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Optimal Offering and Operating Strategy for a
Large Wind-Storage System as a Price Maker

Huajie Ding, Member, IEEE, Pierre Pinson, Senior Member, IEEE, Zechun Hu, Senior Member, IEEE
Jianhui Wang, Senior Member, IEEE, and Yonghua Song, Fellow, IEEE

Abstract—Wind farms and energy storage systems are playing
increasingly more important roles in power systems, which
makes their offering non-negligible in some markets. From the
perspective of wind farm-energy storage systems (WF-ESS), this
paper proposes an integrated strategy of day-ahead offering
and real-time operation policies to maximize their overall profit.
As participants with large capacity in electricity markets can
influence cleared prices by strategic offering, a large scaled WF-
ESS is assumed to be a price maker in day-ahead markets.
Correspondingly, the strategy considers influence of offering
quantity on cleared day-ahead prices, and adopts linear decision
rules as the real time control strategy. These allow enhancing
overall profits from both day-ahead and balancing markets. The
integrated price-maker strategy is formulated as a stochastic
programming problem, where uncertainty of wind power gener-
ation and balancing prices are taken into account in the form of
scenario sets, permitting to reformulate the optimization problem
as a linear program. Case studies validate the effectiveness of
the proposed strategy by highlighting and quantifying benefits
comparing with the price-taker strategy, and also show the profit
enhancement brought to the distributed resources.

Index Terms—Electricity markets, energy storage system, lin-
ear decision rules, offering strategy, price-maker strategy, wind
farm

NOMENCLATURE

Indices/Sets

i ∈ I Index of wind farms.
j ∈ J Index of energy storage systems
t ∈ T Index of time intervals in a day.
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s ∈ S Index of scenarios in balancing markets.
b ∈ B Index of blocks of discretized residual demand

curves.

Parameters

qinit,b , q
max
t,b Initial and maximal power of interval t, block b

of residual demand curve.
∆t Duration of each time interval, 1 hour.
ηjc , η

j
d Charging and discharging efficiency of energy

storage j.
pc,j , pc,j upper and lower boundary of charging power of

ESS j.
pd,j , pd,j upper and lower boundary of discharging power

of ESS j.

E
j
, Ej upper and lower boundary of residual energy of

ESS j.
Cwi Capacity of wind farm i.
pwf,it,s Wind power forecast of wind farm i in interval

t, scenario s.
M A large enough number

Variables

λbidt Cleared day-ahead price for interval t.
λbt,s Balancing price for interval t, scenario s.
pbidt Day-ahead offer of WF-ESS for interval t.
qvart,b Variable power of interval t, block b of residual

demand curve
ut,b State variable indicating whether block b of resid-

ual demand curve is chosen for interval t.
pw,it,s Power output of wind farm i in interval t, sce-

nario s.
pc,jt,s , p

d,j
t,s Charging and discharging power of energy stor-

age system j in interval t, scenario s.
pbt,s Joint power output of WF-ESS in interval t,

scenario s.

I. INTRODUCTION

W IND farms face substantial financial risks when par-
ticipating competition in electricity markets owing to

its lack of controllability and predictability [1]. With flexible
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charging and discharging capability, energy storage systems
are deemed promising to coordinate with wind farms. The
optimal offering and operating strategies of wind farm-energy
storage systems (WF-ESS) have been studied a lot in recent
years [2]–[5]. Most of them are based on the assumption
that the capacity of WF-ESS is negligible compared to that
of the whole electricity market so that its offering has little
impact on the cleared prices. However, with dramatic devel-
opment of WF and ESS, the scale of WF-ESS increases and
consequently in some markets the WF-ESS may influence
the cleared prices. Meanwhile, virtual power plant (VPP) can
aggregate distributed WFs and ESS [6], [7], and take part in
the competition in electricity markets as a large participant
[8], [9]. Extending our former study on offering and operating
strategies of WF-ESS as a price taker [1], this paper studies
corresponding strategies of a large WF-ESS as a price maker
in electricity markets, more specifically in energy markets. The
large scaled WF-ESS can be centralized or distributed, which
means the WF-ESS may consist of a large wind farm group
and a large ESS such as pumped storage plant, or it may be in
the form of a VPP, aggregating large quantities of distributed
wind turbines and energy storages with small capacity. The
essential difference between the models of a price maker and
a price taker is whether influences of offers on cleared prices
are considered. In this paper, the WF-ESS is assumed to be
a price maker in the day-ahead market while a price taker in
the balancing market [10]. Similar with in [1], the WF-ESS
adopts linear decision rules as its control strategy in balancing
markets, but optimizes its offering in day-ahead stages as a
price maker.

