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DISTINGUISHABILITY REVISITED: DEPTH DEPENDENT
BOUNDS ON RECONSTRUCTION QUALITY IN ELECTRICAL

IMPEDANCE TOMOGRAPHY∗

HENRIK GARDE† AND KIM KNUDSEN‡

Abstract. The reconstruction problem in electrical impedance tomography is highly ill-posed,
and it is often observed numerically that reconstructions have poor resolution far away from the
measurement boundary but better resolution near the measurement boundary. The observation can
be quantified by the concept of distinguishability of inclusions. This paper provides mathematically
rigorous results supporting the intuition. Indeed, for a model problem lower and upper bounds on
the distinguishability of an inclusion are derived in terms of the boundary data. These bounds
depend explicitly on the distance of the inclusion to the boundary, i.e., the depth of the inclusion.
The results are obtained for disk inclusions in a homogeneous background in the unit disk. The
theoretical bounds are verified numerically using a novel, exact characterization of the forward map
as a tridiagonal matrix.

Key words. electrical impedance tomography, depth dependence, harmonic morphism, eigen-
value bounds, distinguishability
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DOI. 10.1137/16M1072991

1. Introduction. The goal of electrical impedance tomography (EIT) is to
reconstruct the internal electrical conductivity of an object. This is done from voltage
and current boundary measurements through electrodes on the object’s surface. Ap-
plications of EIT include, among others, monitoring patient lung function, geophysics,
and industrial tomography, for instance, for nondestructive imaging of cracks in con-
crete [20, 1, 42, 9, 16, 40, 25, 24]. For a given EIT device with fixed precision and
measurements corrupted by noise it is of course important to have a basic understand-
ing of the quality and reliability of reconstructed conductivities. There seems to be a
well-established intuition that details further away from the measurement boundary
are more difficult to reconstruct reliably than details closer to the boundary, i.e., the
resolution in reconstructions is depth dependent.

The inverse problem in EIT is highly ill-posed, and under reasonable assumptions
it is possible to obtain conditional log-type stability estimates [3, 29]. It is worth
noting that these estimates are uniform throughout the domain and therefore do not
take into account the distance to the boundary. In spite of the global estimates,
reconstruction algorithms often produce good results close to the boundary (e.g.,
[12, 11, 14, 41]). For a specific example see Figure 1, where an inclusion is more
accurately reconstructed close to the measurement boundary. No theoretical results
seem to address this depth dependence in general; for the linearized problem, however,
a few results exist [33, 4]. The main results presented in this paper will for the first
time provide theoretical evidence for the nonlinear problem.
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698 HENRIK GARDE AND KIM KNUDSEN

Fig. 1. Reconstruction in the unit disk of a ball inclusion B (black outline) with center (0.7, 0)
and radius 0.2, by use of the monotonicity method (cf. [18, 13]). The simulated data is based on the
conductivity γ = 1 + 4χB and 32 trigonometric current patterns. Noise is added corresponding to a
0.5% noise level.

Given the real-valued conductivity

γ ∈ L∞+ (Ω) ≡ {w ∈ L∞(Ω) : ess infw > 0}

the forward problem of EIT is governed by the conductivity equation

(1.1) ∇ · (γ∇u) = 0 in Ω,

where u models the interior electric potential and Ω ⊂ Rd is a bounded Lipschitz
domain for d ≥ 2 modeling the physical object. Depending on the choice of boundary
conditions various models for EIT arise. The simplest model is Calderón’s original
formulation of the continuum model [6] that given a boundary potential f ∈ H1/2(∂Ω)
makes use of the Dirichlet boundary condition

u|∂Ω = f on ∂Ω,

where u|∂Ω denotes the trace of u to the boundary ∂Ω. Standard elliptic theory for
the continuum model gives a unique solution u ∈ H1(Ω), and the resulting boundary
current flux is then given by ν · γ∇u|∂Ω with ν denoting the outward unit normal to
∂Ω. All possible boundary measurements are encoded in the Dirichlet-to-Neumann
(DN) map defined by

Λ(γ) : H1/2(∂Ω)→ H−1/2(∂Ω),

u|∂Ω 7→ ν · γ∇u,

and the inverse problem of EIT is thus to reconstruct γ given Λ(γ). Uniqueness for
the inverse problem with the continuum model is a well-studied topic [39, 32, 15, 7];
we focus on two dimensions, where there is uniqueness for general conductivities in
L∞+ (Ω) if the domain is simply connected [5].

In this paper we consider the domain Ω to be the unit disk D ≡ {x ∈ R2 : |x| < 1}
with conductivities defined by a uniform background with one circular inclusion. This
is certainly a simplification in comparison to real measurement scenarios, but the ideal
model allows an explicit understanding of the depth dependence that may shed light
upon more complex situations. Let A > −1 and let χBC,R be the characteristic
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BOUNDS ON RECONSTRUCTION QUALITY IN EIT 699

function on the open ball BC,R ⊂ D with center C and radius R, and define the
model conductivity γ = 1 + AχBC,R . Suppose we have a DN map contaminated by
noise, i.e., Λδ ≡ Λ(1 +AχBC,R) +Eδ with a noise level ‖Eδ‖L(L2(∂D)) = δ. To ensure

that Λδ contains information about the inclusion we need

(1.2) ‖Λ(1 +AχBC,R)− Λ(1)‖L(L2(∂D))

to be larger than δ, and hence we call (1.2) the distinguishability of the inclusion BC,R
with contrast A to the background. L(L2(∂D)) in (1.2) denotes the space of bounded
linear operators from L2(∂D) to itself. The difference operator Λ(1 +AχBC,R)−Λ(1)
is compact and self-adjoint in L2(∂D) (cf. Lemma 3.3), so the norm in (1.2) equals
the largest magnitude eigenvalue of Λ(1 +AχBC,R)− Λ(1).

In [23, 8] the norm

(1.3) ‖R(1 +AχB0,r
)−R(1)‖L(L2

�(∂D))

was used to define distinguishability. Here R(γ) denotes the Neumann-to-Dirichlet
(ND) map (the inverse of Λ(γ)) and B0,r a concentric ball with radius r. The charac-
terization of (1.3) is straightforward, as the eigenvalues of the operatorR(1+AχB0,r

)−
R(1) can be found explicitly by separation of variables.

In contrast to [23, 8] we use nonconcentric balls BC,R. As a consequence we do
not get a full characterization of (1.2) but rather explicit lower and upper bounds
(Theorem 3.5), which depend on the distance of BC,R to the boundary, i.e., the depth
of the inclusion. The bounds show that the distinguishability is decreasing with the
depth of the inclusion and that the distinguishability can be arbitrarily high when
the inclusion is sufficiently close to the boundary. Furthermore, the depth dependence
can be formulated for inclusions of fixed size but varying distance to the boundary
(cf. Corollary 3.6).

The spectrum of Λ(1 +AχBC,R)−Λ(1) in general does not have a known explicit
characterization, but in the case of a nonconcentric inclusion it can be related to
the known spectrum of a concentric inclusion by the use of Möbius transformations.
These transformations belong to a class of harmonic morphisms that is used widely
in EIT, for instance, in reconstruction [17, 22, 27, 28, 2, 36], and recently for gener-
ating spatially varying meshes trying to accommodate for the depth dependence in
numerical reconstruction when using electrode models [41].

Before describing the general structure of the paper, we give a few comments
on the simplifications used to obtain the distinguishability bounds, and the possible
application of the bounds to real measurement scenarios. The unit disk domain is
a natural choice of domain both in terms of depth dependence, as it is rotationally
symmetric, and in terms of the Riemann mapping theorem (e.g., [38]), which states
that simply connected domains in C are conformally equivalent to the unit disk. If we
consider an open set D as the inclusion, we may pick open balls B1 and B2 such that
B1 ⊆ D ⊆ B2. The distinguishability of D can then be related to the presented results
in this paper using the monotonicity relations outlined in Appendix A. For practical
measurements there are also other forward models for EIT that can reduce modeling
errors, such as the complete electrode model (CEM) [37]. However, in [21, 13] it was
proved that the difference in the forward map of CEM and the continuum model, as
well as their Fréchet derivatives, depends linearly on a parameter that characterizes
how densely the electrodes cover the boundary. It is therefore expected that, for
sufficiently many equidistant boundary electrodes, any depth dependent properties of
the continuum model will also be observed for the CEM.
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700 HENRIK GARDE AND KIM KNUDSEN

In the rest of the paper (x1, x2) ∈ R2 will be identified with x1 + ix2 ∈ C. Fur-
thermore, ‖·‖ will denote the L2(∂D)-norm and 〈·, ·〉 the corresponding inner product.

