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ABSTRACT  12 

Thermal stratification in a water storage tank can strongly increase the thermal performance of 13 

solar heating systems. Thermal stratification can be built up in a storage tank during charge, if 14 

the heated water enters through an inlet stratifier. 15 

Experiments with a test tank have been carried out in order to elucidate how well thermal 16 

stratification is established in the tank with differently designed inlet stratifiers under different 17 

controlled laboratory conditions.   18 

The investigated inlet stratifiers are from Solvis GmbH & Co KG and EyeCular Technologies 19 

ApS. The inlet stratifier from Solvis GmbH is a rigid plastic pipe with holes for each 30 cm. The 20 

holes are designed with flaps preventing counter flow into the pipe. The inlet stratifier from 21 

EyeCular Technologies ApS is made of a flexible polymer with openings all along the side and 22 

in the full length of the stratifier. The flexibility of the stratifier prevents counterflow. 23 

The tests have shown that both types of inlet stratifiers had an ability to create stratification in 24 

the test tank under the different test conditions. The stratifier from EyeCular Technologies ApS 25 

had a better performance at low flows of 1-2 l/min and the stratifier for Solvis GmbH & Co KG 26 

had a better performance at 4 l/min. In the intermediate charge test the stratifier from EyeCular 27 

Technologies ApS had a better performance in terms of maintaining the thermal stratification in 28 

the storage tank while charging with a relative low temperature. 29 

 30 

INTRODUCTION 31 

The thermal performance of a solar heating system is strongly influenced by the thermal 32 

stratification in the heat storage. Previous investigations showed that the thermal performance is 33 

increased by increasing thermal stratification (Van Koppen et al. 1979, Hollands et al. 1989, 34 

Hahne et al 1998, Han et al 2009). 35 

Thermal stratification in solar storage tanks can be established both during charge and during 36 

discharge periods from the tank.  37 

During discharge of a storage tank, the heat is discharged from a fixed level of the tank. For a 38 

solar domestic hot water (SDHW) system, the fixed level is at the top of the storage tank. For a 39 

solar combi (SC) system the level is just above the auxiliary energy supply in the storage tank. 40 

Thermal stratification in a domestic hot water tank is best established during discharge, if cold 41 
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water enters the bottom of the tank during hot water draw offs without any mixing (Lavan et al. 42 

1977, Shah and Furbo 2003, Jordan and Furbo 2005, Furbo and Shah 2005), and in a hot water 43 

tank for combined space heating and domestic hot water supply, if the returning water from the 44 

heating system enters the tank through an inlet stratifier (Weiss 2003, Andersen and Furbo 45 

2006). Additionally, thermal stratification can be established in an even better way by 46 

discharging the solar storage tank from different levels (Furbo et al. 2005). 47 

During charge, thermal stratification in a hot water tank can be established by an auxiliary 48 

energy supply system or by the thermal energy coming from the solar collectors. The heat from 49 

the auxiliary energy supply system is normally transferred to the top of the tank. The heat from 50 

the solar collectors is ideally transferred to the “right” level of the tank which is the level where 51 

the tank temperature matches the temperature of the incoming fluid transferring the solar heat to 52 

the tank. Investigations have shown that for small SDHW systems, thermal stratification is built 53 

up in an excellent way during charge with solar heat if vertical mantle tanks are used (Furbo and 54 

Mikkelsen 1987, Shah and Furbo 1998, Knudsen and Furbo 2004, Furbo and Knudsen 2006). 55 

Thermal stratification in hot water stores for large SDHW systems and for SC systems can be 56 

successfully established during charging by means of inlet stratifiers (Weiss 2003, Furbo et al. 57 