Price-maker strategies are initially studied for thermal gen-
erators. Reference [11] proposed a set of regulation tools
to measure the market power of oligopolistic participants in
energy markets, and put forward an optimal strategy for the
oligopolistic generators as a price maker within the regulatory
limits. Based on this, [12] improved the model by formulating
it as a mixed integer programming. Reference [13] further
considered the network constraints and proposed a bi-level
optimization model. The profit of thermal generators is opti-
mized in the upper level while the lower level conducts market
clearing. The obtained cleared prices are fed to the upper
level through mathematical program equilibrium constraints
(MPEC) and the whole model is formulated as a mixed
integer programming problem. Similarly, [14] and [10] utilized
MPEC to study the optimal price-maker offering strategies of
wind farms in day-ahead and balancing markets respectively.
Reference [15] studied the price-maker strategy of a hydro-
generator with pumped storage plant. However, the pumped
storage plant in [15] is only to compensate the generation
deviation from day-ahead offers of hydro-generator, which ig-
nores its arbitrage potential. Except for the generators, massive
resources of demand response can also be aggregated and then
participate in the electricity market as a price maker, which
is studied by [16]. Conclusively, there is few study on the
offering and operating strategy of WF-ESS as a price maker
as far as the authors are concerned. Furthermore, as the main
topic of this paper is the price-maker strategy, the network
congestion is without consideration here for the convenience

of analysis, which means the cleared prices at all bus are the
same. Consequently, it is not necessary to employ MPEC in
this paper.

Our main contribution consists of three points. Firstly we
propose a price-maker offering strategy of WF-ESS in day-
ahead markets, which considers the influence of offers on
cleared prices. Secondly, we adopts the linear decision rules
as the real-time control strategy to utilize the latest price
information to make arbitrage. Meanwhile, as the key decision
parameters are determined in the day-ahead stage, it is not
necessary to keep high reliability for communication between
the aggregator and distributed resources, which makes it
suitable for distributed control. The last point is that this paper
models the integrated offering-operating strategy as a mixed
integer programming problem, and equivalently converts it into
a linear formulation. Case studies are carried out to validate
the effectiveness of proposed strategy.

The paper is organized as follows. Section II firstly in-
troduces basic rules of day-ahead and balancing markets,
and explains our price-maker offering strategy in day-ahead
markets, as well as linear decision rules for balancing markets.
The price-maker offering strategy and real-time operation
policy based on linear decision rules are formulated as an
integrated stochastic optimization problem in Section III. The
objective function and constraints are further reformulated into
linear ones to obtain optimal solutions. In Section IV, case
studies based on historical data of wind farms and electricity
markets in Denmark are carried out. Optimization results of
the price-maker strategy are demonstrated and compared with
those of price-taker strategies. Subsequently, taking distributed
wind and storage resources for example, we analyze their profit
under scenarios of separate operation, coordinated operation
with price-taker strategies and coordinated operation with
price-maker strategies. Finally, conclusions and perspectives
for future work are gathered in Section V.

II. PRICE-MAKER STRATEGY OF WF-ESS IN
ELECTRICITY MARKETS

A. Imbalance Management in Electricity Markets
Generally deregulated electricity markets consist of day-

ahead and balancing/real-time market stages. Day-ahead mar-
kets allow participants to bid for their generation schedule
for the whole time horizons of the following day. These are
cleared 10 to 12 hours prior to the first time interval for energy
delivery of the following day. Such mechanism inevitably
results in deviations between scheduled and actual generation,
which is particularly severe for stochastic renewable energy
generators [17]. If a deviation from schedule occurs, the
generator should buy or sell up/down regulation services in
the balancing market [4]. For most electricity markets adopting
locational marginal prices, balancing prices for up and down
regulation services are the same and determined according to
the overall system imbalance. More detailed descriptions and
discussions on balancing markets can be found in [17]. In this
paper, the models are built and illustrated based on one-price
settlement in the balancing market, while the possibility of
WF-ESS additionally participating ancillary service markets
is without consideration.
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B. Price-maker Strategy for Day-ahead Markets
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Fig. 1. Translate the supply-demand curves to the residual demand curve
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Fig. 2. An example of discretized residual demand curve

Price makers can influence the cleared quantity and price
by adjusting their own offers. Residual demand curve is
firstly introduced to depict this effect [12]. The supply-demand
curves of day-ahead markets will be made public to all market
participants after about one month by the market opera-
tor. Consequently, market participants can form the supply-
demand curves for future time intervals through forecast,
simulation, inverse optimization [18], etc., and translate them
into residual demand curves. With all the other participants
treated as whole, there is an initial cleared point by demand
curve and supply curve (which does not include the offers
of the target participant, namely WF-ESS). When the cleared
quantity of the WF-ESS increases gradually, the supply curve
shifts right, and a set of new clear points come out. As
supply curves of all the participants are non-decreasing, the
more the large participant bids, the lower the cleared price
is, which makes the residual demand curve non-increasing.
More specifically, the detailed procedure of translating supply-
demand curves to residual demand curve is explained as
follows. As shown in Fig. 1, the initial intersection point of
supply and demand curves in coordinate system P1−Q (P is
price and Q is for quantity) is (q0, λ0). Let’s shift the y-axis
right by q0, then the same point is re-denoted as (0, λ0) in the
coordinate system P2 − Q. It means if the offering quantity

