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Abstract. Damping of torsional beam vibrations of slender beam—structures with thin—walled
cross—sections is investigated. Analytical results from solving the differential equation gover—
ning torsion with viscous bimoments imposed at the boundary, are compared with a numerical
approach with three-dimensional, isoparametric elements. The viscous bimoments act on the
axial warping displacements associated with inhomogeneous torsion, and are in a numerical for-
mat realized by suitable configurations of concentrated, axial forces describing discrete dampers.
It is illustrated by an example that significant damping ratios may be obtained for a beam with
an open cross—section.

1 INTRODUCTION

Torsional vibrations may be induced in slender, thin—walled beam-structures by e.g. wind,
if the loads on the beam act with a certain eccentricity relative to the shear center of the cross-
section. For beams with asymmetric cross-sections the elastic and shear centers do not coincide,
whereby the flexural and torsional vibrations couple. In both cases the total dynamic response
may be damped by damping the torsional motion of the beam. Slender structures like long
bridge decks, aircraft wings or wind turbine blades may be prone to aerodynamic instabilities
like flutter, where flexural and torsional vibrations couple. Flutter is associated with apparent
negative damping that cannot be sufficiently compensated by the inherent structural damping.
To avoid flutter and e.g. to reduce fatigue stresses by aerodynamic forces, supplemental damping
is therefore required.

Torsional vibrations of thin—walled beams are associated with inhomogeneous torsion which
generates out-of-plane, axial warping displacements that are often significant at the boundaries
of beams with open cross-sections. The free, torsional vibration characteristics including warping
were originally investigated by Gere [1] who solved for the natural frequencies and mode shapes of
beams with various boundary conditions, and by Carr [2] where an energy apporach was applied
to obtain approximate frequency equations for a few combinations of boundary conditions.
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Subsequently Gere and Lin [3] studied the coupling between flexural and torsional vibrations,
and the coupling with restrained thin—walled beams by Lin [4]. Numerical results using a finite
element approach were compared with analytical results by Mei [5], and Friberg [6] derived
an exact dynamic element stiffness matrix, though without the effect of warping. Analytical
solutions of frequencies and mode shapes for prismatic beams excited by harmonic, torsional
loads have been derived by Augustyn and Kozién [7].

Damping of torsional vibrations has only briefly been addressed in the literature. Narayanan

and Malik [8] attached viscoelastic layers to the flanges of a beam with an open cross—section;
Jansen and van der Steen [9] considered damping of torsional vibrations in oil well drillstrings;
and recently Augustyn and Kozién [10, 11] glued piezoelectric actuators to a beam to reduce the
torsional vibrations. Christiano and Salmela [12] showed that the restraining of warping results
in an often considerable increase in natural frequency and change in vibration characteristics.
This localized effect of restrained warping was utilized to introduce a substantial amount of
supplemental damping by Hagsberg et. al. [13], where viscous boundary conditions were applied
through pure bimoments at the supports. They solved the eigenvalue problem associated with
free vibrations with respect to the complex-valued natural frequency and corresponding damping
ratio. They demonstrated that significant damping ratios could be realized by these viscous
bimoments at the beam supports.
The present paper performs a numerical investigation of the changed dynamic behaviour of
thin-walled beams with applied viscous bimoments at the boundaries. The results in terms of
natural frequencies and damping ratios are compared with [13]. The numerical procedure is
based on a linear finite element approach with three-dimensional, isoparametric elements. In
a simple numerical code, the bimoments are easily represented by concentrated, axial forces
distributed over the cross-section. These viscous forces are proportional to the velocity of the
given node and are added to the equations of motion by an influence vector describing the
points of application. As they are proportional with velocity, they constitute a damping term
and result in a modified damping matrix. Setting up the equations of motion in a state-space
format yields an eigenvalue problem, from which the corresponding complex natural frequencies
and damping ratios are extracted.

2 UNCOUPLED TORSIONAL VIBRATIONS

Consider a beam element of length ¢, axial coordinate z and transverse axes {y, z}. The axial
displacement is u(z,y, z,t) and the angle of twist is (z,t) as seen in Fig. la. In the present
analysis it is assumed that flexural and torsional vibrations uncouple because of coinciding elastic
centers.

The differential equation governing the torsional vibration problem is set up by energy relations
which require the elastic and kinetic energy. The elastic strain energy contains contribution
from homogeneous and inhomogeneous torsion, respectively given as

U= /%GK(@’)% + /%Elw(e”ﬁ dzx (1)
l l

where G is the shear modulus, K is the torsion stiffness parameter, F is Young’s modulus and I,
is the warping moment of inertia with ¢ indicating the sector—coordinate or warping function.



