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The mechanical and electrical response of acoustophoretic microfluidic devices attached to an
ac-voltage-driven piezoelectric transducer is studied by means of numerical simulations. The governing
equations are formulated in a variational framework that, introducing Lagrangian and Hamiltonian
densities, is used to derive the weak form for the finite-element discretization of the equations and to
characterize the device response in terms of frequency-dependent figures of merit or indicators. The
effectiveness of the device in focusing microparticles is quantified by two mechanical indicators: the
average direction of the pressure gradient and the amount of acoustic energy localized in the microchannel.
Furthermore, we derive the relations between the Lagrangian, the Hamiltonian, and three electrical
indicators: the resonance Q value, the impedance, and the electric power. The frequency response of the
hard-to-measure mechanical indicators is correlated to that of the easy-to-measure electrical indicators, and,
by introducing optimality criteria, it is clarified to which extent the latter suffices to identify optimal driving
frequencies as the geometric configuration and the material parameters vary. The latter have been varied by
considering both Pyrex and aluminium nitroxide top-lid materials.

DOI: 10.1103/PhysRevApplied.7.054026

I. INTRODUCTION

Based on the combined action of ultrasound waves and
the flow of carrier fluids, acoustofluidics has emerged as a
useful tool for the manipulation of biofluids and biological
suspensions in microfluidic devices. These devices exploit
standing acoustic pressure waves that, through the purely
mechanical parameters, such as compressibility, density,
and size, induce fluid- and particle-specific forces [1–3]
leading to acoustophoresis [4]. This phenomenon is the
basis of the development of gentle [5,6] and robust methods
for concentrating [7], trapping [8], washing [9], aligning
[10], and separating cells [11–13]. In order to be used for
manipulation purposes, the acoustic pressure wave inside
the microchannel must exhibit well-defined pressure nodes
and intense pressure fields that effectively attract or repel
particles. For these reasons, acoustofluidic devices operate
at acoustic resonance frequencies. Because the speed of
sound in water is around 1500 m=s and the typical
characteristic dimensions of acoustofluidic microchannels
range from 200 to 500 μm, it is seen that ultrasound
frequencies of about 1.5–2.5 MHz are ideally suited for
creating effective resonance conditions in acoustofluidic
devices.

Despite the many successful acoustofluidic devices
reported in the literature, a fair amount of calibration
and fine-tuning is still involved in the design, optimization,
and control during experiments, so as to properly identify
the optimal working conditions. While an experimental
knowledge of the system response with respect to an
external actuation source plays a central role in the
selection of good operative conditions [14], a better
comprehension of the phenomena involved in these devices
would free the design and implementation steps from the
costly and time-consuming methods currently employed.
Recently, some progress has been made in numerical

modeling of ultrasound and elastic waves in microscale
acoustofluidic systems including the piezoelectric trans-
ducer, the chip as an elastic solid, and the fluid inside the
microchannels [15–17]. Studies including the thermovis-
cous and transient effects inside microchannels have been
reported as well [18–20]. The first numerical optimization
studies of acoustophoretic devices have also been per-
formed recently, illustrating a procedure to obtain optimal
acoustophoretic forces by changing the geometrical param-
eters of the device [21]. Other studies involve numerical
characterization of the acoustic pressure wave in the
microchannel and subsequent computation of particle
trajectories by means of numerical integration [22–27].
A major problem regarding the numerical optimization

of acoustofluidic devices is the lack of rigorous definitions
of macroscopic descriptors which (i) characterize the
efficiency of acoustophoretic devices for a given electrical
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actuation of the piezoelectric transducer and (ii) are acces-
sible both experimentally and numerically. As an example,
in Ref. [21], an objective function, i.e., Eq. (17), containing
the Gorkov potential and therefore including both the
device performance and the particle properties is used to
optimize the performance in the space of the parameters.
Note that, since the objective function used in Ref. [21]
depends on the particle properties, it would be better to
speak about separation performance for the X particle
rather than device performance. In this paper, we are
interested in investigating the device performance, and
thus we will introduce indicators that do not take into
account the particle properties but instead exclusively
pertain to the device characteristics.
Given the relative ease with which the electrical response

of the piezoelectric transducers can be measured compared
to the acoustophoretic response, it would be advantageous
to demonstrate numerically and experimentally a direct
correlation between these two responses, such that the
hard-to-obtain acoustophoretic response could be inferred
from the easy-to-obtain electric response. A first step in this
direction was taken in experiments on simple glass capil-
laries by Hammarström et al. [14]. A further complication
is the influence of thermal heating by the piezoelectric
transducer, which directly affects the acoustic response of
the device through the temperature dependence of the
acoustic-relevant parameters (density, compressibility,
and elastic moduli). However, because an overall temper-
ature increase in an operative device can be easily pre-
vented by including a Peltier cooling element attached to
the device [26,28], we choose not to take thermal heating
into account in the simulations presented here.
In order to characterize acoustophoretic devices, in this

paper, we aim (i) to introduce the descriptors that enable a
quantitative analysis of frequency spectra in the case of
purely electromechanical interactions of the device with the
liquid-filled microchannel, (ii) to provide an easy-to-run
two-dimensional model aiming to address the features of a
fully three-dimensional device, and (iii) to compare the
behavior of different acoustofludic devices as a function of
the geometrical and material parameters.
The manuscript is organized as follows. In Sec. II, we

(A) define the model device in the form of a microchannel
embedded in a silicon substrate with a top lid and a
piezoelectric transducer attached to the bottom of the
silicon, (B) introduce the governing equations using the
Lagrangian and Hamiltonian formalism, (C) formulate
the coupling between the various subsystems of the device,
(D) introduce the system indicators, and (E) describe the
finite-element discretization that constitutes the basis of the
numerical simulations. The materials chosen for the top lid,
either Pyrex or ALON (aluminium nitroxide [29]) glass, are
both transparent, thus allowing for optical access to the
microchannel. In Sec. III, we report on the details of the
numerical implementation by (A) illustrating the weak

form used in the finite-element discretization and
(B) validating the model in terms of global and frequency-
wise errors and energy consistency. In Sec. IV, we
(A) introduce the procedure for identifying optimal acous-
tophoretic frequencies, (B) perform the mechanical spectral
analysis of Pyrex-silicon devices, (C) report on some
examples that identify optimal frequencies, (D) perform
electric spectral analysis of Pyrex-silicon devices, and
(E) introduce and validate a procedure to identify resonance
frequencies from the impedance characteristics. In Sec. V,
we discuss the results and address possible experimental
tests. Finally, in the Appendix, we discuss the meaning of
the two-dimensional analysis and the extension of the
actual model to a fully three-dimensional numerical model.

II. ACOUSTOPHORETIC-DEVICE MODEL

A. Description of the device

The long and straight acoustophoretic device consists of
a piezoelectric transducer underneath a chip. The latter is
made of a glass lid on top and a silicon substrate with an
embedded microfluidic channel. Figures 1(a) and 1(b)
show photographs of actual silicon-glass devices including
the chip mounted on the piezoelectric transducer, while
Fig. 1(c) shows the cross section of the device defining the
computational domain used in the numerical study. The
piezoelectric transducer is modeled as a rectangular domain
of width wpz and height hpz driven by an ac-voltage
difference ϕapp applied between its top and bottom surfa-
ces. The bottom surface is considered fixed, while the side
surfaces move freely. The silicon substrate is a rectangular
domain of width wsi and height hsi. The rectangular
microfluidic channel of width wch and height hch is etched
into the top of the silicon substrate. Finally, a rectangular
glass lid of width wgl ¼ wsi and height hgl is placed on top
of the silicon substrate. The center line of the piezoelectric
transducer is displaced by a distance dpz with respect to the
center line of the chip.

