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insight into flow characteristic as well as assist the design 
of devices for lab-on-chip applications.

Keywords  Electrokinetic · Viscoelastic fluid · Onsager · 
Streaming potential · Streaming current

1  Introduction

Micro- and nanofluidic applications (e.g., on-chip bio-
analysis, on-chip diagnostic devices, DNA molecules 
separation, energy harvesting, and so on) require the 
transportation of fluids to be driven by an external driving 
force, which can be either a pressure gradient [pressure-
driven flow (PDF)] or an external electric field [electro-
osmotic flow (EOF)] or the combination of these two driv-
ing forces. Force application results in the coupled flow 
of matter and ionic current, so-called electrokinetic flow. 
Based on the physical problem of interest, these driving 
forces can be steady or time-dependent. The application 
of steady driving forces for Newtonian fluids, like aque-
ous electrolyte solutions, whose viscosity is constant, 
was extensively investigated in the past (Masliyah and 
Bhattacharjee 2006; Bruus 2008). Recently, the necessity 
of manipulation of biofluids (for example blood, DNA 
solutions) and polymeric liquids in small confinements 
has triggered a renewed interest in the dynamics of non-
Newtonian fluid. Berli theoretically studied the utilization 
of steady PDF (Berli 2010a), steady EOF (Olivares et al. 
2009; Berli 2010b), and steady combined PDF–EOF (Berli 
and Olivares 2008) for inelastic non-Newtonian fluids 
using a power law constitutive equation in both rectan-
gular and cylindrical microchannels. Experiments carried 
out for steady PDF non-Newtonian flow in a rectangular 
microchannel inspired by Berli’s theory were also reported 

Abstract  In this paper we present an in-depth analysis and 
analytical solution for time periodic hydrodynamic flow 
(driven by a time-dependent pressure gradient and electric 
field) of viscoelastic fluid through cylindrical micro- and 
nanochannels. Particularly, we solve the linearized Pois-
son–Boltzmann equation, together with the incompressible 
Cauchy momentum equation under no-slip boundary con-
ditions for viscoelastic fluid in the case of a combination of 
time periodic pressure-driven and electro-osmotic flow. The 
resulting solutions allow us to predict the electrical cur-
rent and solution flow rate. As expected from the assump-
tion of linear viscoelasticity, the results satisfy the Onsager 
reciprocal relation, which is important since it enables an 
analogy between fluidic networks in this flow configuration 
and electric circuits. The results especially are of interest 
for micro- and nanofluidic energy conversion applications. 
We also found that time periodic electro-osmotic flow in 
many cases is much stronger enhanced than time periodic 
pressure-driven flow when comparing the flow profiles of 
oscillating PDF and EOF in micro- and nanochannels. The 
findings advance our understanding of time periodic elec-
trokinetic phenomena of viscoelastic fluids and provide 
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(Nguyen et  al. 2013). Chakraborty and colleagues have 
theoretically studied transport of non-Newtonian fluid 
(inelastic power law fluids and recently viscoelastic con-
stitutions) using separately steady PDF (Bandopadhyay 
and Chakraborty 2011), steady EOF (Chakraborty 2007; 
Ghosh and Chakraborty 2015), time periodic PDF (Bando-
padhyay and Chakraborty 2012a, b; Bandopadhyay et  al. 
2014) and time periodic EOF (Bandopadhyay et al. 2013) 
in rectangular narrow confinements. Afonso et al. studied 
the combined steady PDF and EOF using two different 
viscoelastic fluid models, namely the Phan-Thien–Tanner 
(PTT) model and the finitely extensible nonlinear elastic 
with a Peterlin approximation (FENE-P) model (Afonso 
et  al. 2009). Dhinakaran et  al. (2010) studied the steady 
EOF for viscoelastic fluids using the PTT model and non-
linearity of the Poisson–Boltzmann equation. Liu et  al. 
studied time periodic EOF of viscoelastic fluid in rectan-
gular (Liu et  al. 2011a), cylindrical (Liu et  al. 2012) and 
semicircular microchannels (Bao et al. 2013). However, so 
far no author discussed on the time-dependent combined 
PDF–EOF of viscoelastic flow in a narrow confinement 
(micro- and nanochannels). In this context, our work aims 
to fill this gap by attempting to investigate the theoreti-
cal relations between fluxes and forces for time periodic 
electrokinetic (mixed PDF–EOF) flow of viscoelastic fluid 
in narrow confinement. It is important to note that know-
ing the relationships between driving forces and conjugate 
fluxes in electrokinetics [which for simple Newtonian fluid 
and steady mixed PDF–EOF can be described by transport 
equations and the Onsager relations of non-equilibrium 
thermodynamics (Masliyah and Bhattacharjee 2006)] is 
a crucial aspect for miniaturization and integration. It is 
thus relevant for the design and operation of micro- and 
nanochannels in fluidic networks (lab-on-chip platforms) 
as well as for understanding the underlying fundamental 
physics of fluids. The results are also of interest for energy 
conversion in micro- and nanofluidic systems.