David Hoffmeyer & Jan Hggsberg

a) b)

1
Ua A th l\ ) b K

+bh
f . 7
~Lon [——

A b *

Figure 1: Degrees of freedom and coordinates a) and sector—coordinate 1 for an I-profile with
a positive angle of twist b).

For an I-profile the distribution of the sector—coordinate is shown in Fig. 1b. The kinetic energy
o the torsional motion is

T:/%pJézda: (2)
l

where p is the mass density and J is the polar moment of inertia taking the distribution of the
mass into account. Energy dissipation may be defined through a viscous damping coefficient
either distributed along the beam by c(x) or acting at discrete points via ¢ described by Dirac’s
delta function §. As dampers may be applied at discrete points the latter is relevant whereby
the dissipated energy D then takes the form:

= C$‘2$: COo\x — X ‘21'
D_Lo<>0d /5( 0)62d (3)

l
where x( indicates the point of application of the discrete damper. In the case of damped
vibrations the change in mechanical energy is balanced by the dissipated energy, U + T = —D.
Performing the differentiation of the energy balance and using integration by parts yields the
governing differential equation as

EL,0" — GKO" + pJ6 =0 (4)

As no continuous form of damping is intended, the last expression in (3) is instead applied as a
boundary condition. Thus, (4) is valid between the points of application of external dampers.
A time harmonic solution of the form # = ¢e™! may be assumed with w being the natural
frequency and ¢ the spatial solution. Inserting the frequency solution into (4) and following the
approach by Gere [1], the spatial solution may be expressed as

¢ = Dj cosh(ax) + Dasinh(ax) + D3 cos(Bx) + Dy sin(fBx) (5)

introducing the four integrations constants D; to D4 — determined by the boundary conditions
— and the two apparent and real-valued wave numbers defined as

Y L e s L o (6)
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This formulation of the solution introduces the warping length scale k, wave speed v and scaled
wave number \ respectively as

GK GK kw2
2 A 2 _ U8 4 _ (MY
k:_Ew =3 DY <v> (7)

It is noted that v represents the wave speed for the homogeneous torsion problem. The spatial
solution to the torsion problem in terms of the vibration form is obtained from (5) by use of
relevant boundary conditions. Applying the boundary conditions yields transcendental equations
which must be solved iteratively for the combined set of & and 8. One wave number is then given
by the other through (6), and the use of the third expression in (7) determines the frequency w.
For more details see e.g. [1, 13].

2.1 Viscous Bimoment at the Boundary

A viscous condition on the boundary may be imposed in several ways. In [13] a viscous normal
stress distribution was applied at the beam supports acting through the axial displacement
producing a bimoment. This normal stress was distributed across the cross-section of the beam in
a continuous manner. In the case of active control a discrete device would produce a concentrated
force proportional to the velocity at specific points at the cross-section. A viscous, concentrated
force Fy(y, z,t) at the boundary is

Fd = :|:C?ld (8)

where ¢ is a viscous damping coefficient and u4(y, z,t) is the axial velocity, positive in the x—
direction. The force is defined as positive in tension, whereby the "+” in (8) refers to the left
end of the beam at x = 0 and the ”—" refers to the right end at x = ¢. The axial displacement
due to torsion is given through the sector—coordinate, and the corresponding velocity is

g = — 6 9)
see e.g. Vlasov [14]. A series of discrete dampers may be applied at the boundary each dissipating
energy. Thus the second expression in (3) indicates a sum of the viscous damping coefficients
associated with the given damper and the velocity at that particular point. In combination
with (8) the rate of external work D produced by the dampers is formulated as the sum of the
contributions of the viscous forces multiplied with the energy conjugate velocity by

D=3 Fyjig; ==y cig; =+(81)" Y cdf (10)
j j j

where 1; is the sector—coordinate at the location of the j'th damper and c is here assumed to be
constant for all dampers. A bimoment as shown in Fig. 2a is usually noted with a double arrow
due to the classical example shown in Fig. 2b. Here two opposite bending moments are applied
at the flanges. Vectorially they add up to zero, and a pure bimoment is thus a kinematic and not
a static condition. It does not generate a resulting force (or moment) but acts as a concentrated
change in rotation curvature. The bending moments, however, may be decomposed into force
couples as seen in Fig. 2¢. A given configuration of concentrated, axial forces therefore generates



