
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Oct 24, 2019

A Meteorological Information Mining-Based Wind Speed Model for Adequacy
Assessment of Power Systems With Wind Power

Guo, Yifei; Gao, Houlei; Wu, Qiuwei

Published in:
International Journal of Electrical Power & Energy Systems

Link to article, DOI:
10.1016/j.ijepes.2017.05.031

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Guo, Y., Gao, H., & Wu, Q. (2017). A Meteorological Information Mining-Based Wind Speed Model for Adequacy
Assessment of Power Systems With Wind Power. International Journal of Electrical Power & Energy Systems,
93, 406-413. https://doi.org/10.1016/j.ijepes.2017.05.031

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/84005486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ijepes.2017.05.031
https://orbit.dtu.dk/en/publications/a-meteorological-information-miningbased-wind-speed-model-for-adequacy-assessment-of-power-systems-with-wind-power(d37f404e-cc84-44c0-bb0b-1c4fbaf07957).html
https://doi.org/10.1016/j.ijepes.2017.05.031


 1

A Meteorological Information Mining-Based Wind Speed Model for Adequacy 

Assessment of Power Systems With Wind Power 

 

Yifei Guoa, Houlei Gaoa*, Qiuwei Wub 

 

a The Key Laboratory of Power System Intelligent Dispatch and Control of the Ministry 

of Education (Shandong University), 17923 Jingshi Road, Jinan, PR China 

b Centre for Electric Power and Energy (CEE), Department of Electrical Engineering, 

Technical University of Denmark (DTU), Elektrovej 325, Kgs. Lyngby, DK-2800, 

Denmark 

Abstract 

Accurate wind speed simulation is an essential prerequisite to analyze the power 

systems with wind power. A wind speed model considering meteorological conditions 

and seasonal variations is proposed in this paper. Firstly, using the path analysis 

method, the influence weights of meteorological factors are calculated. Secondly, the 

meteorological data are classified into several states using an improved Fuzzy C-means 

(FCM) algorithm. Then the Markov chain is used to model the chronological 

characteristics of meteorological states and wind speed. The proposed model was 

proved to be more accurate in capturing the characteristics of probability distribution, 

auto-correlation and seasonal variations of wind speed compared with the traditional 

Markov chain Monte Carlo (MCMC) and autoregressive moving average (ARMA) 

model. Furthermore, the proposed model was applied to adequacy assessment of 

generation systems with wind power. The assessment results of the modified IEEE-
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RTS79 and IEEE-RTS96 demonstrated the effectiveness and accuracy of the proposed 

model. 

Keywords: Adequacy assessment, clustering analysis, Markov chain, meteorological 

factors, wind speed model. 

1. Introduction 

Energy consumption has been heavily dependent on fossil fuels for a long time, 

which causes problems such as resource depletion, climate change and environmental 

pollution. Wind power is considered as an alternative to fossil fuels in order to alleviate 

these problems. However, the stochastic nature of wind power poses challenges to 

power systems. Incorporating wind power into reliability assessment requires accurate 

modeling. The effect of wind power on reliability assessment is highly dependent on the 

characteristics of wind such as statistical characteristics (probability distribution) and 

time evolution characteristics (auto-correlation) [1]. Therefore, it is important to utilize 

an appropriate wind speed model to represent wind power variation characteristics in 

order to obtain accurate results in reliability assessment.  

There are two main types of wind speed models: probabilistic models [2-4] and time 

series models [5-14]. Weibull distribution [2-3] and Rayleigh distribution [4] are most 

widely used in probabilistic models which can reflect the statistical characteristics of 

wind speed. However, the time evolution characteristics of wind speed are neglected in 

these probabilistic models. At present, the time series models are more widely used in 

reliability assessment studies. The stochastic process theory based models are mainly 

divided into two types: autoregressive moving average (ARMA) models [5-6] and 

Markov Chain Monte Carlo (MCMC) models [7-9]. The temporal auto-correlation of 

wind speed can be modelled in the ARMA models. However, these models cannot 
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guarantee a good fit of the statistical characteristics. The probability distribution of the 

wind speed samples generated by ARMA models may be a normal distribution and 

negative wind speed samples are generated. And in the ARMA models, the wind speed 

data should be stationary and invertible. MCMC models represent the wind speed with a 

finite number of states. The probabilities in each state are assumed to be uniformly 

distributed, which can cause errors. The MCMC models represent time evolution 

characteristics using a transition matrix. Improved models such as the semi-Markov 

model [10] and Bayesian Markov model [11] show better accuracy in capturing time 

evolution characteristics. A two-tier reliability model is proposed in [12], which models 

the weather types and wind power fluctuations by Markov chains, respectively. Besides, 

models such as the two-dimensional wind speed statistical model [13] and time-

dependent clustering model [14] are developed for reliability assessment.  