2 � Theoretical model

We consider the flow of a linearized Maxwell fluid in an infin-
ity long circular micro- or nanochannel (with channel radius 
R) under application of both an oscillating pressure and elec-
tric field using a cylindrical coordinate system (Fig. 1).

2.1 � Potential distribution

When the charged channel surface is in contact with the 
fluid with dissolved ions, electrical double layers (EDL) are 
formed at the channel walls. The electrical potential (ψ) in 
the EDL is a function of r in cylindrical coordinate system 
and has the non-dimensional form as:

in which the non-dimensional quantities are as follows: 
r̄ = r

R
, ψ̄ =

ψ
ζ

, R̄ = R
�
 or when converted back to dimen-

sional quantities,

in which κ = 1
�
 and � =

√

ǫkBT

2n0z
2e2

· ζ is the zeta potential. 
n0 is the bulk ionic density, kB is the Boltzmann constant, T 
is the operational temperature, e is the elementary charge, 
ϵ is the permittivity of the fluid, and z is the valency of the 
positively and negatively charged species (for a symmetric 
electrolyte, z+ = −z− = z).

This model is classical for electrical double layers when 
we do not consider finite ionic size effects. A detailed 
model description on the effects of finite ionic size and 
solvent polarization for electrical double layers is beyond 
the scope of this work but can be found in Bandopad-
hyay et al. (2015). It is noticed that the electrical potential 
causes by EDL is normal to the wall and the convection is 
parallel to the wall, so there is no disturbance of the EDL 
potential.

2.2 � Fluid velocity

The flow is governed by the incompressible Cauchy’s 
momentum equation. Considering the flow in z direction 
(unidimensional flow), the scalar momentum equation 
can be expressed as:

with ρ, the fluid density; u(r, t), the fluid velocity; 
− ∂

∂z
p(z, t), the applied pressure gradient; τ(r, t), the 

stress tensor; and E(z, t) the externally applied electric 
field.

(1)ψ̄(r̄) =
I0(R̄r̄)

I0(R̄)

(2)ψ(r) = ζ
I0(κr)

I0(κR)

(3)
ρ
∂

∂t
u(r, t) = −

∂

∂z
p(z, t)+

τ(r, t)+ r ∂
∂r
τ(r, t)

r

− 2zen0 sinh

(

zeψ(r)

kT

)

E(z, t)

Fig. 1   Schematic of the circular channel with the associated cylindri-
cal coordinate system
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It is important to note that E(z, t) in Eq.  (5) includes 
two components: (1) the induced electric field by the 
applied pressure gradient ESe

−iωt (the streaming potential 
field) and (2) the applied electric field EAe

−i(ωt+ϕ). Here, 
ϕ is the phase difference between the applied pressure gra-
dient and the applied electric field. We now define E0 as:

Therefore, E(z, t) = ℜ
(

E0(z)e
−iωt

)

.
Viscoelastic behavior is presented using the linear 

Maxwell model.

where tn is the liquid relaxation time and η is the liquid 
viscosity.

By substituting Eqs.  (4), (5), (6), (7) and (8) into (3), 
one can obtain the analytical solution for Eq.  (3) in case 
of a small channel wall potential (|ζ | ≤ 25 mV) so that the 
Debye–Hückel linearization can be applied, see “Appen-
dix” for derivations.

in which the simplification factor χ has the 

form χ2 = (iω∗ + ω∗2)ϑ and ϑ =
R2ρ
ηtn

. Also, 

UrefP = −
R2 d

dz P(z)

4η
;UrefE =

ǫζE0
η

 and ω∗ = ωtn.

2.3 � Flow rate

The flow rate q = ℜ(Qe(−iωt)) in which the flow rate 

amplitude has the form: Q = 2π
R
∫

0

U(r)rdr. Changing to 

the non-dimensional variable r̄, we have

(4)p(z, t) = ℜ(Pe−iωt)

(5)E(z, t) = ℜ

[(

ES + EAe
−iϕ

)

e−iωt
]

(6)u(r, t) = ℜ(Ue−iωt)

(7)E0(z) = ES + EAe
−iϕ

(8)τ(r, t) = η
∂

∂r
u(r, t)− tn

∂

∂t
τ(r, t)

(9)

U(r̄) =
4i(i + ω∗)

χ2

(

1−
J0(χ r̄)

J0(χ)

)

UrefP

+
i(i + ω∗)R̄2

χ2 + R̄2

(

J0(χ r̄)

J0(χ)
−

I0(R̄r̄)

I0(R̄)

)

UrefE

By integrating and taking − d
dz
P = �P

L
 and 

E0(z) =
d
dz
Φ = �Φ

L
, the complex flow rate Q amplitude 

has the form:

The flow rate amplitude as shown in Eq.  (11) is com-
posed of two parts. The first part is driven by the applied 
oscillating pressure, and the second part is driven by the 
applied oscillating electrical field.