of WF-ESS were 0, then the cleared price would be λ0. If the
supply curve were shifted right by q1, then the new supply
curve and demand curve would generate a new intersection
point whose y-value is λ1. A new point (q1, λ1) means if the
cleared quantity of WF-ESS were q1, then the cleared price
would be λ1. If the supply curve were shifted right by q2,
q3 · · · , and so forth, then there would be a series of points
(qk, λk), and these points form the residual demand curve.

The residual demand curve is usually in discretized form for
convenience of formulation. As shown in Fig. 2, the discretized
residual demand curve has B blocks. The offering quantity
and price can be modeled as linear formulation by introducing
binary variables.

For any time period t ∈ T , there are:∑
b∈B

ut,b = 1 ut,b ∈ {0, 1} (1a)

0 ≤ qvart,b ≤ ut,bqmaxt,b (1b)

pbidt =
∑
b∈B

(
ut,bq

ini
t,b + qvart,b

)
(1c)

λdat =
∑
b∈B

ut,bλ
da
t,b (1d)

where qinit,b , qvart,b and qmaxt,b indicate the initial, variable and
maximal power of interval t, block b, while λdat,b is the cor-
responding price in day-ahead market. The decision variable
ut,b indicates whether the participant will choose block b as
its offering price and quantity.

Equation (1a) limits the range of offering price and quantity
within the residual demand curve, and the variable power
of every interval t block b should be within specific ranges,
as required by (1b). Equation (1c) determines the day-ahead
offering quantity through ut,b and qvart,b . As shown in Fig. 2,
when block s is chosen, then ut,s = 1. The corresponding
offering quantity pbidt should be the sum of the initial power
qinit,s and the variable power qvart,s of block s. For any interval
t, as only one block has its state variable ut,b = 1, then the
sum of λdat,but,b of all blocks would be the offering price, as
(1d) indicates.

C. Linear Decision Rules for Balancing Markets

The strategy of linear decision rules for balancing markets
has been introduced in detail previously [1], but in order to
be self-consistent, it is briefly explained here. The whole time
horizon can be discretized into T time intervals, and the state
vector x = [x1...xT ]

> ∈ RT stands for the residual energy of
ESS at the end of each time interval. The state variables are
temporally coupled as

xt = xt−1 +But, t = 1, 2, ...T (2)

where B = [ηc,−1/ηd] and x0 is the initial residual energy.
ut =

[
pct , p

d
t

]>
consists of the tth elements of charging power

vector pc ∈ RT and discharging power vector pd ∈ RT. ηc
and ηd are charging and discharging efficiencies of the ESS.
In this paper, linear decision rules determine the charging and
discharging power vectors of ESS by affine functions of day-
ahead and balancing price forecast error, i.e.,
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[
pc

pd

]
=

[
p̂c

p̂d

]
+

[
Dc
da Dc

rt

Dd
da Dd

rt

][
∆πda

∆πrt

]
(3)

and can be denoted as p = p̂ + Dδ, where p̂ and D are
decision variables of linear decision rules . p̂ is the nominal
power vector and δ is the vector consisting of forecast error for
day-ahead prices ∆πda and balancing prices ∆πrt. The affine
matrix D consists of 4 sub-matrices, which link charging and
discharging power adjustments of ESS with forecast error of
day-ahead and balancing prices. In the day-ahead optimization,
as the forecast of wind power and prices are formulated by
scenarios, the forecast error in (3) is the difference between
the value of each scenario and the mean value.

III. FORMULATION OF THE INTEGRATED STRATEGY

Wind farms and energy storage systems coordinate to
maximize their overall revenue. Without considering their
preferences on risks, the optimization model for the price-
maker strategy can be formulated as:

max
θ

E
(
S̃ (θ, δ)

)
(4a)

s.t. g (θ, δ) ≤ 0 (4b)

where θ =
{
λda,pbid,D, p̂

}
are decision variables, δ is the

vector consisting of forecast errors of wind power, day-ahead
and balancing prices. pbid is the vector of day-ahead offers
{pbidt }, and λda is the vector of day-ahead cleared prices
{λdat }. All the offers whose prices are under the marginal price
can be cleared out. The objective function (4a) maximizes the
expected profit of WF-ESS, while the constraints (4b) limit
the power output of wind farms and energy storage systems,
as well as the residual energy of energy storage systems.

