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Comparison of linear and non-linear monotonicity-based shape
reconstruction using exact matrix characterizations

Henrik Garde∗

Department of Applied Mathematics and Computer Science, Technical University of Denmark,
2800 Kgs. Lyngby, Denmark

(March 2016)

Detecting inhomogeneities in the electrical conductivity is a special case of the inverse problem in
electrical impedance tomography, that leads to fast direct reconstruction methods. One such method
can, under reasonable assumptions, exactly characterize the inhomogeneities based on monotonicity
properties of either the Neumann-to-Dirichlet map (non-linear) or its Fréchet derivative (linear).
We give a comparison of the non-linear and linear approach in the presence of measurement noise,
and show numerically that the two methods give essentially the same reconstruction in the unit disk
domain. For a fair comparison, exact matrix characterizations are used when probing the monotonicity
relations to avoid errors from numerical solution to PDEs and numerical integration. Using a special
factorization of the Neumann-to-Dirichlet map also makes the non-linear method as fast as the linear
method in the unit disk geometry.

Keywords: Electrical impedance tomography; monotonicity method; inverse boundary value
problem; ill-posed problem; direct reconstruction

AMS Subject Classifications: 65N21; 35R30; 35Q60; 35R05

1. Introduction

In electrical impedance tomography (EIT) the internal electrical conductivity γ inside
a bounded Lipschitz domain, which in this paper is the unit disk domain D in R2, is
determined from boundary current-voltage measurements recorded through surfaces elec-
trodes. The underlying mathematical problem, also known as the Calderón problem [1], is
an inverse problem. A common mathematical formulation of EIT is the continuum model

∇ · (γ∇u) = 0 in D, ν · γ∇u = g on ∂D,
∫
∂D
u ds = 0, (1.1)

where u is the internal electrical potential, ν is an outwards pointing unit normal, and
g is the applied current density. The latter condition in (1.1) is a grounding of the total
electrical potential at the boundary. If γ ∈ L∞+ (D) and g ∈ H−1/2

� (∂D) with

L∞+ (D) ≡ {w ∈ L∞(D) : ess infw > 0} ,

H−1/2
� (∂D) ≡

{
w ∈ H−1/2(∂D) : 〈w, 1〉H−1/2,H1/2 = 0

}
,
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then standard elliptic theory gives rise to a unique solution u ∈ H1
� (D) to (1.1), where the

�-symbol implies functions with zero mean on the boundary

H1/2
� (∂D) ≡

{
w ∈ H1/2(∂D) :

∫
∂D
w ds = 0

}
,

H1
� (D) ≡

{
w ∈ H1(∂D) : w|∂D ∈ H1/2

� (∂D)
}
.

The forward problem of EIT is the map R from the conductivity γ to the Neumann-to-
Dirichlet (ND) map R(γ) : ν · γ∇u 7→ u|∂D. The ND map relates any applied current
to the corresponding boundary potential. In general R(γ) is a map from H

−1/2
� (∂D) to

H
1/2
� (∂D), however in this paper it suffices to restrict it to a map in L(L2

�(∂D)), the space
of linear and bounded operators from L2

�(∂D) to itself, where

L2
�(∂D) ≡

{
w ∈ L2(∂D) :

∫
∂D
w ds = 0

}
.

In this sense R(γ) is both compact and self-adjoint in the usual L2(∂D)-inner product,
which will be denoted by 〈·, ·〉. The inverse problem of EIT is from knowledge of R(γ) to
reconstruct γ. Uniqueness has been shown with various regularity assumptions depending
on the dimension d [2–6] and for d = 2 there is uniqueness for general L∞+ -conductivities
when the domain is simply connected [7].

The inverse problem of EIT is severely ill-posed and with reasonable assumptions it
is only possible to get conditional logarithmic stability [8, 9]. It is therefore not al-
ways of interest to perform a full reconstruction of γ, but rather reconstruct inclusi-
ons/inhomogeneities from a known or uninteresting background, which is an easier prob-
lem. Here it is assumed that

γ ≡ 1 + κχD, (1.2)

where χD is a characteristic function over the sought inclusion D with D ⊂ D, on which
the background conductivity 1 is perturbed by κ ∈ L∞+ (D). Direct reconstruction methods
for such inclusion detection are prominently the factorization method [10–12] and the
enclosure method [13, 14]. In this paper we investigate the more recent monotonicity
method [15–19] that makes use of a monotonicity property of γ 7→ R(γ). The basic idea
of the method is to determine whether or not a chosen ball B is inside the inclusion D.
For instance in the simple case γ ≡ 1 + χD, then

B ⊆ D implies R(1 + χB)−R(1 + χD) ≥ 0, (1.3)

where the inequality is in terms of positive semi-definiteness. Checking the positive semi-
definiteness for all balls in D gives an upper bound on D, and in [15] it was shown that it
completely characterizes D if D has connected complement.

