 

-EU 

3- 

C2C/P 

(2015UK) 

-EU 

4- 

C2C/P 

(solar) 

-EU 

5- 

C2C/P 

(wind) 

-EU 

6- 

LC  

(2015UK) 

-EU 

7- 

LC 

(solar) 

-EU 

8- 

LC  

(wind) 

-EU 

Climate change (CC) 1.00 0.78 0.54 0.54 0.53 0.47 0.47 0.46 

Ozone depletion (OD) 1.00 0.99 0.97 0.99 0.96 0.91 0.93 0.90 

Human toxicity, cancer (HT-c) 1.00 1.00 1.01 1.00 1.00 1.01 1.01 1.00 

Human toxicity, non cancer (HT-nc) 1.00 0.99 0.98 1.01 0.99 0.97 1.00 0.98 

Particulate matter (PM) 1.00 0.99 0.96 0.98 0.95 0.86 0.87 0.84 

Ionizing radiation, human health 

(IR-HH) 
1.00 0.94 0.83 0.84 0.82 0.62 0.62 0.61 

Photochemical Ozone Formation 

(POF) 
1.00 0.98 0.94 0.94 0.92 0.87 0.87 0.85 

Acidification (Ac) 1.00 0.97 0.93 0.93 0.91 0.84 0.85 0.82 

Terrestrial Euthrophication (TE) 1.00 0.98 0.95 0.92 0.90 0.87 0.85 0.82 

Freshwater Eutrophication (FE) 1.00 0.99 0.98 1.00 0.98 0.89 0.91 0.89 

Marine eutrophication (ME) 1.00 1.00 1.01 0.91 0.89 0.93 0.83 0.81 

Freshwater Ecotoxicity (FET) 1.00 1.02 1.05 1.00 0.99 1.04 0.99 0.98 

Land Use (LU) 1.00 1.05 1.14 0.93 0.92 1.13 0.92 0.91 

Resource depletion (RD) 1.00 1.00 1.01 1.06 1.00 1.01 1.06 1.01 

Non Renewable Cumulative Energy 

Demand (Non-RE CED) 
1.00 0.97 0.91 0.92 0.90 0.82 0.83 0.81 

Water Scarcity Index (WSI) 1.00 1.04 1.10 1.01 0.93 1.07 0.98 0.90 

 302 
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<heading level 2> What environmental impact reductions can C2C certification achieve?  303 

Only considering the scenarios relating to the C2C certification, i.e. scenarios 2-5, a common trend 304 

across the different certification scenarios can be identified for the impact categories in Table 2, 305 

which can be divided in three groups. A first group includes IR-HH and CC, which present 306 

significant reductions among scenarios 2-5, i.e. 22% for gold and ca 45% for platinum. A second 307 

group includes OD, PM, POF, Ac, TE, FE, ME, non RE CED which shows a slightly decreasing 308 

but not significant reduction in impact scores from the baseline towards gold and platinum 309 

certification (i.e. below 10%). The third group includes the toxicity related and resource-related 310 

impact categories, i.e. HT-c, HT-nc, FET, LU, RD and WSI, which show a slightly increasing 311 

difference (maximum 14% for LU) towards the higher certification levels, except for the last 312 

platinum scenario (i.e. number 5).   313 

The marginal impact reduction (except for CC and IR-HH) across the C2C certification scenarios 314 

can be explained by the contribution analysis per life cycle stage for the baseline scenario (Fig. 2a), 315 

the gold certification scenario (Fig. 2b), and the platinum certification scenario considering 100% 316 

wind energy during manufacturing (i.e. the platinum scenarios with lower impacts; Fig. 2c). The 317 

positive contribution of the electricity use to environmental impacts during manufacturing, i.e. the 318 

one included in the C2C certification, is negligible compared to the contributions from heat during 319 

manufacturing and from lid and body alloys production, which include all the upstream processes 320 

such as alumina refining and electrolysis. These three life cycle stages thus represent the hotspots 321 

across all impact categories, as reported in the most recent LCA of primary aluminum production, 322 

which identified electricity and thermal energy as the factors responsible for the large contribution 323 

of alumina refining and electrolysis to GHGs emissions (Nunez and Jones 2015). The negative 324 

values observed in Fig. 2 refer to the End-of-life phase, namely to the avoided environmental 325 

impacts due to recycling.  326 
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 327 

