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Based on the increasing interest in urban environmental technologies, the study of

small scale vertical axis wind turbines shows motivating challenges. In this paper,

we present the characteristics and potentials of a new open jet wind tunnel. It has a

nozzle exit area of 1.5� 1.5 m2, and it can be operated with exit velocities from

3 m/s to 17 m/s. The characterization of the flow has been carried out with

calibrated pitot tubes, cup anemometers, and hot wire anemometers. Two different

configurations of the test area, with and without a ceiling, are considered.

Measurements in the range of available exit velocities show that the cross section,

where the velocity and turbulence intensities show an acceptable level of

uniformity, has an area of 0.8� 0.8 m2 and a streamwise dimension of 2 m from

the nozzle exit of the tunnel. In this working section, the maximum turbulence

intensity is 4%. The detailed characterization of the flow carried out indicates that

the wind tunnel can be used to test small scale models of wind turbines.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4982750]

I. INTRODUCTION

A wind tunnel is an important experimental tool in fluid engineering. It is often a rapid and

accurate tool to conduct aerodynamic research, to support design decisions, and to validate

numerical flow simulations. Here, we built an open jet wind tunnel (OJWT) without a collector

and with 4 axial fans. The experimental equipment was designed with aerodynamic concepts

using a combination of empirical data and theoretical calculations. The new facility with a noz-

zle exit area of 1.5� 1.5 m2 is a useful tool to study models of urban vertical axis wind tur-

bines (VAWTs).

Compared to traditional wind tunnel testing, an open jet wind generating facility offers sup-

plementary capabilities and features for testing compared to high cost atmospheric boundary

layer (ABL) wind tunnels or special purpose built wind tunnels. This configuration allows the

use of high blockage ratios, it provides excellent access to the model, and it facilitates flow field

measurements.1,2 The available literature presents the studies of wind turbines using OJWTs.

Some of them include the analysis of the wake of the turbine,3 and others have investigated the

aerodynamic performances of blades of a small-scale VAWT4 and tested several full-scale,

wind-turbine airfoils, at various speeds (high Reynolds numbers) and angles of attack.5 Similar

to VAWTs, marine hydrokinetic turbines6,7 extract mechanical power from moving water, and

analyses can be performed in towing tanks. Most of the studies dealing with VAWTs consider

Darrieus type turbines,8 which show a larger efficiency than Savonius type turbines and can be

installed onshore and offshore.9
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In the majority of turbulent jets studied theoretically or experimentally, the wind speed is

assumed uniform and constant at the outlet of the nozzle. In OJWTs, a uniform flow can be

achieved just at the exit of the nozzle, i.e., in the potential core. Reference 3 presented the

study of the evolution of the wake of a horizontal axis wind turbine (rotor diameter of 0.6 m) in

an open-jet wind-tunnel installed at the Delft University of Technology (The Netherlands). This

facility has an outlet diameter of 3 m that is placed in a large room with a width of 13 m and

a height of 8 m. It can handle very large models that obstruct airflow quite considerably.

Reference 4 employed zero-net mass flux (ZNMF) actuation on an H-type VAWT blade. The

application of the ZNMF technique was found to have a beneficial effect on the blade’s aerody-

namic performance by either suppressing dynamic stall or delaying its onset to higher angles of

attack. Reference 5 analyzed the flow and acoustic measurements around wind-turbine airfoils per-

formed at the Virginia Tech Stability Wind Tunnel (United States of America). This unique facil-

ity is aerodynamically closed and acoustically open, which allows better aerodynamic performance

than a free jet facility, while maintaining comparable acoustic performance. With a 1.83 m

� 1.83 m test-section, it is one of the largest wind tunnels in the United States of America with a

maximum speed of 80 m/s. The aerodynamic capabilities were recently increased by the addition

of a removable anechoic test-section, allowing for full-scale aero-acoustic testing.

