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Innowative Tools for Electrical System
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No_rmal / Cut-of-range
Exceptional Type Contingency
v of Contingency

Alert State

Activation by Event or
System Response

System Protection Schemes (SyPS)

Special Protection Schemes (SpPS)

Oscillatory |Transient | |Frequency] | Voltage
instability| |Instability | | Instability| |Instability

Violation of operational limits (e.qg. over- loadings
voltage excursions, instability phenomena...)

_J, Objective Objective
Maintain Alert State /
Avoid transition to
Emergency State
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Corrective

actions

SpeC|aI protection schemes
(Defence plan 1/2)

R Restoration
process
A

System protection schemes
(Defence plan 2/2)

— o . o ey

Blackout

Defence plans and restoration 7/
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 Defense plans
— Weak points in existing plans (AIA / KUL)
— Role of renewable generation plants (DTU)
— Pan-European coordination (KUL)
— Use of PMUs (Statnett / KTH, Tractebel)
— Use of distributed energy resources (Imperial / KUL / DTU)

* Restoration
— Coordinated restoration (AlA / Tractebel)
— Use of renewable generation plants (INESC)
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ELIA Belgium
IPTO Greece 20
National Grid UK
Statnett Norway B
REN Portugal 10
RTE France 5
0
A.1- Rotor
Angle A.3- Voltage
instability T;‘Zga“;::;/ nstability  A4-Other
26 A
25 A ope . .
bt Voltage Stability is the main concern, but
23 - there is a considerable number of “other”
22 - instabilities
21 T T

D.1- Response Based  D.2- Event Based

Most SPS triggering are response-based.
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Wind power in
defence plans and restoration

Kaushik Das, Mufit Altin and Poul Sgrensen, DTU

Technical University of Denmark e
posqg@dtu.dk Hl

André Madureira and Luis Seca, INESC Porto .'NESC OOOOOOO
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* Event:
— Splitinto 3 areas

— North-East with surplus generation (incl wind) causing overfrequency
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Figure 4: Schematic map of UCTE area split into three areas

Figure 6: Frequency recordings after the split

*Final Report “System Disturbance on 4 November 2006,” UCTE



Q‘é‘t Emergency frequency control
) Validation case

e Starting point: Synthetic model of Europe — from
Pegase

* Snapshot before events:

I A

Conventional generation (GW) 45.5 2.0
Wind generation (GW) 8.4 1.0
Load (GW) 41.2 3.5
Losses (GW) 2.7 0.1

Imbalance (GW) 10.0 -0.6
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* Events:
— Split into 2 areas (Germany+DK1 surplus generation 9.4 GW) at 10sec.
— Generator disconnection (3.3 GW) in Germany at 15 sec.
Modified Pegase Model - DK1+DE
514 T T T T T T
512 n
51 -
W R Gl o
50.8
g Generation disconnection in DE
>
I § 50.6
g
('R
Zone WEST 504
= 7one South East
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502
*ENTSO-E Final Report “System Disturbance on 4 November 2006,” 498 i i i i i i i i i
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 Model parameters ("optimized” using simplified Matlab
model with 20% wind power penetration):
— Ramp Rate Capability: 1p.u./s
— Activation frequency: 50.4 Hz
— Wind Power Plant Droop: 1%

+ +

Delay |€

Rate Limiter

Psetpoint

11
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" Onshore and offshore

wind power development scenarios
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FIG 6.1 CUMULATIVE ONSHORE AND OFFSHORE WIND POWER IN THE EU (1990-2030)
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Q('(IS’Q Restoration with wind power
a;yd?‘ ) INESC
(INESC Porto)
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e Some results — Portuguese test case

Conventional Units
Active Power

System Frequency Py Wind park Active Power
16



Conclusions & Recommendations
ilesla

Innowative Tools for Electrical System
Security within Large Amas

Simulation on a synthetic Pan-European case confirms the positive impact of ensuring wind
power emergency control in overfrequency cases

Simulation of Continental European wind power scenarios in 2020 and 2030 shows that
increasing the volume of secondary reserves (LFC) can contribute to reduce the risk of

temporary imbalances caused by wind power uncertainties — whereas reduction of |"|
secondary reserve response time has only little impact. R

[T |

Using wind power can reduce the time required for restoration of power system

INESCPORTO'
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Coordinated Control of HVDC

&
Impact of PV on UFLS Schemes

Steven De Boeck

Steven.deboeck@esat.kuleuven.be
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innavative Toals for Electrical Syste

In the future power system more controllable device (PST, HVDC)

