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Summary 

MHC class II molecules play a fundamental role in the cellular immune system: they load short 

peptide fragments derived from extracellular proteins and present them on the cell surface. It is 

currently thought that the peptide binds lying more or less flat in the MHC groove, with a fixed 

distance of nine amino acids between the first and last residue in contact with the MHCII. While 

confirming that the great majority of peptides bind to the MHC using this canonical mode, we 

report evidence for an alternative, less common mode of interaction. A fraction of observed 

ligands were shown to have an unconventional spacing of the anchor residues that directly 

interact with the MHC, which could only be accommodated to the canonical MHC motif either by 

imposing a more stretched out peptide backbone (a 8mer core) or by the peptide bulging out of 

the MHC groove (a 10mer core). We estimated that on average 2% of peptides bind with a core 

deletion, and 0.45% with a core insertion, but the frequency of such non-canonical cores was as 

high as 10% for certain MHCII molecules. A mutational analysis and experimental validation of a 

number of these anomalous ligands demonstrated that they could only fit to their MHC binding 

motif with a non-canonical binding core of length different from nine. This previously 

undescribed mode of peptide binding to MHCII molecules gives a more complete picture of 

peptide presentation by MHCII and allows us to model more accurately this event. 

 

 

Introduction 

The primary function of class II major histocompatibility complex molecules (MHCII) is to alert 

the immune system to the presence of a pathogen by binding and presenting short peptide 

fragments derived from exogenously derived proteins. Once outside the cell, T helper 

lymphocytes bearing receptors specific for the peptide-MHCII complex can recognize the 

peptide as non-self and help initiating an appropriate immune response (1–3). Structurally, 

MHCII consists of two non-covalently bound amino acid chains, the α and the β chain. The two 

domains α1 and β1 of these chains combine to form the peptide-binding groove. Because the 

MHCII groove is open at the extremities, the peptide ligand can freely extend outside both ends. 

The stretch of peptide residues directly interacting with the groove, the so-called binding core, 

is the main determinant of peptide binding to MHCII. Ample structural data show that the 

peptide binds lying flat in the groove, with an extended conformation and a fixed distance of 

typically nine amino acids between the first and last peptide residue in contact with the MHCII 

groove (4). The residues at positions P1, P4, P6 and P9 of the binding core, termed anchor 
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residues, are normally directed towards the MHC, and they can engage in interactions with 

pockets in the binding groove. As the α1 and β1 chains are highly polymorphic, the preferences 

of these pockets in terms of which residues they can accommodate can vary greatly. As a 

consequence, different MHCII alleles bind distinct subsets of peptides (5). 

 

In contrast to MHCII, the binding groove of class I MHC molecules (MHCI) is closed at both ends, 

with most binding peptides having a length of nine amino acids. Longer peptides are 

accommodated either by taking on a bulged conformation with the middle of the peptide 

protruding out of the MHC groove (6), or less frequently by extending outside the C or N 

terminals (7,8). Peptides of length eight can also bind to the MHCI, by assuming a more 

stretched configuration of the backbone (3). We have shown with the most recent versions of 

NetMHC (9) and NetMHCpan (10) that these alternative modes of binding could be modeled 

with deletions and insertions in the binding core of the peptide. Deletions allow removing 

consecutive residues in peptides longer than nine amino acids to effectively align 10mers, 

11mers, etc. to the same binding core of nine positions. Ideally, the deleted positions represent 

the residues that bulge out of the MHCI groove, whereas an insertion mimics a more stretched-

out backbone and adapts 8mers to the common window of nine residues. This strategy has 

proven highly successful for MHCI binding prediction as it allows training models on peptides of 

all lengths at the same time, resulting in improved performance for all peptide lengths (9). 

NetMHCIIpan is a widely used computational method that can predict quantitative binding of 

peptides to any MHCII molecule of known sequence. In several benchmarks, it has been shown 

to be the state-of-the-art for the prediction of peptide binding to MHC class II (11–13). Similarly 

to the methods for peptide-MHC class I binding prediction NetMHC and NetMHCpan discussed 

above, the algorithm underlying NetMHCIIpan relies on the neural networks training pipeline 

NNAlign (14,15).  One major challenge faced when training machine learning methods for the 

prediction of peptide binding to MHCII stems from the open binding cleft of the MHCII molecule. 