The map γ 7→ R(γ) is non-linear and thus the evaluation of R(1 +χB) is costly as each
evaluation requires solving (1.1) for several Neumann conditions. In [15] it was shown that,
without loss of shape information, the non-linear part could be replaced by a linearization

B ⊆ D implies R(1) + 1
2R
′(1)χB −R(1 + χD) ≥ 0. (1.4)

Using the Fréchet derivative is attractive as it only requires one evaluation of the derivative
which can often be determined beforehand.
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In this paper we compare reconstructions based on the non-linear approach (1.3) and
the linear approach (1.4), which in the noiseless case solve the exact inverse problem
of reconstructing D. However, it is still unknown if the two methods are equally noise
robust. In [17] resolution bounds for stable reconstruction are determined, which for the
linear method are more pessimistic, though the bounds are not shown to be optimal. With
various levels of noise added to the measurements, the numerical examples in section 4
surprisingly show that there is essentially no difference in the reconstructions based on the
non-linear and the linear approach for the chosen examples.

For a fair comparison of the non-linear and linear method, exact matrix representations
are determined for R(1 + βχB) and R′(1)χB for any ball B in D, in order to avoid errors
from numerical solution to PDEs and numerical integration. In this specific geometry the
non-linear method furthermore becomes as fast as the linear method, by use of an explicit
factorization derived from Möbius transformations.

More precise forward models for EIT exist for practical measurements, such as the
complete electrode model (CEM). It was recently proved in [16] that the monotonicity
method can be regularized against noise and generalizes to various approximations of the
continuum model, including the CEM. By simply replacing the ND map with the CEM
counterpart gives a reconstruction that is interlaced between two reconstructions from
the continuum model; one without regularization and one with regularization. Thus, in
this sense, the comparison made here also directly applies to the CEM variant of the
monotonicity method.

The contents of this paper are organized as follows: in section 2 the monotonicity method
is outlined and Möbius transformations are introduced to relate non-concentric ball inclu-
sions to concentric ones. In section 3 the exact matrix representations of the ND map and
its Fréchet derivatives are derived, and their matrix structures are elaborated on. Imple-
mentation details and numerical examples are given in section 4, and finally we conclude
in section 5.

2. Monotonicity-based shape reconstruction

In this section we shortly outline the regularized monotonicity method in the linear and
non-linear case. For κ ∈ L∞+ (D) and open set D ⊂ D, define the conductivity as in (1.2)
where χD is a characteristic function on D. We denote for β > 0 the monotonicity-based
reconstructions by the following sets of open balls:

T ≡ {B ⊆ D open ball : R(1 + βχB)−R(γ) ≥ 0} ,
T ′ ≡ {B ⊆ D open ball : R(1) + βR′(1)χB −R(γ) ≥ 0} ,

where ∪T and ∪T ′ are the unions of the above ball-collections, which will be directly
compared to the inclusion D. Here the Fréchet derivative R′(1) of γ 7→ R(γ) evaluated at
1 and in direction η ∈ L∞(D) is given by

〈R′(1)[η]f, g〉 = −
∫
D
η∇wf · ∇wg dx, (2.1)

where wf and wg are solutions to (1.1) with conductivity 1 and Neumann condition f and
g, respectively.

Using the formulation in [16, Section 2.2], if we assume that D ⊆ D and D has connected
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complement (no holes in the inclusions), then

D ⊆ ∪T ⊆ D if 0 < β ≤ ess infκ, (2.2)

D ⊆ ∪T ′ ⊆ D if 0 < β ≤ ess inf
(

κ

1 + κ

)
. (2.3)

Remark 2.1 Since κ ∈ L∞+ (D) then ess infκ > 0, which ensures that the bounds presented
in [15] known as the inner and outer support of κ are given by D and D, respectively.
Furthermore, it allows the use of a single β-value for the test inclusions (rather than a
union for all β-values) and avoids any further regularity assumptions on κ. See [16] for
details on the derivation in this setting, and also in particular Examples 4.2 and 4.4 in
[15].

Assuming prior knowledge of a lower bound on the perturbation 0 < βL ≤ κ, and writing

κ

1 + κ
= 1− 1

1 + κ
,

then an admissible choice of the β-value in (2.2) and (2.3) can be guaranteed by

βnonlin ≡ βL, βlin ≡ 1− 1
1 + βL = βL

1 + βL . (2.4)

The main advantage of the linear method is that R′(1) can be evaluated cheaply and prior
to reconstruction. While the R(1 + βχB)-maps can also be evaluated prior to reconstruc-
tion it requires knowledge of the β-value beforehand, and different β-values require new
evaluations.