Figure 2 Contribution analysis for a selection of scenarios relative to Europe A) 1-B 328 

(baseline); B) 2-C2C/G; C) 5-C2C/P (wind); D) 8-LC (wind). Lid and body alloys production 329 

include all the upstream processes, as presented in Figure 1. 330 
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 331 

<heading level 2> Importance of including a full life cycle perspective in RE&CM criterion 332 

The normalized impact results for scenarios 6-8 indexed on the baseline scenario are presented in 333 

Table 2 (for EU) and Table S4 in the SI (for CN). They reflect the changes when including a full 334 

life cycle perspective, i.e. from cradle to grave, for electricity use in the AlC systems. The same 335 

trends can overall be identified for EU and CN, with some discrepancies. Significant deviations of 336 

the environmental impacts from the baseline (i.e. higher than 10%) are generally observed, with the 337 

exceptions of OD and HT-nc (for EU), for which the decrease is below the cut-off, and HT-c, FET, 338 

RD and LU (except 6-LC(2015UK)-EU), for which relatively negligible increases in the 339 

environmental impacts can overall be observed. For RD, the increase is mainly due to an increased 340 

metal extraction specific to PV, as confirmed by the sensitivity analysis performed with ReCiPe, 341 

which distinguishes between fossil and metal depletion, see Tables S5 and S6. For WSI, the 342 

inclusion of renewable energy highly based on hydropower in the primary Al production (scenarios 343 

6) causes an increase of the environmental impact compared to the other scenarios with lower 344 

shares of hydropower (i.e. scenarios 7 and 8).  345 

For the remaining impact categories, the deviations from the baseline are different between EU and 346 

CN scenarios. For EU, the impact categories PM, POF, Ac, TE, FE, ME and non RE CED show a 347 

moderate reduction (up to 20%) in impact scores from the baseline towards the “LC scenarios”, 348 

meanwhile for CN the decrease is up to 40-60%. For CC the decrease from P-scenarios to LC-349 

scenarios is negligible (i.e. less than 10%) for EU, but relevant for CN (i.e. around 50%). This 350 

decrease is due to the contribution of the GHGs offset for the thermal energy, which is comparable 351 

in magnitude to the CC impact score from cradle to grave for CN, but not for EU. For IR-HH a 352 

consistent decrease of the impact score is shown for EU, but no differences can be detected for CN 353 

due to the absence of nuclear energy in the electricity mix considered for Chinese primary 354 

aluminum production. No strong influence in terms of RE electricity source used can be detected 355 
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with regard to the manufacturing stage, since the impact deriving from the other life cycle stages is 356 

much higher. 357 

The trend reported in Table 2 confirms the importance of considering a broader range of 358 

environmental impacts alongside climate change, already reported for the specific UK case by 359 

Kouloumpis and colleagues (2015) and also at the global scale by Laurent and Espinosa (2015). 360 

Kouloumpis and colleagues (2015) concluded that in the UK case a decarbonisation of electricity 361 

supply to meet the 2050 carbon targets would lead to a reduction in the majority of the life cycle 362 

impacts by 2070, including climate change, with the exception of resource depletion, which would 363 

increase by 4–145 times on today’s value, and health impact from radiation which would increase 364 

four-fold if nuclear power is used and electricity demand grows strongly (Kouloumpis et al. 2015). 365 

Moreover, the selection of the RE source could have some implications on the potential for impact 366 

reduction, even though in our case the deviations across platinum scenarios and “LC scenarios” are 367 

below 10%. The sensitivity analysis performed using a different LCIA method, i.e. ReCiPe 2008 368 

(midpoint, hierarchist v.1.11), confirmed the results obtained with the ILCD recommended method 369 

for all impact categories (see detailed explanation in Table S5 in the SI)  370 

When switching from the baseline to the LC-scenarios, the reduction in terms of non RE CED is not 371 

significant for EU and moderate for CN (see Tables 2 and S4). Figure 3 represents the CED results 372 

for renewable and non-renewable energy results for the 16 scenarios analyzed, in the case of 373 

primary Al from Europe (Fig. 3a and 3c) and China (Fig. 3b and 3d).  374 

  375 
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 376 

A 

 