This open conformation makes the location of the binding core within the peptide unknown a 

priori. Because the peptide binding core is the main determinant of the interaction with the 

MHC molecule, correct alignment of peptides is essential to identify the MHCII binding motifs. 

The NNAlign method allows for such accurate alignment based on quantitative peptide-MHC 

binding affinity (14). It does so by encoding the amino acid sequence of the peptide and of the 

MHC and several other features of the training examples (e.g. peptide length, peptide flanking 

region (PFR) composition and PFR length) to predict quantitative measurements of peptide-

MHC binding affinity.  
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In this work, we applied the extended NNAlign pipeline (version 2.0) including modes for 

deletions and insertions, allowing us to model the peptide-MHC class II binding event with cores 

of variable length. In the context of MHCII, binding cores with insertions and deletions would 

indicate a non-canonical mode of binding with either a bulged or stretched configuration of the 

peptide in the binding groove. We assessed the predictive performance of the method on 

several datasets, and carried out mutational studies to validate the occurrence of non-canonical 

binding cores of length different from nine. 

 

Materials and Methods 

Data Sets 

The method was trained on the binding data used in the NetMHCIIpan-3.0 publication (16) 

(available at http://www.cbs.dtu.dk/suppl/immunology/NetMHCIIpan-3.0). This set consists of 

quantitative peptide-MHC class II binding data from the Immune Epitope Database (IEDB) (17), 

comprising 52,062 affinity measurements covering 24 HLA-DR, 5 HLA-DP, 6 HLA-DQ, and 2 

murine H-2 molecules. The IC50 (half inhibitory concentration) values in nanomolar were 

transformed using the logarithmic formula 1-log(IC50)/log(50,000) as previously described 

(18) to make them fall in the range between 0 and 1. 

 

Training the Artificial Neural Networks 

The method was implemented as an ensemble of feed-forward neural networks with a single 

hidden layer as previously described (19). Peptide and MHC sequences were presented to the 

input layer of each network using BLOSUM encoding, where each amino acid was encoded as 

the BLOSUM50 matrix score vector of 20 amino acids (20). The optimal 9-mer core of a peptide 

therefore required 9 × 20 = 180 input neurons. Deletions and insertions were encoded as 

previously described (9) : cores longer than nine amino acids were reduced to nine positions by 

applying consecutive deletions at all possible positions in the core; cores shorter than nine were 

completed by introducing the wildcard X amino acid, encoded as a vector of zeros. The length of 

insertions Li and deletions Ld was encoded with four input neurons with values Li/(Li+1), 1-

Li/(Li+1), Ld/(Ld+1) and 1-Ld/(Ld +1). Forty additional input neurons were used to encode the 

composition of the peptide flanking regions (PFRs), calculated as the average BLOSUM scores 

on a maximum window of three amino acids at either end of the binding core (19). C- and N-

terminal PFR lengths (LPFR) were each encoded using two input neurons with values LPFR /(LPFR 

http://www.cbs.dtu.dk/suppl/immunology/NetMHCIIpan-3.0
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+ 1) and 1-LPFR/(LPFR + 1) respectively. The peptide length L was encoded with two input 

neurons taking the values LPEP and 1-LPEP, where LPEP  = 1/(1 + exp((15-L)/2)). These 

transformations ensure that the normalized input values to the neural networks fall in the range 

between 0 and 1. MHC molecules were represented in terms of a pseudo-sequence defined by 

polymorphic residues in potential contact with a bound peptide (21). We used the same 

pseudo-sequences of 34 residues for the MHC alpha and beta chains defined by Karosiene et al. 

(16), resulting in additional 34 × 20 = 680 inputs. As a result, the total size of the input layer 

amounted to 910 neurons. 