B. Governing equations and Lagrangian densities

In the following, we formulate the governing equations
and report the free Lagrangian densities for the elastic,
acoustic, and piezoelectric waves in the case of a time-
harmonic actuation. The material properties are not speci-
fied, as we tacitly assume that these are different for
different materials (see Sec. III for further details).

1. Elastic waves

The propagation of elastic waves in the silicon chip and
the glass lid is governed by the time-dependent Navier
equation [30,31],

−ρ∂2
t uþ ∇ · σmc ¼ 0; ð1Þ
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where ρ is the density of the material, u is the displacement,
and σmc is the mechanical stress tensor. The constitutive
equation relating the mechanical stress to the displacement
in the linear regime is given by [30,32]

σmc ¼ Σ∶γ; ð2Þ
where γ ¼ 1

2
½∇uþ ð∇uÞT � is the strain tensor, Σ is the rank-

4 stiffness tensor. The superscript T and the colon denote
the transpose and the inner product of the tensors, respec-
tively. The stiffness tensor Σ has 34 ¼ 81 components, but
the positivity of the elastic strain energy, expressed by the
constraints Σij;kl ¼ Σkl;ij, Σij;kl ¼ Σji;kl, and Σij;kl ¼ Σij;lk,
reduces the number of independent components to 21. For
monocrystalline silicon, Σ is fully described by only three
parameters, and two parameters (the Young modulus and
the Poisson ratio) suffice for isotropic glass [30–32].
The Navier equation (1) can be written in the frequency

domain (Helmholtz form) by using the time-domain
Fourier representation uðx; tÞ ¼ uðx;ωÞe−iωt,

ρω2uþ ∇ · σmc ¼ 0; ð3Þ

where ω ¼ 2πf is the angular frequency corresponding to
the actuation frequency f of the transducer.
In a variational approach to the field equations [33],

Eq. (3) is the Euler-Lagrange equation ∂Lmc=∂u� − ∇ ·
½∂Lmc=∂ð∇u�Þ� ¼ 0 derived from the variation of the
mechanical Lagrangian Lmc ¼

R
Lmcdx with

Lmcðu;∇uÞ ¼ ρω2u� · u − ∇u�∶Σ∶∇u; ð4Þ

where the asterisk denotes the transposed conjugate. Note
that, because Σ is symmetric in both pairs of its indices, the
inner product ∇u�∶Σ∶∇u equals γ�∶Σ∶γ. This rule will be
used in the following to disregard the antisymmetric part of
the deformation ∇u when it is double dotted with a
symmetric tensor, such as Σ.

2. Acoustic waves

The governing equation for the acoustic waves in the
frequency domain (inviscid fluid) inside the microfluidic
channel is the wave equation [34]

κacpþ 1

ρω2
∇ · ∇p ¼ 0; ð5Þ

where ρ is the density of the fluid, κac ¼ ½1=ðρc2Þ� is its
isentropic compressibility, c is the speed of sound (con-
sidered complex valued so as to include bulk dissipation),
and p is the acoustic pressure. The governing equation can
be derived from the acoustic Lagrangian density Lac of the
fluid,

Lacðp;∇pÞ ¼ κacp�p −
1

ρω2
∇p� · ∇p: ð6Þ

Note that (i) the factor ω2 in Eq. (5) appears in such a way
that the Lagrangian Lac has the dimension of an energy
density, the same as Lmc, and (ii) the role of the kinetic and
potential energies in Lac is reversed when compared to Lmc
since, in acoustics, the potential energy is the p�p term and
the kinetic energy is the gradient-product term [34–36].

3. Piezoelectric waves

The governing equations in the linear deformation
regime for the electromechanical (em) or piezoelectric
waves in the piezoelectric transducer are the Helmholtz-
Navier equation (3) coupled with the conservation for the
electric displacement dem in the absence of an electric
charge distribution [37],

ρω2uþ ∇ · σem ¼ 0; ð7aÞ

∇ · dem ¼ 0; ð7bÞ

(a)

(b)

(c)

FIG. 1. (a) Photograph of three prototypical acoustophoretic
silicon-glass chips with glass lids 0.5, 0.7, and 1.1 mm high,
respectively. (b) Photograph of a complete device with a 40-mm-
long silicon-glass chip (gray) with short fluidic tubings attached
underneath the chip ends and mounted on the piezoelectric
transducer (brown) connected by electrical wires (blue and
white). (c) The cross section of the device defining the two-
dimensional computational domain.
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where σem is the electromechanical stress tensor and dem is
the electric displacement vector. The linear stress-charge
constitutive equations [37] for σem and dem are extensions
of Eq. (2) and the standard constitutive relation for the
electric displacement,

σem ¼ Σ ∶ γ þ P† · ∇ϕ; ð8aÞ

dem ¼ P ∶ γ − ε · ∇ϕ; ð8bÞ

where ϕ is the electrostatic potential and ε is the dielectric
permittivity tensor. The piezoelectric coupling tensor P is a
rank-3 tensor that is symmetric in its rightmost indices,
Pi;jk ¼ Pi;kj, and where ½P†�kj;i ¼ ½P��i;jk is the Hermitian
conjugate. These symmetries imply that P∶γ ¼ P∶∇u.
Finally, the corresponding Lagrangian density Lem is

Lemðu;∇u;ϕ;∇ϕÞ ¼ ρω2u� · u − ∇u�∶Σ∶∇u
− ∇ϕ� · P∶∇u − ∇u�∶P† · ∇ϕ

þ ∇ϕ� · ε · ∇ϕ; ð9Þ

which is similar to that provided by Ref. [37] (see the
discussion and table in Sec. 1.2) for the static case, except
for the fact that the kinetic term, i.e., ρω2u� · u, has been
included.

