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Abstract. When two sets of line scans are acquired orthogonal to each
other, intensity values are known along the lines of a grid. To view these
values as an image, intensities need to be interpolated at regularly spaced
pixel positions. In this paper we evaluate three methods for interpola-
tion from grid lines: linear, transfinite and weighted. Linear method does
not preserve the known values along the grid lines. Transfinite method,
known from mesh generation, preserves the known values but might cause
overshoot. The weighted method, which we propose, is designed to com-
bine the desired properties of transfinite method close to grid lines, and
the stability of the linear method. We perform an extensive evaluation
of the three interpolation methods across a range of upsampling rates
for two data sets. Depending on the upsampling rate, we show signifi-
cant difference in the performance of the three methods. We find that
the transfinite interpolation works well for small upsampling rates and
the proposed weighted interpolation method performs very well for all
relevant upsampling rates.

Keywords: Interpolation · Image processing · Performance analysis ·
Line scans · Medical image analysis

1 Introduction

Scanning along a set of parallel lines is a common setting in medical imaging.
The modality that motivated our investigation is optical coherence tomography
(OCT) [7], well established in ophthalmology for obtaining volumetric images of
the retina. Using OCT, the retina is scanned in depth (z) and along a line (x)
with a high depth and transversal resolution, resulting in a single xz cross-section
of the retina (a so-called B-scan). Collecting a number of images by scanning
along parallel lines results in a volumetric xyz data set. Since scanning speed
of the commercial systems is limited, and prolonged scanning is unpleasant for
the patient, the distance between the recorded B-scans is often large compared
to the transverse resolution of the B-scans. Therefore, if an xy cross-section
(en face) is of interest, the resolution is much coarser in y direction and pixels
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are non-square. This makes it difficult to distinguish the anatomical structures,
especially evident with blood vessels running parallel to scan lines.

To reveal additional anatomical structures, another OCT scan may be per-
formed, along the lines orthogonal to the first scan. It is our goal to compute a
volumetric data which combines the information from the two volumetric scans.
Several problems emerge in connection to this. The eye might move in the z
direction during scanning, and this needs to be accounted for. Furthermore,
the intensity might vary significantly between the scans and images. And most
importantly, how to combine two volumetric data covering the same area, one
with high resolution cross-sections in xz planes, and the other in yz planes?

In this paper we address the interpolation problem when merging two OCT
volumes. As we have a high resolution in z direction (around 5 microns), we
practically sample at any height and our problem reduces to a 2D case. Further-
more, given a high resolution along the scan lines we ignore the discrete sampling
in this direction. Therefore, our problem is image interpolation from grid lines.

The problem is illustrated in Fig. 1 (a). The information is available along
the two sets of parallel lines, and it needs to be sampled at regularly spaced pixel
positions.

Fig. 1. Interpolation from the grid lines. (a) two sets of scan lines with known inten-
sities are shown in black, this need to be sampled at regularly spaced pixel positions
illustrated as white dots. (b) shows one square region defined by four scan lines and
its local coordinate system. (c) is a testing set-up, black are the known and white are
the unknown pixels, here shown with an upsampling rate of 4.

To the best of our knowledge, the problem of interpolating information from
grid lines while preserving boundary values, has not been addressed in the con-
text of image interpolation. In the context of mesh generation for finite element
modeling a related problem is often solved using transfinite interpolation [5,6],
a method for constructing a smooth function over a planar domain given the
values on the boundary. Transfinite interpolation has been used for solving prob-
lems where information on boundaries should be preserved. It has been used in
more recently studies e.g. [12] for solving time-dependent changes of volumetric
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material properties in heterogeneous volumes and in [10] for solving elliptic
boundary value Poisson problems in arbitrary shaped 2D domains.

In this work we employ the transfinite interpolation for image interpolation
from grid lines, and we compare it against an approach based on linear upscaling.
Furthermore, we propose a weighted interpolation which preserves the desirable
properties of the transfinite and the linear method.