2005). 58 

Inlet stratifiers can be designed in different ways. For instance, inlet stratifiers can be vertical 59 

polymer pipes with openings without or with non-return valves on the openings, securing that 60 

water can only flow out of the pipes into the tank. Other designs are porous tube manifolds 61 

mounted in the storage tank (Wang et al. 2015, Wang et al 2016). Here the flexibility and 62 

permeability of the porous tube manifold ensures stratification. Also valves designed for the 63 

inlet, which can allow the water to enter in the right level according to temperature of the 64 

incoming water and temperature in the tank (van Ruth 2016), can be used. Inlet stratifiers can 65 

also be vertical fabric pipes or vertical polymer film pipes with one or more layers and with 66 

openings in different levels. Due to the flexibility of the fabric and polymer inlet stratifiers, the 67 

horizontal cross section area of the inlet stratifiers can be decreased strongly in the lower levels 68 

of the stratifiers, if the water entering the stratifier from the bottom is warmer than the water in 69 

the lower levels of the tank. This decrease in cross section prevents cold water from being 70 

sucked into the stratifier and the incoming water flows towards the upper levels of the tank 71 

inside the stratifier without being mixed with cold water from the tank. 72 

Differently designed hot water stores and inlet stratifiers have earlier been tested in laboratory 73 

test facilities using different test methods with different test conditions. The aim was to elucidate 74 

how well thermal stratification is built up in hot water stores during typical operation.  This has 75 

been done to compare the performance of the different hot water stores and inlet stratifiers 76 

(Phillips et al. 1982, Davidson et al. 1994, Rosen et al. 2001, Shah et al. 2005, Andersen and 77 

Furbo 2006, Andersen et al. 2007, Andersen et al. 2007, Panthalookaran et al. 2007, Brown et al. 78 

2011, García-Marí et al. 2013).    79 

A perfectly working inlet stratifier operates in such a way that the incoming water is guided to 80 

the exact level in the tank where the temperature is the same as the incoming water, without any 81 

heat exchange between the water in the tank and the incoming water. 82 

In this article a comparison based on measurements between well-known designs of inlet 83 

stratifiers and a new design of inlet stratifier is presented. The performances are investigated for 84 

both charge tests with a high inlet temperature and intermediate charge tests with different inlet 85 

temperatures.  86 

  87 
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METHODOLOGY 88 

Scope of investigations 89 

Two tests have been carried out for each of the tested stratifiers; top charge and intermediate 90 

charge tests of a hot water tank.  91 

The top charge test is where the tank is heated from cold state with an inlet temperature of 50 °C 92 

through the stratifier until the whole volume has been exchanged. The intermediate test is where 93 

the tank again is heated from cold state with first an inlet temperature of 50 °C through the 94 

stratifier exchanging half of the volume in the tank. Then the inlet temperature is lowered to     95 

30 °C and the rest of the volume is exchanged through the stratifier. 96 

The tests were carried out with different volume flow rates, typically used in small low flow 97 

solar heating systems. Analysis on how well thermal stratification was established during the 98 

tests are presented.  99 

Geometry and operating conditions  100 

The tests were carried out in a transparent polymer test tank with an inner diameter of 240 mm 101 

and a height of 1500 mm, see Figure 1. The test tank consists of two cylindrical polymer 102 

cylinders separated by an air gap of 25 mm to reduce the heat loss from the tank.  103 

The temperatures of the water at different levels inside the tank were measured by 12 104 

copper/constantan thermocouples, type TT, see Figure 1. The test facility allowed the water to be 105 

circulated from the bottom of the tank through a heat source and then back into the tank through 106 

the stratifier. The volume flow rate and the temperature of the incoming water were kept 107 

constant during a test. The volume flow rate was measured by a Brunata flow meter/energy 108 

meter. The inlet temperature of the incoming water entering through the stratifier and the 109 

ambient air temperature were also measured with copper/constantan thermocouples type TT.  110 

 111 

Figure 1. Photo and schematic sketch of polymer test tank with an inlet stratifier connected to a heat storage test 112 
facility. The tank has 15 temperature sensors. 113 
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 114 

 The tank was filled with 54 l of water and the entire volume was exchanged during each test. 115 

There was air above the water inside the tank, as shown on the schematic sketch in Figure 1. 116 