The wind speed models proposed in the literatures are based on measured wind speed 

data with specific resolutions such as 10min, 15 min or 1 hour. They can describe the 

wind speed characteristics of the specific time resolutions. However, the wind speed 

characteristics for longer time scales cannot be captured. Moreover, the seasonal 

variations are not taken into consideration in these models. The seasonal factors should 

be considered to obtain accurate results in long-term reliability assessment [9]. Thus, a 

meteorological information mining-based wind speed model for reliability assessment is 

proposed in this paper. The meteorological conditions and seasonal variations are 

considered in this model. As such, the characteristics of wind speed can be accurately 

modelled for longer time scales and the seasonal characteristics can be represented. 

Firstly, the influence weights of meteorological factors on wind power output are 

calculated using the path analysis method. Secondly, using an improved Fuzzy C-means 
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(FCM) clustering algorithm, the daily meteorological states are obtained. Then, a two-

step MCMC model is developed to model the meteorological conditions and wind speed: 

the first step is the meteorological state time series simulation considering the seasonal 

variations; and the second step is the wind speed time series simulation within a specific 

meteorological state. The empirical distribution function of wind speed is used in the 

second step to improve the probabilistic accuracy of each state in the model. The 

proposed model is validated from the probability distribution and auto-correlation. The 

modified IEEE RTS79 and IEEE-RTS96 with wind power were used to demonstrate the 

effectiveness of the proposed model for reliability assessment. 

The rest of the paper is organized as follows. The classification method is presented 

in Section 2. The two-step MCMC model is proposed in Section 3. The parameters of 

the traditional MCMC model and ARMA model used for comparison are presented in 

Section 4. In Section 5, the proposed model is verified by comparing with the traditional 

MCMC model and ARMA model. The effectiveness of the proposed model for 

reliability assessment is demonstrated in Section 6, followed by conclusions.  

2. Classification methodology of meteorological states 

Input historical meterological data 
and wind power generation data  

Normalize the original data

Calculate the influence weights of 
different meteorological factors 

Classify the vectors using a 
clustering technique

Get the classified meteorological 
vector subsets

Modify the meterological vectors 

 

Fig. 1.  Flow chart of classification methodology of meteorological states 

The meteorological factors have significant effects on the wind power output. In this 



 5

paper, the meteorological factors such as wind speed, wind direction, temperature, 

atmospheric pressure and precipitation are represented by an -dimensional vector 

. The characteristics of wind power output are represented by the 

daily power generation . The overall process of classification is illustrated in Fig.1. 

The meteorological data and daily power generation data are normalized firstly. Then, 

the influence weights of the meteorological factors are calculated using the path analysis 

method. A clustering technique is used to classify the multi-dimensional vectors. 

2.1. Data Normalization 

The daily meteorological dataset and power generation dataset of a wind farm can be 

denoted as a matrix: 

                                   (1) 

where  and  are the meteorological data and power generation data, respectively;  

is the number of meteorological factors;  is the total number of days.  

The original data have different units. In order to eliminate the effects of the units on 

the classification results, the original data should be normalized to the values in the 

interval [0, 1] by, 

                                                  (2) 

where  and  are the original and normalized elements of matrix ,  and  

are the minimum and maximum elements of  column of matrix , respectively. 

2.2. Calculation of influence weights 
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Since the effects of meteorological factors on wind power output are quite different, 

the differences should be considered and represented by influence weights. 

The path analysis method is widely used to identify the correlation between multiple 

variables, which is an extension of the multiple linear regression analysis [15]. The path 

coefficients are used to represent the links between independent and dependent 

variables. The conventional multiple linear regression model is shown as, 

                                       (3) 

where  are the partial regression coefficients;  and  are the 

normalized meteorological data and daily power generation, respectively. 