B 

 

C

 

D 

 

 

Figure 3 Contribution analysis in terms of Cumulative Energy Demand (CED) for the AlC 377 

systems according to the scenarios presented in Table 1, with distinction between renewable 378 

energy for (A) EU and (B) CN and non-renewable energy for (C) EU and (D) CN.  379 
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 380 

The contribution analysis displayed in Fig. 3 shows that a considerable share of non RE comes from 381 

the heat used in the manufacturing stage. Despite the use of electricity from RE in the primary Al 382 

production in the LC scenarios, the share of non-renewable energy still dominates the CED, due to 383 

the contribution from the non-fossil component (e.g. natural gas and coal) used for heating and in 384 

the background processes, both for EU and CN. However, the switch to electricity from RE in the 385 

primary aluminum production can considerably contribute to the reduction of the non RE CED in 386 

the case of CN, where the current electricity mix used for aluminum production is mainly based on 387 

non RE sources.  388 

 389 

<heading level 1> Conclusions and recommendations 390 

The outcomes of the LCA-based scenario analysis showed that compliance with the current 391 

RE&CM C2C certification requirement offers limited benefits in terms of reduced environmental 392 

impacts for the AlC system considered. Although there are slight differences between the EU and 393 

CN scenarios, the observed trends are the same: with the exception of CC impacts, the reduction in 394 

potential environmental impacts that can be achieved at the highest certification levels (gold and 395 

platinum) is negligible compared to the potential for reduction that the LC perspective can bring.  396 

The recently-updated RE&CM criterion includes a partial life cycle perspective – only at the 397 

platinum level – and has limited minimum requirements, i.e. coverage of at least 5% of the 398 

embodied energy associated with the product from cradle to gate. Even though our modelling was 399 

incomplete and did not include all background processes (see Section “Life cycle scenarios”), we 400 

showed that increasing the share of electricity from RE in a cradle to grave perspective can greatly 401 

exceed the environmental benefits brought up by the C2C certification, not only for CC, but for the 402 

broader range of impact categories. The impacts from thermal energy are currently dealt in terms of 403 

direct on-site GHGs emissions, which need to be offset to achieve the highest C2C certification 404 
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level. In our study we have not modelled the impacts originating from the offset activities, which 405 

could further limit the benefits in terms of environmental impacts reduction from the baseline to the 406 

C2C certification scenarios and potentially also lead to increases of impacts.  407 

Our findings show that for product systems where most of the environmental impacts come from 408 

raw material extraction and production, the RE share in the upstream processes need to be taken 409 

into account in the product optimization strategy, not only in terms of electricity but also thermal 410 

energy production, which has a significant contribution in terms of non RE CED (see Fig.3c and 411 

Fig. 3d). From a company perspective, this means that the knowledge of the raw material supplier 412 

location is crucial for achieving better environmental performances and higher certification levels. 413 

However, when the C2C certification refers to a specific market, knowing the location at country 414 

level might be insufficient, e.g. for China, where the different Chinese provinces present a wide 415 

range of grid mixes and disparities in GHG emission intensities from primary aluminum production 416 

(Hao et al. 2015). If the location of the plant is known, the recommendation is thus to adjust the 417 

level of details during data collection to be able to model the local energy mix, if relevant, e.g. 418 

considering ecoinvent v3.2, which includes electricity production at the province level for China 419 

(Moreno Ruiz et al.  2015). Moreover, a huge margin for reducing the electricity consumption for 420 

aluminum production, is provided by the use of secondary aluminum (Hao and colleagues 2015), 421 

since only 5% of the energy used for primary aluminum is required to make secondary aluminum 422 

(EAA 2013). Particularly for Chinese Al production, GHG mitigation strategies should be based on 423 

developing secondary aluminum industry, improving energy mix and optimizing resource 424 

efficiency of production (Liu et al. 2016). Therefore, an increase in the recycled content of 425 

aluminum products (measured in terms of MR requirement in the C2C certification) could 426 

positively affect the RE criterion (Niero et al. 2016). 427 

According to the C2C certification program, all eligible renewable energy sources , i.e. solar, wind, 428 

hydropower, biomass (when not in competition with food supplies), geothermal and hydrogen fuel 429 