The paper is organized as follows. In section 2 we introduce Möbius transforma-
tions in the unit disk, and the DN map for nonconcentric inclusions is given in terms
of these transformations. The distinguishability bounds are derived in Theorem 3.5
in section 3. Section 4 gives an exact tridiagonal matrix representation of the non-
concentric DN maps to accurately and efficiently validate the bounds numerically and
demonstrate their tightness. Finally, we conclude in section 5.

In Appendix B results regarding bounds on distinguishability and exact matrix
characterization for the ND map are given. While the actual bounds for the ND
map are fundamentally different from the DN counterparts, they are placed in the
appendix because the nature of the proofs is very similar to the proofs for the DN
map. Furthermore, in particular the lower bound for the ND map is not as sharp as
for the DN map.

2. Möbius transformation of the DN map. In this section we will relate the
DN map of a nonconcentric ball inclusion to a DN map for a concentric ball inclusion
by the use of Möbius transformations. This relation will in section 3 be used to obtain
bounds on the distinguishability.

2.1. Möbius transformations in the unit disk. Möbius transformations are
known to preserve harmonic functions in two dimensions, which makes them harmonic
morphisms. On the unit disk D the harmonic morphisms are uniquely (up to rotation)
given by

(2.1) Ma(x) =
x− a
ax− 1

, x ∈ D,

for |a| < 1 [38]. The transformations in (2.1) are special cases of Möbius transfor-
mations, where Ma : D → D and ∂D → ∂D. The particular choice of rotation in
(2.1) implies that Ma is an involution, i.e., M−1

a = Ma. Furthermore, for any ball
BC,R ⊂ D with center C and radius R < 1−|C| there exists a unique a ∈ D such that
Ma(BC,R) = B0,r for some r ≥ R.

Let a ≡ ρeiζ with 0 ≤ ρ < 1 and ζ ∈ R. Then we can straightforwardly relate
the Möbius transformation anywhere in the disk, Ma, to the Möbius transformation
along the real line, Mρ, by the following rotations:

(2.2) Mρeiζ (x) = eiζMρ(e
−iζx).

This is a useful property that often reduces proofs includingMa to the simpler formMρ.
The characterization below of how Ma can be used to move ball inclusions in D

while preserving harmonic functions is well-known (cf. [17, 41]). The proof is short
and given for completeness for the particular choice of transformation in (2.1).

Proposition 2.1.
(i) Let a ≡ ρeiζ with 0 ≤ ρ < 1 and ζ ∈ R, and let 0 < r < 1. Then Ma maps

B0,r to BC,R with

C =
ρ(r2 − 1)

ρ2r2 − 1
eiζ , R =

r(ρ2 − 1)

ρ2r2 − 1
.

(ii) Let C ≡ ceiζ with 0 ≤ c < 1 and ζ ∈ R, and let 0 < R < 1 − c. Then the
unique a ∈ D such that Ma maps BC,R to a concentric ball B0,r satisfies

D
ow

nl
oa

de
d 

05
/3

0/
17

 to
 1

92
.3

8.
67

.1
16

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOUNDS ON RECONSTRUCTION QUALITY IN EIT 701

r =
1 +R2 − c2 −

√
((1−R)2 − c2)((1 +R)2 − c2)

2R
, a =

C

1−Rr
.(2.3)

Proof. For (i) we first consider the case ζ = 0 so a = ρ. From (2.1) it is seen that
Mρ is symmetric about the real axis so the center of Mρ(B0,r) lies on the real axis.
Furthermore, the mapping of Mρ(r) and Mρ(−r) gives the following real points on
∂Mρ(B0,r):

Mρ(r) =
r − ρ
ρr − 1

, Mρ(−r) =
r + ρ

ρr + 1
,

where Mρ(−r) > Mρ(r) for all ρ < 1. Thus center c and radius R of Mρ(B0,r) can be
found as

c =
Mρ(−r) +Mρ(r)

2
=
ρ(r2 − 1)

ρ2r2 − 1
,(2.4)

R = Mρ(−r)− c =
r(ρ2 − 1)

ρ2r2 − 1
.(2.5)

Now in the case ζ 6= 0 we note that Ma(B0,r) = eiζMρ(B0,r) due to (2.2) and that
B0,r is rotationally symmetric. So C = ceiζ , which yields the desired result.

For (ii) we solve (2.4) and (2.5) with respect to r and ρ, which for h ≡ 1+R2− c2
gives

r =
h−
√
h2 − 4R2

2R
, ρ =

c

1−Rr
.

Using that a = ρeiζ and expanding the terms in r gives the expressions in (2.3).

Note from Proposition 2.1 that Ma maps the origin O to a in the same direction
as C, but a little further toward the boundary as illustrated in Figure 2. However,
we will always have that a ∈ BC,R since c < 1−R and r < 1 implies

|a− C| = ρ− c =
c

1−Rr
− c =

cr

1−Rr
R <

(1−R)r

1−Rr
R ≤ R.

Thus there is in (2.3) the asymptotic limit

lim
r→0

a = lim
R→0

a = C.

Fig. 2. Illustration of the action of Ma on ball inclusions in the unit disk D using the notation
in Proposition 2.1.
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702 HENRIK GARDE AND KIM KNUDSEN

Writing Ma(x) = V1(x)+ iV2(x) for real-valued V1 and V2, and similarly x = x1 +
ix2, then as Ma is holomorphic on D the Cauchy–Riemann equations hold,

∂
∂x1

V1 = ∂
∂x2

V2,
∂
∂x2

V1 = − ∂
∂x1

V2,

so the Jacobian determinant of Ma becomes

(2.6) Ja(x) =
(

∂
∂x1

V1

)2

+
(

∂
∂x1

V2

)2

= | ∂∂x1
Ma|2 =

(
1− |a|2

|ax− 1|2

)2

.

Ja is the Jacobian determinant for the transformation on the whole domain D, but for
the purpose of transforming the boundary operator Λ(γ) it is necessary to determine
the corresponding transformation on the boundary, i.e., determining the tangential
and normal part to the Jacobian matrix on ∂D. Denote for x ∈ D the polar coordinates
x = βeiθ and Ma(x) = BeiΘ. We have the following relations on ∂D:

∂B

∂θ
|∂D =

∂Θ

∂β
|∂D = 0,

∂B

∂β
|∂D =

∂Θ

∂θ
|∂D = J1/2

a |∂D =
1− ρ2

1 + ρ2 − 2ρ cos(θ − ζ)
.(2.7)

Deriving the terms in (2.7) involves straightforward computations using that Ma

maps ∂D to itself, along with the following identities which are a consequence of the
Cauchy–Riemann equations and (2.2):

Re(∂Ma

∂β )Ma − ∂Ma

∂β Re(Ma) = 0 on ∂D,

Im(∂Ma

∂β )Ma − ∂Ma

∂β Im(Ma) = 0 on ∂D.

2.2. Transformation of the DN map. In this section we will write up the
DN map for the problem transformed by Ma for disk perturbations. Denote γC,R ≡
1 + AχBC,R for A > −1, where χBC,R is a characteristic function over the open ball
BC,R with center C and radius R. Furthermore, the notation in Proposition 2.1 will
be used throughout, relating a and r to C and R. The background conductivity of
1 is merely for ease of presentation and can easily be changed to another (constant)
background using the identity

Λ(cγ) = cΛ(γ), c > 0.

By Ma we denote the operator applying the transformation Maf ≡ f ◦ Ma,

where either f : D → C or f : ∂D → C. Furthermore, we will use the notation J
1/2
a

both for the square root of (2.6) and for the multiplication operator f 7→ J
1/2
a |∂Df ,

indiscriminately. Before investigating the DN map we list a few basic properties.

Proposition 2.2.
(i) Ma(H1/2(∂D)) = H1/2(∂D) and Ma(L2(∂D)) = L2(∂D).

(ii) Ma and J
1/2
a Ma are involutions, i.e., their own inverse.

(iii) J
1/2
a Ma =MaJ

−1/2
a and J

−1/2
a Ma =MaJ

1/2
a .