The direct path coefficients are considered in this paper, which are defined as, 

            (4) 

Then, the influence weights of meteorological factors can be calculated by [16],  

                                                     (5) 

Thus, the normalized meteorological vector modified by the influence weights is,  

                                            (6) 

2.3 Classification of meteorological states  

To recognize typical meteorological states, the modified meteorological vectors are 

divided into  sets using the clustering technique. Clustering algorithms can be 

categorized by the principle (objective function, graph-theoretical, hierarchical) or the 

model type (deterministic, probabilistic, and fuzzy) [8]. The FCM algorithm is one of 

the most widely used unsupervised clustering algorithms, first proposed by Dunn in 
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1974 and improved by Bedzek [17]. It is an improved hard k-means algorithm, which 

aims to minimize the distance between elements and cluster centers. 

Let  be the unclassified dataset and  

denotes the cluster centers. The objective function of the FCM algorithm is 

defined as,  

                      (7) 

where  denotes the index of fuzziness,  denotes the Euclidean distance between 

the data point  and cluster center . The matrix  is a fuzzy partition 

matrix of  which is the membership value of vector  in the  cluster with the 

cluster center . The membership should meet the constraints of,  

                            (8) 

The optimization problem can be solved using the iterative algorithm. The cluster 

centers and fuzzy partition matrix for  iteration can be obtained by, 

                                               (9) 

                                         (10) 

The convergence condition of this iterative process is defined by, 

                                         (11) 

The conventional FCM algorithm is extremely sensitive to the initial cluster centers. 
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To avoid this drawback, an improved FCM algorithm (called the global FCM algorithm) 

is proposed in this paper. The global FCM algorithm proceeds in an incremental way: to 

solve the problem with  clusters, all intermediate problems with  

clusters are sequentially solved. The proposed method is briefly described as follows. 

Step 1) Start with  and find the one cluster center using the conventional FCM 

algorithm. 

Step 2) Let  denotes the final solution of the -

clustering problem.  times of the FCM algorithm are executed with  clusters where 

each run  starts from the initial state . 

The optimal solution of N runs is considered as the solution  of the 

-clustering problem. 

Step 3) Repeat Step 2) until the optimal  clusters are obtained. 

The cluster to which a data vector belongs depends on their maximum membership. 

3. Modelling of wind speed  

3.1 Markov Chain 

A Markov Chain is a special type of discrete-time stochastic process which describes 

the random movement among a finite number of states. It is a stochastic process without 

memory, which means that the process going from state  to state  depends only on 

the state at time , not on the previous states leading to the state at time .  

Let  denote a Markov Chain. Suppose the state space includes  states 

, the state transition probability from state  to state , 

                                     (12) 
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is a constant in the process. Then the Markov Chain model can be defined by a  

transition probability matrix,  

                                            (13) 

Each row of the matrix corresponds to the current state, while each column is the 

possible next state. The sum of the transition probabilities at each row is 1. The 

maximum likelihood estimate of the matrix is,  

                                                   (14) 

where  is the number of transitions from state  to state  encountered in the record. 

The simulation of the MCMC model is performed by first constructing the 

cumulative probability matrix . Each row  of  corresponds to the discrete 

cumulative distribution function for the next transition. Thus, in the matrix , 

 is defined as, 

                           (15) 

3.2 Two-step MCMC model for wind speed simulation  

1) Meteorological state simulation 

Suppose the meteorological data are classified into  states. Considering seasonal 

variations, the transition matrixes are calculated for each month. The cumulative 

probability matrix is denoted by , where   denotes the 
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month of a year. The following simulation process is performed to generate a 

meteorological state series. 

Step 1) An initial meteorological state is randomly given according to the current 

month (  month).  

Step 2) Assume that the current state is state , a random variable , which follows a 

uniform distribution in the interval , is generated and compared with the element 

of the  row of the matrix . If  is between the elements  and  

( ), the state  will be selected as the next meteorological state. 

Step 3) Repeat Step 2) for a specific number of days according to the current month. 

Step 4) Repeat Step 1) to Step 3) for a given number of years. So, the meteorological 

state time series can be obtained. 