 

The single hidden layer was composed of 10, 15, 40, or 60 hidden neurons, and network 

weights were initialized with 10 different random configurations for each architecture. The 

resulting complete ensemble was therefore composed of 200 networks (5 cross-validation folds 

x 4 hidden layer sizes x 10 initial weights). The output layer was composed of a single neuron 

having as target value the binding affinity of the training example rescaled between 0 and 1 as 

described in the section Data sets. When allowing insertions and/or deletions, networks were 

trained using a burn-in period, a number of initial iterations where insertions and deletions 

were not allowed. After the burn-in, this constraint is relaxed and the algorithm starts 

attempting to introduce insertions/deletions as well. 

 

Cross-Validation Subsets 

The performance of the method on the binding affinity data set was performed using a 5-fold 

cross-validation, where four fifths of the data were used for training and one fifth for evaluation, 

repeating the procedure five times for all evaluation fifths. We used the same data partitions 

that had been generated to train NetMHCIIpan-3.0 (16). In order to minimize over-estimation of 

predictive performance, these subsets for cross-validation were created using a Hobohm1-like 

algorithm called "common-motif" (22). Common-motif first selects seed sequences sharing at 

most a continuous stretch of eight amino acids, and then splits these seed sequence randomly 

into five partitions. The redundant sequences, i.e. those peptides with a common subsequence 

of nine or more contiguous amino acids, are then added to the group containing the seed used to 

define their redundancy. 
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Reduced Subsets with Minimal Redundancy 

Although the procedure outlined above reduces the overlap between partitions compared to a 

random split of the data, some degree of overlap is unavoidable without removing data points. 

We constructed a reduced data set that ensures no overlap between the partitions. The 

algorithm to create the subsets starts with a prioritized list of sequences, sorted by the number 

of MHCs that each peptide is measured in complex with. That is, we start with peptides that 

have affinity measurements with the largest number of MHCs and proceed to accept or reject 

sequences based on their similarity to the ones that were already accepted. As we proceed 

down the list of sequences, there are three possible outcomes for a query sequence Q: 

 

1) Q shares no contiguous stretch >= N amino acids with any of the accepted peptides; it is 

accepted and assigned randomly to one of the subsets. 

2) Q shares a contiguous stretch >= N amino acids only to sequences of one subset S; it is 

accepted and placed in the subset S. Note that it can match to several sequences, but as long as 

they all belong to the same subset, it is still accepted. 

3) Q shares a contiguous stretch >= N amino acids to sequences belonging to more than one 

subset; the peptide is discarded. 

 

Starting with a prioritized list aims at removing as few sequences as possible while at the same 

time ensuring no overlap >= N amino acids between the subsets. 

 

Statistical Tests 

The predictive performances of alternative methods were compared using binomial tests. Given 

a pair of methods, the null hypothesis is that the two methods have equal probability of 

returning higher PCC (or AUC) on a given MHC allele. If method 1 has higher PCC in n1 alleles 

and method 2 higher PCC in n2 alleles, we estimated the p-value of this event as the two-tailed 

probability of observing n1 or more wins by chance in a binomial distribution B(n1 + n2, 0.5). 

Ties were excluded from the counts of n1 and n2. 
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Measurement of MHC/Peptide Interactions by Monoclonal Antibody Capture 

The binding capacity of peptide ligands to bind MHC molecules was measured using direct and 

quantitative binding assays as previously described elsewhere (23). In brief, inhibitor peptides 

to be tested were prepared at 10 mg/mL in 100% DMSO and subsequently diluted to desired 

concentration in 0.05% NP-40 (0.05% (v/v) Nonidet P-40 (NP-40; Fluka)/PBS, pH 7.2). Then, 

5µL of each peptide dose were loaded into a 96-well plate. For positive (i.e. no inhibitor 

peptide) and negative (no MHC) controls 5µL 0.05% NP-40 was used. For each plate, an 

unlabeled standard peptide (i.e. peptide with known IC50 for the tested MHC) was used. Next, 

radioactive labeled standard peptide (for labeling procedure refer to Support Protocol 2 (23)) 

was mixed with PBS (pH 7.2), MHC, protease inhibitor cocktail and either 1.6% (v/v) NP-