Given a compact noise perturbation Eδ ∈ L(L2
�(∂D)) with ‖Eδ‖L(L2

�(∂D)) ≤ δ, then the
noisy datum Rδ(γ) is modelled with additive noise

Rδ(γ) ≡ R(γ) + Eδ. (2.5)

For regularization parameter choice α(δ) ≥ δ with limδ→0 α(δ) = 0 it was proved in [16,
Theorem 1] that the following regularized reconstructions give upper bounds ∪Tα and ∪T ′α
of D, and that they converge as the noise level tends to zero, δ → 0:

Tα ≡
{
B ⊆ D open ball : R(1 + βχB) + α Id−Rδ(γ) ≥ 0

}
, (2.6)

T ′α ≡
{
B ⊆ D open ball : R(1) + βR′(1)χB + α Id−Rδ(γ) ≥ 0

}
. (2.7)

The background conductivity of 1 is merely for ease of presentation, and other (constant)
background conductivities can be used with the identity

R(cγ) = 1
c
R(γ), c > 0.

2.1. Möbius transformations and additional notation

To get a precise and fast evaluation of R(1 + βχB), we use Möbius transformations to
move non-concentric balls BC,R to concentric balls B0,r, and abuse that the spectrum of
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R(1+βχB0,r) is known. Note that this section is largely based on [20]. To shorten notation
we will use the abbreviation

γC,R ≡ 1 + βχBC,R ,

where BC,R is an open ball with centre C and radius R, and we will throughout the paper
identify (x1, x2) ∈ R2 with x1 + ix2 ∈ C. Denote by Ma, for any a ∈ D, the Möbius
transformation

Ma(x) ≡ x− a
ax− 1 , x ∈ D.

Here Ma : D → D and ∂D → ∂D, and is furthermore an involution i.e. its own inverse
M−1
a = Ma. Let a ≡ ρeiζ for 0 ≤ ρ < 1 and ζ ∈ R. For 0 < r < 1 then Ma(B0,r) = BC,R

with

C = ρ(r2 − 1)
ρ2r2 − 1 e

iζ , R = r(ρ2 − 1)
ρ2r2 − 1 .

Furthermore, for C = ceiζ with 0 ≤ c < 1 and 0 < R < 1− c, then there is a unique a ∈ D
such that Ma(BC,R) = B0,r where r and a satisfies

r = 1 +R2 − c2 −
√

((1−R)2 − c2)((1 +R)2 − c2)
2R , a = C

1−Rr .

The above notation for the relation between a non-concentric ball BC,R and a concentric
ball B0,r will be used in the remainder of the paper, and it is also illustrated in figure 2.1.

Figure 2.1. Illustration of Ma acting on balls B0,r and BC,R.

For a function f : D→ C (or ∂D→ C) we defineMaf ≡ f ◦Ma, i.e. the transformation
Ma applying the change of variables Ma. The Jacobian determinant for the change of
variables on D is

Ja(x) ≡
(

1− ρ2

|ax− 1|2

)2

, x ∈ D.

The Jacobian determinant for the integral on ∂D is J1/2
a |∂D, and there is the following

factorization of R(γC,R) (cf. [20, Appendix B])

R(γC,R) = PMaR(γ0,r)J1/2
a Ma. (2.8)
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Here P : L2(∂D) → L2
�(∂D) is the orthogonal projection given by Pf ≡ f − 1

2π
∫
∂D f ds,

and J
1/2
a : L2(∂D)→ L2(∂D) is the multiplication operator f 7→ J

1/2
a |∂Df .

The operator R(γ0,r) for a concentric ball has the Fourier basis

fn(θ) ≡ 1√
2π
einθ, n ∈ Z \ {0}, (2.9)

as eigenfunctions with eigenvalues

λn ≡
2 + β(1− r2|n|)
2 + β(1 + r2|n|)

1
|n|
, n ∈ Z \ {0}. (2.10)

So the factorization in (2.8) implies that the β-dependence of R(γC,R) is given explicitly
through a diagonalization of R(γ0,r) with the eigenvalues (2.10). Here PMa and J1/2

a Ma

only depend on the transformation parameter a, and can be determined prior to recon-
struction, thus making the non-linear and linear methods have identical computational
complexity.

In order to determine matrix representations of PMa and J
1/2
a Ma in the Fourier basis

it is relevant to investigate the action of Ma on a trigonometric function. Note in particular
that for f(x) = xn with x = x1 + ix2, then Maf = Ma(x)n = Ma(eiθ)n on ∂D. Utilizing
that Ma maps ∂D to itself:

Ma(einθ) = einψa(θ) = Ma(eiθ)n =
(

eiθ − ρeiζ

ρei(θ−ζ) − 1

)n
, (2.11)

where ψa is the corresponding transformation in the angular variable on ∂D.