2) Intraday wind speed simulation 

Similarly, the intraday wind speed simulation is based on the cumulative wind speed 

state transition matrix  ( ) for the meteorological state . In 

the traditional MCMC model, the wind speed is considered as uniformly distributed 

within each state, which can lead to errors. In this paper, the empirical distribution 

function  of wind speed is utilized to modify the probability distribution within each 

state. The following process is performed to simulate an intraday wind speed time series 

for a specific meteorological state . 

Step 1) An initial wind speed state is randomly given according to the current 

meteorological state.  

Step 2) Suppose the current wind speed state is state , a random variable , which is 

uniformly distributed in [0, 1], is generated and compared with the element of the  
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row of the matrix  ( ). If  is between the elements  and 

 ( ), the state  will be selected as the next wind speed 

state.  

Step 3) A random variable , which follows a uniform distribution in the interval [0, 

1], is generated and then the wind speed sample  can be obtain by, 

                (16) 

                         (17) 

where  and  are the lower and upper limits of state , respectively, and  

denotes the subscript of the corresponding element in the discrete empirical distribution 

function  (i.e., ).  

Step 4) Repeat Step 2) and Step 3) for a given length of time. An intraday wind speed 

time series is obtained for the meteorological state . 

Step 5) Repeat Step 1) to Step 4) until the entire wind speed time series 

corresponding to the meteorological state series generated before. 

4. Parameters of the Traditional MCMC Model and ARMA Model 

To demonstrate the effectiveness of the proposed model, the proposed model is 

compared with the ARMA model and traditional MCMC model in this paper. 

The number of wind speed states in the proposed model is eight ( ). 

Consequently, an eight-state traditional MCMC model is developed. Moreover, an 

ARMA model is built using the same wind speed data. For the ARMA model, an 

ARMA (4, 3) model is regarded as the optimal time series model for this site. The 

parameters are,  



 12

                         (18) 

where  is the time series value at time  and  is a white normal noise process.  

Thus, the desired wind speed sample  at time  can be obtained by, 

                                                     (19) 

where  and  are the mean and standard deviation of historical wind speed data, 

respectively. 

5. Case Studies 

The measured wind power and meteorological data of a wind farm located in 

northern China are used to perform case studies to verify the meteorological information 

mining based wind speed model. The wind farm comprises of 24 wind turbine 

generators with rated power of 2 MW. Nine available meteorological factors are chosen 

to form the meteorological vector including the daily average wind speed , wind 

direction , max-temperature , min-temperature , average temperature , 

atmospheric pressure , humidity , precipitation  and solar irradiation . The 

wind power and meteorological data were obtained from the real wind farm and the 

public weather website from 2012 to 2014. The wind power and wind speed data are 

recorded every 10 min. 

To evaluate these models, the probability density function (PDF) and auto-

correlation function (ACF) are used to represent the probability distribution and time 

evolution characteristics of wind speed, respectively. In addition to the wind speed 

samples with 10-min temporal resolution, considering the significance of daily average 
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wind power output of wind farms in power system planning and operation, the 

characteristics of daily average wind power output are also discussed in this paper. The 

root mean square error (RMSE) [18] is utilized to measure the differences of PDF and 

ACF curves of the measured and simulated results.  

5.1 Classification results of meteorological states 

The influence weights of nine meteorological factors are calculated by using the path 

analysis method and are listed in Table 1. It can be seen that the daily average wind 

speed and temperature are the most significant meteorological factors affecting the daily 

wind generation.  

Table 1 

Influence weights of different meteorological factors. 

Meteorological 
Factor      P H I G 

Influence Weights 0.6414 0.0052 0.0446 0.1247 0.1098 0.0161 0.0345 0.0007 0.0230 

 

As shown in Fig. 2, the objective function value is reduced by increasing the number 

of clusters. However, this reduction becomes insignificant when the number of clusters 

is six or more. Thus, it can be concluded that a six-cluster model ( ) is suitable. 
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Fig. 2. The relationship between the number of clusters and the FCM objective function value. 
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Fig. 3. Box-plot of the daily wind power generation associated to each meteorological state. 

The boxplot of the six data subsets is shown in Fig. 3. It can be seen that the daily 

wind power generation can be effectively distinguished by the meteorological states 

which are classified by the improved FCM algorithm. There is almost no overlapping 

among the distribution ranges of the daily wind power generation except State 3 and 

State 6. Furthermore, the seasonal variations of wind generation can be also obviously 

distinguished in Table 2. For example, State 1, State 2 and State 3 account for a big 

proportion among all these states in January. However, State 5 and State 6 account for a 

big proportion in July.  