2.4 � Ionic current

The ionic current icur = ℜ(Ie(−iωt)) , in 
which the current amplitude has the form: 

I = 2π
R
∫

0

ρeU(r)rdr + 2π
R
∫

0

z2e2E0(z)
f

(n+ + n−)rdr + 2πRσsE0(z). 

Here, f is the Stokes–Einstein friction factor, f = kBT
D

 and 
D is the diffusion coefficient, σs is the conductivity of the 
Stern layer (Masliyah and Bhattacharjee 2006; Lee et  al. 
2012; Davidson and Xuan 2008). It is important to note 
that since we use a linear viscoelastic model, the f factor 
presented here is not dependent on the power law exponent 
[denoted as β in Bandopadhyay and Chakraborty (2015)] 
which is solely used for a power law (inelastic) fluid. For 
more discussion on the f factor in case of using an inelas-
tic fluid, please refer to Bandopadhyay and Chakraborty 
(2015).

Changing to the non-dimensional variable r̄, we obtain:

By substituting the velocity given by Eq.  (9) into 
Eq. (12) and integrating, we obtain the complex amplitude 
current:

(10)
Q = 2πR2

1
∫

0

U(r̄)r̄dr̄

(11)

Q =

[

i(i + ω∗)R4

ηχ2

(

π −
2πJ1(χ)

J0(χ)χ

)](

�P

L

)

+

[

i(i + ω∗)R2ǫζ R̄2

η
(

χ2 + R̄2
)

(

2πJ1(χ)

J0(χ)χ
−

2π I1(R̄)

I0(R̄)R̄

)

]

(

�Φ

L

)

(12)

I = −2πǫζ R̄2





1
�

0

I0(R̄r̄)

I0(R̄)
U(r̄)r̄dr̄



+ πǫE0R̄
2D+ 2π R̄�E0σs

(13)

I =

�

i(i + ω∗)R2ǫζ R̄2

η
�

χ2 + R̄2
�

�

2πJ1(χ)

J0(χ)χ
−

2π I1(R̄)

I0(R̄)R̄

�

�

�

�P

L

�

+













i(i + ω∗)πǫ2ζ 2R̄4

η













−
I2
1
(R̄)

�

χ2 + R̄2
�

I2
0
(R̄)

+
1

(χ2 − R̄2)
−

+
2I1(R̄)R̄

�

χ2 + R̄2
�2
I0(R̄)

+
2J1(χ)χ

�

χ2 + R̄2
�2
J0(χ)













+πǫR̄2D+ 2π R̄2DuǫD

�

�

�Φ

L

�
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At this point, the velocity profiles expressed in Eq. (6) for 
both oscillating pressure-driven and electro-osmotic flows 
are fully determined. Equation  (16) is used for plotting 
velocity amplitudes as shown in the following sections.

3 � Results and discussions

3.1 � Onsager’s reciprocal relations

The Maxwell model for viscoelastic fluid is restricted to 
small deformations so that the fluid responds linearly. 
This phenomenon is known as linear viscoelasticity. 
Because of this linear relation, the Onsager relations are 
expected to be obeyed (Onsager 1931a, b; Lebon et  al. 
2008; Rajagopal 2008) and indeed, we find that the com-
plex flow rate amplitude and complex ionic current ampli-
tude in Eqs. (11) and (13) can be re-written as follows:

The transport Eq. (17) shows that flow rate amplitude 
Q and ionic current amplitude I are linear with applied 
pressure and electric potential amplitudes. Lij in Eq. (17) 
are phenomenological coefficients. In particularly, L11 
characterizes the hydraulic conductance and L22 char-
acterizes the electric conductance. L12 characterizes the 
electro-osmosis and L21 characterizes the streaming 
potential effect. Onsager’s reciprocal relation is com-
plied with if L12 = L21. We see that this relation is indeed 

(17)
Q = L11(�P)+ L12(�Φ)

I = L21(�P)+ L22(�Φ)

Here, Du is the Dukhin number and Du =
σs
Rσb

, σb is the 
conductivity of the bulk solution.

As with the flow rate amplitude, the current response of 
the system is caused by the oscillating pressure (the first 
term) and the oscillating electrical field (the second term).

2.5 � Consideration of streaming potential and applied 
electric field

By substituting Eq.  (7) into Eq.  (9), the complex velocity 
amplitude can be written as:

in which UrefEA =
ǫζEA
η

 and UrefES =
ǫζES
η

. The veloc-
ity field therefore can be viewed as the superposition of 
the velocity fields caused by (1) the pressure gradient cou-
pling with its streaming potential field [the first and the 
second terms on the right-hand side of Eq.  (14)] and (2) 
the applied electric field [the third term on the right-hand 
side of Eq.  (14)]. In this context, if one considers solely 
pressure-driven system, where no electric field is applied 
EAe

−iϕ = 0, the streaming potential ES = E0. Since the total 
ionic current at maximal streaming potential is zero, this 
gives us the opportunity to extract the relation between UrefP 
and UrefES from Eq. (12) as following (by taking I = 0):

(14)