C. Boundary conditions

The boundary conditions for the above-mentioned four
domains (piezoelectric transducer, silicon chip, water
channel, and glass lid) are set as follows.
Mechanically, the piezoelectric transducer is free to

vibrate (zero stress) at the bottom wall Spz=bot and at the
interface Spz=air, while the displacement and the stress are
continuous across the interface Spz=si with the silicon chip,

σem · n̂ ¼ 0; x ∈ Spz=bot; ð10aÞ

σem · n̂ ¼ 0; x ∈ Spz=air; ð10bÞ

⟦u⟧ ¼ 0 and ⟦σ⟧ · n̂ ¼ 0; x ∈ Spz=si; ð10cÞ

where ⟦g⟧ ¼ g2 − g1 is the difference in g across an
interface separating 2 from 1 [note that the stress in the
piezoelectric transducer is σem as defined in Eq. (9), while
in the silicon, it is σmc as defined in Eq. (2)]. Electrically,
the piezoelectric transducer has zero potential at the bottom
wall Spz=bot, an externally applied potential ϕapp on the top
wall Spz=top, and zero surface charge on the side walls
Spz=side,

ϕ ¼ 0; x ∈ Spz=bot; ð11aÞ

ϕ − ϕapp ¼ 0; x ∈ Spz=top; ð11bÞ

dem · n̂ ¼ 0; x ∈ Spz=side: ð11cÞ

Given the linearity of the model presented here, we can
assume, without loss of generality, that the applied voltage
is ϕapp ¼ 1 V (for real-world devices, this voltage is
usually between 3 and 7 V).
The remaining boundary conditions are purely mechani-

cal. The glass and silicon surfaces exposed to air (Sgl=air and
Ssi=air) have zero stress and the silicon-glass interface
(Ssi=gl) has a continuous displacement field and stress
tensor, while the glass and silicon surfaces (Sgl=fl and
Ssi=fl) exposed to the fluid in the microchannel have
continuous stress (the tangential stress in the inviscid fluid
is, by definition, zero) and normal displacement,

σ · n̂¼0; x∈Ssi=air; Sgl=air; ð12aÞ

⟦u⟧ ¼ 0 and ⟦σ⟧ · n̂ ¼ 0; x ∈ Ssi=gl; ð12bÞ

⟦u⟧ · n̂ ¼ 0 and ⟦σ⟧ · n̂ ¼ 0; x ∈ Ssi=fl; Sgl=fl: ð12cÞ

Note that, for the fluid, the displacement field is given by
ufl ¼ ½1=ðρω2Þ�∇p and the stress by σfl ¼ −p1, where 1 is
the unit tensor.
So far, the boundary conditions have been expressed in

their strong forms. However, for the numerical implemen-
tation in the finite-element method, we need to formulate
them in weak form, and adding the contributions so
obtained to the free Lagrangian density equations (4),
(6), and (9) leads to correctly constrained solutions to
the variational problem.
The boundary terms for the free Lagrangian densities

Lmc, Lac, and Lem are derived from the virtual work form of
Eqs. (3), (5), and (8) by considering integration over the
relevant domain and application of the Green-Gauss
theorem. This operation yields the sought-after contribu-
tions in terms of the surface-normal component of the
fluxes,

Lbnd
mc ðu; σbndmc Þ ¼ u� · σbndmc · n̂; ð13aÞ

Lbnd
ac ðp;ubndfl Þ ¼ p�ubndfl · n̂; ð13bÞ

Lbnd
em ðu; σbndem ;ϕ; dbndem Þ ¼ u� · σbndem · n̂ − ϕ�dbndem · n̂; ð13cÞ

where the reaction forces—the dot product of the fluxes
with the surface normal n̂—are explicitly addressed. At
interfaces between neighboring domains, these contribu-
tions cancel due to the presence of surface normals that
have opposite direction in the two domains. Therefore, if no
extra surface contribution is added to the Lagrange den-
sities, the continuity condition ⟦·⟧ ¼ 0 for the normal
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fluxes at such interfaces is automatically fulfilled. For free
boundaries such as external walls, the reaction forces are,
by definition, zero, and if no further terms are added to the
Lagrangian, these boundary conditions are also fulfilled.
On the bottom wall of the piezoelectric transducer, the

Dirichlet condition on the electrical potential ϕ is imposed
using the standard method of Lagrange multiplier func-
tions: here, μem. This method amounts to adding the
following Lagrange surface-density contribution,

Lbot
em ¼ ϕ�μem þ μ�emð−ϕÞ; ð14Þ

to the free Lagrangemechanical densityLem, throughwhich
we obtain the Euler-Lagrange equation ∂μ�emL

bot
em ¼ 0, which

implies ϕ ¼ 0. Similarly, for the piezoelectric top wall we
add the following Lagrange surface density Ltop

em to the free
Lagrange mechanical density:

Ltop
em ¼ ϕ�μem þ μ�emð−ϕþ ϕappÞ: ð15Þ

The Euler-Lagrange equation for μ�em leads to the correct
boundary condition, ϕ ¼ ϕappe−iωt, on the top wall.
By using the virtual work theorem and the Gauss’s

theorem, it is straightforward to prove that the total work
ŴðωÞ ¼ R

Stop
Wðx;ωÞdS made by the external actuation

source on the acoustofluidic device equals the volume
integral over the system domain Ω of the total Lagrange
density L ¼ Lmc þ Lac þ Lem,

ŴðωÞ ¼
Z
Ω
Lðx;ωÞdx: ð16Þ

Henceforth, we use the hat notation on capital letters to
denote complex-valued integral quantities such as ŴðωÞ.

D. Definition of system indicators

From the Lagrangian densities introduced in the previous
section, we can derive the expressions for the Hamiltonian
densities, the stored energy, and the dissipated power
for the device. By using complex notation and treating a
field q and its complex conjugate q� as independent
variables, the corresponding Hamiltonian density is given
by H ¼ q� · ½∂L=ð∂q�Þ� þ q · ½∂L=ð∂qÞ� − L. This pre-
scription results in the following three Hamiltonian den-
sities for each of the three subsystems:

Hmc ¼ ρω2u� · uþ ∇u�∶Σ∶∇u; ð17aÞ

Hac ¼ κacp�pþ 1

ρω2
∇p� · ∇p; ð17bÞ

Hem ¼ ρω2u� · uþ ∇u�∶Σ∶∇u − ∇ϕ� · ε · ∇ϕ

þ ∇ϕ� · P∶∇u − ∇u�∶P† · ∇ϕ: ð17cÞ

Note that, to interpret the quantities introduced in Eq. (17)
as energies, the real part of these quantities must be
positive. This constraint (i) implies constraints on the
actual material parameters (in terms of numerical values
and symmetries of the higher-rank tensor) and (ii) provides
a further method to check the energy consistency of the
model presented here.
The quadratic structure of the Hamiltonian densities

implies that, for a given domain n ¼ pz, si, gl, or ch, the
contribution HnðωÞ to the total energy of the system is
given by the time average over one oscillation period of the
integrated complex-valued Hamiltonian ĤnðωÞ as

HnðωÞ ¼
1

2
Re½ĤnðωÞ�; ð18aÞ

ĤnðωÞ ¼
Z
Ωn

Hnðx;ωÞdx; n ¼ pz; si; gl; ch: ð18bÞ

The total energy per cycle HðωÞ of the system is thus

HðωÞ ¼ HpzðωÞ þHsiðωÞ þHsiðωÞ þHchðωÞ: ð19Þ

As described in Eq. (15), the system is driven by the
applied potential ϕ ¼ ϕappe−iωt on the top wall of the
piezoelectric transducer. The dissipated power PðωÞ is thus
given by the time average over one period of the complex-
valued rate P̂ ¼ −iωŴðωÞ of the applied work ŴðωÞ given
in Eq. (16),

PðωÞ ¼ 1

2
Re½ŴðωÞ� ¼ ω

2
Im½L̂ðωÞ�; ð20Þ

where the total complex-valued Lagrangian L̂ðωÞ of the
system in analogy with the Hamiltonian is given by