David Hoffmeyer & Jan Hggsberg

a) b) c)

\_/Mf* ~ \}d

Fy

Figure 2: I-profile beam with a bimoment a), bending moments at the flanges generating the
bimoment b) and equivalent configuration of concentrated, axial forces c).

a bimoment through the sector—coordinate. By definition the bimoment produces work through
the negative gradient of the angle of twist, see e.g. Vlasov [14]. Thus, the rate of work produced
by a bimoment is D = —0/, B;. Equating this rate of work with (10) yields

Ba=7F0)> cv} (11)
J

The bimoment produced by the dampers By(t) must be balanced by the section bimoment at
the boundary B(z,t) = —EI;0"(x,t). The dynamic boundary condition then takes the form

07 F 0y =0 (12)

with the effective viscous damping parameter n =3 cwjz /EIy. The form of (12) is identical
to [13] with exception of the effective parameter 7. Here the viscous damping coefficient ¢ is
scaled relative to the amount of dampers, the corresponding sector—coordinates at the points of
application and the warping stiffness EI,. Inserting the frequency solution 6 = et yields the
harmonic boundary condition

@" Fiwng' =0 (13)

which is directly applicable in connection with the transcendental equations governing the tor-
sional vibration problem.

3 DAMPING OF TORSIONAL VIBRATIONS

When not considering a beam element but modelling the entire structure by a finite element
procedure, a discretized, multi-degree—of—freedom system with n degrees of freedom may be
assumed. The equations of motion are set up by the elastic, kinetic and dissipated energy. The
elastic energy gives the stiffness contribution through the stiffness matrix K, the kinetic energy
gives the inertia contribution through the mass matrix M and the dissipated energy gives the
applied, discrete viscous forces as described in (8) and in the second term in (10). The energy
balance T'+ U = —D then gives
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Mq(t) + Kq(t) = —f4(t) (14)

where q(t) is a column vector containing the degrees of freedom and f;(t) are the externally
applied viscous forces. In this case the inherent structural damping is neglected. Damping
may be constituted as a series of dampers modelled as equivalent concentrated, viscous forces
acting through a viscous damping coefficient ¢ and the velocity of the corresponding nodes in
the discretized system:

nd
(1) = (Z cjij?>q<t> 0 (15)

Here c; is the viscous damping coefficient associated with the j’th damper and w; is an influence
vector describing the points in the structure connected to the damper. The column vector w;
thus contains 1 at the location of the damper and otherwise 0’s. In this case, however, a constant
viscous damping coefficient is used for all dampers. Inserting (15) into (14) yields the equations
of motion with a modified damping matrix

Mg+ Cq+Kq=0 (16)

These modified equations of motion with damping included yields a quadratic eigenvalue prob-
lem. However, they may be formulated in a state-space format
q

d |a 0 I

dt |q|  |-M'K -M-'C| |q
where I is a n X n identity matrix. Assuming a time-dependent, partial solution the state—
space format constitutes an ordinary eigenvalue problem, from which the eigenvalue iw and

corresponding eigenvector may be extracted. For damped vibrations the natural frequency w is
generally complex—valued and usually expressed as

w= ol (VI=Z+i) (18)

with ¢ being the damping ratio defined by the imaginary part of the natural frequency

(17)

Im|w]
In the complex plane the natural frequency w constitutes a semicircle between the undamped
frequency wg and the corresponding upper limit frequency weo. In the former case the damper(s)
have no effect and the viscous damping coefficient therefore is ¢ = 0. In the corresponding
extreme case where ¢ — oo the damper locks and the node, at which the damper is attached,

simply becomes restrained against axial movement.

4 EXAMPLE

In the following an example is used to illustrate the theory from Section 2, the numerical
procedure established in Section 3 and to illustrate the use of concentrated, axial forces as a
measure of damping.
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Figure 3: Fixed—free beam with viscous bimoment By at x = ¢ a) and I-profile cross—section b).

