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Abstract 

Indoor releases of organic chemicals encapsulated in solid materials are major contributors to 

human exposures and are directly related to the internal diffusion coefficient in solid materials. 

Existing correlations to estimate the diffusion coefficient are only valid for a limited number of 

chemical-material combinations. This paper develops and evaluates a quantitative property-

property relationship (QPPR) to predict diffusion coefficients for a wide range of organic 
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chemicals and materials. We first compiled a training dataset of 1103 measured diffusion 

coefficients for 158 chemicals in 32 consolidated material types. Following a detailed analysis of 

the temperature influence, we developed a multiple linear regression model to predict diffusion 

coefficients as a function of chemical molecular weight (MW), temperature, and material type 

(adjusted R
2
 of 0.93). The internal validations showed the model to be robust, stable and not a 

result of chance correlation. The external validation against two separate prediction datasets 

demonstrated the model has good predicting ability within its applicability domain (R
2

ext > 0.8), 

namely MW between 30 and 1178 g/mol and temperature between 4 and 180 °C. By covering a 

much wider range of organic chemicals and materials, this QPPR facilitates high-throughput 

estimates of human exposures for chemicals encapsulated in solid materials. 

Keywords 

Diffusion, Solid materials, Consumer products, Indoor release, Organic chemicals, Correlation 

Practical implications 

The quantitative property-property relationship developed by the present study provides a more 

comprehensive correlation method to estimate the diffusion coefficients, as it covers a wide 

range of organic chemicals and solid materials, and also considers the effect of temperature. This 

model provides the basis for facilitating high-throughput estimates of indoor human exposures 

for chemicals encapsulated in solid materials relevant for several science-policy fields, such as 

chemical alternatives assessment (CAA), risk assessment (RA) and life cycle assessment (LCA). 

 

1. Introduction 

Chemicals encapsulated in solid materials have been identified as a major source of passive 

emissions to indoor air 
1-3

 and of transfers into food 
4
 and onto skin 

5
. Typical examples include 
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chemicals used as flame retardants in furniture and plasticizers in food contact materials. To 

estimate the release of these chemicals from solid materials, and eventually consumer exposures, 

the diffusion coefficient, D (m
2
/s), for chemicals encapsulated in solid materials, is essential 

information. D describes the transport of a molecule through a material, which is specific for a 

chemical-material combination and is also influenced by ambient temperature. Experimental 

techniques such as chamber tests for building materials 
6, 7

, and sorption/desorption experiments 

for polymer materials 
8-10

 have enabled measurement of a limited number of chemical diffusion 

coefficients  for building materials such as vinyl flooring, gypsum board, particle board, plywood, 

carpet and cement 
11-14

, as well as polymer materials including polyethylene (PE), polystyrene 

(PS), polypropylene (PP), and polyvinyl chloride (PVC) 
4, 15, 16

. However, given the limited 

number of chemical-material combinations with measured Ds, and the costly and time-

consuming nature of experiments, quantitative relationships are needed to complement existing 

measurements by predicting the diffusion coefficients from known physiochemical properties for 

chemicals without experimental data. This is especially important for high-throughput 

approaches where a large number of chemical-material combinations need to be evaluated and 

for which it is unrealistic to perform experiments on all relevant combinations. 

Several correlation methods have been developed to estimate the diffusion coefficients from 

physicochemical properties of chemicals 
8, 12, 17-19

. For example, Berens and Hopfenberg 

correlated the D to the mean molecular diameter of the diffusing molecule, using data on more 

than 20 chemicals in 3 glassy materials including PVC, PS and polymethyl methacrylate 

(PMMA) 
8
. Zhao et al. found a correlation between D and vapor pressure for water and 8 

aromatic hydrocarbons in polyurethane foam (PUF) 
19

. Furthermore, both Bodalal et al. and Cox 

et al. estimated the D as a function of molecular weight 
12, 18

. The former study considered 
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measured D data on 5 aromatics and 5 aldehydes in several building materials 
12

, while the latter 

study considered data on 4 alkanes in vinyl flooring 
18

. For each of these aforementioned 

approaches, the main limitation is that the correlations are specific to certain chemical classes  

and materials; for example aldehydes in plywood, which limits their application for other 

materials and chemical classes. Addressing this research gap to facilitate wider applicability, 

Guo developed a method which estimates the diffusion coefficient as a function of the 

chemical’s molar volume for mixed chemical classes 
17

. However, this approach is limited to 6 

building materials and are developed based on a small dataset of limited chemical classes (≤ 3 

chemical classes for 5 of the 6 building materials).  

The aforementioned correlation methods consider experiments for building materials at room 

temperature, and therefore temperature is not relevant and thus not considered in the correlation 

model. For other exposure scenarios, such as transfer of chemicals from food contact materials 

(FCMs) into food, ambient temperature is highly relevant because FCMs can be heated, 

refrigerated, or frozen. Accordingly, Begley et al. presented a correlation method to estimate the 

diffusion coefficient in 9 polymer materials as a function of molecular weight and temperature 
4
, 

which is not applicable beyond the considered polymers.  

In all, the currently available correlation methods to estimate D do not provide sufficient 

coverage of chemicals encapsulated in consumer products in different use scenarios (i.e. ambient 

temperatures). Developing low-tier, high-throughput methods to estimate exposure to chemical 

in consumer products across a variety of chemical-material combinations is a recent focus in 

various science-policy fields such as computational exposure science and life cycle assessment 

(LCA) 
20-25

. Addressing the lack of methods to estimate D for a variety of chemical-product 

scenarios, the present study aims to develop a more comprehensive correlation method to 
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estimate D for wide range of organic compounds in multiple solid materials. More specifically, 

we aim to: 

1) Carry out a comprehensive and extensive literature review to collect experimental diffusion 

coefficient data on a wide range of materials and chemicals. 

2) Use multiple linear regression techniques to establish the relationship between the diffusion 

coefficient and various predictor variables including physiochemical properties, material 

properties and environmental characteristics.  