L̂ðωÞ ¼ L̂pzðωÞ þ L̂siðωÞ þ L̂siðωÞ þ L̂chðωÞ; ð21aÞ

L̂nðωÞ ¼
Z
Ωn

Lnðx;ωÞdx; n ¼ pz; si; gl; ch: ð21bÞ

An important indicator for characterizing the system in
terms of electric measurements is the complex-valued
electrical impedance ẐðωÞ defined through the voltage-
current relation ϕapp ¼ Ẑ Î. Multiplying this expression by
ϕ�
app and recalling that the dissipated power is given by

P̂ ¼ ϕ�
appÎ ¼ −iωL̂, we obtain the electrical impedance,

ẐðωÞ ¼ i
jϕappj2
ωL̂ðωÞ ; Ẑ ¼ ZðωÞ exp½iφZðωÞ�; ð22Þ

where Z is the absolute value of the impedance and φZ is
the phase. Since L̂ðωÞ depends quadratically on the
applied potential, we note that, as expected, the electrical
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impedance is independent of ϕapp. Below, we investigate to
which extent the electrical impedance, which is easy to
measure, characterizes the acoustic part of the electro-
mechanical resonances of the system.
Additionally, from the total Hamiltonian HðωÞ and the

dissipated power PðωÞ, one can calculate the quality factor,
or Q value, for the electrically driven acoustofluidic device
as [38]

QðωÞ ¼ ωHðωÞ
PðωÞ ¼ Re½ĤðωÞ�

Im½L̂ðωÞ� : ð23Þ

The Q value is one of the indicators used to characterize
acoustofluidic chips; indeed, high Q values indicate strong
and well-defined resonances of the system. However, we
drop the use of thisQ in favor of an electric characterization
based on the impedance equation (22).
The above indicators characterize the system in its

entirety. An indicator addressing indirectly the amount
of radiation force the system is capable of producing within
the microchannel is the fraction η of the total energy HðωÞ
that resides as acoustic energy HchðωÞ in the channel,

ηðωÞ ¼ HchðωÞ
HðωÞ : ð24Þ

Indeed, the acoustic radiation force responsible for the
acoustophoresis in the channel is proportional to Hch [1],
and thus to η. As η approaches unity, the acoustic radiation
force in the fluid attains the maximum radiation force
achievable for a device, as all of the energy is stored as
acoustic energy in the fluid. According to this property, η
can be termed the acoustofluidic yield.
However, the acoustofluidic yield quantifies only the

magnitude of the acoustophoretic forces. To obtain good
acoustophoresis—say, particle separation—the direction of
these forces also needs to be optimal. To quantify the
optimal directionality, we introduce the acoustophoretic
mean orientation θðωÞ, defined in terms of the sine of the
average direction of the pressure gradient,

θðωÞ ¼ sin

�
arctan

∥∂ypðx;ωÞ∥
∥∂zpðx;ωÞ∥

�
: ð25Þ

Here, the average ∥fðxÞ∥ of a field fðxÞ is defined as the
average of the absolute value jfðxÞj in the channel
domain Ωch.
Good acoustophoresis—namely, focusing by horizontal

motion towards the vertical center plane—is obtained when
the average of the horizontal pressure gradient ∥∂yp∥ is
much larger than the vertical one ∥∂zp∥. For example, in
the ideal case of a horizontal standing pressure half wave,
pðxÞ ¼ p0 cosfπ½y=ðwchÞ�g, we obtain ∂zp ¼ 0, and thus
θ ¼ 1. By contrast, a dominating vertical gradient corre-
sponding to θ ¼ 0 is useless. The acoustophoretic mean
orientation θ contains only information about the direction

of the pressure wave. If information is required about other
features of the pressure field (number and distribution of
the nodes and/or spatial homogeneity), additional indica-
tors must be introduced. For the analysis presented below,
the use of θ suffices.
It must be noted that the acoustophoretic mean orienta-

tion is based on the assumption that the dipole scattering
coefficient in the Gorkov potential [2] equals zero since the
definition equation (25) takes into account only the gradient
of the pressure field. This is a good approximation when the
acoustophoretic separation involves cells suspended in
aqueous media, as the cell density is usually quite close
to water density, almost canceling the contribution of the
dipole scattering coefficient.

III. NUMERICAL IMPLEMENTATION

A. Finite-element discretization

The Lagrangian representation introduced in Sec. II B
and the corresponding boundary contributions in Sec. II C
are suitable for implementing numerical simulations with
the finite-element method. The numerical simulations are
performed using the finite-element software COMSOL [39].
The coarse mesh shown in Fig. 2 is generated by COMSOL.
A finer mesh is used in the actual simulations and generated
by assuming the geometric parameters in Table I.
The Lagrangian densities (4), (6), and (9) corresponding

to the governing equations (3), (5), and (7) are implemented
in COMSOL by substituting the complex-conjugate fields u�,
p�, and ϕ� by the so-called test functions u†, p†, and ϕ†.
For the sake of clarity, an overview of the weak-form
implementation in COMSOL is shown in the block diagram
of Fig. 3. The larger boxes in the diagram contain the
subdomain bulk equations of Sec. II B, while the boundary
conditions of Sec. II C are displayed in the smaller boxes,
from which arrows point to the interfaces (the dashed
regions), where they have been applied. The condition
equations (12c) are implemented by the substitutions

FIG. 2. Example of a mesh generated in the computational
domain defined in Fig. 1 with a mesh resolution mres ¼ 0.35; see
the details in Sec. III B. The geometry parameters are listed in
Table I. Specifically, the glass-lid height is hgl ¼ 1100 μm and
the displacement is dpz ¼ 250 μm.
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σs → −pf1 in Lbnd
mc and ufl → usl in Lbnd

fl . Tables I and II
contain the geometrical and material parameters used in the
simulations.

B. Model validation

We perform a number of tests to demonstrate the
reliability of the numerical simulations for frequencies
which, as explained in Sec. IV, lie between 1.5 and
2.5 MHz. First, we conduct a mesh-convergence analysis
choosing a Pyrex lid hgl ¼ 1100 μm high and a centered
piezoelectric transducer (dpz ¼ 0 μm). We use meshes of
triangular elements with a coarseness controlled by a mesh

resolution parameter mres of between zero and unity. As
illustrated in Fig. 2 for mres ¼ 0.35, the maximum linear
size of the mesh elements is set to bemreshch in the channel,
0.1mreshch at six corners, and 1.4mreshch elsewhere. We
consider the four mesh resolutions mres ¼ 0.10, 0.14, 0.20,
and 0.35, corresponding to a doubling of the number of
mesh elements for each step, then use the results for the
finest mesh m�

res ¼ 0.10 as the reference solution. For a
given field Fðf;mresÞ, we define the mesh- and frequency-
dependent relative error err½Fðf;mresÞ� and its average
err½FðmresÞ� over N discrete frequencies fk by

TABLE I. List of the geometry parameters for glass, silicon,
channel and Pz26 used in the simulations.

Length Symbol Value

Glass height hgl 200, 500, 700, 1100 μm
Glass width wgl 375 μm
Silicon height hsi 350 μm
Silicon width wsi 3000 μm
Channel height hch 150 μm
Channel width wch 375 μm
Pz26 height hpz 1000 μm
Pz26 width wpz 5000 μm
Pz26 displacement dpz 0, 250, 500 μm

FIG. 3. Block diagram illustrating the weak-form implementa-
tion of the bulk equations of Sec. II B (larger boxes) and the
boundary conditions of Sec. II C (smaller boxes). The system is
driven by the applied potential ϕapp at angular frequency ω. The
fields are displacement u, stress σ, pressure p, electric potential
ϕ, and electric displacement d. The material parameters are listed
in Table II. The subscripts refer to the subdomains.