4.1 Damping of a fixed—free beam.

Consider the fixed—free beam in Fig. 3a. The beam has the length ¢, is fixed at x = 0 with
restrained rotation and warping and is free at x = £. The beam cross—section is an open I-profile
with height and width a and thickness ¢ = a/20, see Fig. 3b. With the chosen cross-section,
material and length of the beam the warping length scale normalized with the length of the
beam is k¢ = 3 and thus represents a slender structure. For a particular viscous bimoment at
the boundary at x = ¢, the complex natural frequency w and corresponding damping ratio ¢
are obtained by determining the integration constants in (5) by use of the boundary conditions.
For the fixed—free beam with damping at x = ¢ the boundary conditions are

p(0)=0 , ¢0)=0 , ") +iwnd()=0 , k() -¢"()=0 (20)
With these homogeneous boundary conditions and the homogeneous differential equation (4)
the torsion problem constitutes an eigenvalue problem where the spatial solution (5) leads to a
transcendental equation. In [13] it is derived as

(0)! + (80)" (a0)? + (86)?

cosh(al) cos(B) + sinh () sin(30) + 2

(2 (B0)? (@) (30) o
+ iwnﬁw cosh(al) cos(B¢) [al tanh(al) 4+ B¢ tan(BC)] =0
(al)?(Be)?

This equation is solved iteratively for af and (¢, while the third expression in (7) determines
the frequency and by (19) the damping ratio is found. In obtaining a semi—circle in the complex
plane, illustrating the variation of the frequency, the viscous damping coefficient ¢ — contained
within the effective damping parameter 7 — is varied in the interval ¢ € [0; oo[. In this example
a series of configurations for the distribution of discrete dampers is applied, see. Fig. 4. The
first configuration seen in Fig. 4a consists of a single damper applied at one corner of the I-
profile, and the resulting warping of the cross—section is thus only partly restrained. The second
configuration is a more effective measure of restraining warping as two dampers are located
at opposite corners where the largest warping displacements occur, see Fig. 1b. The profile
may though still warp, and thus the third configuration is applied which effectively prevents
the cross—section from warping almost completely. The two configurations in Figs. 4a and 4b
do not constitute pure bimoments as they generate a normal force — and in the first case also
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Figure 4: Three configurations of dampers; opposite corners a), all corners b) and distributed
along flanges c).

bending moments — which must be accounted for. However, together with the third configuration
they serve to illustrate the amount of damping that might by obtained by restraining at the
right locations and with a proper number of dampers. The two configurations with non—pure
bimoments may even serve to illustrate the possibility of damping coupled flexural vibrations,
if the right structural set—up could be established.

The frequency loci and damping ratios for the three different configurations obtained by solving
(21) are seen as the solid curves in Figs. 6a and 6b, respectively. By all three configurations of
dampers the analytical model yields the same results in terms of undamped frequency wgy and the
frequency with the dampers being locked wy, corresponding to infinite damping. The dynamic
boundary condition (12) restrains warping of the entire cross—section in a unified manner, and
does not take the possible modes of warping with the dampers applied into account. The optimal
value of the viscous damping parameter ¢, is therefore different in the three cases, but plotted
as the effective damping parameter 7 the three sets of curves coincide as seen in Fig. 6b.

Frequencies and damping ratios

In the numerical comparison a standard finite element approach is used with solid, isopara-
metric elements. A special bi—cubic—linear element is exploited to model thin flanges and a
cubic—bi-linear element for connections and corner — these are illustrated in Fig. 5.

Figure 5: Isoparametric 24-node bi—cubic-linear a) and 16-node cubic—bi-linear b) element.
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Figure 6: Frequency loci a) and damping ratios b) showing the results from (—) the analytical
procedure and numerical procedure with (---), (-~ - —) and (——) representing the three bimoment
configurations shown in Figs. 4a, 4b and 4c respectively.

The elements are intended for modelling of thin-walled beams where a linear interpolation across
the thickness is sufficient and a cubic interpolation in the flange—wise direction to capture the
parabolic stress variations associated with shear. The I-profile is thus sufficiently modelled with
seven elements in the cross—section in the case of a simple static analysis. See e.g. Hggsberg &
Krenk [15] for the use of a two—dimensional version of these elements for general cross—sectional
analyses of thin—walled beams. In the present case, however, a further discretization of the
cross—section is necessary in order to capture the warping effect. As two nodes across the thick-
ness of the flanges are present, a damper at each node of the corners are applied in order to
avoid any unnecessary distortion of the cross—section as the damping effect increases. Thus, the
damping forces Fj in Fig. 4 constitute a set of two dampers.