 

Table 2 

The proportions of meteorological states for each month. 

Month 
Proportion of Different Meteorological States 

State 1 State 2 State 3 State 4 State 5 State 6 
1 0.2556 0.2444 0.3556 0.1111 0.0333 0 
2 0.2099 0.2593 0.3827 0.0741 0.0741 0 
3 0.1444 0.2778 0.2778 0.0889 0.2111 0 
4 0.2184 0.1954 0.1379 0.0805 0.0920 0.2759 
5 0.0667 0.3333 0.0222 0.0111 0.2444 0.3222 
6 0.0460 0.2184 0 0 0.2414 0.4943 
7 0.0444 0.1778 0 0.0111 0.2778 0.4889 
8 0.0444 0.1000 0 0 0.4222 0.4333 
9 0.0230 0.2759 0 0.0115 0.3793 0.3103 

10 0.0778 0.2667 0.0889 0.0778 0.2333 0.2556 
11 0.1264 0.3563 0.1609 0.1264 0.1494 0.0805 
12 0.3222 0.2222 0.3111 0.1000 0.0333 0.0111 
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5.2 Validation and discussion of the proposed model 

1)  Wind speed with 10-min temporal resolution 
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 (a)                                                                                  (b) 
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(c)                                                                             (d) 

Fig. 4.  Wind speed samples generated by different methods. (a) Historical data; (b) The proposed model; 

(c) MCMC model; (d) ARMA model. 

Fig. 4 shows the three-year wind speed samples generated by different models. It can 

be seen that the MCMC model and ARMA without considering the meteorological and 

seasonal factors cannot accurately represent the characteristics of wind speed with a 

long time window. However, the samples generated by the proposed model are quite 

similar to the historical wind speed data. And the ARMA model may generate some 

negative wind speed samples (2.59% in this case).  

Fig. 5 shows the PDF and ACF curves of the wind speed samples, respectively and 

Table 4 lists the RMSE indices. It can be seen from Fig. 5(a) and Table 3 that the PDF 

of simulated data using the proposed model are more accurate than those using the 

MCMC model and ARMA model. The RMSE indices of the MCMC model and ARMA 

model are 8 and 6 times that of the proposed model. 
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It can be seen from the Fig. 5(b) that the auto-correlation of wind speed samples 

generated by the MCMC model and ARMA model are relatively lower than the 

measured values. The simulated wind speed samples obtained using the proposed model 

has a higher auto-correlation. In the time lag ranges of [0, 10] h, the three models have 

similar characteristics and all perform well in accurately replicating the auto-correlation 

of wind speed with 10-min time resolution. In the time lag ranges of [10, 40] h, the 

ARMA model performs better. When the time lag is more than 40 h, the proposed 

model fits better for the ACF due to the consideration of meteorological factors and 

seasonal variations. It can be observed from Table 3 that the overall accuracy of the 

proposed model and ARMA model is better than the MCMC model in terms of ACF. 
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       (a)                                                                               (b) 

Fig. 5.  PDF and ACF curves of wind speed. (a) PDF ;(b) ACF . 

Table 3 

The RMSE indices of PDF and ACF using different wind speed models 

RMSE MCMC model   ARMA model The proposed model 
RMSE(PDF) 0.0093 0.0075 0.0012 
RMSE(ACF) 0.1019 0.0634 0.0541 

 

2) Daily average wind power output 

The PDF and ACF curves of daily average wind power output generated by different 

models are shown in Fig. 6. It can be seen from Fig. 6(a) that the proposed model 

performs much better in replicating the PDF of daily average wind power output. It can 
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be seen from Fig.6 (b) that the proposed model also significantly outperforms the other 

two models in terms of ACF especially in the time lag range of more than one day. It is 

because the proposed model can capture the characteristics of meteorological state 

transition process whereas the other two models cannot. The ACF obtained using the 

MCMC model and ARMA model are lower than the actual measurements.  
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(a)                                                                                         (b) 

Fig. 6.  PDF and ACF curves of daily average wind power output. (a) PDF; (b) ACF. 