40/PBS or 0.82% Pluronic to make reaction mix (hot mix). For plate layouts and exact amounts 

of ingredients used in this assay, please refer to Sidney et al (23) as they vary among different 

class II MHCs tested. 10µL of hot mix were immediately added to all wells but the negative 

control. For negative controls, 10µL of reaction mix lacking MHC (cold mix) were added. Next, 

96-well plates were sealed with Costar mats (Fisher Scientific, #07-200-614) and incubated 48h 

at room temperature (most assays). Alternatively, some assays required 72h of incubation 

and/or an incubation temperature of 37°C or MHC specific modifications, e.g. adjustment of 

final pH to optimize reactions (23). Finally, MHC/peptide complexes were captured utilizing 

monoclonal antibody-coated plates (Support protocol 4 (23)) and IC50 were determined using 

the Topcount (PerkinElmer Instruments) benchtop microplate scintillation and luminescence 

counter.  

 

Results 

Modeling peptide binding to MHCII, and particularly which peptide residues are implicated in 

the interaction, requires an alignment of the peptide sequences. We investigated whether, 

allowing the peptide alignment to contain insertions and deletions, we could generate better 

prediction models compared to what could be obtained with an un-gapped alignment, and 

experimentally validated the binding mode of a set of peptides predicted to contain non-

canonical binding cores.  

Priming Neural Networks with a Burn-In Period 

When expanding the mode of binding cores to include insertions and deletions, the solutions 

space becomes substantially larger. For instance, there are seven possible un-gapped 9mer 

cores in a 15mer peptide, but there are 45 possible 10mers with one deletion, and 56 possible 
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8mers with one insertion. The abundance of possible core configurations makes it likely that a 

naive network will get lost in local minima mainly composed of these non-9mer cores. To avoid 

this, we introduced a burn-in period, in which a number of initial iterations in neural network 

training were performed without allowing for insertions and deletions. The burn-in period has 

the function of guiding the neural networks onto the right path, using the prior knowledge that 

9mer cores should be the norm and that cores with insertions/deletions are the exception. 

 

We trained neural networks on the binding affinity data set (see Materials and Methods) with 

and without insertions/deletions, and with different burn-in periods. The method without 

insertions/deletions can be thought of as having a burn-in period equal to the total number of 

training iterations, and is essentially equivalent to the NetMHCIIpan-3.0 method (16). 

 

It is evident from Figure 1 that the burn-in iterations are crucial to drive neural network 

learning: training without this initial priming (burn-in=0) did not improve the performance 

compared to the method trained without insertions and deletions, termed NoGap in Figure 1 

(p=0.26, two-tailed binomial test). With an appropriate burn-in rate (around 50-150 out of 500 

total iterations) and a maximum length for deletions and insertions of one amino acid, we 

observed an average improvement in predictive performance in a cross-validation setup (Figure 

1). The increase in Pearson Correlation Coefficient (PCC) compared to NoGap was significant, 

with higher performance observed on 34/37 molecules with burn-in=100 (p=10-7, two-tailed 

binomial test). Similarly, when we evaluated predictive performance in terms of AUC, the 

method with insertions/deletions outperformed NoGap on 33 out of 37 molecules (p=10-6), 

with average AUC=0.875 compared to 0.870 of the NoGap method. The method trained with at 

most one deletion and one insertion also outperformed neural networks trained with at most 

one deletion and no insertions (p=10-7), and networks allowing no more than one insertion and 

no deletions (p=10-6). Allowing longer deletions of up to 2 amino acids did not further improve 

cross-validated performance (p=0.32). Figure 2 summarizes these comparisons. 

 

Insertions and Deletions are Relatively Rare and Allele-Specific  

In order to estimate the frequency of the deletion and insertion events, we submitted 3.7 million 

(100,000 for each of the 37 molecules in the data set) random natural 15mer peptides to the 

neural networks. Defining peptides within the top 10th percentile as binders, we find that 2.0% 
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of the binders were predicted to contain a core deletion, and 0.45% presented an insertion. 