3) Perform internal and external validations to characterize the validity and predictive power of 

the developed correlation.  

Since the material type is a categorical property variable and is not related to the chemical’s 

molecular structure, we call this correlation a quantitative property-property relationship (QPPR) 

instead of a quantitative structure-activity relationship (QSAR). This QPPR provides a more 

advanced correlation method to estimate the diffusion coefficients of organic compounds 

compared to previous studies, as it covers a wide range of solid materials and physiochemical 

properties, and also considers the effect of temperature. By providing reliable estimates of this 

key diffusion parameter for a large number of chemicals, this method will facilitate high-

throughput assessments of chemical emissions and human exposures for chemicals encapsulated 

in solid materials relevant for chemical alternatives assessment (CAA), risk assessment and LCA. 

2. Materials and methods 

2.1 Dataset 

Experimental diffusion coefficient data were compiled from 68 references from the peer-

reviewed scientific literature. The initial dataset contained a total of 1124 records covering 161 

unique chemicals and 88 distinct solid materials (provided in Supporting Info). Experimental 
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data expressed in cm
2
/s were converted to m

2
/s. There are different types of diffusion 

coefficients reported in the literature, so harmonization of these data was performed to develop a 

consistent dataset. For diffusion coefficients measured in liquid sorption experiments,  the 

‘intrinsic’diffusion coefficients, corrected for the swelling of materials were collected 
10

. 

Sorption of the liquid molecules inside the solid material may cause swelling of the material, 

which would lead to decreased observed diffusion coefficients and thus need to be corrected 
10

. 

For porous materials consisting of pore space and solid material, two types of models can be 

used to describe the chemical transport through these materials. The one-phase model considers 

the porous material as an assumed homogeneously mixed material, so an ‘apparent’ diffusion 

coefficient is used to describe the chemical diffusion through such imaginary material 
7
. In 

contrast, the multi-phase model considers the material as a mixture of pores and solid parts, and 

the chemical diffuses mainly through the pores if the pores are interconnected, or through the 

pores and solid parts alternately if the pores are isolated from each other. The gas-phase diffusion 

through the pores, which can be described by an ‘effective’ diffusion coefficient, is assumed to 

be much faster than the diffusion through the solid parts 
7
. Haghighat et al., 

7
 has demonstrated 

that the ‘apparent’ diffusion coefficient is equivalent to the ‘effective’ diffusion coefficient (De) 

divided by the material phase-gas phase partition coefficient (Kma). Thus, for porous materials 

the ‘apparent’ diffusion coefficients reported in studies were collected 
26

. For studies where only 

the De and Kma were reported 
27-29

, they were converted to ‘apparent’ diffusion coefficients using 

the aforementioned method. Data were excluded for studies where only the ‘effective’ diffusion 

coefficients were reported. 

From the initial dataset, 21 records were excluded from further analyses because they involve 

chemicals that are inorganic, chemicals for which no CAS number could be identified, or 
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chemicals that are polymer chains with varying molecular weights. The final considered dataset 

thus includes 1103 records for 158 unique chemicals and 87 materials.   

2.2 Modeling methods 

2.2.1 Multiple linear regression 

A multiple linear regression (MLR) analysis was performed to identify and quantify the effect of 

different parameters on the diffusion coefficient. The MLR model takes the following general 

form:  

                                                               (1) 

where log10D is the logarithm of the diffusion coefficient (m
2
/s), α is the intercept; X1 to Xn are 

independent variables related to physiochemical properties, such as molecular weight, molar 

volume, and vapor pressure, and/or environmental characteristics like temperature; β1 to βn are 

regression coefficients for the respective independent variables X1 to Xn; and M1 to Mm are 

dummy variables for the solid materials, with one dummy variable per type of material. A 

dummy variable equals 1 for the material type it represents, and equals 0 for all other materials; 

for example, M1 = 1 for material type = 1, M1 = 0 for material types 2 to m. b1 to bm are 

regression coefficients for the respective dummy variables M1 to Mm. The number of m is equal 

to the number of material types considered minus 1, since the material type with the highest 

number of measured D data is used as the reference material type and does not require a dummy 

available in the MLR. Note that the MLR model gives one coefficient for each material type, 

while a material type can represent a single pure substance such as calcium silicate, a composite 

material such as vinyl flooring and gypsum board, or a group of similar materials such as 

wooden boards. Details of the material types will be discussed later. This regression equation 

also implies that the material coefficients (b1 to bm) and the physiochemical property coefficients 
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(β1 to βn) are independent of each other, which if corroborated by internal and external 

validations (Section 2.3), allow for the maximum prediction coverage in terms of chemical-

material combinations. All regression coefficients were estimated by the least squares (LS) 

method. All regression analyses were performed using IBM SPSS Statistics version 23 (IBM 

corporation, Armonk, New York).  

2.2.2 Grouping of materials and initial regressions 

To reduce the number of dummy variables, to avoid over-fitting of the MLR model, and to have 

a minimum of 10 records and 3 different chemicals per material type to ensure enough variability, 

the 87 original materials were grouped into 32 consolidated material types, based on the 

similarity of the regression coefficients and the material types (see Supporting Information (SI), 

Section S1). Thus m = 31 in Eq. 1, with PET as the 32
nd

 and reference material, since it is the 

material with most reported diffusion coefficients. 

In previous studies, either the chemical’s molecular weight (MW), molar volume (MV) or vapor 

pressure (VP) has been used as predictor of the diffusion coefficient in a given material 
12, 17-19

. 

Begley et al. 
4
 also suggested that the logarithm of the diffusion coefficient varies linearly with 

the inverse of the absolute temperature (1/T). Thus, the initial regression was performed to 

identify which of the above variables (MW, MV, VP and 1/T) are best predictors of the diffusion 

coefficients of compounds encapsulated in the 32 material types, i.e., to identify X1 to Xn in Eq. 