A quality measure for merging two OCT scans should relate to the ease of
distinguishing the anatomical structures present in the volume, their sharpness
and precision. While sharpness may be quantified, it is difficult to asses the pre-
cision of the interpolation. Central to our problem is that we need to determine
information where it is lacking. This aspect is similar to image upscaling and
single-image super-resolution approaches. Therefore, when it comes to evalua-
tion the performance of interpolation algorithms we turn to the conventional
approach [11,16] which tests each method on a set of downsampled images and
uses peak signal to noise ratio (PSNR) metric.

During testing, we change upsampling rates and statistically evaluate the
results from the three interpolation methods. This allow us to conclude on the
methods’ performance and to provide guidelines for different upsampling rates.

2 Interpolation from Grid Lines

Figure 1 (b) illustrates our interpolation problem with the focus on a single
square region defined by two pairs of neighbouring scan lines. This is a local
coordinate system which we use when defining the three interpolation methods.
The approach is then repeated for all squares in the image.

For a better explanation of the interpolation methods and their features, we
bring an example in Fig. 2 (a). The values to be interpolated are here shown as
a height above a squared domain, where we know the values at the boundary.

2.1 Linear Interpolation

A naive approach of combining the two scans involves linearly upsampling each
scan independently and averaging the results. Over one square domain we have

Lx(x, y) = (1 − y)S(x, 0) + yS(x, 1),
Ly(x, y) = (1 − x)S(0, y) + xS(1, y),

L =
1
2

(Lx + Ly),

where S are the known values along the boundary of the square domain, Lx

and Ly are linearly upsampled boundaries in x and y direction, and L is the
interpolant which we in this context denote linear. Construction of linear inter-
polation is demonstrated on Fig. 2 (a)–(d).

Let us point out two properties of linear interpolation. First, every value
L(x, y) is a convex combination of four values from S. As a result, L does not
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Fig. 2. Interpolation over one squared domain. (a) know values from one direction
in red and from the other direction in blue, (b) linear interpolation from one pair
(blue) of rectangle sides, (c) linear interpolation from other pair (red) of sides, (d)
mean of two linear contributions, (e) bilinear interpolation from corners, (f) transfinite
interpolation, (g) weighting scheme (h) weighted interpolation (Color figure online).

produce undesirable overshoot. Secondly, for a point on the boundary, the under-
lying known data contributes only with a half of its value, the other half coming
from the values at two corners. As a result, L does not agree to the known data
along the boundaries of the domain. Those two properties combined mean that
when used on images, linear interpolation results in smeared-out appearance.

2.2 Transfinite Interpolation

Transfinite interpolation is used for functions given on the boundary of a domain
which can be parameterized as a square. For our purposes this reduces to

T = Lx + Ly − Lxy

where

Lxy(x, y) = (1− x)(1− y)S(0, 0) + (1− x)yS(0, 1) + x(1− y)S(1, 0) + xyS(1, 1).

Here Lxy is the bilinear interpolant from the values at the corners of the domain,
and T is the final transfinite interpolant. Those are shown in Fig. 2 (e) and (f).

The most important property of the transfinite interpolation is that it pre-
serves the known values at the boundary of the domain. To perceive how this
property is achieved by the construction of T , note in Fig. 2 that at the boundary
of the domain, Lxy differs from the known values exactly twice as much as L
does.
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Second important property is that T may overshoot. This is due to the nega-
tive term in the expression. All inside points receive eight weighted contributions,
and especially points close to the middle of the domain are prone to interpolation
overshoot, also visible in Fig. 2 (f).

2.3 Weighted Interpolation

Transfinite interpolation has the desired properties (preservation of the known
data) at the boundary of the square domain while the undesired properties
(overshoot) are inside the domain. Linear interpolation does not overshoot, but
has issues at the boundary. To combine the good properties of both methods
we propose smoothly blending the linear and the transfinite interpolation. We
construct a blending function which is 0 at the boundary of the square domain

ω(x, y) = 24x(1 − x)y(1 − y).

The constant 24 is chosen such that ω(0.5, 0.5) = 1.
We define our novel interpolation, which we denote weighted, as

W = ωL + (1 − ω)T.

This also evaluates to

W = (2 − ω)L − (1 − ω)Lxy.