A. Details of the Objective Function

The overall profit of WF-ESS includes that from day-ahead
markets and from balancing markets. As the wind power
output is uncertain, the profit in balancing markets is modeled
in form of expected value. More specifically, if the wind power
uncertainty is depicted as scenarios, then the expected profit
is the weighted sum of profit of all scenarios. The expected
overall profit of WF-ESS can be formulated as follows.

E
(
S̃ (θ, δ)

)
=
∑
t∈T

{
Rdat +

∑
s∈S

ρsR
b
t,s

}
(5a)

Rdat = λdat
(
pbidt

)
· pbidt (5b)

−
∑
j∈J

pcj ≤ pbidt ≤
∑
i∈I

Cwi +
∑
j∈J

pdj (5c)

pbt,s =
∑
i∈I

pw,it,s +
∑
j∈J

pd,jt,s −
∑
j∈J

pc,jt,s (5d)

Rbt,s = λbt,s ·
(
pbt,s − pbidt

)
(5e)

Day-ahead prices λdat are determined by the day-ahead
offering quantity pbidt , obeying the residual demand curve. The
product of day-ahead price and quantity (the shadow part in
Fig. 2) is the profit in day-ahead markets Rdat . The upper

bound of day-ahead offers is the capacity of WF-ESS, while
the lower bound is the charging capacity of all ESS as (5c).
In balancing markets, the uncertain wind power is modeled
though scenarios s ∈ S, whose weight is ρs. The joint power
output of WF-ESS is as (5d), where i ∈ I is the index of
every wind farms, j ∈ J is the index of every energy storage
systems. pw,it,s , pc,jt,s and pd,jt,s are the power of wind farm i,
and charging/discharging power of energy storage system j
in interval t, scenario s. The joint power output is the sum
of the power from all the wind farms and energy storage
systems. λbt,s is the balancing price of interval t, scenario
s. The difference between the joint power output of WF-
ESS in the balancing market and the day-ahead market is the
offered up/down-regulation services. Multiplying the up/down-
regulation capacity by the balancing prices gets the profit in
balancing markets. Consequently, Rbt,s is the profit of WF-
ESS from balancing markets in interval t, scenario s. As the
WF-ESS is a price taker in balancing markets, the balancing
prices are independent from the up/down-regulation capacity,
as formulated by (5e).

It is worth noting that the day-ahead price (1d) and quantity
(1c) both have decision variables ut,b and qvart,b . Consequently,
the day-ahead profit (5b) is a quadratic formulation. According
to the property of binary variables, they can be equivalently
transformed to a mixed integer linear formulation.

Rdat =
∑
b∈B

λdat,b
(
ut,bq

ini
t,b + qvart,b

)
(6)

B. Details of the Constraints
In real-time operation, wind farms can benefit from maximal

power generating as long as the balancing price is higher
than their operation cost, which is slightly higher than 0.
However, the charging and discharging power of ESS is
temporally coupled due to limited residual energy, the ESS
needs to optimize its charging and discharging power of
each time interval. Real-time control strategy based on linear
decision rules can fully utilize the historical and current market
information, as well as the forecast results for the future
intervals, to obtain the optimal control decision. In this paper,
key parameters of linear decision rules are determined in
day-ahead optimization and used for real-time operation. The
constraints for charging/discharging power and related residual
energy of ESS can be formulated as:

pc,jt,s =uc,jt
∑
k∈T

Dc,j
t,kλ

b
k,s + p̂c,jt ∀j ∈ J (7a)

pd,jt,s =ud,jt
∑
k∈T

Dd,j
t,kλ

b
k,s + p̂d,jt ∀j ∈ J (7b)

Ejt,s =Ejt−1,s + pc,jt,s∆tη
j
c − p

d,j
t,s∆tηjd ∀j ∈ J (7c)

where uc,jt and ud,jt are binary decision variables indicating
charging and discharging state of ESS j in interval t. p̂c,jt and
p̂d,jt are the tth element of p̂c and p̂d for ESS j. Dc,j ,Dd,j

are affine matrices of linear decision rules for ESS j. Dc,j
t,k in

(7a) is the value of Dc,j at (t,k). λbk,s is the balancing price
of interval k, scenario s, which is similar with (7b). Equation
(7c) shows the temporal coupling of ESS residual energy in
each time interval.
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Real-time operation of wind farms and energy storage
systems should satisfy related constraints, including:

0 ≤ pw,it,s ≤ p
wf,i
t,s ∀i ∈ I (8a)

uc,jt + ud,jt ≤ 1 ∀j ∈ J (8b)

pc,j ≤
∑
k∈T

Dc,j
t,kλ

b
k,s + p̂c,jt ≤ pc,j ∀j ∈ J (8c)

pd,j ≤
∑
k∈T

Dd,j
t,kλ

b
k,s + p̂d,jt ≤ pd,j ∀j ∈ J (8d)