A number of analyses deal with exploring the quality of the flow (mean flow, velocity pro-

file, and turbulence/spectral representation).10–12 An important incitement is made by the wind

power industry, supporting actions in investigating the appropriateness of wind tunnels for cali-

bration of cup anemometers, as defined, for example, by the Measuring Network of Wind

Energy Institutes (MEASNET) and wind turbine power performance measurement standards

(see, for example, the standard IEC61400-12-1/2005 by the International Electrotechnical

Commission). The cup anemometer is presently the accepted wind sensor to be used in wind

turbine power performance accredited measurements. Some of the challenges are to comply

with international standards and to overcome uncertainties originating from (i) the determina-

tion of the undisturbed (free) wind in the empty tunnel, (ii) the presence of the cup anemometer

inducing blockage, (iii) the quality of the flow within the measurement volume of the cup ane-

mometer, (iv) the mounting setup, and (v) the test section design and setup.

The present paper deals with the characterization of an OJWT designed with a relatively

low budget to be installed in a relatively limited physical space. First, the design concept is dis-

cussed, and the initial and updated design criteria are explained. The aerodynamic design and

selection of the wind tunnel components are discussed in detail. The analyses of the exit flow

uniformity and turbulence characteristics of the OJWT without and with a false ceiling in the

test area where the jet is expanded are reported. Finally, cup anemometer calibration results

without and with the false ceiling to improve the test area are presented in order to complete

the characterization of the new facility and to show the quality of the flow in the test section

(i.e., uniform velocity and low turbulence intensity).

II. DESIGN

The wind tunnel was designed considering the dimensions of typical urban VAWTs.

The validity of the tests in a tunnel with a scale model requires the validity of the geometric,

kinematic, and dynamic similarities between the flow around the model and the flow around the

real turbine under specific atmospheric conditions. This means that the model has to be a rep-

lica of the real turbine and should also present certain dimensionless parameters equal in both

flows, i.e., between the flow under real atmospheric conditions and the flow generated in the

wind tunnel. The Reynolds number is the relevant parameter for an incompressible subsonic

flow wind tunnel.

With the dimensions of the test section established, the required wind speed can be esti-

mated. The maximum wind speed for the present wind tunnel was set to be about 15 m/s for a

hydraulic diameter of the nozzle exit of 1.5 m. Another design criterion is the quality of the

flow in the test section, which depends on the uniformity of the flow and the levels of the tur-

bulence intensity. The last parameter is less strict in tunnels for non-aeronautical testing.13 As a
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design objective, a value of turbulence intensity of about 5% in the test section was defined.

The available space in the room to install the tunnel was 12 m in length, 5 m in width, and 4 m

in height.

Different concepts of open jet wind tunnels can be found in the literature. Some of them

have a closed-circuit design with a closed or a semi-closed test section, from which the air flow

exiting the nozzle comes into the collector.14,15 Others are open circuit tunnels where the open

jet from the nozzle is expanded freely into the laboratory.16,17 The concept of the open jet wind

tunnel without a collector has the advantages of being lower cost and requiring less space.

Based on these studies, we decided to design the wind tunnel as an open-circuit tunnel with

components and dimensions indicated in Figure 1. The tunnel, named “4-Winds” and installed

in the laboratories of the University Rovira i Virgili (Tarragona, Spain), is an open jet type

FIG. 1. Sketch of the wind tunnel layout: (a) back view, (b) side view, and (c) front view. Dimensions are in millimeters.
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tunnel, powered by 4 fans with an open test section and an open circuit. The elements of this

wind tunnel are (in the direction of the flow) fans, plenums, flow straighteners, and conditioning

elements, a contraction and test section. The flow is impelled by four fans of 7.5 kW each, with

a diameter of 1 m and placed in a 2.24 m� 2.24 m matrix (see Fig. 1(a)). The fans feed 1 m

long plenum chambers with a safety screen at the end. A honeycomb and two grids are placed

windward to reduce the flow turbulence intensity and increase the flow uniformity. All these

elements complete the settling chamber of the facility. They can be easily removed for mainte-

nance. Finally, the open jet exits into the test section from a nozzle, with a contraction with a

ratio of 2.23 and a length of 1 m, to increase the flow speed.