Lemma 2.2 The map ψa in (2.11) is given by

ψa(θ) ≡ π + ζ + 2 arctan
(1 + ρ

1− ρ tan
(
θ − ζ

2

))
.

Proof. By standard trigonometric identities it follows that

eiz = 1 + i tan(z/2)
1− i tan(z/2) , z ∈ (−π, π),

thus

ei(π+2 arctan(z)) = −1− iz
1− iz , z ∈ [−∞,∞]. (2.12)

Note that (2.12) is defined on the extended real line, since both sides of the equation
converge to 1 in the limit z → ±∞.

Since Ma(eiθ) = eiζMρ(ei(θ−ζ)) we get

ψa(θ) = ζ + ψρ(θ − ζ), (2.13)

so it is sufficient to consider ζ = 0. Now assume that ψρ(θ) can be written on the form

6



(2.12), then

eiψρ(θ) = eiθ − ρ
ρeiθ − 1 = −1− iz

1− iz ⇒ z = (1 + ρ)(1− eiθ)
(1− ρ)(1 + eiθ) i = 1 + ρ

1− ρ tan(θ/2). (2.14)

Since z ∈ [−∞,∞] in (2.14) then the assumption that ψρ(θ) is of the form (2.12) is valid.
Now combining (2.14) with (2.12) and (2.13) yields the desired result.

3. Matrix structures and characterizations

For a general real-valued γ ∈ L∞+ (D) it holds that R(γ)f = R(γ)f , which is a consequence
of R(γ) being linear and u in (1.1) being real-valued when γ and the Neumann condition
are real-valued. Defining {fn}n∈Z\{0} as the usual Fourier basis for L2

�(∂D) as in (2.9) gives
the identity R(γ)fn = R(γ)f−n, i.e.

An,m ≡ 〈R(γ)fm, fn〉 = 〈R(γ)f−m, f−n〉 = A−n,−m, n,m ∈ Z \ {0}. (3.1)

So by arranging the row and column indices in the matrix representation A from negative
(top left) to positive (bottom right) gives a centrohermitian matrix [21], meaning that
there is symmetry (similar to a Hermitian matrix) across the centre of the matrix. The
centrohermitian property can be written as in (3.1) for that particular choice of indices
(which will be used throughout this paper), or in general as

A = JAJ ,

where J is the exchange matrix which has zeroes in all entries except on the anti-diagonal
(from bottom left to top right) where its entries equal 1. Since R(γ) is self-adjoint also
makes A Hermitian in addition to being centrohermitian.

In [20, Appendix B] an explicit matrix representation of R(γC,R) was determined by the
use of basis functions orthonormal in weighted L2-inner products. This matrix represen-
tation cannot be used for the monotonicity method as the basis functions depend on the
transformation Ma, and here we need a fixed basis, namely the same used for the datum
R(γ). A common choice of orthonormal basis for the unit disk is the Fourier basis (2.9) for
L2
�(∂D), which will also be used here. Now a matrix representation of PMa and J

1/2
a Ma

from (2.8) can be found in terms of the Fourier basis.

Theorem 3.1 Recall that a = ρeiζ and define the matrix Ha by

(Ha)n,m ≡ 〈fm,Mafn〉, n,m ∈ Z \ {0}, (3.2)

then Ha has the following properties (note in particular that (iv)-(vii) explicitly defines the
entire matrix):

(i) Ha is a matrix representation of J1/2
a Ma.

(ii) (Ha)∗ is a matrix representation of PMa.
(iii) Ha is involutory, i.e. Ha = H−1

a .
(iv) (Ha)n,m = ei(m−n)ζ(Hρ)n,m, ∀n,m.
(v) Ha is centrohermitian, i.e. (Ha)n,m = (Ha)−n,−m, ∀n,m.

(vi) Ha is block diagonal with (Ha)n,m = 0 for n < 0,m > 0 and for n > 0,m < 0.
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(vii) There is the following formula for n > 0,m > 0:

(Hρ)n,m =
n∑

k=max{n−m,0}
(−1)n−k

(
k +m− 1
k +m− n

)(
n

k

)
ρ2k+m−n. (3.3)

Proof. Since J1/2
a is the Jacobian determinant for the change of variables Ma on ∂D, and

that Ma =M−1
a , we get

(Ha)n,m = 〈J1/2
a Mafm, fn〉,

which shows (i). (iii) follows directly from (i) as J1/2
a Ma is an involution on L2

�(∂D) (cf. [20,
Proposition 2.2]). Furthermore, as P is self-adjoint in the L2(∂D)-inner product (as it is
an orthogonal projection), then

〈J1/2
a Maf, g〉 = 〈f,Mag〉 = 〈Pf,Mag〉 = 〈f, PMag〉, ∀f, g ∈ L2

�(∂D),

i.e. the adjoint of PMa (in terms of maps from L2
�(∂D) to itself) is J1/2

a Ma, which shows
(ii).