However, we observed that certain molecules had stronger preferences for insertions/deletions 

whereas they were never predicted to occur in others (Figure 3). For example, even with a 

relatively conservative burn-in of 100 iterations, DRB3*01:01 and DRB5*01:01 had more than 

10% of their predicted binders with an optimal 8- or 10-amino acids core. Conversely, all HLA-

DP and HLA-DQ showed less than 1% of predicted binders with non-canonical cores. The mouse 

molecules H-2-IAb and H-2-IAd also had a very low fraction of insertions/deletions. The profiles 

of insertion and deletion frequencies for different values of the burn-in rate are shown in Figure 

S1.  

 

Data Redundancy and Its Effect on Cross-Validated Performance 

The data partitions used to train NetMHCIIpan-3.0 in cross-validation were generated using a 

common-motif procedure (described in Materials and Methods and in ref. (22)), which aimed at 

limiting the sequence similarity between partitions. Although this procedure reduces the 

overlap between partitions compared to a random split of the data, some degree of sequence 

similarity is unavoidable without removing data points. Indeed, on the binding affinity data set, 

after applying the common-motif, 45% of the sequences still shared a continuous stretch >= 9 

amino acids with at least one other sequence in a different partition. Such redundancy can lead 

to overestimating the predictive performance in cross-validation (24), as these examples are 

relatively easy to predict - the neural networks have seen a very similar example in the training 

phase. Over-estimation of the predictive performance is expected to be more pronounced for 

methods with larger search spaces and model parameters. Therefore, one may argue that the 

gain in performance obtained by including deletions and insertions could be an artifact of data 

redundancy and of the increase in model complexity.   

 

To investigate this, we generated reduced data sets that ensured no overlap >= N contiguous 

amino acids between any sequence in different cross-validation subsets, applying the algorithm 

described in Materials and Methods. Depending on the length of the common-motif threshold N, 

a different number of sequences must be removed from the data set to fulfill the no-overlap 

condition. Figure 4 shows the percentage of removed sequences depending on N. For common-

motif lengths 3-5, as expected, the number of removed peptides decreases when considering 

longer cores. However, the number of peptides removed for lengths 6-10 is essentially the same 

(about 14-15% of the sequences). This is likely due to a significant fraction of peptides tested 
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for binding being generated as 15-mers overlapping by 10 residues, which is a common 

approach to cover an antigen of interest (25,26). Therefore, for a more stringent reduction of 

redundancy (without losing any extra data), we continued the analysis using N=6. In other 

words, we removed about 7,800 sequences of the 52,062 in the training set, ensuring that no 

two sequences across subsets shared more than 5 consecutive amino acids. Approximately the 

same number of peptides would have to be removed to ensure a maximum overlap of 8 (N=9).  

 

The MHCII-peptide binding predictor was retrained on these reduced partitions, both with and 

without insertions/deletions. As expected, the cross-validated performance on the data set 

without overlap between partitions drops significantly (p=10-8) compared to the method 

trained on all data, as all the evaluation examples now have a lower degree of similarity to the 

training data. However, even in this extreme scenario, the performance of the method remains 

high with average PCC values in the order of 0.7 for all burn-in rates (Figure 5). More 

importantly, we observed also on these data that the method with insertions/deletions 

performs significantly better than the NoGap counterpart, with higher PCC for 31/37 molecules 

(p=4*10-5) with a burn-in rate = 100. This demonstrates that the prediction of peptides with 

non-canonical binding cores was not merely a result memorized by the neural networks as 

outliers, and that the rules of placing insertions/deletions could be generalized and applied on a 

set of peptide sequences very different from the ones used to train the networks. 

 

A Mutational Analysis Supports the Hypothesis of 10mer Binding Cores 

In order to validate experimentally the occurrence of binding cores with length different from 

nine amino acids, we designed a number of mutations to four validated MHCII binding peptides. 

The four wild type (WT) peptides in Figure 6 were all predicted to contain a 10mer binding core 

(i.e. they comprised a deletion). In all four cases, the canonical and non-canonical predicted 

cores agree on the location of one anchor, and disagree on the position of a second anchor 

residue. 