U(r̄) =
4i(i + ω∗)

χ2

(

1−
J0(χ r̄)

J0(χ)

)

UrefP

+
i(i + ω∗)R̄2

χ2 + R̄2

(

J0(χ r̄)

J0(χ)
−

I0(R̄r̄)

I0(R̄)

)

UrefES

+
i(i + ω∗)R̄2

χ2 + R̄2

(

J0(χ r̄)

J0(χ)
−

I0(R̄r̄)

I0(R̄)

)

e−iϕUrefEA

(15)
UrefES =

−

�

8i(i+ω∗)ζ̄

(χ2+R̄2)

�

J1(χ)
J0(χ)χ

−
I1(R̄)

I0(R̄)R̄

��

(UrefP)


(iω∗ − 1)ζ̄ R̄2





−I21 (R̄)

(χ2+R̄2)I20 (R̄)
+ 1

(χ2+R̄2)
−

+
2J1(χ)χ

(χ2+R̄2)2J0(χ)
−

2I1(R̄)R̄

(χ2+R̄2)2I0(R̄)



+ (2Du+ 1)Ω





in which Ω is a dimensionless quantity and 
Ω =

zeη
f ǫζ

; f = kBT
D

 with D the diffusion coefficient. The 
velocity amplitude U(r̄) can therefore be expressed solely 
as a function of UrefP and UrefEA as:

(16)

U(r̄) = 4UrefP



















−
i(i+ω∗)

χ2

�

J0(χ r̄)
J0(χ)

− 1
�

+

(i+ω∗)22ζ̄ R̄2

(χ2+R̄2)
2

�

−J1(χ)

J0(χ)χ
+

I1(R̄)

I0(R̄)R̄

��

J0(χ r̄)

J0(χ)
−

I0(R̄r̄)

I0(R̄)

�









(iω∗−1)ζ̄ R̄2









−I21 (R̄)

(χ2+R̄2)I20 (R̄)
+ 1

(χ2+R̄2)
−

+
2J1(χ)χ

(χ2+R̄2)
2
J0(χ)

−
2I1(R̄)R̄

(χ2+R̄2)
2
I0(R̄)









+(2Du+1)Ω



























+
i(i + ω∗)R̄2

χ2 + R̄2

�

J0(χ r̄)

J0(χ)
−

I0(R̄r̄)

I0(R̄)

�

e−iϕUrefEA

satisfied because from Eqs. (11), (13) and (17) it is obvi-
ous that:

(18)
L12 = L21 =

[

i(i + ω∗)R2ǫζ R̄2

ηL
(

χ2 + R̄2
)

(

2πJ1(χ)

J0(χ)χ
−

2π I1(R̄)

I0(R̄)R̄

)

]
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Equation  (17) can be used to construct an analogy 
between micro- and nanofluidic channel networks and elec-
tric circuits because it describes the electrokinetic phenom-
enon as a generalization of Ohm’s law where linear rela-
tions between currents (of mass or charges) and applied 
gradients (voltage or pressure) occur (Ajdari 2004; Campisi 
et  al. 2006). In this context, it is interesting to apply our 
calculation results to examine the energy conversion effi-
ciency of the streaming potential energy harvesting system 
in a manner comparable to the work of Bandopadhyay and 
Chakraborty (2012a).

3.2 � Streaming potential energy harvesting

The electrokinetic energy conversion efficiency (Eff) in a 
microchannel for a Newtonian fluid under steady pressure-
driven flow was theoretically predicted to be less than 1% 
(Morrison and Osterle 1965), while for an inelastic poly-
mer it was predicted to be about 1% (Berli 2010a). In a 
nanochannel, for a Newtonian fluid under no-slip bound-
ary conditions and based on a Poisson–Boltzmann charge 
distribution, the theoretical prediction of energy conver-
sion efficiency is up to 12% (van der Heyden et al. 2006). 
Recently, Bandopadhyay and Chakraborty (2012a) gave a 
valuable contribution to the theory of electrokinetic energy 
conversion by taking into account the utilization of Max-
well viscoelastic fluid and oscillating pressure-driven flow 
in slit micro- and nanochannels. Bandopadhyay et  al. 
showed that for a slit-type microchannel (H

�
= 500, with H 

the half channel height and λ the Debye length), the con-
version efficiency can be in the order of 10%, and that for a 
nanochannel (H

�
= 10) without taking into account surface 

conductance, the conversion efficiency can be even larger 
than 95% [see Fig.  1 and S3 in ref. Bandopadhyay and 
Chakraborty (2012a)]. Our calculation results for a cylin-
drical geometry show that an efficiency can be obtained in 
the same order for the case of a microchannel and that the 
maximum efficiency can be larger than 95% for a nano-
channel (Fig. 2). For the purpose of comparison, plots are 
constructed using the same input data as provided by the 
work of Bandopadhyay and Chakraborty (2012a) (i.e., 
ϑ = 10−4, ζ = −1,Ω = −10,Du = 0).