Proof of (iv) and (v): from Lemma 2.2 and (2.13) where ψρ is 2π-periodic, then a change
of variable from θ to θ + ζ gives

〈fm,Mafn〉 = 1
2π

∫ 2π

0
ei(mθ−nζ−nψρ(θ−ζ)) dθ = 1

2π

∫ 2π

0
ei(mθ+mζ−nζ−nψρ(θ)) dθ

= ei(m−n)ζ 1
2π

∫ 2π

0
ei(mθ−nψρ(θ)) dθ = ei(m−n)ζ〈fm,Mρfn〉.

This shows (iv). Furthermore,

〈fm,Mafn〉 = 1
2π

∫ 2π

0
ei(mθ−nψa(θ)) dθ = 1

2π

∫ 2π

0
e−i(mθ−nψa(θ)) dθ = 〈f−m,Maf−n〉.

Proof of (vi): first notice the identity

Mρfn = 1√
2π

(
eiθ − ρ
ρeiθ − 1

)n
= 1√

2π

(
ρe−iθ − 1
e−iθ − ρ

)−n
= 1√

2π

(
eiθ − ρ
ρeiθ − 1

)−n

= 1√
2π

(eiθ − ρ)−n(ρeiθ − 1)n.

Assume n > 0, then using the binomial theorem for both (eiθ−ρ)−n and (ρeiθ−1)n (which
for (eiθ− ρ)−n converges as ρ < 1) and using that the negative binomial coefficient can be
written as

(
−n
k′

)
= (−1)k′

(
n+ k′ − 1

k′

)
,
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gives

Mρfn = 1√
2π

[ ∞∑
k′=0

(−1)k′
(
n+ k′ − 1

k′

)
(−ρ)k′e−i(k′+n)θ

]
·
[

n∑
k=0

(
n

k

)
(−1)n−kρkeikθ

]

= 1√
2π

∞∑
k′=0

n∑
k=0

(−1)n−k
(
n+ k′ − 1

k′

)(
n

k

)
ρk+k′ei(k−k

′−n)θ, n > 0.

Thus

〈fm,Mρfn〉 = 1
2π

∞∑
k′=0

n∑
k=0

(−1)n−k
(
n+ k′ − 1

k′

)(
n

k

)
ρk+k′

∫ 2π

0
ei(m+k−k′−n)θ dθ. (3.4)

If m < 0 and n > 0 then m + k − k′ − n < 0 for all k = 0, 1, . . . , n and k′ ≥ 0 so∫ 2π
0 ei(m+k−k′−n)θ dθ = 0, i.e.

〈fm,Mρfn〉 = 0, m < 0, n > 0. (3.5)

Now (vi) follows from (3.5), (iv), and (v).
Proof of (vii): Assume n > 0 and m > 0. We have

1
2π

∫ 2π

0
ei(m+k−k′−n)θ dθ = δm+k−k′−n,0,

so to find the non-zero coefficients in (3.4) we need to determine when m+ k− k′−n = 0,
i.e. set k′ = m + k − n and find m + k − n ≥ 0 (as we have k′ ≥ 0). Since k ≥ 0 we need
k′ = m+ k − n and k ≥ max{n−m, 0}. Thus (3.4) becomes

〈fm,Mρfn〉 =
n∑

k=max{n−m,0}
(−1)n−k

(
k +m− 1
k +m− n

)(
n

k

)
ρ2k+m−n, n > 0,m > 0.
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(c) |a| = 0.8

Figure 3.1. Plot of absolute value |(Ha)n,m| for |n|, |m| = 1, 2, . . . , 100.

Figure 3.1 shows the structure of the Ha-matrices for different choices of a. It is evident
that as |a| → 1, and thereby Ma maps B0,r to a ball BC,R close to the boundary, the
representation Ha becomes less sparse in the Fourier basis.
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If we denote the matrix representation of R(γC.R) by

An,m ≡ 〈R(γC,R)fm, fn〉,

and for R(γ0,r) the matrix representation is a diagonal matrix D with Dn,n ≡ λn from
(2.10), then from Theorem 3.1 and (2.8) we have

A = (Ha)∗DHa. (3.6)

Due to the centrohermitian and block diagonal properties of both Ha and D they have
the block structure

Ha =
(
JH+

a J 0
0 H+

a

)
, D =

(
JD+J 0

0 D+

)
, (3.7)

where J is the previously defined exchange matrix, H+
a is the lower right part of Ha i.e.

for n > 0,m > 0, and similarly D+ is the lower right part of D. Therefore we get the
following structure for A:

A =
(
J (H+

a )∗D+H+
a J 0

0 (H+
a )∗D+H+

a

)
. (3.8)

That the matrix representation of R(γC,R), for any ball inclusion BC,R, is a block diagonal
matrix of the form (3.8) is a non-trivial result of the factorization (3.6). For a general
γ ∈ L∞+ (D) the matrix representation of R(γ) is not block diagonal. Furthermore, it also
means that we only need to evaluate and save the H+

a -part for assembling A.
An explicit formula can also be obtained for the Fréchet derivative R′(1) on ball inclu-

sions.