(iv) Ma
∗ = J

1/2
a Ma in L2(∂D).

(v) J
1/2
a is on ∂D bounded from below and above by positive constants:

1− ρ
1 + ρ

≤ J1/2
a ≤ 1 + ρ

1− ρ
.
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Proof. Proposition 2.2(iii) is a consequence of the inverse function theorem. For
(ii) Ma is an involution since Ma is an involution, and from (iii)

J1/2
a MaJ

1/2
a Ma =MaJ

−1/2
a J1/2

a Ma = Id .

Item (iv) follows since M−1
a = Ma and J

1/2
a is real-valued and is the Jacobian deter-

minant for the boundary integral. For (v) we have

inf
θ∈(−π,π)

J1/2
a (eiθ) = inf

θ∈(−π,π)

1− ρ2

|1− ρei(θ−ζ)|2
=

1− ρ2

(1 + ρ)2
=

1− ρ
1 + ρ

,

sup
θ∈(−π,π)

J1/2
a (eiθ) = sup

θ∈(−π,π)

1− ρ2

|1− ρei(θ−ζ)|2
=

1− ρ2

(1− ρ)2
=

1 + ρ

1− ρ
.

That Ma is smooth and J
1/2
a bounded from below and above by positive constants

implies that Ma(H1/2(∂D)) ⊆ H1/2(∂D), and Ma being an involution implies the
opposite inclusion H1/2(∂D) ⊆ Ma(H1/2(∂D)). The same argument is used to show
that Ma(L2(∂D)) = L2(∂D).

Applying Ma to a distribution in H−1/2(∂D) is done as a generalization of the
change of variables through the dual pairing

〈Mag, f〉 ≡ 〈g, J1/2
a Maf〉, g ∈ H−1/2(∂D), f ∈ H1/2(∂D).

Now we can write up the DN maps for an inclusion transformed with Ma.

Lemma 2.3. There is the following relation between the DN map for the concen-
tric problem and the DN map for the nonconcentric problem:

(2.8) Λ(γC,R) = Λ(Ma(γ0,r)) = J1/2
a MaΛ(γ0,r)Ma,

and similarly

Λ(γ0,r) = Λ(Ma(γC,R)) = J1/2
a MaΛ(γC,R)Ma.

Proof. For brevity let w̃ be a shorthand notation for Maw, where w is a func-
tion either on ∂D or on D. Let u be the solution to (1.1) with conductivity γ0,r

and Dirichlet condition u|∂D = f . Denote the corresponding Neumann condition
g ≡ Λ(γ0,r)f = ν · ∇u|∂D. Furthermore, let u1 ≡ u in B0,r and u2 ≡ u in D \ B0,r.
Then as γ0,r = 1 + AχB0,r

and γC,R = 1 + AχBC,R we can write up (1.1), along
with Dirichlet and Neumann conditions, as the following system, along with the cor-
responding transformed problem. This gives the following two transmission problems:

∆u1 = 0 in B0,r

∆u2 = 0 in D \B0,r

u1 = u2 on ∂B0,r

(1 +A)η · ∇u1 = η · ∇u2 on ∂B0,r

u2 = f on ∂D
ν · ∇u2 = g on ∂D

∆ũ1 = 0 in BC,R

∆ũ2 = 0 in D \BC,R
ũ1 = ũ2 on ∂BC,R

(1 +A)η · ∇ũ1 = η · ∇ũ2 on ∂BC,R

ũ2 = f̃ on ∂D

ν · ∇ũ2 = J1/2
a g̃ on ∂D

Some notational abuse was used as η is unit normal both to ∂B0,r and to ∂BC,R
in the transformed problem. The Laplace–Beltrami operator is preserved as Ma is a
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704 HENRIK GARDE AND KIM KNUDSEN

harmonic morphism, and the Dirichlet conditions simply apply the change of variable.
The only real change occurs in the derivatives, which on the boundary ∂BC,R cancels

out as Ja is nonzero, and on the outer boundary ∂D gives J
−1/2
a ν · ∇ũ2 from (2.7)

and the property MaJ
1/2
a = J

−1/2
a Ma.

Thus we have

Λ(γC,R)f̃ = J1/2
a Mag = J1/2

a MaΛ(γ0,r)f = J1/2
a MaΛ(γ0,r)Maf̃ , ∀f̃ ∈ H1/2(∂D).

One can interchange γ0,r and γC,R above by Proposition 2.2 since Ma and J
1/2
a Ma

are involutions.

3. Depth dependent bounds on distinguishability of inclusions. In this
section we determine lower and upper bounds for the distinguishability of Λ(γC,R)−
Λ(1), in terms of its largest eigenvalue. The bounds are given in Theorem 3.5.

The spectrum of Λ(γ0,r) is given below and is derived from a straightforward
application of separation of variables; cf. [31, Chapter 12.5.1]. Since the eigenfunctions
of Λ(γ0,r) and Λ(1) are identical, the eigenvalues of the difference operator Λ(γ0,r)−
Λ(1) is just the difference of the eigenvalues for the two respective operators. This
simplification of course holds only if the eigenfunctions are identical, i.e., it will not
be the case for the nonconcentric problem.

Proposition 3.1. For γ0,r ≡ 1 + AχB0,r
with 0 < r < 1 and A > −1, the

eigenfunctions of Λ(γ0,r) are fn(θ) ≡ 1√
2π
einθ, n ∈ Z. The corresponding eigenvalues

are

λn ≡
2 +A(1 + r2|n|)

2 +A(1− r2|n|)
|n|, n ∈ Z.

The eigenvalues for the difference operator Λ(γ0,r)− Λ(1) are

(3.1) λn ≡
2Ar2|n|

2 +A(1− r2|n|)
|n|, n ∈ Z.

Remark 3.2. The eigenvalues in (3.1) are not necessarily monotonously decaying
in |n|. This depends on the values of A and r. This is unlike the ND operators for
which the eigenvalues have monotonous decay as seen in Proposition B.1.

Λ(γ) is an unbounded operator on L2(∂D) for any γ ∈ L∞+ (D); however, the
difference Λ(γC,R) − Λ(1) is infinitely smoothing as γC,R = 1 in a neighborhood of
∂D (see, e.g., [10, Lemma 3.1]). In fact Λ(γC,R) − Λ(1) extends continuously to a
compact and self-adjoint operator on all of L2(∂D), and it is for this extension that
we determine distinguishability bounds. Lacking a proper reference to such a result
we give the proof below for our specific scenario.

Lemma 3.3. For each center C and radius R such that BC,R ⊂ D, the opera-
tor Λ(γC,R) − Λ(1) continuously extends to a compact and self-adjoint operator in
L(L2(∂D)).

Proof. The eigenfunctions in Proposition 3.1 comprise the orthonormal Fourier
basis {fn}n∈Z for L2(∂D). Using that Λ(γ0,r) and Λ(1) are symmetric operators w.r.t.
the L2(∂D)-inner product implies that the difference operator Λ(γ0,r) − Λ(1) can be
written as below, where λn denotes the eigenvalues in (3.1):

(3.2) (Λ(γ0,r)− Λ(1))f =
∑
n∈Z

λn〈f, fn〉fn, f ∈ H1/2(∂D).
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Since supn∈Z|λn| < ∞, (3.2) implies that Λ(γ0,r) − Λ(1) is bounded in terms of the
L2(∂D)-norm,

‖(Λ(γ0,r)− Λ(1))f‖L2(∂D) ≤ sup
n∈Z
|λn|‖f‖L2(∂D), f ∈ H1/2(∂D),

i.e., using the formula in (3.2) the operator Λ(γ0,r)− Λ(1) continuously extends to a
self-adjoint operator in L(L2(∂D)).

Note that |λn| ≤ 2|A||n|r2|n| → 0 for n → ∞ implies that the extension is
compact. This follows as Λ(γ0,r) − Λ(1) is the limit of the finite rank operators
PN (Λ(γ0,r)− Λ(1)), where PN is the orthogonal projection onto span{fn}|n|≤N ,

‖(PN − Id)(Λ(γ0,r)− Λ(1))‖2L(L2(∂D)) = sup
f∈L2(∂D)\{0}

1

‖f‖2
∑
|n|>N

|λn|2|〈f, fn〉|2

≤ sup
|n|>N

|λn|2 → 0 for N →∞.