It must be remarked that the maximal efficiencies 
shown in Fig.  2 and those predicted by Bandopadhyay 
et  al. are thermodynamic efficiencies [Eff = IS�φ

Q(�p)
], i.e., 

in the case no power is delivered by the system. For prac-
tical purposes, the maximal conversion efficiency under 
the condition of maximal output power at a load resistor 
is more relevant (Olthuis et al. 2005), Effmax =

1
4

[

IS�φ
Q(�p)

]

 . 
Figure  3 shows that the maximum efficiencies at maxi-
mal output power are 24.3 and 7.7% for a cylindrical 
nanochannel (R̄ = 15) and microchannel (R̄ = 500), 
respectively. These values though much lower than the 

thermodynamic efficiencies are still much higher than 
the predictions for conventional systems using DC actua-
tions and Newtonian fluids cited above, especially for 
microchannels.

3.3 � Understanding the mechanism

In the work of Bandopadhyay and Chakraborty (2012a), 
the mechanism behind the massive enhancement of the 
energy conversion efficiency using viscoelastic fluid 
was not in detail described. Herewith, we will provide a 
description of the mechanism that enhances the efficiency.

Figure  4 shows the maximal thermodynamic energy 
conversion efficiency following ω∗ and the inverse 
Deborah number ϑ[here, ϑ =

ρR2

ηtn
, Bandopadhyay and 

Chakraborty (2012a)] for a nanochannel at R̄ = 5 [in this 
context, for the comparison with the work of Bandopad-
hyay et al., the Deborah number is defined as De = ηtn

ρR2
 . 

It is noticed that some other authors have also defined 
De = ωtn (Bao et al. 2013)]. It is obvious from Fig. 4 that 
in the limit ϑ → 0(high relaxation time, elastic domi-
nant zone), the efficiencies are high, while at high ϑ, (low 
relaxation time, viscous dominant zone), no efficiency 
peaks appear. This behavior can be explained from the 
linear Maxwell viscoelastic model that presents fluid as 
a serial connection between a spring (elastic behavior) 
and a dashpot (viscous behavior). The closer to the domi-
nantly elastic zone (lower ϑ), the more the fluid behaves 
as a Hookean solid in responding (large relaxation time), 
resulting in a shift of the resonant peak toward the higher 
ω∗ values. When ϑ → 0, at resonant frequencies, the fluid 
inside the channel exhibits an entirely elastic character 
and hence moves frictionlessly, as a result providing high 
conversion efficiencies.

Fig. 2   Maximal thermodynamic energy conversion efficiency (not at 
maximal output power in cylindrical micro- and nanochannels)
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The peak locations at which maximal efficiencies are 
observed depend on the oscillation frequencies that are 
also determined by the channel dimension. This can be 
seen when ϑ is constant (10−4), the maximal efficiency 
peaks shift to smaller frequencies at an increase in chan-
nel dimensionless radius, R̄ (shown in Fig.  5). This fre-
quency shift was also observed in the work of Bandopad-
hyay and Chakraborty (2012a, b). Furthermore, the peaks 
also split into two separate peaks so that they can be 
shifted to smaller frequencies when increasing the chan-
nel radii (for example the peak at ω∗ approximate 550 
and R̄ = 100 in Fig. 5).

3.4 � Oscillating pressure‑driven flow profile

For the sake of generality, all the plots are presented using 
the non-dimensional quantity: ūpdf = ℜ

[(

U
UrefP

)

e−iωt
]

 
in which UrefP = −

R2 d
dz P(z)

4η
, see Eq.  (16) for U(r̄). Fig-

ure  6 shows the oscillating pressure-driven flow profile 
of viscoelastic fluid following ω∗ and channel radius r̄ at 
R̄ = 20, ϑ = 10−4, ζ̄ = −1, Ω = −10, Du =  0. In order 
to compare with the case of oscillating electro-osmotic 
flow, the velocity amplitude is also plotted and shown in 
Fig. 7.

It is important to stress that while the pressure gradient 
(

−
∂p
∂z

)

 and the velocity u(r, t) appear to have the same 
oscillatory form in the time variable t [see Eqs.  (4) and 

Fig. 3   Maximal energy conversion efficiency at maximal output 
power in cylindrical micro- and nanochannels

Fig. 4   3D plot of maximal thermodynamic energy conversion effi-
ciency following ω∗ and the inverse Deborah number ϑ in a nano-
channel at R̄ = 5

Fig. 5   Dependence of maximal thermodynamic (zero-power) energy 
conversion efficiency on ω∗ and channel dimension R̄

Fig. 6   Oscillating pressure-driven flow profile of viscoelastic fluid 
following ω∗ and dimensionless channel radius r̄ at R̄ = 20
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(6)], this does not mean that they actually are in phase. 
The reason for this is that the other part of the veloc-
ity, namely, the U(r) or U(r̄) is a complex quantity. The 
product of this complex quantity with e−iωt as shown in 
Eq. (6) causes changes in the phases of the real and imag-
inary parts of the U(r) or U(r̄) and hence of the velocity 
u(r, t) so that a phase shift will occur with respect to the 
pressure gradient 

(

−
∂p
∂z

)

.