The aerodynamic considerations were established once the general layout was defined. The

size of the nozzle exit is based on the solid blockage effect, and this defines the dimensions of

the other components of the wind tunnel. Solid blockage is often computed as the ratio of the

frontal area of the object and the cross section of the wind tunnel,2 and it is usually expressed

in percentage. Taking into account the frontal swept area of a model of a urban VAWT, i.e.,

around 0.5 m� 0.5 m, a nozzle exit cross section (1.5 m� 1.5 m) was defined and resulted in a

blockage ratio of around 11%. The blockage effect influences the flow around the model, and it

is more pronounced in tunnels with confined test sections than in open jet wind tunnels where

the flow can more easily move around the tested body. For example, the blockage ratio in the

measurements of the power curves of a Darrieus-type VAWT performed by Howell et al.18 in a

closed wind tunnel was 7.5%. Mertens2 and van Bussel19 carried out experiments in open jet

wind tunnels with blockages (100 swept area/nozzle exit) of 5% and 14%, respectively. In any

case, the blockage can be reduced, for example, down to 7% using models with a swept area of

0.4� 0.4 m2. The 4-Winds OJWT has a square-to-square contraction and a square cone shape.

A jet with a maximum speed of approximately 15 m/s in the test section was proposed. The

power of the driving fan was estimated using the maximum speed and the summation of pres-

sure losses in the wind tunnel components, i.e., the total pressure drop (DP) along the wind

tunnel sections. The loss in a section is defined as the mean loss of total pressure sustained by

the stream in passing through the particular section. The loss in a section is given in a dimen-

sionless form by the ratio of the pressure loss in the section to the dynamic pressure at the

entrance to the section.20 For a typical “local” section, this is given by Equation (1)

Kl ¼
DPl

1

2
qlu

2
l

: (1)

The calculated sum of the pressure loss of the wind tunnel components at a speed of 15 m/s

indicated a necessary pressure increase of approximately 300 Pa. Estimations of the pressure loss

coefficients were taken from Refs. 21–23.

The passages of the honeycomb have a diameter Dh of 5 mm, and a honeycomb thickness

in the flow direction Lh is 50 mm. The honeycomb is a guiding device through which the indi-

vidual air filaments are rendered parallel.20 Essentially, the honeycomb cells inhibit the lateral

components of turbulence. This is achieved with length equivalent to about 5–10 cell diame-

ters.24 In the facility under discussion, the length is equivalent to 10 cell diameters Dh. The

wire meshes reduce the velocity deviations and the turbulence of the flow. Based on the wire

Reynolds numbers given by Pope and Rae20 for standard air, a safety screen with a mesh aper-

ture of 5 mm and a wire diameter of 2 mm was positioned in the plenum chambers. It provides

the necessary protection for the fan. Two turbulence control screens with a mesh aperture of

1.81 mm and a wire diameter of 0.5 mm were installed upstream the honeycomb. Applying the

design guidelines given by Mehta and Bradshaw,24 the distance between screens is found to be

about 0.2 cross sectional diameters. The final component that reduces the turbulence intensity is

the contraction nozzle. This reduction can be estimated by 1/N2, with N¼ Sin/S0 being the con-

traction ratio.24 The shape and length of the contraction are not conventional. Special attention

has been given to this component, and some conclusions have been developed throughout this

publication.
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III. ANALYSIS OF THE EXIT FLOW UNIFORMITY AND TURBULENCE CHARACTERISTICS

The performance in terms of flow characteristics was measured with different instruments.