6. Adequacy assessment 

In this section, the proposed wind speed model are applied on IEEE-RTS79 [20] and 

IEEE RTS96 [21] to demonstrate the effectiveness and accuracy of the proposed model 

for adequacy assessment. 

6.1 Adequacy assessment with IEEE-RTS79 

The IEEE-RTS79 with wind power is utilized to demonstrate the effectiveness of the 

proposed wind speed model for adequacy assessment. A 300 MW wind farm is added to 

the IEEE-RTS79. The power curve of the V80-2.0 MW wind turbine from Vestas are 

with cut-in, rated, and cut-out wind speeds of 4, 12, and 25 m/s, respectively. The 

failure rate and repair time of all wind turbine generators are 2 times/year and 44 h, 

respectively [19]. The sequential Monte-Carlo method (SMCS) is used for assessment. 

The sample size is 10, 000 years. The loss of load expectation (LOLE) and loss of 

energy expectation (LOEE) indices obtained using the different wind speed models are 
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listed in Table 4. 

Table 4 

Reliability indices using different wind speed models 

Model LOLE (h/year) LOEE (MWh/year) 
MCMC model 4.8535 (19.61%) 577.64 (20.94%) 
ARMA model 4.6914 (15.61%) 551.48 (15.47%) 

The proposed model 4.0784 (0.51%) 481.85 (0.89%) 
Historical data 4.0578 477.61 

 

In Table 4, the bolded numbers are the actual values of reliability indices and the 

corresponding relative errors are given in the parentheses after them. It can be seen that 

the LOLE and LOEE indices obtained using the MCMC model and ARMA model are 

significantly larger than those obtained using the historical data, whereas the indices 

obtained using the proposed model are close to those obtained using the historical data. 

The relative errors of the indices obtained using the proposed model is less than 1%, 

which means that the proposed model is accurate enough for adequacy assessment. 

Fig. 7 shows the LOLE and LOEE indices obtained using these different models in 

spring, summer, autumn, and winter, respectively. It can be observed that the indices 

obtained using different models have significant differences in winter. It is because the 

wind speed and power load are both relatively high in winter. Consequently, the effects 

of wind speed models are much more significant. 
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Fig. 7.  Reliability indices in different seasons. (a) LOLE. (b) LOEE. 
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6.2 Adequacy assessment with IEEE-RTS96 

A 500 MW wind farm is added to the IEEE-RTS96. Fig. 8 shows the LOLE and 

LOEE indices of the IEEE-RTS96 with different peak load levels. It can be seen that the 

all the three models are effective for the adequacy studies, whereas the proposed model 

shows better accuracy than the MCMC model and ARMA model. Table 5 shows the 

computation time of the adequacy assessment with different models. The computation 

efficiency of the proposed model is slightly lower than that of the traditional MCMC 

model and ARMA model. However, considering the better accuracy, the proposed 

model is better for offline implementation. Moreover, as can be seen from Table 6, the 

proposed method has a smaller coefficient variation [13], which implies that adopting 

the proposed method can speed up the convergence of the simulation. 
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Fig. 8.  Reliability indices with different peak load levels. (a) LOLE. (b) LOEE. 

Table 5 

Computation time for IEEE-RTS96. 

Model MCMC model ARMA model The proposed model 

Computation Time (s) 885 1164 1216 

 

Table 6 

Coefficients variation for IEEE-RTS96. 

Model MCMC model ARMA model The proposed model 

Coefficient variation 0.067511 0.072114 0.053716 
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7. Conclusion 

The paper proposes a wind speed model considering the meteorological and seasonal 

factors. The multi-dimensional meteorological vectors are modified by the influence 

weights firstly. Then, the meteorological vectors are classified into several states using 

the clustering technique. Based on the Markov Chain, a two-step wind speed model is 

established considering the meteorological state and wind speed state transition. 

Compared with the traditional MCMC model and ARMA model, the proposed model 

performs better in replicating the wind speed characteristics including the probability 

distribution and temporal autocorrelation although it needs additional meteorological 

information. Besides, the practical value of the proposed model is demonstrated by 

applying to the adequacy assessment. Adopting the proposed model provides more 

accurate reliability assessment results and shows better convergence performance, 

which will help the planners and operators better evaluate the power systems with wind 

power. 
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