3.5 � Complex and real velocity amplitude

The velocity u has the form

Since U is a complex number, we can express it as:

Substituting Eq. (19) into Eq. (20) and isolating the Real 
part, we have:

in which Uc =

√

(U2
a )+ (U2

b ), θ = tan−1 (Ub/Ua) is the 
phase shift, and hence Uc = |U| is the (real) velocity ampli-
tude (Moyers-Gonzalez et al. 2009), see Fig. 7.

3.6 � The phase shift

Figure  8 shows the phase shift of the velocity following 
the dimensionless pressure frequency (ω∗) with two differ-
ent values of ϑ . It can be seen that depending on the val-
ues of ϑ, the phases pass from negative (viscous zone) to 
positive (elastic zone) (Moyers-Gonzalez et  al. 2009). The 
green line represents the phase for Newtonian dominant 
fluid (ϑ = 1010) and stays in viscous zone (negative). As for 
ϑ = 10−4 (the blue curve), the phase is in the elastic zone 
(positive) at low frequency. As the frequency increases, 
the fluid responds viscously indicating by the changing of 
the blue curve from positive to negative zone. When the 
frequency further increases and reaches the resonant fre-
quency, the phase shifts back to the elastic zone (positive). 
At resonant frequency, the fluid behaves elastically and 
hence moves frictionlessly, as a result providing high energy 
conversion efficiencies as mentioned in previous section.

3.7 � Oscillating electro‑osmotic flow profile

ūeof = ℜ

[(

U
UrefEA

)

e−iωt
]

 in which UrefEA =
ǫζEA
η

. The 
phase difference is ϕ = π, see Eq. (16). For the comparison 
between the velocity profiles and flow rate afterward, we 
assign 

UrefEA
UrefP

= 1.
Figure 9 shows the oscillating electro-osmotic flow pro-

file of viscoelastic fluid following ω∗ and channel radius 

(19)u = ℜ(Ue−iωt)

(20)U = Ua + iUb

(21)u = Ua cos(ωt)+ Ub sin(ωt) = Uc cos(ωt − θ)

r̄ at R̄ = 20, ϑ = 10−4, ζ̄ = −1, Ω = −10, Du =  0. The 
velocity amplitude is also plotted and shown in Fig. 10.

3.8 � Effectiveness of electro‑osmotic flow compared 
to pressure‑driven flow

It can be seen from Figs. 6, 7 and Figs. 9, 10 that at reso-
nant frequencies, the maximal velocity in the case of oscil-
lating EOF is much higher than in the case of oscillating 
PDF even though at low frequencies these flows have the 
same maximal velocities (see Fig. 11).

In the textbook, for DC electrokinetic flow, the concept 
of effectiveness (B) of electro-osmotic flow as compared 
to pressure-driven flow is given by the ratio of volume 

Fig. 7   The velocity amplitude in case of oscillating PDF at a R̄ = 20 
and b R̄ = 500
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flow rate, see page 244 of ref. Masliyah and Bhattacharjee 
(2006).

In our case, for time periodic electrokinetics with a 
Maxwell fluid, the volume flow is expressed by Eq.  (11). 
The effectiveness B therefore has the form:

Figure  12 shows the frequency-dependent effective-
ness of oscillating EOF over oscillating PDF. It is clear 
that at the resonant frequencies, the effectiveness of 
oscillating EOF is much higher than oscillating PDF, 
while at small frequencies, effectiveness is equal (as also 
evident from Fig.  11). Furthermore, in nanochannels, 
the effectiveness is much more strongly increased than 
in microchannels. This observation could be explained 
by noticing that we have the like-standing waves in the 
channel (see Figs. 6, 9). For oscillating PDF, the applied 
pressure force is exerted over the entire cross section of 
the channel. This flow behavior allows all energy to be 
coupled into the actuation in one direction (for example 
first harmonic, the peak around ω∗ = 250, see Fig.  6). 
For the first harmonic of oscillating EOF (see Fig.  9), 
also all energy is coupled in one direction; hence, both 
have equal effectiveness at low ω∗. However, with the 
third harmonic (the peak around ω∗ = 500), the situation 
is quite different. As with oscillating PDF, the pressure 
force in the center of the channel is directed against the 
direction of the movement; hence, the center velocity is 

(22)B =
Qeof

Qpdf

(23)B =
|Qeof|
∣

∣Qpdf

∣

∣

Fig. 8   The phase shift for different ϑ values

Fig. 9   Oscillating electro-osmotic flow profile of viscoelastic fluid 
following ω∗ and channel radius r̄