The tank was heated from a uniform cold temperature of about 20 °C, and the measurements 117 

were recorded with a time step of 10 seconds.  118 

All tests started as soon as the warm water from a previous charge test had been replaced by cold 119 

water, so that the warm polymer walls only had limited time to release the heat stored in the 120 

walls. This assured that all tests were carried out starting with warm tank walls and ending with 121 

warm tank walls, and consequently assured energy balance in the tests. 122 

Heat loss from the tank  123 

It was assumed that the small volume and the double walled test tank, as well as the short 124 

durations of the tests, resulted in low heat losses. Due to the low tank heat losses and the low 125 

heat capacity of the polymer tank material, the tank design did not significantly influence the 126 

thermal stratification built up in the test tank during the tests. 127 

Applied calculations 128 

The measured data of the top charge tests are analysed by means of a so called MIX number 129 

determined during each charge test (Davidson et al. 1994, Andersen et al. 2007, Haller et al. 130 

2009).  131 

The MIX number in the top charge test was determined by a quantitative “momentum of energy” 132 

analysis method. The tank was divided into N = 12 equally sized horizontal layers, each of them 133 

having a volume Vi. The temperature in each volume was measured as described in Figure 1. The 134 

“momentum of energy” of layer i Mi is determined by:  135 

 iiiiii YTVCpM             (1) 136 

 137 

  where  i is the density of water at the temperature Ti [kg/m³] 138 

Cpi is the specific heat capacity of water at the temperature Ti [J/kg K] 139 

Vi is the water volume of layer i [m³] 140 

Ti is the temperature of the water in the layer i [K] 141 

            Yi is the vertical distance from the bottom of the tank to the middle of layer i [m] 142 

 143 

The “momentum of energy” for the tank M is: 144 

 



N

i

iMM
1

          (2) 145 

 146 

  where  N is the number of layers in the tank [-] 147 

 148 

During each top charge test the “momentum of energy” for the tank was determined based on the 149 

measured temperatures. Additional “momentum of energies” for the tank was calculated 150 

assuming a fully mixed tank Mmix and an ideally stratified tank Mstr.  151 
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 152 

The MIX number is determined by: 153 

 154 

 
mixstr

str

MM
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MIX




           (3) 155 

 156 

Mstr and Mmix are calculated during each time step of the top charge test.  157 

When Mstr is calculated, the tank is divided in two parts. The volume of the upper part is equal to 158 

the water volume which has entered the tank and the volume of the lower part is equal to the tank 159 

volume minus the upper volume. The temperature of the upper volume is equal to the volume 160 

weighted average temperature of the entering water. The temperature of the lower part is equal to 161 

the water temperature of the tank at the start of the test.  162 

The calculation of the fully mixed tank, Mmix, is carried out by determining the water volume 163 

entering the tank during the time step in question. The mixed temperature by the end of the time 164 

step is then determined based on the weighted energy of the water entering the tank and the 165 

energy of the water remaining in the tank.  166 

As suggested by (Haller et al. 2009) the stratification efficiency is defined as: 167 

 168 

Stratification efficiency )1(100 MIX         (4) 169 

 170 

For a perfectly stratified tank the stratification efficiency is 100%, while the stratification 171 

efficiency is 0% for a fully mixed tank. The stratification efficiency is always between 0% and 172 

100%. 173 

It should be mentioned that the above defined method is different from the methods used or 174 

described by (Davidson et al. 1994, Andersen et al. 2007, Haller et al. 2009). This method 175 

disregards both the influence of the tank heat loss and the heat capacity of all other parts of the 176 

test tank than the water. This is reasonable due to the relatively low heat loss of the test tank, the 177 

short test periods and the low specific heat capacity of the polymer tank. Theoretical 178 

investigations indicated that the stratification efficiency was only affected up to 2% if the heat 179 

loss was considered.  180 

It is only possible to use the described method for top charge teste and not the intermediate 181 

charge test, because the method relies on the momentum of energy. In the intermediate charge 182 

test the volume exchanged with 50 °C water will overshadow the results of the inlet of the 30 °C 183 

and therefore not indicate whether or not the tested stratifiers are able to deliver the water at the 184 

right level of the tank. 185 

Therefore the energy content in each layer of the test tank is calculated for each time step during 186 

the intermediate charge test, showing if energy was lost or gained in the laying question. The 187 

ideal stratification during intermediate charge test is where the energy content in the top layers is 188 

unfazed by the incoming 30 °C water, and the energy content is increased in the lower layers.  189 