(1). Details of the initial regression process are presented in SI, Section S2. Results of the initial 

regression model suggest that the log-molecular weight and the inverse of the absolute 

temperature are the most important predictors, and therefore the employed MLR model takes the 

following form: 

                               
 

 
                               (2) 
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where MW is the chemical’s molecular weight (g/mol) and T is the absolute temperature (K). 

The model performance of using log-molecular weight and molecular weight as predictors were 

very close when using the training dataset (1103 records, m=31), but the model using log-

molecular weight as predictor was finally selected since it performs better for high-molecular-

weight chemicals (Section 3.3.3).   

2.2.3 Temperature dependence 

Studies have shown that the activation energy of diffusion is a contributor to the temperature 

dependence of the diffusion coefficient and varies as function of both the material and the 

chemical properties 
4, 30, 31

. Thus, ideally a specific temperature correction coefficient should be 

used for each chemical-material combination. Since data availability is not sufficient to 

determine chemical-specific temperature coefficients for each of the 32 materials, and since 

chemical properties seem to have limited influence on the activation energy 
4, 30

, we followed the 

strategy of Begley et al. 
4
, differentiating temperature coefficients for a limited number of 

material groups, applying one generic temperature coefficient for all chemicals within each 

material group. Begley et al. 
4
 have introduced a variable τ to adjust the temperature coefficient 

for two groups of materials, where τ equals 0 or 1577 for 9 different polymers, which 

corresponds to activation energy of 86.9 kJ/mol for e.g. LDPE or 100 kJ/mol for e.g. HDPE. To 

analyze the temperature dependency of the diffusion coefficients in our dataset, we first plotted 

log10D against 1/T for each of the 32 material types (SI Section S3). The plots generally show as 

expected 
4
 an inverse relationship in which log10D is decreasing with increasing 1/T, different 

materials exhibiting different slopes. Since variability in diffusion coefficient is higher between 

than within given studies, we first determined a temperature coefficient for each chemical-

material-study combination, and then calculated an average temperature coefficient for each 
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material type by averaging all temperature coefficients belonging to the same material type. The 

analysis of the material-specific temperature coefficients showed that the materials can be 

grouped into three categories: (1) high-, (2) medium- and (3) low-coefficient categories, with 

three corresponding values for the temperature coefficient adjustment factor τ, which are given in 

Section 3.1. Details are presented in SI Section S3.3. The adjusted MLR model takes the 

following form accordingly: 

                        
      

 
              ,      (3) 

 

2.2.4 Final regression 

To avoid multicollinearity problems in the MLR model and to avoid the influence of the material 

type “Limited-data material group” on the temperature coefficients, we fixed the temperature 

coefficients determined using Eq. 3 and thus the final regression takes the following form: 

       
      

 
                               ,                 (4) 

where the dependent variable is log10D – (β1/T+τ)/T instead of log10D, with the values of β1/T and 

τ obtained from Eq. 3 and presented later in Section 3.1. In this final regression, all 1103 records 

of measured D data were utilized including the material type “Limited-data material group”, 

leading to m=31 material types, plus one reference material type, PET, with       . 

2.3 Model validation 

Validation of the final MLR model (Eq. 4) was performed using the QSARINS software, version 

2.2.1 (www.qsar.it) which is developed by Gramatica et al. 
32, 33

.  

2.3.1 Internal validation 

The MLR model’s capacity to predict portions of the training dataset was evaluated in an internal 

validation process, using two techniques for internal validation in QSARINS. The first one is the 

http://www.qsar.it/
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leave more out (LMO) cross-validation technique, which iteratively and randomly exclude a 

certain percentage of the measured diffusion coefficient data, and then computes the regression 

coefficients with the remaining data and uses those coefficients to make predictions for the 

excluded ones 
33

. We used 1000 iterations and the percentage of the excluded elements was set 

as 20%.  

The second technique for internal validation is the Y-scrambling procedure, which demonstrates 

that the model is not the result of chance correlation. In this procedure, the experimental 

responses (in our study, the temperature-adjusted diffusion coefficients) are shuffled at random 

and used with the original predictors to establish an MLR model. If the original MLR model is 

internally valid, the performances of the scrambled models should be much worse than the 

original model
33

. We used 1000 iterations for the Y-scrambling.  

2.3.2 External validation 

We also evaluated the model ability to provide reliable predictions on new datasets in a so-called 

external validation process, using the following two approaches. 

The first approach was to split the existing dataset (1103 records) into one training dataset and 

one prediction datasets. The training dataset was used to generate regression coefficients of the 

MLR model, and then the MLR model was applied to the prediction set to examine the 

prediction performances of the model. Three kinds of splitting were performed using existing 

options in the QSARINS software (see SI, Section S5.1 for details) by random percentage (20% 

of the entire dataset randomly selected as the prediction set, 80% rest to the training set), by 

response and by structure (data first ordered by responses of the temperature-adjusted diffusion 

coefficient, or by the first axis of principal component analysis (PCA) of the descriptors, 

respectively). We introduced a fourth kind of splitting by studies, since variability across studies 
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for a given material is in general larger than variability within a given study, yielding similar 

sample sizes of approximately 880 data for the training set and 220 data for the prediction set (SI, 

Table S3).  

The second approach of external validation was to use the entire collected dataset (1103 records) 

as the training set and to use an entirely separate dataset as the prediction set. For the prediction 

set, two datasets were used. The first one is a database of diffusion coefficients from the United 

States Food and Drug Administration (FDA), which is a “database available upon request" for 

guidance for industry (http://www.fda.gov/Food/ucm081818.htm), and includes non-peer 

reviewed diffusion coefficient data reported by industry. This dataset includes 191 records of 

experimental diffusion coefficients of 46 chemicals in 22 materials which are mainly polymers 

used for food contact materials (see SI, Section S5.1 for details). The quality and reliability of 

these data are not characterized by FDA. The second prediction dataset is constructed  from 

several studies conducted before 1982 
34-36

, referenced in
37

. This dataset, designated as “Data by 

1982”, includes 281 records of measured diffusion coefficients of 92 chemicals in 8 polymer 

materials, also including self-diffusion (see SI, Section S5.1 for details). Data for both prediction 

sets are provided in Supporting Info. 