Ej ≤ Ejt,s ≤ E
j ∀j ∈ J (8e)

where pc,j and pc,j are upper and lower charging boundaries
of ESS j, pd,j and pd,j are discharging boundaries. E

j
and

Ej are upper and lower boundaries of residual energy of ESS.
Equation (8a) limits the power output of wind farm i under
the forecast value pwf,it,s . Equation (8b) forbids simultaneous
charging and discharging of ESS. Charging power pc,jt,s , dis-
charging power pd,jt,s , as well as the the residual energy Ejt,s
of ESS j should satisfy the operation constraints as shown in
(8c)-(8e). Except for the constraints of day-ahead optimization,
at interval t in balancing periods, the charging upper bound is
set as min

{
pc,

Emax−Et

ηc∆t

}
, and the discharging upper bound is

set as min
{
pd,

Et−Emin

∆t ηd
}

, guaranteeing the residual energy
in allowable ranges at next time interval.

Equation (7a) and (7b) are both quadratic, and can be
transformed into linear ones through reformulation. Equation
(7a) is reformulated as

0 ≤ pc,jt,s ≤
∑
k∈T

Dc,j
t,kλ

b
k,s + p̂c,jt∑

k∈T

Dc,j
t,kλ

b
k,s + p̂c,jt −

(
1− uc,jt

)
M ≤ pc,jt,s ≤ u

c,j
t M

(9)
Equation (7b) is reformulated as:

0 ≤ pd,jt,s ≤
∑
k∈T

Dd,j
t,kλ

b
k,s + p̂d,jt∑

k∈T

Dd,j
t,kλ

b
k,s + p̂d,jt −

(
1− ud,jt

)
M ≤ pd,jt,s ≤ u

d,j
t M

(10)
where M is a large-enough constant number. Take charging
power for example, when uc,jt = 0, the second row of (9)
will be pc,jt,s ≤ 0, coordinating with the first row 0 ≤ pc,jt,s
can get pc,jt,s = 0. When uc,jt = 1, the second row of (9) is∑
k∈T

Dc,j
t,kλ

b
k,s + p̂c,jt ≤ pc,jt,s , coordinating with the first row

can get pc,jt,s =
∑
k∈T

Dc,j
t,kλ

b
k,s + p̂c,jt . The reformulation of

discharging power is similar.

IV. APPLICATION RESULTS

A. Case Design

In this section, a WF-ESS consisting of a wind farm group
with capacity of 1.0GW and a large energy storage with
capacity of 500MW (such as a pumped storage plant) is taken
for example. Realistic wind power data are from wind farms
in Denmark [19], [20]. Per-unit data of wind power forecast

scenarios are provided by [21] and translated into actual data
by multiplying Cw = 1000MW. More scenarios of wind power
which obey the same distribution can be generated by the
methodology proposed in [4] for simulation. Key parameters
of WF-ESS is listed in Tab.I.
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Fig. 3. From supply-demand curve to discretized residual demand curve

TABLE I
KEY PARAMETERS OF THE WF-ESS SYSTEM

ηc ηd E [MWh] E [MWh]
0.9 0.9 500 2250
E0 pc [MW] pd [MW] Cw [MW]

1400 500 500 1000

The residual demand curves are obtained through the real-
istic supply-demand curves of Nord Pool on November 11th,
2015 [22]. Take the time interval 23:00-24:00 for example,
the supply-demand curves are shown in Fig.3(a). The cleared
quantity is 36.76GW while the cleared price is 21.9¤/MWh.
The corresponding residual demand curve at neighbor of
cleared point is as Fig.3(b). For convenience of formulation,
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the original residual demand curve can be discretized into 6
blocks (the number of blocks is set to be 6 here for illustration,
it can be any positive integer actually), and the discretized
residual demand curve is as Fig.3(c). Day-ahead supply-
demand curve forecasts are assumed to be accurate, so the
uncertainty of residual demand curve is without consideration
in this paper.

Balancing prices are also form Nord Pool markets. But as
the Nord Pool is of two-price balancing market, up/down-
regulation prices are different and one or the other of them
is equal to the day-ahead price at any specific time interval.
So we take the different one as the balancing price in the one-
price balancing market. The uncertainty of balancing prices is
simulated by adding the realistic data by stochastic forecast
error as follows:

π̃rtt = πrtt (1 + σrtε̃) (11)

where πrtt is the historical balancing price of interval t. ε̃
is stochastic error which obeys norm distributionε̃ ∼ N (0, 1),
and σrt is standard deviation of balancing prices forecasts.
The uncertainty of balancing prices can be depicted by setting
σrt. In this paper, σrt is set as 0.1. As the original day-ahead
prices and balancing prices are realistic data from Nord Pool,
and the cleared day-ahead prices as well as the simulated
balancing prices are fluctuating slightly around the original
data, the correlation between day-ahead and balancing prices
can be remained to a large extent.