SinceMa and J
1/2
a Ma belong to L(L2(∂D)) implies that through (2.8) then Λ(γC,R)−

Λ(1) extends to a compact and self-adjoint operator in L(L2(∂D)), for any center C
and radius R.

For brevity we will denote by ‖·‖ the operator norm on L(L2(∂D)), and it should
be straightforward to distinguish it from the L2(∂D)-norm from the context in which
it is used. It is well-known from the spectral theorem that the operator norm of a com-
pact and self-adjoint Hilbert space operator equals the largest magnitude eigenvalue
of the operator and is furthermore given by

‖Λ(γC,R)− Λ(1)‖ = sup
f∈L2(∂D)\{0}

‖(Λ(γC,R)− Λ(1))f‖
‖f‖

= sup
f∈L2(∂D)\{0}

|〈(Λ(γC,R)− Λ(1))f, f〉|
‖f‖2

.(3.3)

Thus in reality the distinguishability is related to a choice of boundary condition
(here Dirichlet condition). Choosing the eigenfunction f1 to the largest magnitude
eigenvalue λ1 of Λ(γC,R) − Λ(1) maximizes the expression in (3.3). The min-max
theorem (see, e.g., [35]) furthermore states that in the orthogonal complement to f1,
the maximizing function is f2, the eigenfunction to the second largest eigenvalue λ2.
Continuing the procedure gives an orthonormal set of boundary conditions that in
each orthogonal direction maximizes the difference (Λ(γC,R)− Λ(1))f .

Suppose that we instead have a noisy approximation Λδ ≡ Λ(γC,R)+Eδ with noise
level ‖Eδ‖ = δ. If we hope to be able to recover the inclusion BC,R from Λδ then we
need ‖Λ(γC,R) − Λ(1)‖ > δ in order to distinguish that the data Λδ does not come
from the background conductivity γ = 1 and that there is an inclusion to reconstruct.
The distinguishability is therefore a measure of how much noise can be added before
the structural information is completely lost. In particular the magnitude of the
eigenvalues for Λ(γC,R) − Λ(1) shows whether the corresponding eigenfunctions are
able to contribute any distinguishability for a given noise level.

Even though the eigenvalues for the concentric problem are known, this does not
imply that Lemma 2.3 directly gives the spectrum of the nonconcentric problem. As
seen below, an eigenfunction f of Λ(γ0,r) does not yield an eigenfunction Maf of

Λ(γC,R) but is instead an eigenfunction of the operator scaled by J
−1/2
a .
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Corollary 3.4. (λ, f) is an eigenpair of Λ(γ0,r) if and only if (λ,Maf) is an

eigenpair of J
−1/2
a Λ(γC,R).

Proof. From Lemma 2.3 we have

(3.4) J−1/2
a Λ(γC,R)Maf =MaΛ(γ0,r)f.

If (λ, f) is an eigenpair of Λ(γ0,r) then (3.4) gives J
−1/2
a Λ(γC,R)Maf = λMaf .

On the other hand, if (λ,Maf) is an eigenpair of J
−1/2
a Λ(γC,R) then (3.4) gives

MaΛ(γ0,r)f = λMaf and as M−1
a =Ma then (λ, f) is an eigenpair of Λ(γ0,r).

To the authors’ knowledge there is not a known closed-form expression for either
eigenvalues or eigenfunctions of the nonconcentric problem. However, it is possible
to obtain explicit bounds, and for these bounds we will make use of certain weighted
norms.

That J
1/2
a is real-valued and bounded as in Proposition 2.2 gives rise to other

weighted norms and inner products on L2(∂D), namely,

〈f, g〉1/2 ≡
∫
∂D
fgJ1/2

a ds, ‖f‖1/2 ≡
√
〈f, f〉1/2,(3.5)

〈f, g〉−1/2 ≡
∫
∂D
fgJ−1/2

a ds, ‖f‖−1/2 ≡
√
〈f, f〉−1/2.(3.6)

It is clear from Proposition 2.2(v) that these weighted norms are equivalent to the
usual L2(∂D)-norm:

(3.7)

√
1− ρ
1 + ρ

‖f‖ ≤ ‖f‖±1/2 ≤
√

1 + ρ

1− ρ
‖f‖, f ∈ L2(∂D).

The weighted norms are used below in Theorem 3.5 for determining bounds on the dis-
tinguishability. The weighted inner products will turn out to be a natural choice when
determining an exact matrix representation for Λ(γC,R)− Λ(1), as seen in section 4.

Theorem 3.5. Let γ be either γ0,r or γC,R. From the weighted norms (3.5) and
(3.6) we obtain

(3.8) ‖Λ(γ)− Λ(1)‖ = sup
f∈L2(∂D)\{0}

‖(Λ(Maγ)− Λ(1))f‖−1/2

‖f‖1/2
.

Furthermore the following bounds hold:

(3.9)
1− ρ
1 + ρ

‖Λ(γC,R)− Λ(1)‖ ≤ ‖Λ(γ0,r)− Λ(1)‖ ≤

√
1− ρ2

1 + ρ2
‖Λ(γC,R)− Λ(1)‖.

Proof. By Lemma 2.3

‖Λ(γ)− Λ(1)‖2 = ‖J1/2
a Ma(Λ(Maγ)− Λ(1))Ma‖2

= sup
f∈L2(∂D)\{0}

‖J1/2
a Ma(Λ(Maγ)− Λ(1))Maf‖2

‖f‖2
.

Now applying the change of variables with Ma in both numerator and denominator,

and using that J
1/2
a is the Jacobian determinant in the boundary integral along with
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Proposition 2.2(iii), yields

‖Λ(γ)− Λ(1)‖2 = sup
f∈L2(∂D)\{0}

∫
∂D JaMa|(Λ(Maγ)− Λ(1))Maf |2 ds∫

∂D|f |2 ds

= sup
f∈L2(∂D)\{0}

∫
∂D J

−1/2
a |(Λ(Maγ)− Λ(1))Maf |2 ds∫

∂D J
1/2
a |Maf |2 ds

.

Finally, it is applied that Maf can be substituted by f in the supremum since
Ma(L2(∂D)) = L2(∂D) and Maf = 0⇔ f = 0,

‖Λ(γ)− Λ(1)‖2 = sup
f∈L2(∂D)\{0}

∫
∂D J

−1/2
a |(Λ(Maγ)− Λ(1))f |2 ds∫

∂D J
1/2
a |f |2 ds

,

which is the expression in (3.8).
Let f1 be the eigenfunction of Λ(γC,R)−Λ(1) corresponding to the largest eigen-

value λ1, and similarly let f̂1 be the eigenfunction of Λ(γ0,r)−Λ(1) corresponding to

the largest eigenvalue λ̂1; then

|λ̂1| = ‖Λ(γ0,r)− Λ(1)‖ ≥
‖(Λ(γC,R)− Λ(1))f1‖−1/2

‖f1‖1/2
= |λ1|

‖f1‖−1/2

‖f1‖1/2
.

Now utilizing the norm equivalence in (3.7)

|λ̂1| ≥ |λ1|
‖f1‖−1/2

‖f1‖1/2
≥ |λ1|

√
1−ρ
1+ρ‖f1‖√
1+ρ
1−ρ‖f1‖

=
1− ρ
1 + ρ

|λ1|,

which is the lower bound in (3.9). The same can be done by interchanging γ0,r and
γC,R

|λ1| = ‖Λ(γC,R)− Λ(1)‖ ≥
‖(Λ(γ0,r)− Λ(1))f̂1‖−1/2

‖f̂1‖1/2
= |λ̂1|

‖f̂1‖−1/2

‖f̂1‖1/2
.

Since γ0,r is concentric, then f̂1 may be chosen as a complex exponential by Proposi-

tion 3.1, i.e., |f̂1| = 1,

(3.10) |λ̂1| ≤ |λ1|

√√√√ ∫
∂D J

1/2
a ds∫

∂D J
−1/2
a ds

.