Fig. 10   The velocity amplitude in case of oscillating EOF at a 
R̄ = 20 and b R̄ = 500
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lower than in the first harmonic. With oscillating EOF, 
there is no force exerted in the center of the channel, but 
only in a thin layer at the wall. Hence the force exerted 
in the wide area close to the walls can be coupled to the 
much narrower area at the center. This concentration 
of energy in a small cross section (especially for nano-
channel) causes strong increase in velocity in the center, 
hence much higher effectiveness than oscillating PDF. 
The question can be posed whether the high velocities 
generated will not disturb the electrical double layer 
composition. It is important to realize that our model 
concerns an infinitely long channel of constant fluid 
properties and homogeneous wall charge density. In this 
channel the potential and ionic composition in the electri-
cal double layer only vary in the direction normal to the 
channel wall. Only when turbulence occurs, the double 
layer composition will hence be disturbed. The Reynolds 
number in our case is Re = ω∗R̄2�2ρ

tnη
 (Jian et al. 2010; Liu 

et  al. 2011b). For the optimal dimensionless parameter 
values as found in this work namely R̄ = 10, ω∗ = 250 , 
and the practical values mentioned in the work of Ban-
dopadhyay and Chakraborty (2012b), ρ  =  103  kg/m3, 
tn = 10−2, η = 10−3 Pa s, we find that Re = 2.5× 1011�2.  
Since Debye length λ is always below 1 µm, turbulence is 
not expected.

From practical point of view, in future experimental sys-
tems, the interfacing to an electrical system would need to 
be considered. This would involve electrode/solution inter-
faces with local storage and exchange of charge and possi-
bly channel openings. At every interface where an inhomo-
geneity of flow or fixed charge concentration would occur, 
conservation of charge and matter would give rise to local 
gradients of electrical field, pressure and/or concentration. 
This would cause additional losses that would need to be 
considered in the design of such systems. One single aspect 
of the interfacing, namely the disturbances of the electri-
cal double layer composition by advective fluxes can be 
estimated in isolation. By comparing the advective flux 
parallel to the wall, disturbing the electrical double layer 
composition, with the restoring diffusion flux normal to the 
wall, restoring equilibrium, we can estimate the severity of 
the disturbances in double layer composition. The ratio of 
the two fluxes provides a Péclet number, Pe = ω∗R̄�2

Dtn
. For 

R̄ = 10, ω∗ = 250, D = 10−9 m2/s and tn = 10−2 s, we find 
Pe = 2.5 × 1014λ2. For λ < 60 nm, Pe < 1 and diffusional 
equilibration will be sufficiently rapid.

Fig. 11   a Oscillating PDF and b Oscillating EOF, both are at ω∗ = 1

Fig. 12   Effectiveness of oscillating electro-osmotic flow compared 
to oscillating pressure-driven flow of viscoelastic fluid following ω∗ 
and dimensionless R̄
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4 � Conclusions

We report for the first time an analytical solution for 
time-dependent electrokinetic flow (mixed oscillat-
ing pressure gradient and electrical field) when using a 
linear Maxwell viscoelastic fluid in cylindrical micro- 
and nanochannels. The analytical solution is derived 
by solving the linearized Poisson–Boltzmann equation, 
together with the incompressible Cauchy’s momentum 
equation in no-slip boundary conditions for the case of 
a combination of time periodic pressure-driven flow and 
electro-osmotic flow (PDF/EOF). The results show that 
the Onsager’ reciprocal relations are complied with due 
to using the linear constitutive Maxwell fluid model. 
The validity of these Onsager’s relations is important 
for practical implementation since it enables the anal-
ogy between fluidic networks in this flow configuration 
and electric circuits. We applied our calculation results 
for energy conversion systems in cylindrical micro- and 
nanochannels and compare the results with the work 
of Bandopadhyay and Chakraborty (2012a) which was 
performed in slit micro–nanochannels. It is shown that 
for both case the enhancement is in the same order. We 
furthermore provided a mechanism to understand the 
massive efficiency enhancement. We also found that 
time periodic electro-osmotic flow in many cases is 
much stronger enhanced than time periodic pressure-
driven flow when comparing the flow profiles of oscil-
lating PDF and EOF in micro- and nanochannels. The 
findings advance our understanding of time periodic 
electrokinetic phenomena of viscoelastic fluids and pro-
vide insight into flow characteristic as well as assist the 
design of devices for lab-on-chip applications.
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Appendix

Fluid velocity

The flow is governed by the incompressible Cauchy’s 
momentum equation. Considering the flow in z direction 
(unidimensional flow), the scalar momentum equation 
can be expressed as:

with ρ the fluid density, u(r, t) the fluid velocity, 
− ∂

∂z
p(z, t) the applied pressure gradient, τ(r, t) the stress 

tensor and E(z, t) the externally applied electric field.