In case studies below, uncertainty of wind power and
balancing prices are depicted by scenarios. Scenarios of bal-
ancing prices for optimization and simulation are generated by
Eq.(11) separately and independently. Wind power scenarios
for optimization is from [19], [20], while those for simulation
are generated obeying the same distribution, as done in [4].

B. Optimization Results
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Fig. 4. The optimal offering of WF-ESS and cleared prices in day-ahead
markets

The presented algorithm and model have been implemented
in Matlab 2016, and solved by the commercial solver Cplex
12.5. The problem is solved in Windows 10 in about 6 seconds
in Intel(R) Core(TM) i7-6600u CPU @ 2.81GHz, with 20 GB
RAM memory.

The optimal offering and operation strategy of WF-ESS can
be acquired through solving the optimization programming
problem, and the results are shown in Fig.4 and Fig.5. In
Fig.4, the black curve shows the original cleared prices in the
day-ahead market without WF-ESS, while the brown dotted
curve represents the cleared day-ahead prices with WF-ESS
participating as a price maker. By comparison it is clear that
in interval 1:00, 5:00 and 20:00, the offering of WF-ESS
exceeds 900MW, which results in the decrease of cleared
prices; in interval 11:00, 21:00, the consumption bid (negative
offering) is about 500MW, which increases the cleared prices.
The influence of offering quantity on cleared prices shows
the price-maker effect of large scaled WF-ESS. Fig.5 shows
the power output of WF-ESS at balancing stage in one specific
scenario. As a price taker in balancing markets, WF-ESS offers
up-regulation capacity when balancing prices are high and
offers down-regulation capacity when balancing prices are low.
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Fig. 5. The power output adjustment of WF-ESS and prices in balancing
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Fig. 6. Charging and discharging states of ESS in balancing markets

Fig.6 shows the charging and discharging power of ESS
in balancing stages. It is obvious from the figure that ESS
shifts to discharging state when balancing prices go up and
shifts to charging state when balancing prices go down. As
the ESS adopts linear decision rules as its operation strategy,
it adjusts charging and discharging power flexibly regarding
to the fluctuating balancing prices. For example, though the
balancing price of the 11th time interval is higher than those
of all former intervals, the ESS discharges at below 100MW to
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reserve energy for higher prices in future periods (for example
15:00, 18:00 and 20:00). It is similar for charging cases.

The optimization results show that the day-ahead profit is
91.55k¤, while the expected profit in the balancing market is
190.43k¤, and thus the overall profit of WF-ESS for a single
day is 281.98k¤. It means when the WF-ESS participates in
the day-ahead market as a price maker, the main profit comes
from the balancing market. This result comes from the fact
that the capacity of WF-ESS is large enough to influence
the market clearance, which makes the WF-ESS reduce its
day-ahead offering in order to avoid large price decease.
More detailed explanation is given in next subsection, where
comparison between price-taker and price-maker strategies is
carried out.

C. Comparison of Price-maker and Price-taker Strategies

We firstly set up a model for a price-taker strategy of WF-
ESS, and its solution is compared with that of the proposed
price-maker strategy. As the maximal charging and discharging
power of ESS is 500MW, and the maximal capacity of WF
is 1000MW, the offering range of WF-ESS is set as [-500,
1500]. Real-time control strategy for price-taker strategy is
still linear decision rules, the same with that of the price-
maker strategy. For convenience of statement, the price-maker
strategy is abbreviated as PM strategy, while the price-taker
strategy is as PT strategy. The formulation of PT strategy is
as follows.

max
θ

∑
t∈T

{
Rdat +

∑
s∈S

ρsR
b
t,s

}
(12a)

s.t. Rdat = λdat p
bid
t (12b)

− 500 ≤ pbidt ≤ 1500 (12c)

pbt,s = pwt,s + pdt,s − pct,s (12d)

Rbt,s = λbt,s ·
(
pbt,s − pbidt

)
(12e)

(7a)− (10) (12f)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

-500

0

500

1000

1500

Day-ahead bidding as price-maker

Day-ahead bidding as price-taker

P
o
w

er
 [

M
W

]

Fig. 7. Day-ahead offers of PT and PM strategies

Offering of the PT strategy is shown as the black curve in
Fig.7. It is more extreme than that of PT strategy (shown as
blue curve), and always touches the upper bound (1500MW)
and lower bound (-500MW) of offering. From (13a)-(13c) we
can see that the day-ahead offers of PT strategy depends on
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Fig. 8. Cleared prices of the day-ahead market with WF-ESS participating
as a price taker or a price maker

the deviation between day-ahead price and expected balancing
prices. For each time interval, if expected balancing price is
higher than day-ahead price, the WF-ESS offers the lower
bound and vice versa.