Proposition 3.2 Denote by A′ the matrix representation of R′(1)[χBC,R ], i.e.

A′n,m ≡ 〈R′(1)[χBC,R ]fm, fn〉, n,m ∈ Z \ {0}, (3.9)

then
(i) A′ is Hermitian, i.e. A′ = (A′)∗.

(ii) A′ is centrohermitian, i.e. A′n,m = A′−n,−m.
(iii) A′ is block diagonal with A′n,m = 0 for n < 0,m > 0 and for n > 0,m < 0.
(iv) There is the following formula for n > 0,m > 0, recalling that C = ceiζ :

A′n,m = −ei(m−n)ζ
min{n,m}−1∑

k=0

1
k + 1

(
m− 1
k

)(
n− 1
k

)
cm+n−2k−2R2k+2. (3.10)

Proof. (i) and (ii) follows directly from (2.1) and that wg = wg (similar argument as in
the beginning of section 3), and the proof of (iii) can be done in an analogous way to the
proof of Theorem 3.1. These three properties can also be derived from the fact that the
matrix representations of both R(γC,R) and R(1) have the same three properties.

Now proving (iv). Let n > 0,m > 0 and for x ∈ D write x ≡ x1 + ix2 for real-valued x1
and x2. Then the solution to (1.1) with γ ≡ 1 and Neumann boundary condition fn from
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(2.9) is

wn(x) ≡ 1
n
√

2π
xn, n > 0.

From (2.1) we get

A′n,m = −
∫
BC,R

∇wm · ∇wn dx = − 1
π

∫
BC,R

xm−1xn−1 dx.

Applying a change of variables from x to x+C and writing x = ηeiθ in polar coordinates
yields

A′n,m = − 1
π

∫
B0,R

(x+ C)m−1(x+ C)n−1
dx

= − 1
π

∫ R

0

∫ 2π

0
(ηeiθ + C)m−1(ηe−iθ + C)n−1η dθ dη.

Now using the binomial theorem for (ηeiθ + C)m−1 and (ηe−iθ + C)n−1

A′n,m = − 1
π

m−1∑
k=0

n−1∑
k′=0

(
m− 1
k

)(
n− 1
k′

)
Cm−k−1C

n−k′−1
∫ R

0
ηk+k′+1 dη

∫ 2π

0
ei(k−k

′)θ dθ.

Here the term
∫ 2π

0 ei(k−k
′)θ dθ is only non-zero for k′ = k, which can only hold for k up to

min{n,m} − 1. Also recalling that C = ceiζ gives the expression in (3.10)

A′n,m = −2
min{n,m}−1∑

k=0

(
m− 1
k

)(
n− 1
k

)
Cm−k−1C

n−k−1
∫ R

0
η2k+1 dη

= −ei(m−n)ζ
min{n,m}−1∑

k=0

1
k + 1

(
m− 1
k

)(
n− 1
k

)
cm+n−2k−2R2k+2.

Analogous to (3.7) the matrix structure of A′ is

A′ =
(
JA′+J 0

0 A′+

)
,

thus we only need to evaluate the lower right part A′+, and as A′ is Hermitian it is sufficient
to evaluate the upper triangular part of A′+.

4. Implementation details and numerical results

In this section we will shortly discuss the implementation details for the algorithms (2.6)
and (2.7), and apply the linear and non-linear approach to the three examples in fig-
ure 4.1. These three examples are difficult scenarios for EIT reconstruction. Example A
will demonstrate if the algorithms can reconstruct very non-convex shapes, in particular
where the non-convex part is oriented away from the closest boundary. Example B will
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test if the algorithms can separate relatively small convex inclusions. Since the monotonic-
ity method cannot detect holes in inclusions [15], the point of Example C will be to test
whether one wide inclusion can partially shield another inclusion, potentially making it
difficult to separate the two in the presence of noise. The β-values for the reconstructions
are chosen as in (2.4) which for the examples in figure 4.1 are βnonlin = 4 and βlin = 0.8.
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(a) Example A
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(b) Example B
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(c) Example C

Figure 4.1. Numerical phantoms.

For the numerical implementation we will use a regular hexagonal tiling, where each
hexagon has a centre C and radius R such that its corners are placed on the boundary of the
ball BC,R. Here the resolution is controlled by the radius R which is kept fixed; it is chosen
as R = 0.025 for the given examples. For the monotonicity-based reconstructions (2.6)
and (2.7) a hexagon is included in the reconstruction if the corresponding ball BC,R yields
a positive semi-definite operator in the monotonicity test. The positive semi-definiteness
is determined from the sign of the smallest eigenvalue, which are real-valued as all the
involved operators are self-adjoint.