 

The canonical binding motif for DRB1*03:01 has anchors at P1 with preference for hydrophobic 

amino acids, and at P4 with a preference for D (see Figure 6). Both DRB1*03:01 binders fail to 

match this motif, as the D at P4 is separated by four residues from the nearest hydrophobic 

amino acid. Two explanations for this inconsistency are possible: the P1 anchor can tolerate 
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non-hydrophobic amino acids, or the distance between P1 and P4 can be different from three 

amino acids. In the second scenario, we would predict that: 1) mutating the D at P4 to a 

dissimilar amino acid should abolish binding; 2) mutating the putative non-canonical P1 to a 

non-hydrophobic amino acid should also remove binding; 3) mutating the putative P1 of the 

9mer core should not affect binding; 4) additional mutations outside of the predicted core 

should not have an effect on binding. 

 

The binding motif for DRB5*01:01 has a strong hydrophobic anchor at P1, and a strong 

positively charged anchor at P9 (see Figure 6). Both binders are inconsistent with this motif, as 

the distance between the P1 and P9 in both cases is of ten residues. If these peptides interact 

with the MHCII with a binding core of ten amino acids, we would predict that: 1) mutating the F 

at P1 to a dissimilar amino acid should abolish binding; 2) mutating the P1+9 residue (i.e. the 

last residues in the predicted 10mer core) should prevent binding; 3) mutating the P1+8 

residue (i.e. the last residue in a putative 9mer core) should not affect binding; 4) mutations 

outside of the predicted core(s) should not have an effect on binding. 

 

The effects of targeted mutations on the four peptides are listed in Table 1. In most cases the 

measured IC50 affinity of the variants supports the presence of a 10mer binding core. Mutations 

on anchors of the 10mer cores abolished binding, whereas mutated anchors according to a 

putative 9mer core did not affect binding affinity compared to the WT. Therefore, successful 

binding for these peptides requires both anchor residues, and these are separated by a number 

of residues that is only consistent with a 10mer binding core. While the size of the effect was not 

identical for all mutations, the direction of the change in binding strength was consistent. For 

instance, peptide ISFCNANPGLMKDVA was measured to bind with affinity of 12nM to HLA-

DRB5*01:01, a value that ranks this sequence among the top 1.2% of predicted binders when 

compared to NetMHCIIpan prediction scores for a large set of random natural 15mer peptides. 

However, the measured affinity of the two mutants P3F>K (522 nM) and P12K>G (599nM) 

translate into respectively 35% and 38% in terms of such percentile ranks; in this light, the two 

mutations had a very severe effect on the strength of the interaction. 

The nearly three-fold reduction in binding affinity for the P4H>G mutant of MYFHKRDMRLLSLAV 

was somehow surprising, as the histidine at the predicted P2 of the core is not expected to play 

a determinant role in the binding capability of the peptide. However, glycine is a special amino 

acid since it only has a single hydrogen atom as its side chain. This small side chain grants high 
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flexibility to the polypeptide chain, and glycine can therefore have rotations angles forbidden by 

most other amino acids. The mutation H->G could impose structure variations in the peptide 

conformation not captured by the prediction method.  This said, the mutations at the predicted 

P1 and P4 of the binding core (P3F>A and P7D>V, respectively) have much more dramatic 

effects on the measured IC50, pointing to the dominant role of these two residues in 

determining the peptide-MHC interaction. Much more unexpected was the outcome for the 

P8D>V variant of LQIIDKIDAAFKVAA, which turned out as a binder (IC50=59nM) despite losing 

the aspartic acid (D) at the P4 anchor of the binding core (highlighted in bold). The NNAlign 

network ensemble predicts that the P8D>V mutant LQIIDKIVAAFKVAA has affinity of 230 nM 

for DRB1*03:01; this peptide probably uses an alternative binding register, with affinity 

comparable to the primary binding register, exploiting the D three amino acids to the left of the 

D>V mutation.  