Offshore wind farms, planned and
operating, with subsea HVDC cables

Embedded HVDC:

— INELFE

— ALEGRO

— Corridors Germany

| Stuftgart ™=

— UK bootstraps =77
— Cobra N

£ w ’ i
— Sweden =

How can embedded HVDC links contribute during emergency situations?
Can they bring the disturbed system back to a stable operation point?
Focus on avoiding cascading due to overloads and inter-area oscillations

19
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Outage shifts the operation point to the alert or emergency state

Emergency Emergency

X(P.Q,%,Ppypc. )

Normal

Coordinated control of the embedded HVDC lines allows to shift the
operating point back in a larger operating space

Secure Border

Secure Border

N-1 Border

- s

7 1
. h H ’
limyocs limyiocy
U ’
Alert

Normal Emergency

/7
Normal )/ Alert Emergency
/

20
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A
i‘vg,a?‘ Methodology to manage overloads with HVDC

Tool to manage overloads and to prevent potential cascading

events _
Calculate Advice
Event = Overload — New = Evaluate N (Implement)

Alert Opert‘sltion Path New Set

Point Points

Different objectives:
— Optimal AC branch relieve:

AC Branch

n
Z W (Fj,actual)
i
l:"j,lim

j

— Minimal DC set-point change:

HVDC

Z W (Xi,t - Xi,t—1)n
' Xi,lim

i

The tool has been implemented on a test system and

crimrmracefiilhvy rarmaAaviaAd +ha AviAarlAAaA AviAIATAT A FfAacraAdTRAr TR FhA
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Sequence of events and actions:

System in Weakened Outage that
Normal Power starts the

Power

System

State System oscillations Stabilized

~t

Search more
stable HVDC

set-point

Implement
HVDC
Set-points

Search the HVDC set point combination leading to the most
stable operating point based on eigenvalue analysis

Implement new set points shortly after an event when the
inter-area oscillation is detected

After stabilization move to original or more optimal set points
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Central

 The methodology has been implemented on
the Nordic 32 test system and successfully
stabilized an inter-area oscillation
N 34 deg
4& 3 Wy |1 i —
I 'JW‘\L-»u’JU\'MWWWUUW el v~ .“
41 | R, W i
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\ ~ o]
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The potential of coordinated control has been shown on a test network

A tool has been designed to inform and provide solutions to support
operators managing overloads with embedded HVDC

The tool has been implemented on a test system and successfully
(automatically) removed overloads in the system

A methodology to manage inter-area oscillations by coordinated control
with embedded HVDC links has been proposed and successfully
implemented on the Nordic 32 system

24



f—" 2
Conclusions & Recommendation

With the increased penetration of embedded HVDC links, coordinated control can
contribute significantly to manage alert and emergency situations in the power system,
specifically overloads and inter-area oscillations.

A tool for automatic control actions with HVDC links is developed and implemented on a

test system. Such a tool is recommended as a support for operators and backup for failed
control actions.

25
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Impact of PV on UFLS Schemes
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EU targets: 34% of electricity production from renewables by 2020

More PV generation installed in residential areas

Mixed feeders behaviour:
depending on the time of the day, feeder acts
as load or generation (Example: Belgian feeder]

UFLS scheme becomes less adequate

New Emergency and Restoration Code
provides more harmonized scheme
design but impact of distributed
generation only limited addressed

Active Power [kW]

500

400 -

[45)

[}

[}
T

B

[}

[}
T

[}
[}
T

-100
0

T
= = =Elue = Actual Load

""""" Green = Saolar Generation -
= Red = Measured load M,

1 1 1
500 1000 1500
Hours of the day from 00:00 till 24:00

1
2000

26

2500



o
"“9—)?’ Feeder Ranking Methods

. I l
innaweative Tools far Electrical System
Securlty wiihin Large Amas

Business as Usual: snapshots at specific days and hours every season

- leads to under or overestimation of the amount of load available

Direction of Current: N

Block the trip signal if the current is flowing

from feeder towards the grid I] T moizeer >
—> avoid disconnection of generation 5

- new measuring equipment and integration
with relays needed 11 T T &

_____
1

27
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Periodic Settings: Change the feeder ranking every season, month, day

Installed PV Power
Historical Measured Load

Rank according to: Index =

= Improved behaviour compared to BAU, but not optimal
—> Better performance for smaller time window
- Hardware adjustments necessary to implement

Smart Grid Approach: Change the feeder ranking close to real time based on
measurements and estimations of PV generation

System Contribution Measured Load
Impactys qction " Measured Load+2xPV generation