Here
∫
∂D J

1/2
a ds =

∫
∂D 1 ds = 2π as J

1/2
a is the Jacobian determinant in the boundary

integral. By (2.7)

(3.11)

∫
∂D
J−1/2
a dx =

1

1− ρ2

∫ 2π

0

[
1 + ρ2 − 2ρ cos(θ − ζ)

]
dθ = 2π

1 + ρ2

1− ρ2
,

which combined with (3.10) gives the upper bound in (3.9)

|λ̂1| ≤ |λ1|

√
1− ρ2

1 + ρ2
.
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In the bounds in Theorem 3.5 it is worth noting that both lower and upper bounds
tend to zero as ρ tends to 1. When ρ approaches 1, BC,R approaches ∂D, and the
largest eigenvalue of Λ(γC,R)−Λ(1) tends to infinity corresponding to Λ(γC,R)−Λ(1)
diverging in L(L2(∂D)).

Since the constant in the upper bound in (3.9) is smaller than 1 for any 0 ≤ ρ < 1
implies that ‖Λ(γ0,r)−Λ(1)‖ ≤ ‖Λ(γC,R)−Λ(1)‖ for any a ∈ D. This means that the
distinguishability increases as the inclusion is moved closer to the boundary. However,
it does so even though BC,R is decreasing in size as limρ→1R = 0. So no matter what
the size of B0,r is, it is always possible to construct another arbitrarily small inclusion
BC,R sufficiently close to the boundary ∂D such that Λ(γC,R) is easier to distinguish
from Λ(1) than Λ(γ0,r) is, in the presence of noise. In other words, given a noisy
measurement we can expect to more stably reconstruct smaller structures of γ near
the boundary than larger structures deeper in the domain.

Combining (3.9) with Corollary A.2 in Appendix A directly gives the following
upper bound on the distinguishability when then size of the inclusion is fixed.

Corollary 3.6. For |C| ≤ 1− r the following bounds hold:

‖Λ(γ0,r)− Λ(1)‖ ≤

√
1− ρ2

1 + ρ2
‖Λ(γC,R)− Λ(1)‖ ≤

√
1− ρ2

1 + ρ2
‖Λ(γC,r)− Λ(1)‖.

4. Comparison of bounds on the distinguishability. In this section the
bounds from Theorem 3.5 are investigated and verified numerically, to see how tight
the bounds are for inclusions of various sizes. Here it is important to determine eigen-
values of the nonconcentric problem Λ(γC,R) − Λ(1) accurately. Therefore, we will
avoid numerical solution of f 7→ Λ(γC,R)f as well as numerical integration, as inte-
gration of high-frequency trigonometric-like functions requires many sampling points
for a usual Gauss–Legendre quadrature rule to be accurate. Instead we will use an
orthonormal basis {φn}n∈Z in terms of the inner product 〈·, ·〉1/2 from (3.5) and de-
termine the coefficients

An,m ≡ 〈(Λ(γC,R)− Λ(1))φm, φn〉1/2

exactly, based on the known spectrum of the concentric problem Λ(γ0,r)−Λ(1) and the
transformation Ma that takes B0,r to BC,R. As the basis is orthonormal the infinite
dimensional matrix A is then a matrix representation of Λ(γC,R) − Λ(1). This is
understood in the sense that for f ∈ H1/2(∂D) where we write f =

∑
m∈Z vmφm with

the coefficients vm ≡ 〈f, φm〉1/2 collected in a sequence v, then the nth component of
Av is by linearity of Λ(γC,R)− Λ(1) and the inner product given by

(Av)n =
∑
m∈Z
〈f, φm〉1/2〈(Λ(γC,R)− Λ(1))φm, φn〉1/2

= 〈(Λ(γC,R)− Λ(1))f, φn〉1/2.

Thus A maps the basis coefficients for f to the corresponding basis coefficients of
(Λ(γC,R) − Λ(1))f . Furthermore, A has the same eigenvalues as Λ(γC,R) − Λ(1),
and the eigenvectors of A comprise the basis coefficients for the eigenfunctions of
Λ(γC,R) − Λ(1). In practice we can only construct an N -term approximation AN
using the finite {φn}|n|≤N set of basis functions. Such a matrix is a representation of
the operator

PN (Λ(γC,R)− Λ(1))PN ,
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Fig. 3. (a) Difference |λn−λNn | between the n = 1, 2, . . . , 5 largest eigenvalues λn of Λ(γC,R)−
Λ(1) with C = 0.7 and R = 0.2, and the eigenvalues λNn of the N -term approximation AN from
Theorem 4.1. (b) Largest n = 1, 2, . . . , 40 eigenvalues of Λ(γC,R)− Λ(1) for various values of C and
R, estimated to machine precision (dashed line).

where PN is an orthogonal projection onto span{φn}|n|≤N in terms of the 〈·, ·〉1/2-inner
product. For compact operators it is known from spectral theory (cf. [34, 26]) that
eigenvalues and eigenfunctions of such N -term approximations converge as N → ∞.
From Figure 3 it is evident that it is possible to estimate the correct eigenvalues to
machine precision using very small N if the basis {φn}n∈Z is well-chosen.

Let fn(θ) ≡ 1√
2π
einθ be the usual Fourier basis for L2(∂D). Since {fn}n∈Z is

an orthonormal basis in the usual L2(∂D)-inner product, it follows straightforwardly
that φn ≡ Mafn gives an orthonormal basis in the 〈·, ·〉1/2-inner product. It is a
consequence of Proposition 2.2 and thatMa is bounded; by picking f ∈ L2(∂D) then
Maf ∈ L2(∂D) so

Maf =
∑
n∈Z
〈Maf, fn〉fn =

∑
n∈Z
〈f, φn〉1/2fn ⇒ f =

∑
n∈Z
〈f, φn〉1/2φn.

Theorem 4.1. Let λ̂n be the nth eigenvalue of Λ(γ0,r)−Λ(1) (cf. Proposition 3.1).
Define the orthonormal basis {φn}n∈Z by

φn ≡Mafn, fn(θ) ≡ 1√
2π
einθ, n ∈ Z.

Then Λ(γC,R)−Λ(1) is represented in this basis via the following tridiagonal matrix:

Am,n ≡ 〈(Λ(γC,R)− Λ(1))φm, φn〉1/2 =


1+ρ2

1−ρ2 λ̂m, m = n,
−a

1−ρ2 λ̂m, m− n = 1,
−a

1−ρ2 λ̂m, m− n = −1,

0 else.

Proof. Utilizing Lemma 2.3 and Proposition 2.2 (and that Λ(Ma1) = Λ(1)),

〈(Λ(γC,R)− Λ(1))φm, φn〉1/2 = 〈J1/2
a Ma(Λ(γ0,r)− Λ(1))MaMafm, J

1/2
a Mafn〉

= 〈(Λ(γ0,r)− Λ(1))fm, J
−1/2
a fn〉.
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710 HENRIK GARDE AND KIM KNUDSEN

Now using that fm is an eigenfunction of Λ(γ0,r)− Λ(1) and the expression (2.7) for

J
1/2
a |∂D,

〈(Λ(γC,R)− Λ(1))φm, φn〉1/2 =
1

2π
〈(Λ(γ0,r)− Λ(1))eimθ, J−1/2

a einθ〉

=
λ̂m
2π
〈eimθ, J−1/2

a einθ〉

=
λ̂m

2π(1− ρ2)

∫ 2π

0

ei(m−n)θ(1 + ρ2 − 2ρ cos(θ − ζ))dθ

=


1+ρ2

1−ρ2 λ̂m, m = n,
−a

1−ρ2 λ̂m, m− n = 1,
−a

1−ρ2 λ̂m, m− n = −1,

0 else.

So the above calculation gives the matrix representation.

The basis functions in Theorem 4.1 can explicitly be given in terms of θ. Since
Ma : ∂D → ∂D then the angular variable θ is mapped to another angular variable
ψa(θ); thus

φn(θ) =
1√
2π
einψa(θ) =

1√
2π
Ma(eiθ)n =

1√
2π

(
eiθ − ρeiζ

ρei(θ−ζ) − 1

)n
, n ∈ Z.

Remark 4.2. The matrix A in Theorem 4.1 is not Hermitian as Λ(γC,R)−Λ(1) is
only self-adjoint in the regular L2(∂D)-inner product and not in the weighted 〈·, ·〉1/2-
inner product.

The ratio of the norms in Theorem 3.5 have negligible dependence with respect
to the amplitude A, compared to the radius r (note also that ρ in the bounds are
independent of A). This can also be seen in terms of the Fréchet derivative of γ 7→
Λ(γ):

‖Λ(1 +AχB0,r
)− Λ(1)‖

‖Λ(1 +AχBC,R)− Λ(1)‖
=
‖Λ′(1)χB0,r

+ o(A)/A‖
‖Λ′(1)χBC,R + o(A)/A‖

−−−→
A→0

‖Λ′(1)χB0,r
‖

‖Λ′(1)χBC,R‖
.