2.3.3 Applicability domain (AD) 

The analysis and definition of the applicability domain (AD) of models is a fundamental issue 

that must be addressed in QSAR and QPPR studies. The study of AD can provide information on 

the reliability of the model predictions, i.e., if the chemicals are inside the AD, the predictions 

are interpolated and are more reliable; if the chemicals are outside the AD, the predictions are 

extrapolated and less reliable, because effects can occur outside the AD that do not exist within 

the AD 
38

. Three complementary methods were applied to define the AD of the diffusion 

http://www.fda.gov/Food/ucm081818.htm
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coefficient QPPR: the range of model predictors, the leverage approach, and the PCA of the 

model predictors 
39

. More explanation of these methods is provided in SI, Section S4. In our 

analysis, chemicals are considered inside the AD if they are viewed inside AD by all three 

methods, whereas chemicals are considered outside AD if they are viewed outside AD by all 

three methods, and finally chemicals that fall inside the AD for only one or two methods are 

considered as ‘borderline.’  

 

3. Results and discussion 

3.1 Temperature dependence of the diffusion coefficient 

The compiled dataset of 1103 records including 158 chemicals and 32 material types shows that 

the diffusion coefficient in solid materials decreases with decreasing temperature, as 

demonstrated by the highly significant negative regression coefficient for the variable 1/T, with  

               with a standard error (SE) of 164 (K) and p < 0.001 in Eq. 2 (SI, Section 

S3.1). This is in agreement with previous studies 
4, 30, 31

. This general tendency of decreasing 

diffusion with increasing 1/T is well illustrated by the example of PET, the material with the 

most data available (Figure 1A – see SI, Figure S1 for other materials). To further refine the 

coefficient for the temperature variable into specific materials groups, Figure 1B illustrates well 

for methyl methacrylate (MMA) homopolymer the importance of first determining a temperature 

coefficient for each separate study and material-chemical combination (Section 2.2.3) and then 

averaging the temperature coefficients across studies.  The molecular weight-normalized 

diffusion coefficients show a negative linear relationship with 1/T within each of the three 

experimental studies of Figure 1B
40-42

, with similar regression coefficients of -4530 (K), -5704 

(K), -3415 (K), averaging  -4550 (K) with an SE of 305 (K) . However, since the absolute 
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log10MW-normalized diffusion coefficients reported by Hennebert et al. 
42

 are much higher than 

those reported by the other two studies, doing one  regression with all data from the three studies 

would result in a non-significant temperature coefficient (p-value of 0.19), thus demonstrating 

the importance to first perform temperature regressions using data from the same study and for 

the same chemical.  

Table 1 presents the average temperature coefficients and their standard errors for each of the 32 

consolidated material types. Based on the values of the temperature coefficients (unit in K), the 

32 material types can be grouped into three categories: (1) high-coefficient category with 

relatively high (absolute value) temperature coefficients (< -5000), i.e., materials in which 

diffusion coefficients are highly sensitive to the change in temperature, (2) medium-coefficient 

category with temperature coefficients in between (-5000 <          < -3000), and (3) low-

coefficient category with relatively low (absolute value) temperature coefficients (> -3000), i.e., 

materials in which diffusion coefficients are least sensitive to the change in temperature. Details 

for the grouping of temperature coefficients can be found in SI, Section S3.3.   

The temperature coefficients β1/T and τ used in Eq. 4 for each of the three temperature-

dependency material categories are obtained from the regression using the MLR model of Eq. 

S3-2 (SI, Section S3.3), yielding values of                    and             

                                           . Thus, for the High-, Medium- and 

Low-coefficient categories, the final temperature coefficients (β1/T + τ) are -5877 (K), -3486 (K), 

and -1810 (K), corresponding to activation energy of 113, 66.7 and 34.7 (kJ/mol), respectively. 

Begley et al. 
4
 also aggregated 9 types of polymer materials into two temperature categories, with 

activation energy of 100 and 86.9 (kJ/mol), which have similar values with the high- and 

medium-coefficient categories in the present paper, to which these 9 polymer materials are 
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assigned. These results indicate that the categorization of the temperature coefficient in the 

present paper is consistent with previous studies, while extending the QPPR to a wider range of 

materials. 

3.2 Final QPPR and model fitting 

Using the full dataset (1103 records) and Eq. 4, the final MLR model for predicting the diffusion 

coefficient in solid materials is as follows: 

       
      

 
                                                           (5) 

N = 1103, R
2
 = 0.932, R

2
adj = 0.930, SE = 1.17, RMSE = 1.15 

ANOVA: F = 457, df = 32, p < 0.0001 

where D is the diffusion coefficient (m
2
/s), MW is molecular weight (g/mol), T is absolute 

temperature (K), b and τ (K) are the material-specific coefficients presented in Table 2. This 

model is provided as an excel model in Supporting Info to facilitate application. The standard 

errors for the intercept (6.39) and the coefficient of log10MW (-2.49) are 0.29 and 0.13, 

respectively. An SE of 1.17 of the final model (Eq. 5) indicates that the 95% confidence interval 

(CI) of the predicted response, log10D-(τ-3486)/T, is the predicted value ± 2.30. The 95% CI of 

the log10D cannot be directly calculated, but the average absolute difference between predicted 

and measured log10D is 0.83 across the whole dataset (1103 records), and 95% of this absolute 

difference is below 2.54.  