It is important to note that E(z, t) in Eq.  (26) are 
included two components: (1) the induced electric field 
by the applied pressure gradient ESe

−iωt (the stream-
ing potential field) and (2) the applied electric field 
EAe

−i(ωt+ϕ). Here, ϕ is the phase difference between the 
applied pressure gradient and the applied electric field. 
We now define E0 as:

Therefore, E(z, t) = ℜ
(

E0(z)e
−iωt

)

.
Viscoelastic behavior is presented using linear Max-

well model.

tn is the liquid relaxation time, η is the liquid viscosity. 
By substituting Eqs.  (25), (26), (27), (28) and (29) into 
(24) one can obtain the analytical solution for Eq.  (24) 
in case of considering the channel wall potential is small 
(|ζ | ≤ 25 mV) so that the Debye–Hückel linearization can 
be applied. Equation  (24) after removing real-operator 
from both sides as well as the common multiplier e−iωt 
reduces to:

in which the simplification factor χ has the form 
χ2 = (iω∗ + ω∗2)ϑ and ϑ =

R2ρ
ηtn

. By using non-dimen-
sional quantities, Eq. (30) has the form:

(24)

ρ
∂

∂t
u(r, t) = −

∂

∂z
p(z, t)+

τ(r, t)+ r ∂
∂r
τ(r, t)

r

− 2zen0 sinh

(

zeψ(r)

kT

)

E(z, t)

(25)p(z, t) = ℜ(Pe−iωt)

(26)E(z, t) = ℜ

[(

ES + EAe
−iϕ

)

e−iωt
]

(27)u(r, t) = ℜ(Ue−iωt)

(28)E0(z) = ES + EAe
−iϕ

(29)τ(r, t) = η
∂

∂r
u(r, t)− tn

∂

∂t
τ(r, t)

(30)

(

d2

dr2
U(r)+

d
dr
U(r)

r

)

R2 + χ2U(r)

=
(−iω∗ + 1)R2 dP

dz

η
+

(−iω∗ + 1)R2ψ(r)ǫζE0

�2η

(31)

d2

dr̄2
U(r̄)+

d
dr̄
U(r̄)

r̄
+ χ2U(r̄)

=
(

−4iω∗ + 4
)

UrefP +
(−iω∗ + 1)R̄2I0(R̄r̄)UrefE

I0(R̄)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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in which UrefP = −
R2 d

dz P(z)

4η
;UrefE =

ǫζE0
η

. This is a sec-
ond-order linear non-homogeneous differential equation. 
We call U as the solution for Eq.  (31); then, U has the 
following form:

in which U0 is the complementary solution and is the root 
of Eq. (33), U1 is the particular solution of Eq. (34), and 
U2 is the particular solution for Eq. (35).

Equation  (33) has the solution is Bessel’s function of 
first kind and zero order:

C3 and C4 are arbitrary constants. Equation (34) has the 
particular solution is as:

Inspecting the right-hand side of Eq. (35), the particular 
solution of this equation should have the form:

By substituting (38) to Eq. (35), we obtain:

The solution of Eq. (31) therefore is:

Using the no-slip boundary conditions (U(r̄) = 0 at 
r̄ = 1, and dU(r̄)

dr̄
= 0 at r̄ = 0), C3 and C4 can be obtained 

as:

(32)U = U0 + U1 + U2

(33)
d2

dr̄2
U(r̄)+

d
dr̄
U(r̄)

r̄
+ χ2U(r̄) = 0

(34)
d2

dr̄2
U(r̄)+

d
dr̄
U(r̄)

r̄
+ χ2U(r̄) =

(

−4iω∗ + 4
)

UrefP

(35)

d2

dr̄2
U(r̄)+

d
dr̄
U(r̄)

r̄
+ χ2U(r̄) =

(−iω∗ + 1)R̄2I0(R̄r̄)UrefE

I0(R̄)

(36)U0 = C3J0(χ r̄)+ C4Y0(χ r̄)

(37)U1 = −
4(iω∗ − 1)UrefP

χ2

(38)U2 = αI0(R̄r̄)

(39)α =
−i(i + ω∗)UrefER̄

2

I0(R̄)(χ2 + R̄2)

(40)

U = C3J0(χ r̄)+ C4Y0(χ r̄)−
4(iω∗ − 1)UrefP

χ2

+
−i(i + ω∗)UrefER̄

2I0(R̄r̄)

I0(R̄)(χ2 + R̄2)

(41)
C3 =

4i(i + ω∗)UrefP

χ2J0(χ)
+

i(i + ω∗)UrefER̄
2

(R̄2 + χ2)χ2J0(χ)

C4 = 0

Back substituting Eq.  (41) to Eq.  (40), we obtain the 
complex velocity amplitude:

Nomenclature

Quantities Description Definition

ψ̄ Dimensionless poten-
tial distribution

ψ/ζ

ζ̄ Dimensionless zeta 
potential

zeζ
kBT

R̄ Dimensionless radius R/�

r̄ Dimensionless posi-
tion variable r

r/R

ω∗ Dimensionless fre-
quency

ωtn

ϑ Inverse Deborah 
number

ρR2

ηtn

Du Dukhin number σs
Rσb

UrefE Reference velocity for 
electro-osmotic flow

ǫζE0
η

UrefP Reference velocity for 
pressure-driven flow

−
R2 d

dz
P(z)

4η

f Stokes–Einstein fric-
tion factor

kBT
D

σb Bulk conductivity 2n0z
2e2

f
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