Therefore A will be kept fixed A = 2 in the following examples.
Figure 4 shows that for large inclusions with r close to 1 the lower bound of

Theorem 3.5 comes reasonably close, while for small inclusions with r close to 0 the
upper bound is quite tight for ρ < 0.3 (meaning inclusions close to the center). It
appears that as r → 0 the distinguishability approaches a fixed curve (the curves for
r = 0.1 and r = 0.01 are indistinguishable in the figure, and even r = 0.5 is quite
close), lying in the middle of the lower and upper bounds.

The depth dependence of EIT is further exemplified in Figure 5(a), where the
eigenvalues of Λ(γC,R) − Λ(1) are shown for a fixed radius R = 0.1 as increasing
functions of the center |C|. Furthermore, the eigenfunction for the largest eigenvalue
is shown in Figure 5(b), and how it changes from a cosine to a very localized function
as the inclusion is moved closer to the boundary. The eigenfunctions corresponding
to the largest eigenvalues are the best choice of (orthonormal) boundary conditions in
practice, as they maximize the distinguishability. Therefore reconstruction is expected
to be more noise robust when using the eigenfunctions in the measurements. So from
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Fig. 4. Ratio ‖Λ(γ0,r) − Λ(1)‖/‖Λ(γC,R) − Λ(1)‖ for |a| = ρ ∈ [0, 1), where R and C are
determined from r and ρ by Proposition 2.1, along with the bounds (dashed lines) from Theorem 3.5.
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Fig. 5. (a) 10 largest eigenvalues λn (each with multiplicity 2) of Λ(γC,R) − Λ(1) with fixed
R = 0.1 and 0 ≤ |C| < 1 − R. (b) Eigenfunction f(θ) (normalized in ‖·‖) corresponding to the
largest eigenvalue of Λ(γC,R)− Λ(1) for fixed R = 0.1 and various values of C.

the behavior in Figure 5(b) it is not surprising that it is possible to numerically obtain
very reasonable local reconstructions in the case of partial data (where only part of
the boundary is accessible), close to the measured boundary [12, 11].

5. Conclusions. We have characterized the Dirichlet-to-Neumann map for ball
inclusions in the unit disk (and for the Neumann-to-Dirichlet map; cf. Appendix B),
and have shown explicit lower and upper bounds on how much the distance of the
inclusions to the boundary affects the operator norms. The bounds show a distinct
depth dependence that can be utilized in numerical reconstruction, for instance, by
spatially varying regularization.

It is not known if the bounds are optimal; however, through several examples it is
demonstrated that the bounds accurately predict the change in distinguishability. To
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712 HENRIK GARDE AND KIM KNUDSEN

verify the bounds and test their tightness numerically, exact matrix representations
of the boundary operators are derived, where the matrix elements are given explicitly
without the need for numerical integration or solution of PDEs.

The analysis was restricted to the two-dimensional case, though it is natural to
consider if the same bounds hold for the three-dimensional unit ball. However, in
higher dimensions d ≥ 3 the harmonic morphisms only include orthogonal trans-
formations and translation, while Möbius transformations generally preserve the d-
Laplacian [30]. For this reason there is not a straightforward extension to three
dimensions.

Appendix A. A monotonicity property of the DN map. The results in
this appendix are given for completeness due to a lack of proper reference.

For the ND map a similar monotonicity relation as below is well-known and is
used in reconstruction algorithms [13, 18, 19], where the right-hand side inequality is
”flipped.” In both cases of DN and ND maps the proof boils down to an application
of a generalized Dirichlet principle.

Lemma A.1. Let γ1, γ2 ∈ L∞+ (Ω) be real-valued; then

γ1 ≤ γ2 a.e. in Ω implies 〈Λ(γ1)f, f〉 ≤ 〈Λ(γ2)f, f〉 ∀f ∈ H1/2(∂Ω).

Proof. From the weak form of the continuum model, for any γ ∈ L∞+ (Ω) we
have

〈Λ(γ)f, h〉 =

∫
Ω

γ∇u · ∇v dx ∀v ∈ H1(∂Ω), v|∂Ω = h,

in particular

(A.1)

∫
Ω

γ∇u · ∇v dx = 0 ∀v ∈ H1
0 (∂Ω).

So for v ∈ H1
0 (∂Ω), (A.1) implies∫

Ω

γ|∇(u+ v)|2 dx =

∫
Ω

γ
(
|∇u|2 + |∇v|2 +∇u · ∇v +∇v · ∇u

)
dx

=

∫
Ω

γ
(
|∇u|2 + |∇v|2

)
dx,

or rather

(A.2) 〈Λ(γ)f, f〉 =

∫
Ω

γ|∇u|2 dx = inf

{∫
Ω

γ|∇w|2 dx : w ∈ H1(Ω), w|∂Ω = f

}
.

So for any boundary potential f ∈ H1/2(∂Ω), and with u1 being the solution to (1.1)
for γ1 and u2 the solution for γ2. Then using γ1 ≤ γ2 in Ω, and the minimizing
property (A.2)

〈Λ(γ1)f, f〉 =

∫
Ω

γ1|∇u1|2 dx ≤
∫

Ω

γ1|∇u2|2 dx ≤
∫

Ω

γ2|∇u2|2 dx = 〈Λ(γ2)f, f〉.

This leads to the very intuitive conclusion that larger inclusions give larger dis-
tinguishability.
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BOUNDS ON RECONSTRUCTION QUALITY IN EIT 713

Corollary A.2. Let A > −1 and D1 ⊆ D2 ⊂ Ω̃, where Ω̃ ( Ω such that
dist(Ω̃, ∂Ω) > 0; then

‖Λ(1 +AχD1)− Λ(1)‖ ≤ ‖Λ(1 +AχD2)− Λ(1)‖.

Proof. The case A ≡ 0 is trivial. Let A > 0; then by Lemma A.1

0 = 〈(Λ(1)− Λ(1))f, f〉
≤ 〈(Λ(1 +AχD1

)− Λ(1))f, f〉
≤ 〈(Λ(1 +AχD2

)− Λ(1))f, f〉 ∀f ∈ H1/2(∂Ω),

and similarly if −1 < A < 0,

0 = 〈(Λ(1)− Λ(1))f, f〉
≥ 〈(Λ(1 +AχD1)− Λ(1))f, f〉
≥ 〈(Λ(1 +AχD2

)− Λ(1))f, f〉 ∀f ∈ H1/2(∂Ω).

Thus for any A > −1,

(A.3) |〈(Λ(1 +AχD1
)−Λ(1))f, f〉| ≤ |〈(Λ(1 +AχD2

)−Λ(1))f, f〉| ∀f ∈ H1/2(∂Ω).

Then the claim follows directly from (A.3) and that H1/2(∂Ω) is dense in L2(∂Ω):

‖Λ(1 +AχD1
)− Λ(1)‖ = sup

f∈H1/2(∂Ω)\{0}

|〈(Λ(1 +AχD1
)− Λ(1))f, f〉|

‖f‖2L2(∂Ω)

≤ sup
f∈H1/2(∂Ω)\{0}

|〈(Λ(1 +AχD2
)− Λ(1))f, f〉|

‖f‖2L2(∂Ω)

= ‖Λ(1 +AχD2
)− Λ(1)‖.

Appendix B. Distinguishability bounds and matrix characterizations
for the ND map. In this appendix we give extensions to the distinguishability
bounds as well as matrix representations in terms of the ND map.

The ND map is the operator R(γ) : ν · γ∇u 7→ u|∂Ω, where u is the solution to

the conductivity equation subject to a Neumann boundary condition g ∈ H−1/2
� (∂Ω),

(B.1) ∇ · (γ∇u) = 0 in Ω, ν · γ∇u = g on ∂Ω,

∫
∂Ω

u ds = 0.

The latter condition in (B.1) is a grounding of the boundary potential and is required

to uniquely solve the PDE. Thus the ND map is an operator from H
−1/2
� (∂Ω) to

H
1/2
� (∂Ω), where the �-symbol indicates distributions/functions with zero mean on

∂Ω. R(γ) is the inverse of Λ(γ) if Λ(γ) is restricted to H
1/2
� (∂Ω).