 

Discussion 

The currently accepted paradigm for the event of peptide-MHC class II binding portrays the 

peptide lying flat in the peptide-binding groove of the MHC, extending out of both sides of the 

groove. The conformation of the peptide backbone is highly conserved, with a fixed distance of 

nine amino acids (the binding core) between the first and last peptide residue in contact with 

the MHC class II groove. This model is supported by a vast amount of literature and numerous 

crystal structures of peptide-MHC complexes (4,27), and has been tremendously useful to study 

the mechanisms of epitope presentation. While confirming that the great majority of peptides 

bind to the MHC using this canonical mode, in this work we report evidence for an alternative, 

less common mode of interaction. The basic idea is that a fraction of observed ligands have an 

unconventional spacing of the anchor residues that can only be accommodated to the canonical 

MHC motif with a more stretched out peptide backbone, if the anchors are closer to each other 

than expected, or by the peptide bulging out of the MHC groove, if the anchors are separated by 

too many residues. 

 

The first, indirect evidence for a non-canonical mode of binding comes from a machine learning 

benchmark on a large set of binding affinity data. Allowing the peptide binding core to take on a 

variable length of either eight, nine or ten residues, we showed that we could build models with 

significantly higher predictive performance compared to having a fixed binding core of nine 

contiguous amino acids. Because more accurate models should correspond to better 
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approximations of the biological system being modeled, these results suggest that such non-

canonical cores do occur in practice. These observations were also confirmed in a redundancy-

controlled setup, where we ensured that the improved accuracy was not an artifact of over-

fitting on highly similar sequences. 

 

Further evidence for the occurrence of the proposed non-canonical mode of binding was 

collected with a mutational study of four MHCII binders. These peptides were all predicted to 

contain a deletion (that is, a 10mer binding core). We showed that the binding measurements of 

the mutated peptides are only coherent with a mode of binding that involves a binding core of 

ten amino acids, and that a canonical 9mer binding core cannot accommodate the peculiar 

anchor spacing of these peptides. Taken all together, these results are strongly suggestive of a 

non-canonical mode of binding for MHCII ligands that, to be best of our knowledge, has never 

been described before. 

 

Recent advances in mass-spectrometry have enabled large-scale analyses of the collection of 

peptides naturally presented by MHC molecules in a particular cell line. These technologies have 

a tremendous potential as they can generate thousands of datapoints in a single experiment 

(see for instance refs (28,29)). However, since antigen presenting cells normally express 

multiple MHC isoforms, the MHC restriction of each ligand is generally not known and must be 

assigned, either with a predictor of binding to MHC or through unsupervised clustering (30). 

While most studies in this field have focused on MHC class I eluted ligands, reports of class II 

ligandomes have started to appear (e.g ref (31)). When sufficient and reliable MHCII ligandome 

data become available, and the issues of restriction assignment are confidently solved, it will be 

essential to investigate the presence of non-canonical binding also in MHCII natural ligands. 

Ultimately, crystal structures of peptide-MHC class II complexes displaying a bulged mode of 

binding would be highly desirable, both to further confirm the occurrence of non-canonical 

binders and to study their possible effect on the recognition by the T-cell receptor.  

 

The results described in this work were obtained using the fully automated NNAlign machine-

learning pipeline (32). NNAlign has been previously applied to generate models of protease 

cleavage (15), characterization of MHC class II binding motifs (33), and it forms the foundation 

for the state-of-the-art prediction algorithms NetMHC (9), NetMHCpan (10), NetMHCII (14) and 
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NetMHCIIpan (12). In all these examples, it has been proven capable of detecting subtle motifs 

in quantitative peptide data, and of generating powerful prediction models for several biological 

problems. In this work, NNAlign highlighted anomalies in the manner a fraction of ligands bind 

to the MHCII, and suggested a non-canonical mode of peptide-MHC binding that was later 

confirmed by experimental validation. However, its applications are not limited to the MHC 

system, and it can be readily employed to study other kinds of receptor-ligand interactions. 
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Figure Legends 

Figure 1: Correlation coefficient (average over 37 molecules) of the method versus the number of 

burn-in iterations used to prime the networks. Networks were trained in cross-validation with a 

maximum insertion length of one amino acid and a maximum deletion length of one amino acid. NoGap 

corresponds to the method trained without insertions and deletions. 