This MLR model shows excellent fitting of the experimental data, with an adjusted R-square of 

0.932 and a root mean square error (RMSE) of 1.15. The model fit is highly significant with an 

ANOVA p-value smaller than 0.0001. Figure 2 shows the scatter plot of experimental versus 

predicted responses, which aligns well with the 1:1 line. In this MLR model, the response 

(dependent variable) is the temperature-adjusted log diffusion coefficient, i.e., log10D-(τ-3486)/T, 
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instead of log10D, in order to fix the temperature coefficients and to avoid multicollinearity 

problems, as mentioned in Section 2.2.4. The residual plot (Figure 3) shows that the residuals are 

distributed evenly throughout the dataset, again indicating the good fit of the linear model for the 

data.  

The key predictors other than temperature in the MLR model are the material type and the 

molecular weight of the diffusing chemical. The regression coefficient when considering log-

molecular weight is equal to -2.49, indicating that the diffusion coefficient decreases with 

increasing molecular weight. This implies that larger molecules diffuse more slowly compared to 

smaller molecules in solid materials, which is intuitive and consistent with findings from 

previous studies 
4, 12, 17, 18

. However, although the molecular weight is a highly significant 

predictor (p < 0.0001), it explains less than 10% of the total variance of the diffusion coefficient 

(SI, Section S4).  

The 31 dummy variables for the material types reflect the material dependency and account for 

most of the total variance of the diffusion coefficient, indicating that the diffusion coefficient in 

solid materials is strongly dependent on the material type. Since “Polyethylene terephthalate 

(PET)” was used as the reference material in the regression, the value of its coefficient b is zero 

(Table 2). For each of the other material types, the coefficient b, combined with the temperature 

coefficient τ, i.e. b+(τ+2391)/T, determines the difference in log-diffusion coefficient between 

that material type and PET, since PET has a temperature coefficient τ of -2391 (K) (Table 2, last 

column). Chemicals in material types with high values of b+(τ+2391)/T diffuse quicker than in 

material types with low values. Therefore, under room temperature (T = 298.15 K), the values of 

b+(τ+2391)/T and the corresponding diffusion coefficients tend to be lower in dense, rigid 

materials such as glass, stainless steel, methyl methacrylate (MMA) polymers, polyethylene 
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naphthalate (PEN), and rigid polymers including polyether ether ketone (PEEK), rigid PVC, 

polytetrafluoroethylene (PTFE), and polycarbonate (Table 2). In contrast, the values of 

b+(τ+2391)/T and the corresponding diffusion coefficients can be up to 13 orders of magnitude 

higher in flexible or porous materials, such as gypsum, wood, rubber, and polyurethane foam-

based materials (Table 2). It should be noted that the composition and properties of a given 

material type may vary considerably depending on the intended use, as well as over time as 

material substitutions are made and production procedures differ. Thus, the material type 

coefficients in Table 2 actually represent an average composition and diffusion behavior for the 

specific material types.  

The significance of the material type coefficient only indicates that the coefficients bs of these 

material types are significantly different from the reference material type, PET, but if another 

material type was selected as the reference material, the regression coefficients and statistical 

significance of all materials would change. Thus, the insignificance of the regression coefficients 

for material type variables does not indicate that those material types do not have a relevant 

influence on the diffusion coefficient. As a result, we keep all 31 material type dummy variables 

in the final regression to retain as much information as possible.  

The MLR model given in Eq. 5 contains material-specific variables, so it is only valid for the 32 

material types presented in Table 2. For materials that do not belong to those 32 types, we built 

another generic QPPR to predict the diffusion coefficients, which is presented in SI, Section S4, 

which should be used with caution because of higher uncertainties.  
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3.3 Model validation results 

3.3.1 Internal validation 

For the 20% leave-more-out (LMO) cross validation, the correlation coefficient, Q
2

LMO for the 

1000 iterations ranges from 0.89 to 0.95, with an average of 0.93, and a root mean square error 

for cross validation (RMSEcv) average of 1.19. Both the Q
2

LMO and RMSEcv are similar to the R
2
 

and RMSE computed using the full dataset, which is 0.93 and 1.15, respectively. These results 

indicate that when fitted to a random 80% of the dataset the model is still able to predict the 

remaining 20% of the dataset, meaning that the model is internally stable. 

For the Y-scrambling, the average R
2
Yscr and Q

2
Yscr for the 1000 iterations are 0.029 and -0.033, 

respectively, which are much smaller than the R
2
 and Q

2
LMO of the original model. The RMSE 

for Y-scrambling, RMSEYscr, is 4.36 which is much higher than the RMSE and RMSEcv of the 

original model. These results demonstrate that no correlation exists between the scrambled 

responses and the predictors. Thus, chance correlation for the original model can be ruled out.  

Overall, the internal validation demonstrates that the MLR model represented by Eq. 5 is robust 

and stable, and is not a result of chance correlation. 

3.3.2 External validation 

As described in Section 2.3.2, the first method of external validation was to split the full dataset 

(1103 records) into training set and prediction set, and four types of splitting were performed, 

including splitting by a random 20%, by ordered response, by ordered structure, and by studies. 

Six criteria for external validation were computed and are presented in Table 3. The R
2

ext is the 

determination coefficient of the prediction set data using the model calculated using the training 

set data. The other five criteria, Q
2

F1 
43

, Q
2

F2 
44

, Q
2

F3 
45

,   
  

46
, and CCC 

47
, are external validation 

criteria proposed by different studies, which evaluate various aspects of the model’s external 
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prediction ability. These criteria are usually in accordance with each other but can sometimes 

give contradictory results 
47

, so they need to be evaluated together. Chirico and Gramatica have 

proposed threshold values for these different criteria 
48

, which are presented in Table 3. For the 

first three types of splitting (by random 20%, by ordered response, and by ordered structure), the 

R
2

ext are higher than 0.9, and all of the other five criteria pass the threshold values and are also 

higher than 0.9, indicating good prediction ability of the model calculated using only the training 

set data. In these three types of splitting, the data were assigned to the training and prediction 

data sets either randomly or alternately (by ordered response or structure), so it is likely that a 

portion of the data from each study was assigned to the training set while the remaining portion 

of the data was assigned to the prediction set. As the result, the prediction set is well within the 

applicability domain (AD) defined by the training set (SI, Figures S2-S7), so it is expected that 

the model calculated using the training set can well predict the prediction set. 