Returning to the domain Ω ≡ D it is in this paper sufficient to consider R(γ) :
L2
�(∂Ω)→ L2

�(∂Ω) with

L2
�(∂Ω) ≡ {f ∈ L2(∂Ω) : 〈f, 1〉 = 0},

for which R(γ) is compact and self-adjoint (unlike the DN map, where a difference of
two DN maps is required for compactness).
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714 HENRIK GARDE AND KIM KNUDSEN

From the proof of Lemma 2.3 we may expect that R(γC,R) =MaR(γ0,r)J
1/2
a Ma;

however, we need to be slightly more careful. First of all J
1/2
a Ma(L2

�(∂D)) = L2
�(∂D),

which follows from Proposition 2.2, where the boundary integral is preserved, and

that J
1/2
a Ma is an involution. However, we only haveMa(L2

�(∂D)) ⊂ L2(∂D). What
we end up with is an ND operator from L2

�(∂D) to Ma(L2
�(∂D)), corresponding to

changing the grounding condition in (B.1) to∫
∂D
J1/2
a u|∂D ds = 0.

Since the PDE and the Neumann condition in (B.1) give uniqueness up to a scalar
(which is chosen by the grounding condition), we can obtain the correct operator in
L(L2

�(∂D)) by

(B.2) R(γC,R) = PMaR(γ0,r)J
1/2
a Ma,

and similarly

R(γ0,r) = PMaR(γC,R)J1/2
a Ma,

where P ≡ Id−L is the orthogonal projection of L2(∂D) onto L2
�(∂D), with

Lf ≡ 1

2π

∫
∂D
f ds, f ∈ L2(∂D).

While the change is minor, the projection is necessary for the transformed ND map
R(γC,R) to have any eigenvalues.

Proposition B.1. For γ0,r ≡ 1 + AχB0,r
with 0 < r < 1 and A > −1, the

eigenfunctions of R(γ0,r) are fn(θ) ≡ 1√
2π
einθ, n ∈ Z \ {0}. The corresponding

eigenvalues are

λn =
2 +A(1− r2|n|)

2 +A(1 + r2|n|)

1

|n|
, n 6= 0.

The eigenvalues for the difference operator R(γ0,r)−R(1) are

(B.3) λn =
−2Ar2|n|

2 +A(1 + r2|n|)
· 1

|n|
, n 6= 0.

With the numbering given in (B.3), |λn| decays monotonically with increasing |n|.

Proof. The eigenvalues can be derived from Proposition 3.1. Now define

f(x) =
−2Ar2x

2 +A(1 + r2x)
· 1

x
, x > 0.

It follows immediately that

f ′(x) =
−2Ar2x(2 log(r)x(A+ 2)− (A+ 2 +Ar2x))

(A+ 2 +Ar2x)2x2
, x > 0.

Since 0 < r < 1 and A > −1, then log(r) < 0, A + 2 > 0, and A + 2 + Ar2x > 0. In
the case −1 < A < 0 we have f ′ < 0 so f is a decreasing function; however, f > 0.
In the case A > 0, then f ′ > 0 so f is increasing, but f < 0. Collected we get that
|f | is decreasing.
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BOUNDS ON RECONSTRUCTION QUALITY IN EIT 715

While Proposition B.1 seems obvious, the corresponding case for the DN maps
does not hold for all A and r, i.e., the eigenvalues for the DN map difference does not
decay monotonically with the usual numbering of the eigenvalues from the trigono-
metric basis.

Similar to section 4 let fn(θ) ≡ 1√
2π
einθ. Defining ψn ≡ J

1/2
a Mafn makes

{ψn}n∈Z\{0} an orthonormal basis for L2
�(∂D) with respect to the 〈·, ·〉−1/2-inner prod-

uct defined in (3.6).

Theorem B.2. Let either H(γ) ≡ R(γ) or H(γ) ≡ R(γ) −R(1). Let λ̂n be the
nth eigenvalue of H(γ0,r) (cf. Proposition B.1), and denote by hn the nth Fourier

coefficient of J
1/2
a given by

(B.4) hn =


1, n = 0,

a|n|, n > 0,

a|n|, n < 0.

Define the orthonormal basis {ψn}n∈Z\{0} by

ψn ≡ J1/2
a Mafn, fn(θ) ≡ 1√

2π
einθ, n ∈ Z \ {0}.

Then H(γC,R) is represented in this basis via the following matrix:

(B.5) An,m ≡ 〈H(γC,R)ψm, ψn〉−1/2 = λ̂m(hn−m − hmhn), m, n 6= 0.

Proof. First the Fourier series of J
1/2
a will be determined. Consider the case ζ = 0:

J1/2
ρ |eiθ =

1− ρ2

|ρeiθ − 1|2
= 1 +

ρ

e−iθ − ρ
+

ρ

eiθ − ρ
= 1 +

∞∑
n=1

ρneinθ +

∞∑
n=1

ρne−inθ,

where the series come from geometric series of ρeiθ and ρe−iθ, which converge as
0 ≤ ρ < 1. Now ζ 6= 0 corresponds to a translation by ζ in the θ-variable:

J1/2
a |eiθ = 1 +

∞∑
n=1

ρnein(θ−ζ) +

∞∑
n=1

ρne−in(θ−ζ) = 1 +

∞∑
n=1

aneinθ +

∞∑
n=1

ane−inθ,

which corresponds to the Fourier coefficients given in (B.4).
The adjoint of the projection operator P with respect to 〈·, ·〉−1/2 is

(B.6) P ∗ = Id−J1/2
a LJ−1/2

a .

This follows from the calculation

〈Pf, g〉−1/2 = 〈f, g〉−1/2 −
1

2π

∫
∂D
f ds

∫
∂D
J−1/2
a g ds

= 〈f, g〉−1/2 − 〈f, LJ−1/2
a g〉

= 〈f, (Id−J1/2
a LJ−1/2

a )g〉−1/2.

Let m 6= 0; then by (B.2) the terms of (B.5) can be expanded. Using P ∗ from
(B.6) and the properties in Proposition 2.2 gives

An,m = 〈H(γC,R)ψm, ψn〉−1/2

= 〈PMaH(γ0,r)J
1/2
a MaJ

1/2
a Mafm, J

1/2
a Mafn〉−1/2

= 〈MaH(γ0,r)fm, J
−1/2
a (Id−J1/2

a LJ−1/2
a )J1/2

a Mafn〉

= λ̂m〈Mafm,Mafn〉 − λ̂m〈Mafm, LMafn〉,
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716 HENRIK GARDE AND KIM KNUDSEN

where in the last equality it was used that fm is an eigenfunction of H(γ0,r). Note
that MaLf = Lf as it is constant, and

LMaf = 1
2π 〈Maf, 1〉 = 1

2π 〈J
1/2
a f, 1〉 = LJ1/2

a f.

Thus for hn = 1√
2π
〈J1/2
a , fn〉 = 1

2π

∫ 2π

0
J

1/2
a e−inθ dθ being the nth Fourier coefficient

of J
1/2
a ,

An,m =
λ̂m√
2π
〈J1/2
a , fn−m〉 − λ̂m〈J1/2

a fm, LJ
1/2
a fn〉

= λ̂mhn−m − λ̂m〈J1/2
a fm, 1〉LJ1/2

a fn

= λ̂mhn−m − λ̂m〈J1/2
a , fm〉

1

2π
〈J1/2
a , fn〉

= λ̂m(hn−m − hmhn), m 6= 0,

thereby concluding the proof.

Remark B.3. The ND map can also be considered on all of L2(∂D) by introducing
the null-space span{1} such that A is a matrix representation of H(γC,R)P instead
of H(γC,R). In that case the row n = 0 and column m = 0, respectively, become

A0,m = 〈H(γC,R)Pψm, ψ0〉−1/2 = 0,

An,0 = 〈H(γC,R)Pψ0, ψn〉−1/2 = −
∑
k 6=0

hkAn,k.

Now we obtain distinguishability bounds analogous to Theorem 3.5.

Theorem B.4. Let γ be either γ0,r or γC,R and denote by ‖·‖ the operator norm
on L(L2

�(∂D)). From the weighted norms in (3.5) and (3.6) we have

(B.7) ‖R(γ)−R(1)‖ = sup
g∈L2

�(∂D)\{0}

‖(Id−LJ1/2
a )(R(Maγ)−R(1))g‖1/2

‖g‖−1/2
.