The origin of the coordinate system is defined at the centre of the nozzle exit plane, and the

x-axis is aligned with the jet axis. The orientation of the y-axis and the z-axis is horizontal and

vertical, respectively (see Fig. 1). The flow characteristics were analysed with a single hotwire

probe. The signal from the straight probe 55P01 of DANTEC was sampled with 16-bit resolu-

tion and a sampling frequency of 20 kHz. It was processed to estimate the average speed U and

the intensity of the fluctuations u0. A positioning system allowed the displacement of the probe

along the three spatial directions. The measurements were taken at several planes parallel to the

nozzle exit and along the jet axis to determine the flow uniformity and the turbulence intensi-

ties, and they will be subjected for similarity studies of velocity profiles in the planes and for

further characterization of the tunnel on time scales.

A. Effect of a false ceiling

The test section was characterized in two different configurations. The first configuration

corresponds to the conventional location of the tunnel with the floor located at z¼�1.29 m and

the ceiling of the laboratory at z¼ 2.34 m (see Fig. 1). In the second configuration, a false

ceiling located at z¼ 1.29 m was installed above the test area to obtain symmetry of the flow

with respect to the plane z¼ 0.

Figure 2 shows the time averaged scaled velocity profiles along the vertical z-direction and

along the horizontal y-direction at x¼ 1 m without the false ceiling (Fig. 2(a)) and with the

false ceiling (Fig. 2(b)), while Figure 3 shows the corresponding profiles at x¼ 2 m. The pro-

files have been scaled using the measured velocity at the center of the nozzle exit. The specific

values for the three different exit velocities are 5.0 m/s, 11.0 m/s, and 14.4 m/s for the profiles

of Figure 2 and 5.4 m/s, 11.0 m/s, and 15.0 m/s for the profiles of Figure 3. The distance

between the locations of measurement is 0.1 m. Red symbols show the mean velocities along

the horizontal y-direction, and blue symbols correspond to velocities along the vertical

z-direction. It can be seen that the velocity profiles with the false ceiling show more uniform

profiles along the y-axis. The comparison of the velocities at the axis of the exit (i.e., y¼ 0 and

z¼ 0) indicates a velocity increment of about 0.5 m/s with the ceiling. The ratio between the

standard deviation (r) and average velocities in the regions �0.5 m� y� 0.5 m and �0.5 m� z

� 0.5 m is 0.01. Note that the average velocities in the regions near z¼ 60.6 m and y¼60.6 m

increase due to the relatively rapid contraction of the tunnel exit. Figure 3 shows the time aver-

aged velocity profiles normalized along the vertical z-direction and along the horizontal

y-direction at x¼ 2 m without the false ceiling (Fig. 3(a)) and with the false ceiling (Fig. 3(b)).

FIG. 2. Normalized average flow velocity profiles along the z-vertical and y-horizontal directions at x¼ 1 m from the noz-

zle exit. (a) Profiles without a false ceiling and (b) profiles with a false ceiling.
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At this position (x¼ 2 m), a similar flow uniformity can be seen to that at x¼ 1 m (Fig. 2). The

ratio between the standard deviation (r) and average velocities in the regions �0.5 m� y

� 0.5 m and �0.5 m� z� 0.5 m is 0.01.

The profiles of the turbulence intensities are shown in Figure 4 (x¼ 1 m) and Figure 5

(x¼ 2 m). The turbulence intensity (Ti) has been estimated considering the root mean square

(RMS) of the signal of the single hot wire, which was oriented perpendicular to the flow during

the experiments. The profiles are plotted along the y and z directions at three different mean

velocities of the tunnel. It can be seen that at x¼ 1 m (Fig. 4), the false ceiling produces a

more uniform distribution of the intensity of the velocity fluctuation and an overall reduction in

the turbulence intensity of about 3% with respect to the case without the false ceiling. The mea-

sured velocity and turbulence intensity profiles indicate that the flow has a relatively constant

velocity and a maximum turbulence intensity of 4% in a region with a cross sectional area of

0.8� 0.8 m2 and a streamwise dimension of 2 m from the exit of the tunnel.