For the fourth type of splitting, splitting by studies, data from 30 studies were selected as the 

prediction set, while data from the remaining 48 studies constituted the training set. Thus, all 

data from one study and for one particular material will be either in the training or in the 

prediction set, so the validation using this splitting is close to a truly “external” validation. Most 

of the prediction set is inside the AD defined by the training set except for two data points (SI, 

Figures S8-S9). As a result, the R
2

ext dropped to 0.85, and the values of the other five validation 

criteria are apparently lower than those for the above three types of splitting, reflecting that 

variability is higher between than within studies. The five validation criteria nevertheless all pass 

the threshold values (Table 3), indicating that the model calculated using the training set has 

good prediction ability. 
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As a second method of external validation, the 1103 data points from the 68 studies were used as 

the training set, and additional data from an FDA database and from studies before 1982 were 

used as two separate prediction sets. As presented in Table 3, when using FDA dataset as the 

prediction set, the R
2

ext is reduced to 0.80 which is lower than the R
2

ext for the above four types 

of splitting. Four of the five validation criteria pass the threshold values, while Q
2

F3 does not pass 

the threshold. In contrast, when using data by 1982 as the prediction set, the R
2

ext is 0.93, which 

is very close to the R
2
 of the training dataset (Section 3.2). The absolute difference between 

predicted and measured log10D averages 2.20 (95
th

 percentile of 5.53) for the FDA dataset, and 

averages 1.08 (95
th

 percentile of 2.68) for the data by 1982. Figure 3 presents the comparison 

between model predicted and experimental responses for these two prediction sets. Data from 

both prediction sets are generally distributed close to the 1:1 line, but the FDA data are more 

dispersed compared to the training set data while the data by 1982 are almost as compact as the 

training set data. The FDA data lack documentation of experimental details, so their quality may 

not be as good as the data reported in peer-reviewed literature. Also, when the FDA polymer 

types were linked to our consolidated material types, mismatches may have occurred due to lack 

of description of the polymers in the FDA dataset, which may lead to inaccuracies in model 

predictions. Overall, however, our QPPR performs reasonably well on these two fully external 

datasets, demonstrating its good predictive ability.  

3.3.3 Applicability domain (AD) 

We performed the analysis of the model’s applicability domain (AD) using the three approaches 

explained in Section 2.3.3. The model being evaluated is the final MLR model presented in Eq. 5, 

which was calculated using the training set of 1103 data points collected from 68 studies 

obtained from the peer-reviewed literature. For the analysis of AD, we focus on the two external 
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prediction datasets: the FDA dataset (189 data points) and the data by 1982 (239 data points). 

Detailed results of the AD analysis are presented in SI, Section S6.1.  

Combining the three methods, none of the data points in both prediction sets fell out of the AD. 

For the FDA dataset, the majority of the data points were inside the AD, while 15 data points 

were on borderline of AD. Similarly, only 35 data points from the data by 1982 were on 

borderline of AD. Thus, it is valid to use the present QPPR to make reliable estimates of 

diffusion coefficients for all data points in the two prediction sets. The physiochemical property 

space covered by the QPPR is mainly determined by the chemical’s molecular weight, which 

ranges from 30 to 1178 g/mol. The vapor pressure at 25 °C may also be a relevant property, 

which ranges from 9.8∙10
-29

 to 5.2∙10
5
 Pa. The range of log10D covered by the QPPR ranges from 

-22.1 to -5.2 where D is measured in m
2
/s. 

As mentioned in Section 2.2.2, the model performances of using log-molecular weight and 

molecular weight as predictors were very close to each other when using the training dataset. 

However, residual analysis and external validation showed that log10MW is a more stable 

predictor than MW when handling high-molecular-weight chemicals, which becomes prominent 

for the FDA dataset which includes certain chemicals with molecular weight higher than 1500 

g/mol.  While none of the data points in the FDA dataset fell out of the AD using the log10MW 

model, 11 data points would be outside AD using the MW model. Details are presented in SI, 

Section S6.2. Thus, log10MW instead of MW was selected as a predictor in the final QPPR (Eq. 

5).  

Schwope et al. 
37

 suggested that the linear relationship between log10D and log10MW may only be 

valid for a certain range of molecular weight, and there may be a saturation of diffusion 

coefficients for small molecular weights, i.e., for a given material and a given temperature, the 
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diffusion coefficient does not continue to increase for chemicals with molecular weight lower 

than a certain value, which is likely determined by the material type. To further examine the 

effect of molecular weight on model applicability, we analyzed the model residuals versus the 

log of molecular weight for the training dataset and the two prediction sets (Figure 4). For the 

three datasets, the residuals are distributed evenly on both sides of zero in the MW range of the 

training dataset of 30 and 1178 g/mol (log10MW of 1.48 to 3.07). For methane (MW=16 g/mol), 

most of the predictions overestimate diffusivity, suggesting that diffusivity may indeed not 

further decrease below MW 30 g/mol. Since methane was the only chemical with data available 

for MW lower than 30 g/mol, data for additional chemicals and materials are therefore needed to 

further test this hypothesis of saturation at low MW. Similarly, additional data are needed to 

provide more accurate estimates for chemicals with very high molecular weights.  

Overall, the performance of the final model (Eq. 5) in this external validation indicates that it has 

the ability to provide reliable predictions, as long as the considered chemicals are within the 

model’s applicability domain. With the log-molecular weight as a predictor, our model is able to 

make reliable extrapolations on chemicals with molecular weights up to about 2500 g/mol, but 

caution still needs to be taken when applying the model on extremely-high-molecular-weight 

chemicals. Ideally, the model should be applied to predict diffusion coefficients for chemicals 

with molecular weights lower than 1178 g/mol which is the maximum within the training dataset. 