There can be hexagons inside the inclusions that are not included in the reconstruction
when the slightly larger balls intersect the inclusion boundaries. There will always be issues
near the boundaries when using a finite discretization. Since the main focus of this paper
is the comparison of the two methods then using a regular tiling, rather than overlapping
balls, makes the plots visually easier to read and compare.

In practice we can only use finite dimensional approximations to the matrix representa-
tions in (3.6) and (3.9), so we have |n|, |m| = 1, 2, . . . , N which gives 2N × 2N matrices.
For any linear compact operator F : L2

�(∂D)→ L2
�(∂D) the corresponding N -term matrix

approximation is

FN
n,m ≡ 〈Ffm, fn〉, |n|, |m| = 1, 2, . . . , N.

As {fn}n∈Z\{0} is an orthonormal basis for L2
�(∂D) then FN is a matrix representation of

PNFPN , where PN is the orthogonal projection onto span{fn}|n|=1,2,...,N . It is straightfor-
ward to show that the eigenvalues of FN and PNFPN coincide, and from spectral theory
of compact operators (e.g. [22, 23]) it is well known that the spectrum of PNFPN converge
to that of F as N →∞.

In the numerical examples below we use N = 16 which implies 32 orthonormal current
patterns; more than 32 current patterns for a 2D reconstruction is often considered exces-
sive. Since the factorization (3.6) holds in terms of infinite matrices, we use a much larger
Ñ > N to generate the Ha-matrices for which we according to (3.8) only construct the
Ñ × Ñ matrices H+

a . Afterwards we use (3.8) to construct the larger 2Ñ × 2Ñ matrix
AÑ and extract the central 2N × 2N matrix AN to use for the monotonicity tests in the
non-linear case. For the following examples Ñ = 200 was used, and that sufficient accuracy
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is attained is checked through the involution property of Ha; namely how large a central
2N × 2N part of HÑ

a H
Ñ
a that equals an identity matrix.

From Theorem 3.1.(vii) it is observed that (Hρ)n,m is a polynomial in ρ with at most m
non-zero terms. The coefficients of the polynomial are independent of a, and can therefore
be precomputed and reused for the evaluation of Ha for each a. Since the coefficients in
the polynomial are binomial coefficients, and that we need to evaluate them up to a high
index Ñ = 200, the summation in (3.3) quickly becomes numerically unstable. For this
purpose the Python library gmpy2 [24] is used, which has a fast implementation for exact
evaluation of binomial coefficients, and has data structures that support much higher
precision (in terms of no. of digits) and is able to accurately evaluate the expressions
in (3.3). Alternatively, a more stable approach which would not require gmpy2 or the
equivalent, is to apply Gauss-Legendre quadrature to the inner products (3.2) with weights
w and sample points θ, which from Lemma 2.2 gives

(Ha)n,m '
(−1)ne−inζ

2π wT exp
[
i

(
mθ − 2n arctan

(1 + ρ

1− ρ tan
[1

2(θ − ζ)
]))]

. (4.1)

It should be noted that using (4.1) is about 30 times slower than (3.3) when the binomial
coefficients are reused, in order to attain the same precision for Ñ = 200.

The involved PDEs to simulate the data R(γ), for the three examples in figure 4.1,
are solved with a finite element method with piecewise affine elements. The applied mesh
is excessively fine (1.3 · 105 nodes) and is aligned with the inclusions, such that we can
expect that only the applied noise and the finite dimensional truncation 2N has significant
influence in the comparison.

The added noise is a matrix Eδ cf. (2.5), which is constructed in the following way: for
each index (n,m) let E1

n,m be a realization from a normal N (0, 1)-distribution, and take
the Hermitian and centrohermitian parts:

E2 ≡ 1
2
[
E1 + (E1)∗

]
, E3 ≡ 1

2
[
E2 + JE2J

]
. (4.2)

If A is the matrix representation of the noiseless datum R(γ), then we scale

E4
n,m ≡ E3

n,mAn,m.

Finally, the noise is scaled to have a specified norm δ in the operator norm

Eδ ≡ δ

‖E4‖
E4.

A different noise realization is used for each noise level δ, however the same noisy data
Rδ(γ) is used for both the linear and non-linear reconstruction. It should be noted that the
measured data Rδ(γ) can in practice be symmetrized to achieve (4.2), which often reduces
the noise level significantly below δ. How much the noise level is reduced completely
depends on the particular noise realization. The way the noise is added in this paper
makes the reconstructions less dependent on whether we were lucky that part of the noise
cancels out. The reconstructions are in this sense a worst-case scenario for a specified noise
level δ.