Records of the flow at the locations x¼ 0, y¼ 0, z¼ 0 and x¼ 1 m, y¼ 0 and z¼ 0 were

obtained with the hot-wire probe to analyse the spectral characteristics of the velocity signal for

different velocities at the exit of the tunnel. Two time series at two different wind speeds with

60 s and 300 s durations were conditioned without a low-pass filter and sampled at 10 and

30 kHz, respectively (see Table I). The spectral analysis was conducted following the Welch

method,25 using partitions of 800 000 samples for the long and 60 000 for the short time series,

FIG. 3. Normalized average flow velocity profiles along the z-vertical and y-horizontal directions at x¼ 2 m from the noz-

zle exit. (a) Profiles without a false ceiling and (b) profiles with a false ceiling.

FIG. 4. Turbulence intensities along the z-vertical and y-horizontal directions at x¼ 1 m from the nozzle exit.
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respectively. Furthermore, the time series are low-pass filtered with a limit frequency of 500 Hz,

and after subtraction of the mean value U, the mean deviation hereafter is normalized with the

standard deviation. Hereby, the variance of the normalized time series is equal to 1. The power

spectra are shown in Figure 6, together with the Davenport spectrum,26 Equation (2). The

Davenport spectrum is considered as a good mathematical representation for the horizontal wind

fluctuations

psd ¼
2=3 f

Lu

U

� �2

1þ f
Lu

U

� �2
 !4=3

: (2)

In Figure 6, the Davenport spectrum is fitted with a length scale Lu equal to 0.1 m. The

plot shows that, following Taylor’s hypothesis of frozen turbulence,27,28 the standard deviation

of the wind speed scales well with the averaged velocity. Additionally, the figure illustrates that

the spectra increase at high frequencies, reflecting signal noise, which we have only partially

removed by low-pass filtering. However, with Taylor’s frozen turbulence assumption applied,

the plots of the normalized spectra indicate that the spectra follow “normal atmospheric bound-

ary layer (ABL) turbulence” behaviour with a production range around f/U� 10 followed by an

inertial subrange shown by a �2/3 slope. At high frequencies, the dissipation region is partly

shown, but part is hidden by the high frequency noise. As demonstrated with the curve showing

the Davenport spectrum, this spectral form reflects quite well the tunnel spectrum, provided

that the production scale of the Davenport spectrum (1200 m) is replaced by the scale for the

production scale for the tunnel turbulence (Lu¼ 0.1 m), reflecting vortices being created by

means of propellers. This can be seen as an indication that the wind tunnel is suitable to study

wind effects on a scaled wind turbine in a comparable way as with a real turbine operating in

the ABL. Various studies are relevant to perform on VAWTs. As an example of understanding

TABLE I. Measurement characteristics for spectral analysis.

Location U (m/s) facq (kHz) ts (s)

x ¼ 1 m, y ¼ 0, z ¼ 0 4.4 10 60

x ¼ 0, y ¼ 0, z ¼ 0 5.4 30 300

x ¼ 1 m, y ¼ 0, z ¼ 0 12.1 10 60

x ¼ 0, y ¼ 0, z ¼ 0 14.9 30 300

FIG. 5. Turbulence intensities along the z-vertical and y-horizontal directions at x¼ 2 m from the nozzle exit.
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the processes of energy conversion taking place in ABL, the inflow and vorticity structure mea-

sured by a model VAWT in the open jet can produce valuable results in understanding turbu-

lence and how this is linked, for example, to fluid dynamic simulation results. In this way,

reduced scale modelling and wind load modelling can provide main physical parameters, as

also pointed out in Ref. 12. A more specific investigation to be conducted is how mechanically

created turbulence from an upwind sited rotor is transformed downwind, how the wake devel-

ops, and how the resulting inflow on the next turbine will affect the flow.

The characteristics of various existing open jet wind tunnels29–33 are summarized in Table

II. The facilities shown in the table are used for research on wind turbines, aviation industries,

and anemometry calibrations. Some of them include anechoic test sections for acoustic meas-

urements and can generate high flow speeds and very low turbulence levels.