Caution also needs to be taken when applying the model on very-low-molecular-weight 

chemicals due to the possible saturation effect.  Both the FDA dataset and the data by 1982 were 

used for the external validation but not combined with the original training dataset to calculate a 

more comprehensive MLR model, because these data are somewhat outdated; the FDA data are 
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not published in literature, so there is a lack of experimental details, making these undocumented 

data less reliable than the data collected from peer-reviewed literature. 

 

3.4 Limitations and future work 

While the extension to 32 different consolidated material types is a major progress, the present 

model is still not fully comprehensive. First, the model may not be valid for very high or very 

low molecular weight (MW) chemicals. It may not be valid for ionizing organic chemicals either, 

since ionizing chemicals such as acids, alcohols/phenols and amines are not well represented in 

the training dataset, as they only account for less than 10% of the data points, and the model does 

not consider chemical ionization or interaction within a material, which may make the 

chemical’s diffusivity lower than that predicted by the model. Second, the present model is not 

applicable for materials types other than the 32 types in the training set, e.g. for material such as 

resin and textiles, due to the lack of experimental data. Although a more general MLR model (SI, 

Section S4) was developed which does not require material type as the predictor, it gives much 

less accurate predictions of the diffusion coefficient. Third, the present model does not consider 

any interaction between MW and material type, i.e., it assumes the effect of MW is the same 

across different materials. Although model validations show that this assumption may be 

reasonable for the existing data, ideally it needs to be further verified using data spanning the 

whole MW range (30 to 1178 g/mol) for each material. Therefore, more experimental diffusion 

coefficient data need to be obtained, or more advanced experimental methods to measure 

diffusion coefficients need to be developed, for other material types and chemical sizes and 

classes to make the model more comprehensive.  
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There are also large variations in the experimental diffusion coefficients between some of 

different studies for three material types, namely “MMA homopolymer”, “Natural rubber” and 

“Rigid polymers”, even after correcting for molecular weight and temperature, as shown in 

Figure 1 and SI, Figure S1. This means that the regression coefficients b and τ for these material 

types should be taken with care. The variations could be due to three causes. First, experimental 

variation; for example, Franz et al. 
40

 used desorption experiments to measure the diffusion 

coefficients in MMA homopolymer, while Hennebert et al. 
42

 used sorption experiments. Second, 

the swelling of polymers during liquid sorption experiments, which generally occurs for 

crosslinked polymers in low-molecular weight solvents 
49

, may not always be accounted for, and 

can lower the diffusion coefficients by orders of magnitude 
10

.  Third, the properties of the same 

material can vary between studies depending on how it was made and which additives were used. 

This may also be the case for some other materials such as vinyl flooring, carpet, synthetic 

rubber, etc., for which the material type coefficients in Eq. 5 can only represent some sort of 

average composition and diffusion behavior for the specific materials. Ideally, quantitative, 

continuous properties of the solid materials, such as density, porosity and crystalline state of the 

material as well as other descriptors of the material’s composition and molecular structure, 

instead of qualitative material types could be measured and entered into the model as predictors, 

so that the model can be more accurate and can be extrapolated to various material types outside 

the training dataset. 

 

4. Conclusions 

A multiple linear regression model has been developed to predict the internal diffusion 

coefficients of organic compounds in various solid materials (excel model provided in SI). 
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Experimental diffusion coefficient data collected from 68 studies of the peer-reviewed literature 

were used as the training set for the regression. The model uses two continuous variables, 

molecular weight and inversed absolute temperature, and one categorical variable, material type, 

as predictors. The model has been internally validated to be robust, stable and not a result of 

chance correlation. External validation using two prediction sets demonstrates that the model 

predictions are most reliable within the model’s applicability domain, namely molecular weight 

between 30 and 1178 g/mol temperature between 4 and 180 °C, and material type belonging to 

the 32 consolidated types. 

The main advantage of the present model is that it is applicable for chemicals with a wide range 

of molecular weights (but only up to about 16 to 2500 g/mol, with special treatment for 

molecular weight lower than 30 g/mol) in various materials. This is advantageous compared to 

the correlation methods developed in previous studies often specific for certain chemical classes 

or materials. The present model is able to provide reliable estimates of diffusion coefficients for 

a large number of chemical-material combinations, making it suitable for high-throughput 

assessments of the releases and human exposures to chemicals encapsulated in solid materials, 

particularly building materials and food contact materials. To make the model comprehensive, 

more experimental diffusion coefficient data need to be obtained for other material types, or 

quantitative and continuous parametrization of various solid materials needs to be further 

developed.  
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Tables and Figures 

  

Figure 1. Relationship between the diffusion coefficient D (corrected for log10MW) and the 

inverse of temperature for (A) PET, and (B) methyl methacrylate (MMA) homopolymer. The 

units of D and MW are m
2
/s and g/mol, respectively. 
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Figure 2. Values of log10D-(τ-3486)/T predicted by the final QPPR (Eq. 5) vs. (A) experimental 

values, and (B) residuals. The dotted line in (A) indicates the 1:1 line. The units of D and T are 

m
2
/s and K, respectively. 
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Figure 3. Values of log10D-(τ-3486)/T predicted by the final QPPR (Eq. 5) vs. experimental 

values when using (A) FDA dataset and (B) Data by 1982 as the prediction sets. The black 

dotted line indicates the 1:1 line. The units of D and T are m
2
/s and K, respectively. 
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Figure 4. Residual between the present QPPR and observed data as a function of log10MW for 

the training dataset, the FDA dataset, and the data by 1982 set. The unit of MW is g/mol. 
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Table 1. Temperature dependence of diffusion coefficient in the 32 consolidated material types 

(all numbers are in the unit of K) 

 

 

 

 

 