The blending function and the weighted interpolation are shown on Fig. 2 (g)
and (h). The illustrated example confirms desirable properties of the weighted
interpolation. Like transfinite, the weighted interpolant matches the exact values
at the boundaries of the domain. However, thanks to blending with the linear
interpolant, the overshoot from inside of the domain is reduced. Finally, smooth
blending function maintains a smooth appearance of the interpolant.

3 Evaluation of Interpolation Methods

Both objective and subjective tests are used [4] for evaluating interpolation meth-
ods. Subjective tests measure a perceived image quality, while objective tests use
a defined metrics for quantifying image quality or interpolation error. The choice
of the tests and the quality measures depends on the intended use.

For our motivating example, interpolation from grid lines is a step towards
merging two OCT line scans. We plan to use the merged volume for automatic
detection of anatomical structures and quantification of abnormalities in the eye.
In this upcoming work we will evaluate the three interpolation methods in terms
of the detection and quantification results.

In the work presented here, we bring a more meticulous and general evalu-
ation of the interpolation methods based on measuring interpolation error for
a specific upsampling rates. The ground truth is constructed by downsampling
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an image, which is then upsampled using the three methods, and the results are
compared against the original image. For downsampling, we keep image columns
and rows at a certain distance, which corresponds to upsampling rate s. See Fig. 1
(c) for our testing set-up.

For a certain upsampling rate, the fraction of the unknown pixel is

u =
(s − 1)2

s2
.

For example, when s = 2 we keep every second row and every second column,
and fraction of unknown pixels is only 0.25.

To demonstrate the properties of the interpolation methods, we conduct tests
for upsampling rates from 2 to 30. However, the high upsampling rates (above
10) are of limited practical value due to high degeneration of image quality.

3.1 Data Sets

We evaluate the three interpolation methods on two data sets. The first contains
200 images from the Berkley Segmentation data set [9], which is widely used for
evaluations of image upscaling and super-resolution algorithms [2]. The images
depict scenes from nature such as landscapes, people and animals, covering a
wide range of image patterns at all scales. We converted all images into grayscale
with an intensity range between 0 and 1 prior to processing.

The second data set is ophthalmologic data in form of 72 funduscopies. Fun-
doscopy is an imaging technique for examination of fundus obtained using a
light source and a ophthalmoscope. This was chosen because of image content
which is similar to OCT scans, and will allow us to assess the performance of the
interpolation methods in a setting which resembles to our application. Figure 3
shows some examples of the funduscopies.

Fig. 3. Three images from the fundoscopy data set. Images depict anatomical struc-
tures at the fundus of the eye.
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3.2 Performance Measurement

The interpolation quality is assessed by the pixelwise difference between the
ground truth image and the interpolated image. The interpolation error can be
evaluated as the Root Mean Square Error (RMSE) which is defined as [8]

RMSE =

√
√
√
√ 1

N

N∑

i=1

(Î(i) − I(i))2

where summation runs over all pixels i from the original image I and the inter-
polated image Î.

More often the Peak Signal-to-Noise Ratio (PSNR) is used [16] as an inter-
polation quality measure. The PSNR is measured in dB and defined as [14]

PSNR = 20 log10

(
MAXI

RMSE

)

where MAXI is the maximum pixel intensity value, in our case 1.

4 Results

First, we present some results from the interpolations for upsampling rate 3
and 6. Second, we present the performance of each interpolation method for
upsampling rates varying between 2 and 30. Last, we present the results from a
statistical analysis of the methods’ performance.

4.1 Interpolated Results

The differences in performance of the three interpolation methods are subtle,
and to visualize the results we bring a small detail of an image from the Berkley
segmentation data set in Fig. 4 (a), and we also show the grid lines for upsampling
rate 3 and 6 in Fig. 4 (b) and (c). The interpolated results for this image, the two
sets of grid lines and the three interpolation methods are shown on Fig. 5. We also
bring the pixelwise error between the interpolated images and the original image.
It can be seen that the error is zero along the grid lines for the transfinite and
the weighted interpolation, while this is not the case for the linear interpolation.
Furthermore, for all methods, the interpolation quality in form of the PSNR
decreases when the upsampling rate is increased. For this example, the weighted
interpolation outperforms the transfinite when using upsampling rate 6.