  190 
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Stratifiers tested 191 

Tree different inlet stratifiers have been tested: Two SOLVIS stratifiers and one stratifier from 192 

Eyecular Technologies. Also a PEX pipe was tested. The PEX pipe was a simple rigid pipe with 193 

an inner and outer diameter of 16 mm and 20 mm respectively and an opening in the top, see 194 

Figure 2-A. The SOLVIS stratification inlet pipe was a rigid polymer pipe with three openings 195 

with “non-return” valves for each 30 cm height. One SOLVIS pipe had an opening in the top, see 196 

Figure 2-B, the other had a T-piece at the top, see Figure 2-C. The SOLVIS stratification inlet 197 

pipes are from Solvis GmbH & Co KG (Krause and Kühl 2001).  198 

The stratifier from EyeCular Technologies was a flexible inlet stratifier with openings in many 199 

levels along the length of the stratifier, see Figure 2-D. 200 

 201 

Figure 2.  Tested inlet stratifiers. From left to right: PEX pipe, Solvis without T-pipe, Solvis with T-pipe and 202 
EyeCular Technologies stratifier. 203 

The distance between the surface of the water and the top of the upper outlets/openings of the 204 

four inlet stratifiers was 6 cm. This means that the water during charge tests could enter the tank 205 

from the stratifiers at the same level, through the top of in the PEX pipe, through the top and the 206 

T-pipe of the SOLVIS pipes and through the top of the EyeCular Technologies stratifier. In this 207 

way a fair comparison between the inlet stratifiers was possible.  208 

RESULTS 209 

Top charge test 210 

Figure 3, Figure 4 and Figure 5 show the results from the tests with the four tested inlet 211 

stratifiers. The measurements are shown with dimensionless temperatures on the x-axis and the 212 

height of the tank on the y-axis during the charge test. The results are shown after 15 l, 30 l and 213 

45 l of water is replaced.  214 

 
starttank,inlet

starttank,

TT

TT
etemperaturessDimensionl




         (5) 215 
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 216 

  where  T is the temperature in the layer in question [°C] 217 

 Ttank,start is the start temperature in tank [°C] 218 

 Tinlet is the inlet temperature [°C] 219 

 220 

The dimensionless temperature is used in order to eliminate the differences of the start 221 

temperatures and the inlet temperature for the different tests. 222 

The volume flow rates during the tests were 1 l/min, 2 l/min and 4 l/min. 223 

 224 

 225 

Figure 3.  Dimensionless temperature profiles during charge tests for the four inlet stratifiers with a volume flow 226 
rate of 1 l/min. 227 

 228 

 229 

 230 
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 231 

Figure 4.  Dimensionless temperature profiles during charge tests for the four inlet stratifiers with a volume flow 232 
rate of 2 l/min. 233 

 234 

Figure 5.  Dimensionless temperature profiles during charge tests for the four inlet stratifiers with a volume flow 235 
rate of 4 l/min. 236 

 237 
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From the figures it can be observed that thermal stratification in the tank was built up in a good 238 

way for all the tested inlet stratifiers at all the tested flow rates.  239 

The thermal stratification was established best by the PEX pipe, since it achieved the highest 240 

temperature at the top of the tank while little increase in temperature was achieved in the lower 241 

levels in the tank after 15 l, 30 l and 45 l. The SOLVIS stratifiers both delivered high 242 

temperatures at the top of the tank but also an increase in temperature in the lower part of the 243 

tank which is best seen after 30 l has been exchanged with a volume flowrate of 1 l/min, see 244 