Rank according to: LSsr =

- More robust UFLS scheme (no generation disconnection, follow scheme design)

- Minimize consumer impact

28
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Implementation on Data ERDF
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Smart Grid Approach (Equal percentage rank): Implement on data ERDF

1300 Feeders
15% of feeders has PV

RST load for equal percentage in each step
% 1.1 1.2 2.1 2.2 3.1 3.2 4 5
1.1 7.7 0 0 0 0.1 0.9 0 0 8.7
1.2 2.5 6.6 0 0 0.8 0.6 0 -0.1 10.4
2.1 0 3.5 4.9 0 0.6 0.5 0 -0.1 9.4
2.2 0 0 5.2 2.5 1 0.7 0 0 9.4
3.1 0 0 7.1 0.4 0.3 0 -0.1 7.7
3.2 0 0 0 0.4 7.2 1.4 0 0 9
4 0 0 0 0 0 0 18.2 -0.3 17.9
5 0 0 0 0 0 0 0 27.4 27.4
10.2 10.1 10.1 10 10.1 4.4 18.2 26.8

29
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UFLS scheme becomes less adequate due to integration of DG

Different ranking methods have been proposed and analysed

A test on the data infrax showed the potential of the different
methods

A test on the data of ERDF of 2012 showed that the smart grid
approach improves the robustness of the UFLS scheme while
reducing the consumer impact
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The robustness of current UFLS schemes comes under pressure from the increased
penetration of distributed generation.

Different feeder ranking methods have been designed and successfully implement on

power system data of different DSOs. The scheme robustness can be improved, while

reducing consumer impact. Therefore it is recommended to use methods which take
distributed generation into account for the feeder ranking in UFLS schemes

Thank youl!

Steven.deboeck@esat.kuleuven.be

31



e
B

. I 1
innaweative Tools far Electrical System
Securlty wiihin Large Amas

Out-of-Step (OOS) Relay Tuning

Stijn COLE

stijn.cole@gdfsuez.com

TRACTEBEL Engineering

GCF ShCZ




IR
e

Out-of-step

. I 1
innaweative Tools far Electrical System
Securlty wiihin Large Amas

Out-of-step relay (loss of
synchronism relay)

* Detects out-of-step
conditions in the power
system

e Sends signals to the
correct breakers to split
the system

O4071
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Out-of-step relay (loss of
synchronism relay)

* Discriminate between
faults, stable swings, and
unstable swings

e Based on inner and outer
zone setting, and timer

X4 Line

Inner zond Quter zong

I Activation
|
[ Fault
|
II No tripping
/ Stable Swing
|
|
| .
| Unstable fwmg
|

] ] > R
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* Target trip matrix

— Indicates the relays that are expected to trip for each of the simulated incidents
* Achieved trip matrix

— Indicates the relays that would effectively trip for each of the simulated incidents

Incident 1 Incident 2 Incident M
Relay 1 Not tripping Not tripping Not tripping
Relay 2 | Not tripping Not tripping Tripping
Relay M Tripping Not tripping Tripping

* Tune relay parameters to minimize the difference between target and
achieved trip matrix

 Minimize the
— tripping failure: OOS not activated when it should have
— spurious tripping: OOS activated when it should not have
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Tuning of OOS relays

wative Toots far Electrical System

A tool for automatic tuning
of OOS relay parameters
was developed based on
mathematical optimisation

A test on the Nordic32
system with one relay
showed that the tool found
a better solution that the
manual solution

A test on a system with
four relays showed the
capacity of the tool to tune
several relays
simultaneously

1 0% 1
8 e
Line 1
[:l Relay 1
Line 2
INE 2
E Relay 2
Line 3
d?& IE 2
=
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} -O—H
=500+
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e Several ways of using PMU information have been
implemented and tested

 Some of them are promising

 There are drawbacks (non-standard relay models, tuning more
difficult, filter cases of spurious tripping,...)

Virech V at sending node
I \\
N f \i 1
w \*‘2\ /
. S’
Direct calculation Monitoring rotor Extrapolation of
of V at electrical angle dynamics

rotor angle curve
centre 37
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A tool for automatic tuning of out-of-step relay parameters is developed and successfully
tested on realistic power systems. It is recommended to use such automatic tools as the
results obtained are better than with manual tuning.

Use of PMU information in OOS relays is promising, but more research is needed before a
recommendation on the use of PMU for OOS relays can be made.

Thank you

T TEBEL Engi
stijn.cole@aqdfsuez.com TRAC Ganglneer-ing