The 4-Winds OJWT has a similar purpose and similar characteristics to an open jet wind

tunnel installed at the Delft University of Technology, as reported by Mertens.2 This wind tun-

nel is made of a large circular tube that encloses a fan at the suction side. The 4-Winds OJWT

FIG. 6. Comparison of dimensionless spectra of the flow at the central axis of the wind tunnel.

TABLE II. Main characteristics of the open jet wind tunnels analyzed.

Facility

OJWTa TU

Delft

4W-OJWT

Tarragona S4 WT IDR/UPMb OJ UNSWc

SWTd Virginia

Tech

Country Nederland Spain Spain Australia U.S.

Cross section Circular Square Square Circular Square

Test section size (m) 2.24 diam. 1.5 � 1.5 0.9 � 0.9 0.76 diam. 1.83 � 1.83

Test section type Open Open Closed/opene Open Closed/opene

Tunnel length (m) 10.85 4 12 … …

Maximum tunnel speed (m/s) 14 17 26 20 80

Non-uniformity of velocity (%) 7f 5g … … …

Turbulence level (%) 0.8f 1h 0.2 0.2 0.01–0.03i

aOJWT TU Delft: Open Jet Wind Tunnel, the Delft University of Technology.2

bS4 WT IDR/UPM: S4 Wind Tunnel, Instituto Universitario de Microgravedad Ignacio Da Riva/Universidad Polit�ecnica

de Madrid.33,34

cOJ UNSW: Open Jet, the University of New South Wales.32

dSWT: Stability Wind Tunnel, Virginia Tech.35

eClosed/Open: The tunnel has a removable test section, i.e., it can be used as a closed test section or an open test section.
fAt a test section of 0.9� 1.2 m2, 1.2 m downwind of the tunnel exit with a tunnel speed of 6 m/s.
gAt a test section of 0.8� 0.8 m2, 1 m downwind of the tunnel exit at tunnel speeds between 5 m/s and 15 m/s (see Fig.

2(b)).
hMaximum value at a test section of 0.8� 0.8 m2, 1 m downwind of the tunnel exit at tunnel speeds between 5 m/s and

15 m/s (see Fig. 4(b)).
iTurbulence levels are 0.016% at 12 m/s and increase gradually with flow speed to 0.031% at 57 m/s.35
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is smaller, and it produces flow uniformities and turbulence intensities similar to those of the

tunnel at the Delft University of Technology.

IV. CUP ANEMOMETER CALIBRATION

The characterization of the open test section has been completed using measurements with

a calibrated cup anemometer. Having defined the uniform test section, the calibration procedure

of the cup anemometer was carried out applying the standard IEC 61400–12-1 and procedures

detailed in Refs. 30 and 31. In these experiments, the following instruments were used: a cup

anemometer calibrated in the Wind Tunnel of Deutsche Wind Guard, Varel, Germany, four

National Physical Laboratory 8 mm pitot tubes calibrated under laboratory accreditation require-

ments of the United Kingdom Accreditation Service (UKAS), four Setra C239 differential pres-

sure transducers calibrated by NIST RPT 1500129433, and a NI compactDAQ-9172 chassis

with a Digital I/O Module NI 9401 and Analog Input Modules NI 9215. The signals from the

pitot tubes and cup anemometer are sampled at 5 kHz during 60 s at every position of the

defined working grid. The cup anemometer was located at y¼ 0 and z¼ 0 and the four pitot

tubes at y¼ 0.4 m, z¼ 0.4 m; y¼�0.4 m, z¼ 0.4 m; y¼ 0.4 m, z¼�0.4 m; and y¼�0.4 m,

z¼�0.4 m (see Figs. 7 and 8).