Figure 3. The stratifier from Eyecular also delivered a higher temperature at the top of the tank 245 

than the SOLVIS stratifiers, but again an increase in temperature is seen in the lower part of the 246 

tank, again best seen after 30 l at 1 l/min, see Figure 3.  247 

Figure 6 shows the stratification efficiencies for the 12 tests. The stratification efficiencies after a 248 

full replacement of the water volume in the 54 l tank ranged from 68% to 92% with the highest 249 

efficiencies for the PEX pipe with 92 % at 2 l/min. The thermal stratification for the SOLVIS 250 

stratifiers was delayed because of the relatively large water content in the stratifier (about 3 l), 251 

which is seen for all flowrates on Figure 6. 252 

The stratification efficiencies are higher for 4 l/min than for 2 l/min and 1 l/min. 253 

 254 

Figure 6.  Stratification efficiencies during charge tests for four different inlet stratifiers with a volume flow rate of 255 
1 l/min, 2 l/min and 4 l/min. 256 

 257 

The stratification efficiencies of the SOLVIS stratifiers and the EyeCular stratifier were similar, 258 

see Table 1. The PEX pipe has as expected the best stratification efficiency at 1 l/min and 2 259 

l/min. At 4 l/min the SOLVIS stratifier has a slightly higher efficiency than the PEX pipe. 260 
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The SOLVIS stratifiers and the Eyecular stratifier both performed well at the tested flow rates. 261 

At 1 l/min and 2 l/min the best result is achieved with the stratifier from EyeCular, see Table 1. 262 

At 4 l/min the best result is with the SOLVIS stratifier without the T-pipe. Of the two SOLVIS 263 

stratifiers the one without the T-pipe performs the best compared with the one with the T-pipe, 264 

see Table 1. 265 

Table 1 Stratification efficiency after a full replacement of the water volume at flow rate 1 l/min, 2 l/min and 4 l/min. 266 

 
Flowrate 

1 l/min 2 l/min 4 l/min 

Pex - reference 85 % 92 % 88 % 

Solvis with T-pipe 68 % 80 % 88 % 

Solvis without T-pipe 70 % 82 % 89 % 

EyeCular 72 % 83 % 87 % 

 267 

Intermediate charge test 268 

The intermediate charge test is where the test tank is first heated with 50 °C water until half of 269 

the volume is exchanged, then the inlet temperature is lowered to 30 °C and the rest of the 270 

volume is exchanged, see Figure 7 where the temperature profiles are shown for the flow rate of 271 

1 l/min. The results show that all three stratifiers are working well and that the Pex-pipe is not 272 

suitable as a stratifier. This is seen be the decrease in temperature in the top layers of the test 273 

tank when the inlet temperature is lowered to 30 °C. 274 

The temperature profiles for the flow rates of 2 l/min and 4 l/min show the same tendency. 275 

 276 

The results are shown on Figure 8, Figure 9 and Figure 10 for the flow rates 1 l/min, 2 l/min and 277 

4 l/min with the four stratifiers. The figures give the power transferred to each of the 12 layers in 278 

the test tank during the intermediate charge test. Layer 0 represent the bottom of the tank and 279 

layer 11 the very top layer. The inlet temperature is given on alternate y-axes. 280 

 281 

  282 
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Figure 7.  Temperature measurements from intermediate charge of the four devices at a flow rate of 1 l/min. 

 283 

  284 
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Figure 8. Power transferred to each layer for the intermediate charge for the four inlet devices at a flow rate of 1 

l/min. 
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The results with the flow rate of 1 l/min, see Figure 8, show that the pex-pipe performs poorly as 285 

expected. This is seen by the negative heat transfer for the upper layers of the tank when the inlet 286 

temperature is lowered to 30 °C, explained by the fact that the pex-pipe only has one opening at 287 

the top leading the colder water to the top of the test tank. The colder water mixes with the 50 °C 288 

water lowering the tank temperature at the top. 289 

The results with the 3 stratifiers show that when the inlet temperature is lowered to 30 °C there 290 

are larger negative heat transfers in the upper layers for the SOLVIS stratifiers compared with 291 

the EyeCular stratifier. This indicates that a part of the 30 °C water has entered higher in the tank 292 

than what would have been ideal. This is explained by the fixed and limited openings in the 293 