TABLE II. List of the material parameters used in the simu-
lations. We assume that Qsi ¼ ∞ and Qal ¼ QPy.

Parameter Symbol and value

Water parameters: [19,21]
Speed of sound cwa ¼ ð1þ i 1

2
φwaÞ1481 ms−1

Density ρwa ¼ 998 kgm−3
Loss factor φwa ¼ 0.01

Pyrex parameters: [40]
Density ρPy ¼ 2220 kgm−3
Young modulus EPy ¼ f1þ i½1=ðQPyÞ�g63 GPa
Poisson ratio νPy ¼ 0.2
Quality factor QPy ¼ 1250

ALON parameters: [29]
Density ρal ¼ 3688 kgm−3
Young modulus Eal ¼ f1þ i½1=ðQalÞ�g334 GPa
Poisson ratio νal ¼ 0.239
Quality factor Qal ¼ 1250

Silicon parameters: [17,41]
Density ρsi ¼ 2330 kgm−3
Stiffness matrix Σsi ¼ Σ0, with elements

Σ0
11 ¼ Σ0

22 ¼ Σ0
33 ¼ 165.7 GPa

Σ0
12 ¼ Σ0

13 ¼ 63.9 GPa
Σ0
44 ¼ Σ0

55 ¼ Σ0
66 ¼ 79.6 GPa

Pz26 parameters: [42]
Density ρpz ¼ 7700 kgm−3
Stiffness matrix Σpz ¼ f1þ ½ið1=QΣÞ�gΣ0,

with elements
Σ0
11 ¼ Σ0

22 ¼ 168 GPa
Σ0
12 ¼ 110 GPa, Σ0

13 ¼ 99.9 GPa
Σ0
23 ¼ 99.9 GPa, Σ0

33 ¼ 123 GPa
Σ0
44 ¼ Σ0

55 ¼ 30.1 GPa
Σ0
66 ¼ 28.8 GPa

Quality factor for Σ QΣ ¼ 100
Dielectric tensor ε ¼ f1 − ½1=ðQεÞ�gε

ε11 ¼ ε22 ¼ 828
ε33 ¼ 700

Quality factor for ε Qε ¼ 333
Coupling matrix PPz ¼ f1þ ½ið1=QPzÞ�gP0,

with elements
P0
15 ¼ P0

24 ¼ 9.86 Cm−2

P0
31 ¼ P0

32 ¼ −2.8 Cm−2

P0
33 ¼ 14.7 Cm−2

Quality factor QPz ¼ ½2QΣQε=ðQε −QΣÞ� ¼ 286
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err½Fðf;mresÞ� ¼
����Fðf;mresÞ − Fðf;m�

resÞ
Fðf;m�

resÞ
����; ð26aÞ

err½FðmresÞ� ¼
1

N

XN
n¼k

err½Fðfk;mresÞ�: ð26bÞ

In Fig. 4(a), we show plots of the average relative errors of
the Lagrangian L and the Hamiltonian H versus the mesh
resolution mres for N ¼ 1001 frequencies between 1.5 and
2.5 MHz, in steps of 1 kHz. The error is below 1% for all
meshes and decreases proportionally tom2

res asmres → 0. In
Fig. 4(b), we plot the relative error for each of the N
frequencies for a fixed mesh resolution mmes ¼ 0.14. The
relative error fluctuates as a function of frequency, with
pronounced local maxima near what turns out to be
resonance frequencies. The largest maximum is 5 × 10−3

at f ≃ 1.7 MHz, which is an order of magnitude larger
than the average relative error of 3 × 10−4, but still
below 1%. To trade off between computational time and
accuracy, we use the mesh resolution mres ¼ 0.14 (yielding
150 000 degrees of freedom) in all of the numerical
simulations presented here.
The internal consistency in the implementation of the

governing equations and the boundary conditions has been

tested by using Eq. (16), which states that the total work Ŵ
provided by the applied potential ϕapp on the piezoelectric
transducer must equal the total Lagrangian L̂ defined in
Eq. (21a). In Fig. 5, the relative deviation jðL̂ − ŴÞ=Ŵj
between these two quantities is plotted as a function of the
actuation frequency for the two mesh resolutions mres ¼
0.10 and 0.14, and it is found to be numerically zero for all
of the frequencies.

IV. RESULTS

Since the usual standing-half-wave resonance in the
microchannel is f0 ¼ ½c=ð2wchÞ� ¼ 1.974 MHz, we simu-
late the response of the acoustofluidic device to actuation
frequencies from 1.5 to 2.5 MHz. We vary the lid height hgl
and the displacement dpz of the piezoelectric transducer as
indicated in Table I, and we study two different transparent
materials for the glass lid, namely, Pyrex and the more stiff
and heavy ALON [43].

A. Procedure for identifying good acoustophoresis

In experiments aiming for the separation or focusing of
particles, a strong and well-oriented acoustophoretic force
is necessary to provide the adequate displacement of the
particle stream towards the pressure node fast enough to be
completed before the particle stream leaves the device. The
occurrence of a resonant state is, therefore, a necessary
condition for producing a strong acoustophoretic force. In
order to identify the optimal actuation frequency f for a
given device geometry and applied voltage ϕapp, we
employ the indicators introduced in Sec. II D.
First, we locate the frequencies for which the acousto-

phoretic mean orientation θ, as defined in Eq. (25), exceeds
a threshold value 0 < θ0 < 1 close to 1. Therefore, we
introduce the concept of acoustophoretic bands (ACP
bands) as

(a)

(b)

FIG. 4. (a) Log-log plot of err½LðmresÞ� (filled circle) and
err½HðmresÞ� (filled square). The straight line is a reference slope
corresponding tom2

res. (b) Plot of the relative error for the real part
(solid red line) and the imaginary part (dashed red line) of the
Hamiltonian (dashed black line) for mres ¼ 0.14.

FIG. 5. Relative deviations for the real part (the light red lines)
and imaginary part (the blue lines) of the Lagrangian L̂ from the
external work Ŵ versus frequency f for dpz ¼ 0 μm, hgl ¼
1100 μm for two mesh resolutions: mres ¼ 0.10 (the thin lines)
and mres ¼ 0.14 (the thick lines).
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ACPbands ¼ frequencies for which θðfÞ > θ0: ð27Þ

This requirement ensures that the orientation of the
pressure field and the resulting acoustic radiation force
leads to microparticle migration towards a vertical nodal
line, and it can be regarded as a quality measure of the
acoustic force.
On the other hand, the acoustophoretic-force intensity is

regulated by the amount of energy present in the channel
for a specific actuation frequency. Therefore, we look for
frequencies for which either the system energy H or the
channel energy Hch ¼ ηH attain maxima. In the first case,
the actuation frequencies correspond to resonance frequen-
cies of the entire system, while in the second case, we
demand only an amount of energy in the channel sufficient
to obtain acoustophoresis. Note that channel resonances
and system resonances do not need to coincide. Note also
that the detection of a channel resonance is achievable only
by indirect measurements, such as microparticle-image-
velocimetry experiments, while the detection of a system
resonance is easily achievable by means of electrical
measurement—for example, by looking at the minima of
the real part of the impedance.
We can now establish a numerical procedure for identify-

ing effective actuation frequencies in terms of acousto-
phoresis as follows: (i) by calculating the indicators θ, η,
Hch, and H as a function of the frequency f in a chosen
interval, (ii) by identifying the ACP bands for a threshold
value, (iii) by locating within the ACP bands the frequencies
fn leading to local maxima of H, and (iv) by computing the
optimal actuation frequency facp, which is defined

facp ¼ f that maximizes Hch in theACP bands: ð28Þ
For comparison purposes, we also keep track of the
frequency fH for which HðfnÞ has a global maximum
within the acoustophoretic bands.