Category Material Mean coefficient of 1/T SD between studies β1/T τ β1/T + τ

High-coefficient category PP homopolymer -6665 2354

Polyethylene terephthalate (PET) -6567 2399

General polystyrene (PS) -5713 3560

Polyethylene naphthalate (PEN) -5449 1940

PP copolymer -5384 1194

High-density polyethylene (HDPE) -5294 1124

Medium-coefficient category MMA homopolymer -4549 1145

ABS, EVOH -4222 n/a

High-impact polystyrene (HIPS) -4215 n/a

Polyamide (PA) -4179 1854

MMA copolymer-medium or low density -4056 1272

Polyethylene (PE, LDPE, LLDPE) -3713 536

Limited-data material group n/a n/a

Calcium silicate n/a n/a

Carpet n/a n/a

Glass, Stainless steel n/a n/a

Vinyl acetate-based polymers n/a n/a

Cement n/a n/a

Low-coefficient category Gypsum board n/a n/a

Plywood n/a n/a

Flexible PVC -2917 2618

Other wooden boards -2411 888

Polychloroprene (CR) -2127 286

Vinyl flooring -1951 n/a

Polystyrene foam (XPS, EPS) -1806 n/a

Polyurethane foam-based materials* -1705 699

Synthetic rubber -1326 205

Ethylene-propylene rubbers -1145 300

Natural rubber (NR) -939 337

Rigid polymers -510 1552

Paper -312 n/a

Gypsum and cellulose ceiling tile 331 294

*This material type refers to low-density polyurethane foams with a density of 0.005 to 0.03 g/cm 3.

Coefficient value for Eq. 5

-5877

-3486

-1810-3486 1676

-3486 -2391

-3486 0
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Table 2. Material-specific coefficients for Eq. 5 

   

b+ ( τ+ 2391.15)/T

Material Coefficient SEf p-value τ (K) at 25 °C

Calcium silicate 1.17 0.29 < 0.0001 0 9.19

Carpet -1.23 0.28 < 0.0001 0 6.79

Cement 0.330 0.226 0.15 0 8.35

Ethylene-propylene rubbers -6.32 0.29 < 0.0001 1676 7.32

Flexible PVC -8.51 0.31 < 0.0001 1676 5.13

General polystyrene (PS) 2.04 0.30 < 0.0001 -2391 2.04

Glass, Stainless steel -8.57 0.38 < 0.0001 0 -0.550

Gypsum and cellulose ceiling tile -1.24 0.31 < 0.0001 1676 12.4

Gypsum board -5.77 0.30 < 0.0001 1676 7.87

High density polyethylene (HDPE) 5.11 0.20 < 0.0001 -2391 5.11

High-impact polystyrene (HIPS) -7.11 0.27 < 0.0001 0 0.907

Methyl methacrylate (MMA) copolymer-medium or low density -7.73 0.21 < 0.0001 0 0.294

Methyl methacrylate (MMA) homopolymerh -7.84 0.31 < 0.0001 0 0.175

Natural rubber (NR)h -3.60 0.27 < 0.0001 1676 10.0

Other wooden boardsa -6.72 0.21 < 0.0001 1676 6.92

Paper -8.53 0.34 < 0.0001 1676 5.11

Plywood -5.61 0.34 < 0.0001 1676 8.03

Polyamide (PA) -5.40 0.16 < 0.0001 0 2.62

Poly acrylnitrile butadiene styrene (ABS), Ethylene vinyl alcohol (EVOH) -4.97 0.23 < 0.0001 0 3.05

Polychloroprene (CR) -6.31 0.35 < 0.0001 1676 7.33

Polyethylene (PE, LDPE, LLDPE) -1.65 0.16 < 0.0001 0 6.37

Polyethylene naphthalate (PEN) -1.16 0.28 < 0.0001 -2391 -1.16

Polyethylene terephthalate (PET)
g

0.00 0.15 n/a -2391 0.00

Polystyrene foam (XPS, EPS) -8.32 0.29 < 0.0001 1676 5.32

Polyurethane foam-based materialsb -7.35 0.25 < 0.0001 1676 6.30

PP copolymer 4.79 0.28 < 0.0001 -2391 4.79

PP homopolymer 4.53 0.15 < 0.0001 -2391 4.53

Rigid polymersc, h -11.9 0.25 < 0.0001 1676 1.70

Synthetic rubber -5.93 0.32 < 0.0001 1676 7.71

Vinyl acetate-based polymersd -0.459 0.326 0.16 0 7.56

Vinyl flooring -6.77 0.21 < 0.0001 1676 6.87

Limited-data material groupe

a Includes Particleboard, Oriented strand board (OSB), Medium-density fiberboard (MDF), High-density board, and Wood chamber wall.

b This material type refers to low-density polyurethane foams with a density of 0.005 to 0.03 g/cm 3.

c 
Includes Polyether ether ketone (PEEK), Rigid PVC, Polytetrafluoroethylene (PTFE), and Polycarbonate.

d Includes Ethyl vinyl acetate (EVA), Polyvinyl acetate (PVA), and Polyvinyl acetate polyacrylic acid copolymer. 

f Standard error.
g Reference material.
hCoefficients should be taken with care due to large variations between studies.

different materials, so the accuracy of the coefficients is low and they are not recommended for use in predicting diffusion coefficients. This group 

includes Alginate film, Balance, Decorative and Overlay layers of wooden flooring, Cellulose, Epichlorhydrin-dimethylamine polymer (EDP), 

Epoxy/acrylic copolymer, latex, MMA/Butyl methacrylic (BMA) copolymer -very low density, Nanocomposite polyamide, Paint, Pectin film, 

Pectin/Alginate composite film, Polydimethylsiloxane (PDMS) membrane, Polyisoprene (PI) membrane, Polyoctenamer (PO) membrane, 

Polyoxymethylene, Polytrimethylene terephthalate (PTT), Polyvinylidene chloride (PVDC), and Silicone. 

Coefficient b

eThe coefficient b  for this group is -2.26 with an SE of 0.18, and the coefficient τ is 0. "Limited-data material group" includes data from 20

see footnotes
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Table 3. External validation results 
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