Figure 9 shows the averaged measured velocity with the four pitot tubes with the cup ane-

mometer located in the centre as illustrated in Figure 8. The flow velocities measured with the

cup anemometer and the averaged measured velocities with the four pitot tubes without the

cup anemometer are also included. Figure 9(a) corresponds to measurements performed with-

out the false ceiling and Figure 9(b) to measurements with the ceiling. The comparison

between Figures 9(a) and 9(b) shows that a better flow distribution is obtained with the false

ceiling (i.e., the three values of the flow velocity are more coincident). Table III shows the rel-

ative errors between the averaged speeds measured with the pitot tubes and average speeds

measured with the calibrated cup anemometer. The differences between the measurements of

the pitot tubes without and with the cup anemometer placed in the working section are also

included.

TABLE III. Relative errors between the averaged speeds measured with the pitot tubes and average speeds measured with

the calibrated cup anemometer and pitot tubes with the cup anemometer placed in the working section.

Pitot tube (m/s)

Pitot tube þ Cup anem. Cup anem.

E % E %

Without ceiling

5.41 0.34 1.14

7.32 0.36 0.86

9.23 0.28 0.72

11.17 0.08 0.71

13.06 0.27 1.14

14.98 0.07 1.74

16.89 0.09 1.71

With ceiling

5.47 0.23 0.79

7.40 0.23 0.47

9.33 0.24 0.36

11.27 0.21 0.36

13.20 0.25 0.24

15.13 0.30 0.32

17.11 0.13 0.16
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FIG. 7. Sketch of the positions of the pitot tubes and the cup anemometer. Dimensions are in millimeters.

FIG. 8. The cup anemometer at the central position.
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Finally, the calibration results of the cup anemometer with the false ceiling are

explained. The test conditions were as follows: wind tunnel exit area¼ 2.25 m2; anemometer

frontal area¼ 0.022 m2, diameter of the mounting bar¼ 28 mm, blockage ratio¼ 0.01, tem-

perature ¼ 25.09 6 0.1 �C, atmospheric pressure¼ 1005 hPa 6 1.3 hPa, and relative air

FIG. 9. Mean velocities at different positions from the de nozzle (x-axis). Blue lines: average velocities with 4 pitot tubes

with the cup anemometer located at the center of the working section. Red lines: Measurements of the cup anemometer.

Green circles: average of the measurements of the 4 pitot tubes without the cup anemometer.

FIG. 10. Average speeds measured with the cup anemometer (CA), average speeds of the pitot tubes (PT), and linear fit

obtained in the 4-Winds OJWT [Slope¼ 0.6242(m/s)/(1/s); Offset¼ 0.297(m/s)].
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humidity¼ 38% 6 1%. The best linear fit of the anemometer response was found when the

cup anemometer was positioned at x¼ 1 m from the nozzle exit. The line fit obtained was

y¼ 0.6242x þ 0.297 (see Figure 10).

Table IV shows the cup anemometer output signal (1/s), the average speeds based on the

linear fit of the certificate calibration [Slope¼ 0.6245 (m/s)/(1/s); Offset¼ 0.194 (m/s)], the tun-

nel speed averaged between the 4 pitot tubes located at the corners of the uniform test section,

and relative errors between the averaged speeds measured with the pitot tubes and average

speeds measured with the calibrated cup anemometer. The measurements were performed in a

single experiment increasing the air speed from about 5 m/s to 17 m/s (measurements 1 to 7)

and then decreasing the air speed down to 5 m/s (measurements 8 to 13). It can be seen that the

relative errors are less than 1.5%.

V. CONCLUSIONS

Design criteria and layout options for an open jet wind tunnel have been discussed, and the

performance characteristics of the facility have been shown in detail. The final design of the

open jet tunnel is original, and it allows a good performance at a relatively low cost. The shape

of the nozzle is not conventional, but flow shows appropriate characteristics in a central section

of the jet with a cross section of 0.8 m� 0.8 m and distances from the jet exit from 1 m to 2 m.