B. Mechanical characterization

An example of the identification procedure for Pyrex-
silicon devices is reported in Fig. 6. Here, θ, η, Hch, and H
are plotted versus the actuation frequency f in the interval
from 1.5 to 2.5 MHz for all 12 combinations of glass height
and piezoelectric displacement listed in Table I. For each
device, the top graph contains the lin-lin plot of θ (the solid
and dashed black line), while the bottom graph contains the
log-lin plots of the acoustofluidic yield η (the red line), the
channel energy Hch=ð1 PaÞ (the purple line), and the total
energy H=ð1 PaÞ (the blue line). We show the ACP bands
for θ0 ¼ 0.95 (the gray areas), the local maxima of the total
energy within the ACP bands HðfnÞ (the open circles), the
global maximum of the total energy within the ACP bands
HðfHÞ (the filled circles), and, finally, the optimal fre-
quency facp (the vertical dashed line).
Some general features can be observed in the figure. First,

the ACP bands are practically absent for the symmetrically

placed transducer (dpz ¼ 0), and the orientation θ rarely
surpasses even 0.9; these responses occur because the
specific transducer—that is, Pz26—is mainly characterized
by a compression or extension actuation mode in the z
direction [42] that, in a piezoelectric- or chip-symmetric
configuration, does not provide a sufficient excitation for the
y-directed vibrational modes that are those responsible for
the acoustophoresis. Second, for the asymmetrically placed
transducer, the width of the ACP bands increases for an
increasing lid height hgl. Third, we note that the optimal
acoustophoretic frequencyfacp doesnot coincidewith a local
maximum in H for all of the cases we investigate (see the
cases dpz ¼ 250 μm, hgl ¼ 1100 μm and dpz ¼ 500 μm,
hgl ¼ 200 μm). These observations point out the complex
interplay between the different parts of the device and
highlight the fact that the channel, where acoustophoresis
is observed, is a small part of the system, and it can contain a
remarkable amount of energy evenwhen thewhole system is
not resonating.

C. Example of identifying good acoustophoresis

The ability to identify optimal frequencies for acousto-
phoresis by using the procedure introduced above is
illustrated by the two examples shown in Fig. 7. The
two systems have Pyrex lids and nearly identical geom-
etries defined by the parameters listed in Table I. The
piezoelectric displacement is dpz ¼ 250 μm in both cases,
while the glass-lid height is hgl ¼ 200 μm [Fig. 7(a)] and
hgl ¼ 700 μm [Fig. 7(b)]. The respective optimal actuation
frequencies facp ¼ 1.875 and facp ¼ 2.099 MHz have been
obtained by using the definition equation (28). Despite the
very different displacement fields in the surrounding chip
material, which is represented as the magnitude of the real
part of the displacement jReðuÞj by the color plot (from
blue zero, via green, to red maximum), both systems
exhibit a nearly perfect horizontal standing pressure wave
ReðpÞ (the color plot from blue minimum, through white,
to red maximum or line plot in the inset) in the fluid. This
occurrence has been observed experimentally [25–27], and
it is ideal for forcing the particles to the vertical pressure
nodal plane in the center of the channel. By definition of
facp, the orientation θ is close to unity in both systems. In
all of the cases for which we locate facp by using the
identification procedure, we have observed similar behav-
iors in the pressure field inside the microchannel.

D. Electrical characterization

So far, the device characterization has involved only the
mechanical indicators θ, H, Hch, and η—which, unfortu-
nately, cannot be measured directly and easily during the
experiments. It would be advantageous if the acousto-
phoretic performance of a given system could be assessed
by measuring only electrical quantities through the con-
nection of the piezoelectric transducer. A good candidate
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for an easily accessible indicator is the complex-valued
electrical impedance Ẑ ¼ ZeiφZ in Eq. (22), which can be
measured experimentally with the use of an impedance
analyzer. This frequency-dependent complex-valued

indicator can be written as Ẑ ¼ Rþ iX, where the real
part R is the resistance and the imaginary part X is the
reactance. A system is considered to behave inductively for
X > 0 (or 0 < φZ < ðπ=2Þ) and capacitively for X < 0 (or

FIG. 6. Plots of the indicators versus the frequency f between 1.5 and 2.5 MHz in a Pyrex-silicon device: the acoustophoretic
orientation θ (the solid and dashed black lines), the Hamiltonian H (the dark blue lines), the acoustofluidic yield η (the light red lines),
and the channel energy Hch (the purple line), each shown for the three positions dpz (the values atop of columns) of the piezoelectric
transducer and four glass heights (the values in the right-hand rows). Gray-shaded regions are the ACP-band equations (27) for θ ¼ 0.95.
In the graphs, we have highlighted the local maxima in HðfnÞ (the empty circles), the global maximum HðfHÞ (the filled circles), and
the optimal acoustophoretic frequency facp (the vertical dashed lines).
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−ðπ=2Þ < φZ < 0). Depending on the internal structure of
the electric circuit (RLC series or parallel), driving the
system at the resonance frequency can amplify voltage or
current [38]. This response occurs for zero reactance when
the system is purely resistive, and the current is in phasewith
the applied voltage. In this situation, the magnitude of the

impedance can be at either a local minimum or a local
maximum, and the system is said to be in a resonant or
antiresonant state, respectively. Driving the device at a
resonance frequency, leads to a local maximum of stored
energy H, and this value can be large even for a low
input power.
In Fig. 8, we show the frequency dependence of the

magnitudeZ [top row; unitΩm, as this is a two-dimensional
(2D) calculation] and the phase φZ (bottom row) of the
electrical impedance Ẑ for silicon-Pyrex devices with lid
heights hgl ¼ 200 μm (first column) and 1100 μm (second
column) and three different displacements of the piezo-
electric transducer, dpz ¼ 0 μm (the red lines), 250 μm (the
green lines), and 500 μm (the blue lines). The response of
the system alternates between resonances and antiresonan-
ces (minima and maxima in the impedance while the phase
crosses zero), but, for the chosen parameters, the system has
a prevalent capacitive behavior (φZ < 0) with intermittent
inductive behavior (φZ > 0). We observe that in the cases
shown in Figs. 8(a1) and 8(a2) for the smaller chip, where
the piezoelectric transducer is weakly loaded, the imped-
ance exhibits many small fluctuations as a function of
frequency and is sensitive to the off-center position of the
piezoelectric transducer. For the larger chip cases shown in
Figs. 8(b1) and 8(b2), less fluctuation and less sensitivity to
dpz is observed: the impedance and the phase curves are
nearly independent of dpz and the resonance frequencies
nearly coincide, as do those of the antiresonances. These
plots confirm the picture regarding the complicated inter-
actions between the different parts of the system and the
great sensitivity of the resonance conditions to the possible
geometric configurations for the system.