SOLVIS pipes, not ensuring the incoming water to enter the tank at the right level. However, the 294 

durations of the periods with the XXX negative heat transfer are short. 295 

Table 2 Lost and gained energy in each layer from the period of the intermediate charge test with inlet temperature 296 
of 30°C and flow rate of 1 l/min. 297 

Layer number Pex-pipe 

kJ 

Solvis with T-pipe 

kJ 

Solvis without T-pipe 

kJ 

EyeCular 

kJ 

Layer 11 -232 -21 -18 -26 

Layer 10 -235 -17 -15 -18 

Layer 9 -225 -9 -13 -10 

Layer 8 -212 -12 -11 -9 

Layer 7 -183 6 -7 -7 

Layer 6 -22 11 1 -5 

Layer 5 252 34 64 93 

Layer 4 276 184 129 146 

Layer 3 291 198 180 163 

Layer 2 306 209 194 177 

Layer 1 320 219 206 192 

Layer 0 325 223 214 201 

 298 

In Table 2 the total lost and gained energy for the period when the inlet temperature is 30 °C is 299 

given for each layer in the tank. Here it can be seen that the overall lost energies from the upper 300 

layers for both SOLVIS stratifiers are slightly lower than that for the stratifier from EyeCular, 301 

indicating the temperatures in the top of the tank with the EyeCular stratifier is slightly more 302 

affected with the inlet temperature lowered to 30°C. 303 

The results from the Pex-pipe show that the Pex-pipe is not suitable as a stratification device, and 304 

is here included as a reference to show how mixing will influence the intermediate charge test 305 

results. 306 

The results with a flow rate of 2 l/min seen on Figure 9 are similar to the result with 1 l/min. 307 

Again larger peaks of lost energy are seen for the SOLVIS stratifiers and not for the stratifier 308 

from EyeCular. 309 
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Figure 9.  Power transferred to each layer for the intermediate charge for the four inlet devices at a flow rate of 2 

l/min. 
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The total lost and gained energy for 2 l/min are seen in Table 3. For both SOLVIS stratifiers it 310 

can be seen that there is lost energy from layer 6 and gained energy in layer 7 above layer 6. This 311 

indicates that level where the 30 °C water enters the tank is not the right level according to the 312 

temperature, again explained by the limited inlets to the tank through the SOLVIS stratifiers.  313 

The total lost energy in the upper layers for the stratifier from EyeCular is here lower than the 314 

total lost energy in the upper layers for the SOLVIS stratifiers. For 1 l/min it was the other way 315 

around. 316 

Table 3 Lost and gained energy in each layer from the period of the intermediate charge test with inlet temperature 317 
of 30°C and flow rate of 2 l/min. 318 

Layer number Pex-pipe 

kJ 

Solvis with T-pipe 

kJ 

Solvis without T-pipe 

kJ 

EyeCular 

kJ 

Layer 11 -183 -14 -14 -16 

Layer 10 -185 -13 -11 -14 

Layer 9 -182 -8 -14 -6 

Layer 8 -169 -10 -5 -6 

Layer 7 -138 10 3 -8 

Layer 6 74 -50 -56 -4 

Layer 5 321 123 160 124 

Layer 4 354 226 231 175 

Layer 3 376 230 236 198 

Layer 2 393 232 239 215 

Layer 1 402 235 243 232 

Layer 0 285 222 232 235 

 319 

The results from the Pex-pipe again show it is not suitable as a stratification device. 320 

 321 

On Figure 10 the result are shown for flow rates of 4 l/min. The same tendencies are seen here as 322 

for 2 l/min. The energies lost from the upper layers for the SOLVIS stratifiers are increased 323 

which can be seen on the figures by the increase in negative values when the inlet temperature is 324 

changed to 30 °C. 325 

For 4 l/min it can be seen that more energy is lost from the upper layers through the stratifier 326 

from EyeCular than for the lower flow rates.  327 

 328 

 329 

 330 

 331 
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Figure 10.  Power transferred to each layer for the  intermediate charge for the four inlet devices at a flow rate of 