It was proved in [16, Theorem 1] that the regularization parameter could be chosen as
α = δ, however it is no guarantee for the best choice of regularization parameter. Fur-
thermore, there is also the truncation of the dimension to 2N which implies that slightly
more regularization is required. In [16, Section 5] it was suggested that a good choice of
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regularization parameter in both linear and non-linear cases is

α = −µ inf σ(R(1)−Rδ(γ)), (4.3)

where σ denotes the spectrum of the operators, and µ is a parameter that must be tuned;
typically very close to 1. The values of µ are chosen manually, and all lie in the range
[0.9986, 1.0002].

The reconstruction is fast as it only requires computation of eigenvalues for 2N × 2N
Hermitian matrices, and it is suited for parallel computing as the monotonicity tests for
different balls can be done completely independently. When R = 0.025 and without utiliz-
ing parallel computing, each reconstruction takes an average of 0.22 seconds on a laptop
with an Intel i7 processor with CPU clock rate of 2.4 Ghz.

In the discretized setting

S ≡ {BC,R : (C,R)-hexagon in the discretization},

we denote the reconstructions as Sα ≡ S∩Tα and S′α ≡ S∩T ′α (cf. (2.6) and (2.7)). In this
sense, we can define absolute and relative differences with respect to which balls/hexagons
that are not in common in the linear and non-linear reconstructions. More precisely, if |S|
denotes the number of elements in S (and likewise for the sets below) the absolute and
relative differences are defined as

eabs ≡ |Sα \ S′α|+ |S′α \ Sα|, erel ≡
eabs

|S|
.

From figure 4.2 and 4.3 it is clear that there is hardly any difference in the reconstructions
based on the linear and non-linear methods. This is in accordance with table 4.1, where
for the most part there is a difference of 0–3 hexagons; most of which lead to a smallest
eigenvalue with a magnitude close to machine precision, and can therefore be attributed
to rounding errors.

Example A Example B Example C
δ eabs erel eabs erel eabs erel

0 10 5.432 ·10−3 1 5.432 ·10−4 2 1.086 ·10−3

10−5 3 1.630 ·10−3 2 1.086 ·10−3 3 1.630 ·10−3

10−4 1 5.432 ·10−4 0 0 1 5.432 ·10−4

10−3 2 1.086 ·10−3 0 0 0 0
10−2 2 1.086 ·10−3 2 1.086 ·10−3 1 5.432 ·10−4

Table 4.1. Absolute and relative differences between the linear and non-linear reconstructions for the examples
in figure 4.1 with different levels of noise δ.

It is observed that for 32 current patterns it is difficult to reconstruct non-convex shapes,
in particular the large L-shaped inclusion in Example A where the non-convex part is
pointed away from the closest boundary. For the non-convex inclusion in Example C the
reconstruction is reasonable in the noiseless case, where for increased noise the separation
of the two inclusions is lost. This is a common feature of the monotonicity reconstructions
when one larger inclusion partially shields another.

For Example B there is a reasonable separation of the inclusions even for the highest
noise level, and both shapes and locations are found well in the cases δ = 0, 10−5, 10−4. A
slight positioning error is present in Example B even in the noiseless case, this can some-
times happen when there are multiple inclusions of various sizes placed asymmetrically.
The positioning error as well as shape errors for low noise levels are mainly due to the
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dimensional truncation; these errors can be reduced by either increasing the pixel size (this
affects the size of the balls in the test inclusions) or by increasing the number of current
patterns used.

5. Conclusions

The linear and non-linear algorithms for monotonicity-based shape reconstruction in elec-
trical impedance tomography are compared, and surprisingly found to essentially yield
the same reconstructions both for noiseless and for noisy data. Exact matrix characteri-
zations are derived for the Neumann-to-Dirichlet map and its Fréchet derivative for the
ball inclusions used in the monotonicity tests. These matrix characterizations ensure that
the sources of errors in the reconstructions are limited to the finite dimensional truncation
and the added noise.

It is clear that the monotonicity method performs best for detecting small convex shapes,
and here it is often possible to separate inclusions quite well in the presence of noise. For
non-convex shapes one usually obtain something that resembles a convex approximation
to the shape, either due to noise or the limited number of current patterns.
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Figure 4.2. Monotonicity reconstruction using the linear algorithm for the examples in figure 4.1 with various
levels of noise δ. The smallest eigenvalues are plotted for the hexagons where the inclusions are detected. The
correct targets are outlined with a solid black line.
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Figure 4.3. Monotonicity reconstruction using the non-linear algorithm for the examples in figure 4.1 with various
levels of noise δ. The smallest eigenvalues are plotted for the hexagons where the inclusions are detected. The
correct targets are outlined with a solid black line.
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