Rdat +
∑
s∈S

ρsR
b
t,s ∀t ∈ T (13a)

= λdat p
bid
t +

∑
s∈S

ρsλ
b
t,s

(
pbt,s − pbidt

)
(13b)

=
(
λdat − E

(
λbt
))
pbidt +

∑
s∈S

ρsλ
b
t,sp

b
t,s (13c)

The objective function value of PT strategy is 284.29k¤,
which is even higher than that of PM strategy (278.24k¤).
However, with the influence of offering quantity on cleared
price considered (substituting the optimized offers into Fig.
3(c)), the cleared price with PT strategy is shown as the black
curve in Fig.8. In comparison, the cleared price with PM
strategy (blue curve) is more smooth. Simultaneously refer-
ring to Fig.7, one can see that when WF-ESS bids negative
capacity, the cleared price of PT strategy is higher than that
of PM strategy; and when WF-ESS offers positive capacity,
the cleared price of PT strategy is lower than that of PM
strategy. Consequently, the actual expected day-ahead profit of
PM strategy is lower than that in the objective function. The
calculation and simulation results of PT and PM strategies are
listed in Tab.II.

TABLE II
COMPARISON OF RESULTS FROM PT AND PM STRATEGIES (k¤)

item Day-ahead Profit Balancing Profit Overall Profit
PM Obj 91.55 186.69 278.24

PM Simulation 91.55 190.43 281.98
PT Obj 272.76 11.52 284.29

PT Simulation 248.14 -18.83 229.31

This table lists objective function value and simulation
results of PM strategy (the 2nd and 3rd row) and PT strategy
(the 4th and 5th row). By comparing the results in Row
4 and Row 5, it can be seen that for day-ahead profit of
PT strategy, the simulated value is 9.0% lower than that in
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objective function, and balancing profit decreases by 272%.
However, as the PM strategy considers the effect of offering
quantity on cleared price, the day-ahead profit is the same for
simulation and objective function results, and the simulated
balancing profit increases by 2.0% compared to the objective
function (comparing Row 2 and Row 3). The results in Row 3
and Row 5 show the PM strategy can bring 23% higher profit
than PT strategy.

It is interesting to see that over 60% profit of WF-ESS
comes from the balancing market when price-maker strategy
is employed, which is uncommon for conventional generators.
However, it is reasonable for WF-ESS. As ESS is flexible in
charging and discharging, it can make arbitrage by absorbing
low-cost wind energy and selling it in balancing markets. Fur-
thermore, WF-ESS may reserve some generation capacity in
the day-ahead market and then release it when balancing price
is higher, or conversely reserve some consumption capacity in
the day-ahead market and fulfill it when balancing price is
lower.

D. Profit Analyses

Except for in form of a union of a single large-scaled
wind farm (group) with a large pumped storage plant, the
WF-ESS can also consist of a large quantity of distributed
wind turbines and battery storages. These distributed resources
are aggregated and participate in the market as a VPP. VPP
can help increase the competition of distributed resources in
markets and hence enhance their profit. In this subsection,
we assume there are 10 small wind farms and 10 distributed
energy storages, whose capacity is only 10% of that in
Subsection IV-A. When the capacity of WF and ESS is small,
they can only compete as a price taker if participating the
market separately. Here we compare the profit of WF-ESS in
three cases:

Without Aggregation. The distributed WFs and ESS par-
ticipate in the market separately as price takers. Then their
day-ahead offers are taken into account to determine the day-
ahead price. Wind power and balancing prices are simulated
to calculate the profit of each resource based on their offering
and operation strategy. Furtherly, we also consider the case
where a wind farm and a storage coordinates.

Aggregation with PT strategy. Aggregating the 10 small
wind farms into a united one, and the same to the storages.
Then the united wind farm and united storage participates
separately as price takers. Similarly, the profit of coordination
is also calculated.

Aggregation with PM strategy. After aggregation, the
united WF and ESS participate separately as price makers,
and the profit of WF-ESS coordination is also studied.

The results of these three cases are listed in Tab.III, Tab.IV
and Tab.V. The results are analyzed and compared as follows.

The profit of distributed WF and ESS is shown as Tab. III,
where Row 2 and Row 3 are the profit of distributed WF, Row
4 and Row 5 are profit of distributed ESS, and Row 6 and Row
7 are the profit of distributed WF-ESS. Row 2, 4 and 6 are
results of objective function while Row 3, 5 and 7 are results
of simulation.