Solving the eigenvalue problem in the state—space format for the complex frequency and cor-
responding damping ratio for the three configurations of dampers yield the frequency loci and
distribution of the damping ratio illustrated with the non—solid curves in Fig. 6. As seen the
undamped frequency w{FM is 0.9 % lower than the analytical solution. This may be due to
the torsional mode in the numerical example not representing 'pure torsion’ — as the analytical
method requires — but contains some minor distortion, e.g. local deformations of the flanges.
The analytical approach is independent of the shape of the cross—section and only works through
the cross-sectional parameters, but a three—-dimensional numerical model takes this into account.
In the case of ¢ — oo the boundary condition (12) completely restrains the warping at the free
end, and the increment, (ws — wg)/wp, in the frequency is 0.217 in the analytical case. The
numerical model, however, only requires an axial restraining of the nodes at the corners of the
I-profile where the dampers are attached. As the largest warping displacements occur at the
corners, restraining these will have an essential influence on the warping of the rest of the cross—
section. As the cross—sections in the three cases in Fig. 4 still are able to warp locally when
¢ — 00, the corresponding frequencies wZ ™ will be lower compared to the analytical model,
which is also seen in Fig 6a. For the configurations shown in Figs. 4a, 4b and 4c the increments
in frequencies, (wWEZEM — wg) /wo, are 0.043, 0.115 and 0.199 relative to the analytical wg, corre-
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Figure 7: Damping ratio given as a function of damper force, for the three damper configurations.

sponding to an increase in stiffness from increased restraining of the warping. The increase in
locked frequency has a direct consequence on the damping ratio; the bigger the frequency locus
the more damping it is possible to obtain. This is also evident in Fig. 6b where the damping
ratio ( increases from 0.029 through 0.063 to 0.106 for the three configurations, compared to
0.109 in the analytical case. This should correspond to approximately half of the frequency
increment, but due to wg EM not completely coinciding with wq the values are just slightly off.
By this it is noted that the numerical and analytical models match quite well, as the damping

ratios are almost identical in the case 4c when restraining the entire cross—section.

In this example identical viscous damping coefficients ¢ are used for all dampers. And larger
damping ratios may be reached by application of different damping coefficients optimised for
each damper. Different cross—sections where warping is more pronounced may equivalently result
in even large damping ratios. However, for closed cross—sections associated with larger kf—values
the obtainable damping ratios are limited due to the vanishing warping displacements. In that
case an amplified warping displacement may be induced by including a slit along the beam,
whereby non—vanishing, relative axial displacements occur.

Damper force

As damping of torsional vibrations by restraining of warping displacements prospectively is
intended for beam—structures within civil or mechanical engineering, it is of interest to consider
the magnitude of the forces occurring in the dampers. As the eigenvalue problem solved is
complex, the force in the damper is also complex. Thus, the magnitude of the force vector for
the j’th damper is | Fy j| = |¢; wf q|. Assuming a time dependent solution of the form q = qg e™*
the force takes the form

|Faj| = licjww] qof (22)

This force, however, is scaled according to the corresponding eigenvector and does not represent
the actual magnitude. But related to the reaction force R in the case of infinite damping,
the relation between the two forces is comparable, provided that the eigenvectors are scaled
identically. Fig. 7 shows the damping ratio given as a function of the force of the damper in a
single corner of the I-beam, in Fig. 4. For the three configurations in Figs. 4a, 4b and 4c the
force ratios |Fy|/R corresponding to maximum damping are 0.887, 0.650 and 0.602 respectively.

10
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It is seen that quite large portions of the reaction force must be realized at optimal damping, and
for the single damper configuration almost 90 % of the reaction force is present in the damper.
This indicates that a configuration of several dampers that effectively restrains warping is most
advantageous.

5 CONCLUSION

A previously developed novel method for damping of torsional vibrations of thin—walled
beams by control of warping displacements has been investigated and compared with a numerical
finite element procedure. The torsional vibrations are damped by restraining the out—of—plane
warping displacements by applying viscous bimoments at the boundary of the beam. These
viscous bimoments are represented by axial, concentrated forces proportional with the velocity
of a given node in the numerical model. By an example it is shown that restraining warping is
associated with a significant increase in natural frequency depending on the part of the cross—
section being restrained. A proper configuration of dampers results in a considerable amount
of supplemental damping for a slender beam-structure, even though all dampers in the present
paper are associated with identical viscous damping coefficients. The undamped and infinitely
damped natural frequencies are however not exactly identical due to the numerical model taking
the actual geometry of the beam into account. This suggests that a final design should be carried
out by a numerical procedure to get accurate calibration of the dampers, as well as the forces
in the dampers which may be close to the reaction force when locking the damper.
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