(a)

(b)

FIG. 7. Color plot of the magnitude jReðuÞj of the real part of
the displacement field in the solids (the rainbow color map) and
the real part ReðpÞ of the acoustic pressure in the fluid (the red-
white-and-blue color map) for two silicon-Pyrex devices with
(a) hgl¼200μm at f¼facp¼1.875MHz, and (b) hgl ¼ 700 μm at
f ¼ facp ¼ 2.099 MHz. (Insets) The real part ReðpÞ of the
pressure along the horizontal centerline of the water-filled
microchannel.

(a1)

(a2)

(b1)

(b2)

FIG. 8. Magnitude Z
and phase φZ of the elec-
tric impedance as a func-
tion of the frequency f for
Pyrex-silicon devices with
three different off-center
displacements of the
piezoelectric transducer:
dpz¼0μm (the red lines),
250 μm (the green lines),
and 500 μm (the blue
lines). (a1), (a2) Z and
φZ, respectively, for devi-
ces with lid thickness
hgl ¼ 200 μm. (b1), (b2)
Z and φZ, respectively,
for devices with lid thick-
ness hgl ¼ 1100 μm.
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E. Procedure for identifying resonances
from electrical impedance

Alongside these qualitative comments, it is important to
establish to what extent a criterion based on the electrical-
impedance characteristics can identify good acoustopho-
resis frequencies. It is not possible a priori to provide a
criterion to detect frequencies (resonance or antiresonance)
leading to a high energy content for the system. Instead, we
try to establish empirical rules through a direct comparison
of the mechanical indicators to the electrical impedance.
In Fig. 9, four prototypical cases observed in the

behavior of the mechanical and electrical indicators are
illustrated. The weakly loaded piezoelectric transducer (the
smallest height of the lid) is shown in Fig. 9(a1). Here, a
situation corresponding to a classical resonance condition
for a RLC series circuit (φZ ¼ 0 and Z ¼ min) is illus-
trated, and the optimal acoustophoretic frequency coincides
with the frequency at which H attains a maximum, that is,
facp ¼ fH. This case is different than the behavior observed
for the same system but for a generic resonance fn ≠ facp
[Fig. 9(a2)], where the resonance frequency is between a

maximum in the phase and a minimum in the impedance
magnitude. The extremum in the phase is a maximum
because the system mostly behaves as a capacitor (φZ < 0)
and, combined with the magnitude of the impedance and
the phase, it has the effect of minimizing the resistive part
of the impedance, thus minimizing the power input. This
phenomenology can also be observed for the other generic
resonance, fn ≠ facp (even outside the ACP bands), in the
case where the piezoelectric transducer is heavily loaded
Fig. 9(b2), namely, for hgl ¼ 1100 μm. Analogous behav-
ior has been observed, but less frequently when the phase
attains a positive maximum.
Finally, quite peculiar behavior is observed for the

heavily loaded piezoelectric transducer [Fig. 9(b1)] when
f ¼ facp but f ≠ fn. In this case, there is no evidence for a
resonance in the system, a zero maximum in the phase, or a
minimum in the impedance, while the energy content in the
channel has a maximum. The pairing of this observation
with the analysis of the energy quantification in Fig. 9
reveals that, in this situation, the channel energy is slightly
higher than that achievable for the resonance frequency
fn ¼ 1.950 MHz because the yield is quite high. This
peculiar case can be seen as a case in which the channel is
resonating while the whole system is not, and it is the
most difficult to detect electrically since there is no trace
of the energy content of the channel in the impedance
measurements.
Based on these observations, a criterion for detecting

resonance frequencies fZ;n for the system can be con-
structed as follows:

fZ;n is in the interval between fZ and fφZ
; where

ðiÞ fZ ¼ ~f; ~fminimizesZ; and

ðiiÞ fφZ
¼ ~f

�
eitherφZð ~fÞ ¼ 0 and φZ

0ð ~fÞ > 0

or minimizes jφZð ~fÞj:
ð29Þ

Note that this criterion is a less restrictive version of the
criterion used to detect resonance frequencies for a RLC-
series circuit, equipped with the additional condition that
the phase attains a negative maximum or a positive
minimum. The criterion equation (29) does not provide
the location for an exact resonance frequency of the system,
but it addresses a frequency interval in which it is possible
to find the resonance frequency. The intervals are formally
given by fZ < fZ;n < fφZ

and fφZ
< fZ;n < fZ for φZ < 0

and φZ > 0, respectively. As shown in the figure, these
frequency intervals are quite narrow and, for the classical
resonance conditions φZ ¼ 0, the frequency bounds
coincide and a single frequency is recovered.
Figure 10 reports the results of the application of the

criterion equation (29) to the detection of resonance
frequency intervals for two silicon-glass devices, with dpz¼
250μm for (a) hgl ¼ 200 μm and (b) hgl ¼ 1100 μm,

(b2)(b1)

(a2)(a1)

FIG. 9. The magnitude Z (black line, arbitrary scale) and the
phase φZ (green line, thin horizontal line φZ ¼ 0) of the
impedance Ẑ, the energy H (blue line, arbitrary scale), the yield
η (red line, arbitrary scale), and the channel energy Hch (purple
line, arbitrary scale) as a function of frequency f in an interval
characterized by Δf ¼ 10 kHz around a frequency f� at which
the channel energy is a maximum. (a1) Chip with hgl ¼ 200 μm,
dpz ¼ 250 μm, and f� ¼ fn ¼ facp ¼ 1.870 MHz. (a2) Same
as (a1), but at f� ¼ fn ¼ 1.666 MHz. (b1) Chip with
hgl ¼ 1100 μm, dpz ¼ 250 μm, and f� ¼ facp ¼ 1.929 MHz.
(b2) Same as (b1) but at f� ¼ fn ¼ 1.950 MHz. The gray area
is the interval between the frequencies given by Eq. (29) [case
(b1) cannot be detected].
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by depicting the spectral behavior of the phase φZ (top
plot), the energy H (center plot), and the impedance jẐj
(bottom plot). The green and black vertical lines mark the
frequency bounds obtained through Eq. (29) by applying
criteria (i) and (ii), respectively. Here, the effectiveness of
the criterion equation (29) in the detection of frequency
intervals containing resonance frequencies can be appre-
ciated. Indeed, in almost all of the cases, the energy
maxima are enclosed in the predicted intervals. It can also
be observed that when one of the two criteria is missing
(mostly because of the procedure used in the extremum
calculation over numerical data), the other can still provide
a good approximation for the resonance frequencies.
Although the criterion equation (29) can detect resonance
frequencies for the system, the effectiveness of these
frequencies in producing particle focusing is still hidden
by the fact that the impedance indicates an overall perfor-
mance of the system and does not contain information
about the orientation of the pressure wave in the
microchannel.