 

Figure 2: Correlation coefficient for methods trained with different deletion (d) and insertion (i) 

maximum lengths. The method with at most one deletion and one insertion (d=1;i=1) had significantly 

higher performance than the method without insertions/deletions (d=0;i=0) with higher PCC in 34/37 

molecules (p=10-7). It also outperformed d=1;i=0 on 34/37 molecules (p=10-7) and d=0;i=1 on 33/37 

(p=10-6) molecules.  Allowing longer deletions of up to 2 amino acids (d=2;i=1) does not significantly 

improve cross-validated performance compared to d=1;i=1 (p=0.32). All p-values were calculated with 

two-tailed binomial tests. 

 

Figure 3: Frequency of predicted binders containing deletions (black) and insertions (white) in 

the binding core using a burn-in of 100 iterations. While some molecules have over 10% of predicted 

binders with a non-canonical binding core (e.g. HLA-DRB3*01:01 and HLA-DRB5*01:01), others have no 

predicted binding cores with insertions or deletions (e.g. the mouse H-2 alleles). The figure was 

generated, for each allele, from the top 10% scoring peptides out of 100,000 natural random 15-mers. 

 

Figure 4: Percent of peptide-MHCs that must be removed to ensure no overlap between cross-

validation partitions, depending on the common-motif threshold N on the x-axis. Approximately the 

same number of peptides has to be removed (~14-15%) for N=6 to N=10, reflecting a possible bias in the 

procedures used to assay binding affinity with a sliding window over antigens of interest. 

 

Figure 5: Correlation coefficient (average over 37 molecules) as a function of the burn-in rate for 

networks trained on the low redundancy data set. Networks were trained in cross-validation with a 

maximum insertion length of one amino acid and a maximum deletion length of one amino acid. NoGap 

corresponds to the method trained without insertions and deletions. 

Figure 6: Predicted 9mer and 10mer binding cores for two DRB1*03:01 and two DRB5*01:01 

ligands. The non-canonical spacing of the anchor residues can only be accommodated with a deletion in 

the binding core, which is depicted here as a protrusion of the peptide chain at the predicted position of 

the deletion. Reference sequence logos are from NNAlign (15). 
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Tables 

Table 1: Measured IC50 binding affinity for four MHC class II ligands in their wild type (WT) and 

mutated variants.  

 

Peptide Mut MHC Pred IC50 

MYFHKRDMRLLSLAV WT DRB1*03:01 + 272 

MYFHKRVMRLLSLAV P7D>V DRB1*03:01 - 29300 

MYAHKRDMRLLSLAV P3F>A DRB1*03:01 - 1780 

MYFGKRDMRLLSLAV P4H>G DRB1*03:01 + 743 

MEFHKRDMRLLSLAV P2Y>E DRB1*03:01 + 124 

LQIIDKIDAAFKVAA WT DRB1*03:01 + 90 

LQIIDKIVAAFKVAA P8D>V DRB1*03:01 - 59§ 

LQIADKIDAAFKVAA P4I>A DRB1*03:01 - 539 

LQIIRKIDAAFKVAA P5D>R DRB1*03:01 + 89 

LQAIDKIDAAFKVAA P3I>A DRB1*03:01 + 152 

RNVFDEVIPTAFKIG WT DRB5*01:01 + 37 

RNVRDEVIPTAFKIG P4F>R DRB5*01:01 - 652 

RNVFDEVIPTAFAIG P13K>A DRB5*01:01 - 666 

RNVFDEVIPTARKIG P12F>R DRB5*01:01 + 5 

RNEFDEVIPTAFKIG P3V>E DRB5*01:01 + 15 

ISFCNANPGLMKDVA WT DRB5*01:01 + 12 

ISKCNANPGLMKDVA P3F>K DRB5*01:01 - 522 

ISFCNANPGLMGDVA P12K>G DRB5*01:01 - 599 

ISFCNANPGLRKDVA P11M>R DRB5*01:01 + 0.2 

IEFCNANPGLMKDVA P2S>E DRB5*01:01 + 10 

 

Mutations are listed in the Mut column and highlighted in bold letters in the peptide. The predicted 

10mer binding core is underlined. Pred is the expected outcome if the peptide contained a 10mer binding 

core. § This mutant has a predicted secondary binding core (see text). 
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