cells, are given the same preference although these renewable energy sources  differ in their 430 
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environmental performances, see e.g. Asdrubali et al. (2015). In the case of aluminum cans, due to 431 

the negligible contribution of electricity during manufacturing, no significant differences between 432 

the different RE sources were detected (see results for the different platinum scenarios). However, 433 

in other settings the selection of an energy source might be influential on the overall environmental 434 

performances of the system; such influences need to be further investigated. In the decision making 435 

process, the limitations of the LCA results should not be overlooked, e.g. the uncertainty associated 436 

to results due to assumptions made and to the LCIA characterization models. 437 

As shown by Haas and colleagues (2015) in their assessment of material flows, waste production, 438 

and recycling in the European Union and the world in 2005, reducing the consumption of fossil 439 

energy carriers is necessary to further raise the degree of circularity of the economy. Our results 440 

confirm that the role of an energy transition from fossil to renewable energy resources should not be 441 

neglected in shifting towards a circular economy. Decisions at the company level present 442 

repercussions on the global scale: switching from fossil to renewable energy sources for aluminum 443 

production could induce effects on electricity infrastructures and other industrial sectors, and 444 

potentially lead to burden shifting due to the constrained supply of renewable energy. The 445 

environmental consequences of such a large scale change should therefore be assessed by means of 446 

a broader LCA incorporating the changes with structural market implications beyond the 447 

foreground- system, considering decision context situation B of the ILCD guidelines. Deploying 448 

renewable energy sources to produce electricity and heat for use at industrial scale is in the long 449 

term the only possible solution to implement the ideal C2C platinum scenario, with 100% 450 

renewable energy use. The possibility to use green certificates to achieve the C2C requirement 451 

stimulates the demand for renewable energy, but this is not a consistent long term solution to put 452 

into practice the use of “current solar income” principle. The selection of the perspective on the use 453 

of renewable energy is crucial to avoid burden shifting and assure a true environmental impact 454 

reduction, although the technical challenges at large production scale should be incorporated in the 455 

decision making process. In the case of products, such as aluminum cans, where most of the 456 
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environmental impacts do not originate from the manufacturing stage of the final products, but from 457 

the raw material extraction and production, the efforts should be directed to the upstream processes. 458 

This conclusion can be extended for all products where raw materials extraction is the most 459 

impacting life cycle stage, e.g. laminated carton containers (Scipioni et al. 2013), plastic containers 460 

(Madival et al. 2009), stainless steel building components (Ibbotson and Kara 2013), metallic 461 

furniture (Babarenda Gamage et al. 2008), etc.  462 

LCA allows modeling the consequences of decisions not only at the product level but also on a 463 

large scale, e.g. through consequential LCA. Moreover, since the overall environmental 464 

performances of a product depend not only on the manufacture of the product itself, but on the 465 

whole life cycle, see e.g. the impact from refrigeration of beverages in certain geographical 466 

contexts, the limited focus of the C2C certification on the product can therefore benefit from the 467 

inclusion of a broader life cycle perspective. There has recently been a discussion whether C2C 468 

certified products are better from an environmental point of view, see Llorach-Massana and 469 

colleagues (2015) and the rebuttal by Kausch and Klosterhaus (2015). The primary aim of the C2C 470 

design framework is to provide guidelines for product quality and innovation, and not strictly to 471 

communicate the environmental issues associated with a product. However, considering that the 472 

C2C certification program is used also as a means of marketing towards consumers, caution is 473 

needed when communicating the environmental performances of C2C certified products. We 474 

believe that the current focus of the RE&CM criterion on the CC impact is too narrow for 475 

modelling the actual environmental impact deriving from the use of renewables. Our results 476 

confirmed that GHG emissions could not be used as a single indicator to represent the 477 

environmental performance of a system or technology (Turconi et al. 2013; Laurent et al. 2012). 478 

Even though the use of LCA in a C2C certification context is constrained by the limited availability 479 

of datasets representing future energy technologies, therefore preventing the modelling of long term 480 

forecasting scenarios, our main recommendation is to combine the C2C certification with LCA to 481 

make the second C2C principle operational. The adoption of scenarios analysis in an LCA context 482 
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can support the C2C certification program with a tool to compare the environmental performances 483 

of alternative improvement strategies which can be implemented in the progression towards higher 484 

certification levels.   485 
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