V. CONCLUSION

In this work, the Helmholtz equations governing the
elastic, acoustic, and piezoelectric waves in an acousto-
phoretic device are formulated in terms of the free

Lagrangian densities of each subsystem: the piezoelectric
transducer, the silicon substrate, the glass lid, and the water-
filled microchannel. The subsystems are coupled and
boundary conditions are imposed by adding surface con-
tributions to the free Lagrangian densities. In this way, we
construct a consistent model that takes the coupling
between the different subsystems and the electric actuation
into account. The model is implemented and thoroughly
tested by means of numerical simulations by using a weak-
form implementation in the commercial software COMSOL

Multiphysics, version 4.4a.
Three frequency-dependent mechanical indicators are

introduced to characterize the acoustophoretic response
of the system: the total energy H, the acoustofluidic yield
η, and the mean acoustophoretic orientation θ. A specific
procedure that allows for the identification of optimal
frequencies facp is provided so that it is possible to obtain
good acoustophoretic focusing of suspended micropar-
ticles flowing through the microchannel. Additional
electrical indicators, such as the impedance Ẑ of
the system, the power input P, and the Q value are
correlated with the Lagrangian and the Hamiltonian of the
system.
We (i) illustrate the general guidelines for obtaining

optimal actuation frequencies facp from a spectral analysis
of the mechanical indicators and (ii) by comparing
mechanical and electric indicators, we provide an empirical
criterion for detecting resonance frequencies (high energy
in the system) by using impedance characteristics.
To exemplify the use of the present model as a possible

design tool, we analyze variations in the spectral behavior
induced by changing the commonly used glass lid from
Pyrex to ALON [43]. The analysis reveals unique features
of ALON, such as stabilization of the optimal resonance
frequency as the height of the lid increases. This behavior
deserves further experimental studies employing other stiff
materials, such as sapphire [44], for which some perspec-
tives on the bonding process are known [45]. The rule
equation (29) based on the comparative analysis of the
mechanical and electrical characteristics of the device is
easy to implement in the applications, and it can success-
fully predict the frequency ranges in which system reso-
nances occur.
In summary, the model we report may be employed

(i) as an optimal design tool in the future development of
acoustophoretic devices or (ii) to narrow experimental
frequency intervals for the detection of optimal resonance
frequencies by using optical techniques. It demonstrates
the effectiveness of the employment of basic theories in
the area of coupled mechanical and electrical systems
and, as such, is closely related to the developments in
mechatronics [46,47], and it points towards the possibility
of reducing the expensive and time-consuming trial-
and-error fabrication procedures presently being used in
the field.

(a)

(b)

FIG. 10. Phase φZ (green lines), impedance Z (black lines), and
energy H (blue lines) as function of the frequency f for Pyrex-
silicon devices with dpz ¼ 250 μm for (a) hgl ¼ 200 μm and
(b) hgl ¼ 1100 μm. Vertical black and green lines mark the
frequencies obtained via the criterion equations (29)(i) and (29)
(ii), respectively.
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APPENDIX: AXIAL MODES ANALYSIS

For completeness, we use an analysis of the axial modes
to briefly discuss the connection between the 2D model
presented in the manuscript and a full three-dimensional
(3D) model. Table III contains the symbols used here as
well as in the main text.
Using the combined variable q ¼ ½u; p;ϕ�T , the gov-

erning equations (3), (5), and (7a) can be obtained from the
Euler-Lagrange equation with the Lagrangian density

Lðq;∇qÞ ¼ q†Kqþ ð∇qÞ†M∇q; ðA1Þ

where q† ¼ ðq�ÞT , q†q is the inner product for the space of
the complex-valued states,K is a matrix with scalar entries

K ¼

0
B@

ρω2 0 0

0 −κs 0

0 0 0

1
CA; ðA2Þ

and M is a matrix with tensorial entries

M ¼

0
B@

Σ 0 −P
0 ðρω2Þ−1 0

−PT 0 ε

1
CA: ðA3Þ

Let the position coordinate be written as r ¼ ðx; r⊥Þ,
such that x is the axial coordinate and r⊥ ¼ ðy; zÞ are the
cross-section coordinates. We assume that the device is
axially periodic along the x axis with period l so that
0 < x < l and qð0; r⊥;ωÞ ¼ qðl; r⊥;ωÞ. Using a discrete
Fourier series in the axial coordinate, we can write

qðx; r⊥;ωÞ ¼
X∞
n¼−∞

q̂nðr⊥;ωÞei2πnx=l; ðA4Þ

where the amplitudes q̂n are given by

q̂nðx⊥;ωÞ ¼
1

l

Z
l=2

−l=2
qðx⊥;ωÞe−i2πnx=ldx: ðA5Þ

The nabla operator ∇̂ acting on q̂ is written as

∇̂ ¼ i
2πn
l

ex þ ∇⊥; ðA6Þ

where ∇⊥ ¼ ey∂y þ ez∂z is the cross-section nabla oper-
ator. Since the quadratic Lagrangian density (A1) leads to
linear equations of motion, the axial-mode decomposition
of any solution q is unique and complete, and each of the
axial modes q̂n can be determined from their respective
Lagrangian densities,

Lnðq̂n; ∇̂q̂nÞ ¼ q̂†nKq̂n þ ð∇̂q̂nÞ†M∇̂q̂n: ðA7Þ

This splitting is possible because M and K do not depend
on the spatial coordinates.
For the axially invariant mode n ¼ 0, there is no

dependence on x and ∇̂ ¼ ∇⊥. Moreover, the displacement
field is restricted to be in the cross section, u · ex ¼ 0.
Consequently, the Lagrangian density L0 for the n ¼ 0
mode can be written as

L0ðq̂0;∇⊥q̂0Þ ¼ q̂†0Kq̂0 þ ð∇⊥q̂0Þ†M⊥∇⊥q̂0; ðA8Þ

where M⊥ contains only the tensorial components in the
cross-section plane from M. This Lagrangian density

TABLE III. Summary of symbols and their meanings. Scalars
are addressed by means of plain roman and greek letters. Script
symbols refer to Lagrangian, Hamiltonian, work, and power
densities. Vectors and tensors of second, third, and fourth ranks
are addressed by using bold roman, bold greek, bold capital
roman, and bold capital greek, respectively. Primed symbols
address the Voigt notation for the symmetrizable tensors.

Rank Symbol Description Units

0 f frequency Hz
ω angular frequency rad=s
ρ density kg=m3

E Young modulus N=m2

ν Poisson ratio 1
p pressure Pa
ϕ electric potential V
L Lagrangian density J=m3

H Hamiltonian density J=m3

W work density J=m3

P power density J=sm3

L Lagrangian J
H Hamiltonian J
W work J
P electric power J=s
Z electric impedance Ω
I electric current A
η acoustofluidic yield 1
θ acoustophoretic orientation 1

1 u displacement m
v velocity m=s
a acceleration m=s2

d electric displacement C=m2

n̂ outward normal 1
2 1 unit tensor 1

ε dielectric tensor F=m2

γ strain 1
2
ð∇uþ u∇Þ 1

σ stress N=m2

3 P electric-field strain piezoelectric coupling C=m2

4 Σ stiffness tensor N=m2
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directly leads to 2D equations of motion with the bulk-
material properties studied in Sec. II. In an extended
treatment, the axial modes can be used to approach a full
3D solution by taking higher modes with jnj > 0 into
account.
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