TABLE III
PROFIT OF DISTRIBUTED WF AND ESS (k¤)

Item Day-ahead Profit Balancing Profit Overall Profit
WF only Obj. 28.17 -1.15 27.02

WF only
Simulation 26.98 -1.65 25.33

ESS only Obj. -0.90 2.30 1.40
ESS only

Simulation -2.17 1.47 -0.70

WF-ESS Obj. 27.28 1.15 28.43
WF-ESS

Simulation 24.81 0.76 25.57

TABLE IV
PROFIT OF AGGREGATED WF AND ESS WITH THE PT STRATEGY (k¤)

Item Day-ahead Profit Balancing Profit Overall Profit
WF only Obj. 281.74 -11.53 270.21

WF only
Simulation 269.83 -16.51 253.32

ESS only Obj. -8.98 23.06 14.08
ESS only

Simulation -21.69 8.92 -12.77

WF-ESS Obj. 272.76 11.52 284.29
WF-ESS

Simulation 248.14 -18.83 229.31

It can be seen from the table that profit of WF mainly comes
from the day-ahead market while that of ESS mainly comes
from balancing market. The simulation results of ESS shows
its overall profit is negative, which means small scaled ESS
cannot benefit from energy markets by proposed strategies.
The simulated profit of WF-ESS is 25.57 k¤, higher than
the total profit of WF and ESS without coordination (25.33-
0.7=24.63k¤).

Tab IV lists the results of aggregated WF and ESS with the
PT strategy. Results for the united WF are accurately 10 times
of those for distributed WFs. But the simulated balancing profit
for united ESS is less than 10 times of the distributed ESS,
which is because that the key parameters of linear decision
rules change with the capacity of ESS. The united WF-ESS
gets 229.31 k¤, less than the sum of distributed WF-ESS
(253.32-12.77=240.55 k¤).

TABLE V
PROFIT OF AGGREGATED WF AND ESS WITH THE PM STRATEGY (k¤)

Item Day-ahead Profit Balancing Profit Overall Profit
WF only Obj. 125.68 142.63 268.31

WF only
Simulation 121.57 139.17 260.74

ESS only Obj. 19.82 -8.36 11.46
ESS only

Simulation 17.28 -24.60 -7.32

WF-ESS Obj. 91.55 186.69 278.24
WF-ESS

Simulation 91.55 190.43 281.98

Tab.V shows the results of united WF and ESS with the
PM strategy. Comparing Row 2 with Row 3, and Row 4 with
Row 5, one can find that although the united WF and ESS
considers the influence of offering quantity on cleared prices,
as they do not know other participants’ offering, the simulated
day-ahead profit is still lower than that from the model, but the
decrease is much smaller than the results of PT strategy. The
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profit of coordinated WF-ESS is 281.98 k¤(Row 7), 11.3%
higher than the profit of uncoordinated WF-ESS (253.42 k¤,
adding the results of Row 3 and Row 5). With Tab.V and
Tab.IV compared, it can be seen that PM strategy can help
WF increase profit by 2.9%, while help ESS reduce the loss
by 42.7%. For the distributed resources, their profit can be
increased by 14.49% if aggregated by VPP and participate in
electricity markets with the PM strategy.

By comparing Row 4 and Row 5 of Tab. III, IV and V,
we can find that the objective function values of ESS profit
(”ESS only Obj.”) are all positive, and the simulation results
(”ESS only Simulation”) are negative, no matter it takes PM
or PT strategy. This is due to the decrease of both day-ahead
and balancing profit. On one hand, wind farms’ offers will
decrease the cleared prices, which makes the day-ahead profit
of ESS lower. On the other hand, as the parameters of linear
decision rules are optimized based on a given set of scenarios,
the balancing profit for out-of-sample scenarios will decrease.
These two reasons make the simulation profit negative.

TABLE VI
DAILY PROFIT OF WF-ESS BROUGHT BY THE PT AND PM STRATEGIES

(k¤)

Month Jan. Feb. Mar. Apr. May June
PT Strategy 258.51 294.20 266.73 257.12 221.80 192.56
PM Strategy 301.31 320.65 293.48 280.65 249.76 222.85

Month July Aug. Sep. Oct. Nov Dec.
PT Strategy 137.37 220.63 213.88 264.35 253.42 190.40
PM Strategy 186.57 285.13 241.19 289.23 281.98 214.09

By calculating the profit of one typical day in every month
in 2015, Tab.VI lists the profit of WF-ESS brought by PM
and PT strategies throughout the year. During the whole year,
PM strategy can bring 14% more profit than PT strategy for
WF-ESS, which validates the effectiveness of our proposed
strategy.

V. CONCLUSION

This paper proposes an optimal offering and operating
strategy of WF-ESS as a price maker in day-ahead markets
and adopts linear decision rules in balancing markets. A mixed
integer linear programming is modeled accordingly and this
model can integrate control strategy of balancing stage into
day-ahead optimization, which helps guarantee the optimality
of overall revenue.

Case studies based on realistic data of wind farms and
electricity markets are carried out. The results show that over
60% profit of WF-ESS comes from the balancing market when
it participates in day-ahead markets as a price maker. The
price-maker strategy can help WFs, ESS and WF-ESS achieve
more profit than the price-taker strategy. Furthermore, if there
are many distributed wind and storage resources, aggregating
them to a VPP and adopting the price-maker strategy can
increase their profit by about 10%.
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