Furthermore the following bounds hold:

(B.8)
1− ρ
1 + ρ

‖R(γC,R)−R(1)‖ ≤ ‖R(γ0,r)−R(1)‖ ≤
√

1 + ρ2

1− ρ2
‖R(γC,R)−R(1)‖.

Proof. By (B.2)

‖R(γ)−R(1)‖2 = sup
g∈L2

�(∂D)\{0}

‖PMa(R(Maγ)−R(1))J
1/2
a Mag‖2

‖g‖2

= sup
g∈L2

�(∂D)\{0}

∫
∂D|PMa(R(Maγ)−R(1))J

1/2
a Mag|2 ds∫

∂D J
1/2
a |Mag|2 ds

.

Utilizing that J
1/2
a Ma(L2

�(∂D)) = L2
�(∂D), we can substitute J

1/2
a Mag with g and

afterward use that PMa =Ma − LJ1/2
a ,

‖R(γ)−R(1)‖2 = sup
g∈L2

�(∂D)\{0}

∫
∂D|PMa(R(Maγ)−R(1))g|2 ds∫

∂D J
−1/2
a |g|2 ds

= sup
g∈L2

�(∂D)\{0}

∫
∂D|(Ma − LJ1/2

a )(R(Maγ)−R(1))g|2 ds∫
∂D J

−1/2
a |g|2 ds

.
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Applying the change of variables Ma and MaL = L yields the expression in (B.7)

‖R(γ)−R(1)‖2 = sup
g∈L2

�(∂D)\{0}

∫
∂D J

1/2
a |(Id−LJ1/2

a )(R(Maγ)−R(1))g|2 ds∫
∂D J

−1/2
a |g|2 ds

= sup
g∈L2

�(∂D)\{0}

‖(Id−LJ1/2
a )(R(Maγ)−R(1))g‖21/2

‖g‖2−1/2

.

Now let ĝ1 ≡ eiθ, which by Proposition B.1 is the eigenfunction corresponding to
the largest eigenvalue λ̂1 for R(γ0,r) − R(1). Let λ1 be the largest eigenvalue for
R(γC,R)−R(1); then (B.7) implies

|λ1|2 = ‖R(γC,R)−R(1)‖2(B.9)

= sup
g∈L2

�(∂D)\{0}

∫
∂D J

1/2
a |(Id−LJ1/2

a )(R(γ0,r)−R(1))g|2 ds∫
∂D J

−1/2
a |g|2 ds

≥ |λ̂1|2
∫
∂D J

1/2
a |(Id−LJ1/2

a )ĝ1|2 ds∫
∂D J

−1/2
a ds

=
|λ̂1|2

2π

1− ρ2

1 + ρ2

∫
∂D
J1/2
a |(Id−LJ1/2

a )ĝ1|2 ds,(B.10)

where the integral of J
−1/2
a was calculated in (3.11). Expanding J

1/2
a in its Fourier

series from (B.4) gives J
1/2
a ĝ1 =

∑
k∈Z hke

i(k+1)θ; thus

(B.11) LJ1/2
a ĝ1 =

1

2π

∫
∂D
J1/2
a ĝ1 ds =

1

2π

∑
k∈Z

hk

∫ 2π

0

ei(k+1)θ dθ = h−1 = a.

By inserting (B.11) into (B.10), again applying the Fourier series of J
1/2
a from (B.4)

and that
∫
∂D J

1/2
a ds = 2π gives the upper bound

|λ1|2 ≥
|λ̂1|2

2π

1− ρ2

1 + ρ2

∫ 2π

0

J1/2
a |eiθ − a|2 dθ

=
|λ̂1|2

2π

1− ρ2

1 + ρ2

∫ 2π

0

J1/2
a (1 + ρ2 − aeiθ − ae−iθ) dθ

=
|λ̂1|2

2π

1− ρ2

1 + ρ2

[
2π(1 + ρ2)−

∫ 2π

0

(
a
∑
k∈Z

hke
i(k+1)θ + a

∑
k∈Z

hke
i(k−1)θ

)
dθ

]

=
|λ̂1|2

2π

1− ρ2

1 + ρ2

[
2π(1 + ρ2)− 2π(ah−1 + ah1)

]
= |λ̂1|2

(1− ρ2)2

1 + ρ2
.

Thus

‖R(γ0,r)−R(1)‖ = |λ̂1| ≤
√

1 + ρ2

1− ρ2
|λ1| =

√
1 + ρ2

1− ρ2
‖R(γC,R)−R(1)‖.

D
ow

nl
oa

de
d 

05
/3

0/
17

 to
 1

92
.3

8.
67

.1
16

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

718 HENRIK GARDE AND KIM KNUDSEN

Now consider the opposite case for (B.9), and let g1 be a normalized (in ‖·‖L2(∂D))
eigenfunction corresponding to the largest eigenvalue λ1 of R(γC,R) − R(1). Using
the bounds (3.7)

|λ̂1|2 = ‖R(γ0,r)−R(1)‖2

= sup
g∈L2

�(∂D)\{0}

‖(Id−LJ1/2
a )(R(γC,R)−R(1))g‖21/2

‖g‖2−1/2

≥ |λ1|2
‖(Id−LJ1/2

a )g1‖21/2
‖g1‖2−1/2

≥ |λ1|2
(

1−ρ
1+ρ

)2

‖(Id−LJ1/2
a )g1‖2.

Now utilizing that g1 ∈ L2
�(∂D), so as LJ

1/2
a g1 is constant, then 〈LJ1/2

a g1, g1〉 = 0,

|λ̂1|2 ≥ |λ1|2
(

1−ρ
1+ρ

)2

(‖g1‖2 + ‖LJ1/2
a g1‖2)

= |λ1|2
(

1−ρ
1+ρ

)2

(1 + 2π|LJ1/2
a g1|2)(B.12)

≥ |λ1|2
(

1−ρ
1+ρ

)2

,

which gives the lower bound in (B.8).

Numerically it can be verified (cf. Figure 6(a)) that

‖R(γC,R)−R(1)‖ ≤ ‖R(γ0,r)−R(1)‖,

which is a stronger bound than in Theorem B.4. However, in the proof even the bound
(B.12) which depends on g1 does not give ‖R(γC,R) −R(1)‖ ≤ ‖R(γ0,r) −R(1)‖ in
general.
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(b)

Fig. 6. (a) Ratio ‖R(γ0,r)−R(1)‖/‖R(γC,R)−R(1)‖ for |a| = ρ ∈ [0, 1), where R and C are
determined from r and ρ by Proposition 2.1, along with the upper bound (dashed line) from Theorem
B.4. (b) 10 largest eigenvalues λn (each with multiplicity 2) of R(γC,R)−R(1) with fixed R = 0.1
and 0 ≤ |C| < 1−R.
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Remark B.5. It is possible to remove the projection operator P in Theorem B.4,
which led to its lengthy proof, by writing the norm as

‖R(γ)−R(1)‖ = sup
g∈L2

�(∂D)\{0}

|〈PMa(R(Maγ)−R(1))J
1/2
a Mag, g〉|

‖g‖2

and abusing that P is self-adjoint in the usual L2(∂D)-inner product (as it is an
orthogonal projection). The proof would give the same lower bound; however, it leads

to the worse upper bound with the term (1+ρ2)/(1−ρ2) instead of
√

1 + ρ2/(1−ρ2).

Figure 6(a) shows that the upper bound in Theorem B.4 is very reasonable for
small inclusions with r close to 0. Furthermore, it shows (for the chosen examples) that
the distinguishability is decreasing as ρ is increased, meaning ‖R(γC,R) − R(1)‖ ≤
‖R(γ0,r) − R(1)‖. This is different from what was observed for the DN map in
Figure 4; however, it is worth noting that the radius R is decreasing with ρ, and in
Figure 6(b) where the radius is kept fixed, the distinguishability is increasing. Thus,
for the ND map the distinguishability is increasing at a slower rate as the distance to
the boundary is reduced (compared to the DN map) and is not able to overcome the
change in radius from r to R. It is therefore worth noting that reconstruction based
on ND and DN maps is fundamentally different in terms of depth dependence.
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