The characteristics of the tunnel show that it can be operated at constant average velocities and

relatively low turbulence intensities. The analysis of the velocity signal, measured with a hot

wire probe, indicates that the measured power spectrum has similar characteristics to those of

the atmospheric turbulence. Simultaneous flow measurements with a calibrated cup anemometer

and with pitot tubes distributed within the test section show that the tunnel can be used to test

small scale wind turbines and for calibration purposes.
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22Y. A. Çengel and J. M. Cimbala, Fluid Mechanics Fundamentals and Applications (McGraw-Hill, NY, 2006), p. 185.
23D. W. Green and R. H. Perry, Perry’s Chemical Engineers’ Handbook (McGraw-Hill Education, Europe, NY, 2007).
24R. Mehta and P. Bradshaw, “Design rules for small low speed wind tunnels,” Aeronaut. J. R. Aeronaut. Soc. 83, 443–449

(1979).
25P. D. Welch, “The use of Fast Fourier Transform of the estimation of the power spectra: A method based on time averag-

ing over short, modified periodograms,” IEEE Trans. Audio Electroacoust. 15, 70 (1967).
26A. G. Davenport, “The spectrum of horizontal gustiness near the ground in high winds,” Q. J. R. Meteorol. Soc. 87, 194

(1961).
27G. I. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London, Ser. A 164, 476–490 (1938).
28R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic Publishers, Dordrecht-Netherlands,

1988), ISBN: 90-277-2768-6.
29T. P. Chong, P. F. Joseph, and P. O. A. L. Davies, “Design and performance of an open jet wind tunnel for aero-acoustic

measurement,” Appl. Acoust. 70, 605 (2009).
30Oldenburg University, private communication (2011).
31Deutsche Wind Guard, private communication (2013).
32N. Ahmed and N. Findanis, “Wind tunnel ‘Concept of Proof’ investigations in the development of novel fluid mechanical

methodologies and devices,” in Wind Tunnels and Experimental Fluid Dynamics Research, edited by J. C. Lerner
(InTech, 2011), p. 135.

33S. Pindado, J. Cubas, and A. Sanz-Andr�es, Sci. World J. 2013, 197325.

033302-13 Tourn et al. J. Renewable Sustainable Energy 9, 033302 (2017)

http://www.orientasi.com
http://dx.doi.org/10.1016/j.renene.2014.01.020
http://dx.doi.org/10.1016/j.proeng.2012.10.117
http://dx.doi.org/10.1121/1.2932643
http://dx.doi.org/10.1016/j.renene.2014.07.049
http://dx.doi.org/10.1115/1.4000499
http://dx.doi.org/10.1016/j.scient.2011.12.011
http://dx.doi.org/10.1016/0167-6105(85)90099-6
http://dx.doi.org/10.1016/0167-6105(85)90099-6
http://dx.doi.org/10.5772/54088
http://dx.doi.org/10.1016/j.renene.2009.07.025
http://dx.doi.org/10.1017/S0001924000031985
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1002/qj.49708737208
http://dx.doi.org/10.1098/rspa.1938.0032
http://dx.doi.org/10.1016/j.apacoust.2008.06.011
http://dx.doi.org/10.1155/2013/197325


34J. Meseguer, A. Sanz-Andr�es, S. Franchini, and S. Pindado, in Proceedings of the 80 Congreso Iberoamericano De
Ingenier�ıa Mec�anica Instalaciones de Aerodin�amica Experimental para Ingenier�ıa Civil de la Universidad Polit�ecnica de
Madrid, Cusco, Per�u, 23–25 Octubre 2007, c�odigo 112.

35M. C. Remillieux, E. D. Crede, H. E. Camargo, R. A. Burdisso, W. J. Devenport, M. Rasnick, P. Van Seeters, and A.
Chou, “Calibration and demonstration of the New Virginia Tech Anechoic wind tunnel,” AIAA 2008-2911, 2008.

033302-14 Tourn et al. J. Renewable Sustainable Energy 9, 033302 (2017)