4 l/min. 
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In Table 4 the total energies lost and gained for each layer during the period with an inlet 332 

temperature of 30 °C are shown. Again it can be seen that the stratifier from EyeCular performs 333 

better than the both stratifiers from SOLVIS. 334 

 Table 4 Lost and gained energy in each layer from the period of the intermediate charge test with inlet temperature 335 
of 30°C and flow rate of 4 l/min. 336 

Layer number Pex-pipe 

kJ 

Solvis with T-pipe 

kJ 

Solvis without T-pipe 

kJ 

EyeCular 

kJ 

Layer 11 -147 -11 -4 -12 

Layer 10 -145 -21 -5 -11 

Layer 9 -145 -30 -3 .5 

Layer 8 -143 -22 -5 .4 

Layer 7 -124 -16 -9 -6 

Layer 6 -43 -33 -66 -30 

Layer 5 196 82 103 105 

Layer 4 361 251 239 166 

Layer 3 388 244 222 186 

Layer 2 398 239 186 202 

Layer 1 396 234 66 219 

Layer 0 203 230 15 221 

 337 

Over all the intermediate charge tests show that for flow rates between 2 l/min and 4 l/min the 338 

Eyecular stratifier performs better than both SOLVIS stratifiers, since the temperatures of the 339 

upper layers are influenced less for the EyeCular stratifier than for the SOLVIS stratifiers. At a 340 

flow rate of 1 l/min both stratifiers from SOLVIS performs slightly better than the stratifier from 341 

EyeCular. 342 

 343 

DISCUSSION 344 

The small, high and slim polymer tank design combined with the applied method of analysis 345 

reduced the influence of the test tank design on the test results. 346 

The experimental investigations elucidated the suitability of differently designed inlet stratifiers 347 

during the tests in a clear way. The tests can therefore be useful in connection with development 348 

of inlet stratifiers.  349 

However, it must be mentioned that it is assumed that the method used to determine the 350 

stratification efficiency somewhat underestimates the stratification efficiency. The reason is that 351 

a hot water volume is always available inside the inlet stratifier during the charge test and that 352 

the heat content of this water volume first will be released to the tank after the end of the charge 353 

period. It is therefore assumed that for increasing water content of the stratifier, the 354 

underestimation of the stratification efficiency increases. The method therefore may have 355 

resulted in a slightly too low stratification efficiencies especially for the SOLVIS stratifiers, 356 

which had relatively high water volumes of about 3 l. 357 

  358 
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CONCLUSIONS 359 

Laboratory tests in a test tank with different inlet stratifiers were carried out with the aim to 360 

elucidate how well thermal stratification was established under controlled laboratory conditions. 361 

A modified analysis method was used to determine stratification efficiencies for the inlet 362 

stratifiers. 363 

The test tank and the test method form a good basis for development of inlet stratifiers and for a 364 

comparison of different inlet stratifiers. 365 

All the tested stratifiers performed well in the top charge tests. The stratifier from Eyecular 366 

performed better that the SOLVIS stratifiers at 1 l/min and 2 l/min. At 4 l/min both SOLVIS 367 

stratifiers performed better that the EyeCular stratifier. 368 

For the intermediate charge test the limited number of inlets to the tank through the SOLVIS 369 

stratifiers affect the energy content in the upper layers negatively by decreasing the energy 370 

content when the inlet temperature in changed to 30 °C.  371 

For intermediate charge tests, the EyeCular stratifier had a better performance compared to the 372 

SOLVIS stratifiers for flow rates between 2 l/min and 4 l/min. 373 

The stratifier from EyeCular had slightly higher heat losses along the length of the stratifier 374 

compared to the two SOLVIS stratifiers. The heat loss is reduced with increasing flow rates and 375 

had little impact on the overall performance. 376 

  377 
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