4.2 Performance Analysis

Figure 6 shows the PSNR values for the three interpolation methods for 6 ran-
domly chosen images from the Berkley segmentation data set, interpolated with
upsampling rate 6. We see a big variance in performance across the images,
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Fig. 4. Testing example. (a) zoom on a detail in one of the images from the Berkley
data set. (b) and (c) are grid lines with an upsampling rate of 3 and 6.

Fig. 5. The interpolated results for the detail and the grid lines shown on Fig. 4. The
interpolation methods are presented with linear on top, weighted in the middle and
transfinite in the bottom row. Columns (a) and (b) bring the results for an upsampling
rate of 3 and 6. The PSNR value for each interpolated image is listed above it. Next
to each interpolated image is the pixelwise difference between the interpolated image
and the original image, with red/blue color indicating positive/negative difference, and
white indicating zero difference. (Color figure online)

compared to relatively small variance between the three interpolation methods.
However, weighted interpolation obtains the best performance for 5 out of 6
images, while transfinite method is best for the last image. Linear method is not
the best for any of the images, but is still superior to transfinite in 4 out of 6
images.

To evaluate an overall performance of the interpolation methods, we com-
puted the mean PSNR for the whole Berkley segmentation data set, for each
interpolation method and for a range of upsampling rates. We conducted a
similar experiment for the Fundoscopy data set. Figure 7 shows a plot of the
obtained values with upsampling rates varying between 2 and 19. We notice the
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same performance pattern for both data sets. The transfinite method has the
largest mean PSNR for smallest upsampling rates, while linear method has the
largest mean PSNR for highest upsampling rates. In the interval around the
point where transfinite and linear method cross, the weighted method achieves
the highest mean PSNR.

We conducted experiments for upsampling rate up to 30, and we confirm
that the linear method achieves best mean PSNR for high upsampling rates. We
find this being of limited practical value, as for upsampling rates higher than 18
we interpolate over 89% of the pixels in the image.

As already shown in Fig. 6 the variance of performances is big between the
images and small between the methods. To confirm our findings presented in
Fig. 7, we performed a statistical test of the interpolation performance measured
by the PSNR value. We set up a regression model for correlation between the
PSNR value and the categorical variables for image and for method, for each
sampling rate. F-values indicated that the method is the main descriptor. More-
over, we found that a significant difference between the three methods exists.
Therefore, we tested the methods pairwise to check for difference between them
at each upsampling rate and moreover, to find out which method performs best.
The results are listed in Table 1(a) for the Berkley data set and in Table 1(b) for
the Fundoscopy data set. The results show similar trend, and we use notation a/b
when referring to the two data sets. It is seen that the transfinite interpolation

Fig. 6. A set of 6 randomly chosen images from the Berkley segmentation data set,
and the resulting PSNR for three interpolation methods, linear (L), weighted (W) and
transfinite (T). Upsampling rate is 6.
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Fig. 7. Comparison of the linear (L), weighted (W) and transfinite (T) interpolation.
The mean PSNR value for (a) Berkley and (b) Fundoscopy data set at different upsam-
pling rate. The second x-axis indicates the fraction of unknown pixels.

Table 1. Results from statistical analysis of interpolation performance for three meth-
ods at different upsampling rates, for Berkley data set (a) and Fundoscopy data set (b).
The methods are linear (L), weighted (W) and transfinite (T), and upsampling rates
are shown in intervals between 2 and 30. Number 1 indicates the method that performs
best for a given upsampling rate, while 3 indicates the method that performs worst.
The star indicates that no significant difference was found between the two methods
for the given upsampling rate.

(a) Berkley data set (b) Fundoscopy data set
2 3 4-5 6 7-14 15-20 21-30

L 3 3 3 2∗ 2 1∗ 1
W 2 1∗ 1 1 1 1∗ 2
T 1 1∗ 2 2∗ 3 3 3

2-3 4 5-6 7-8 9-19 20-22 23-30

L 3 3 3 2∗ 2 1∗ 1
W 2 1∗ 1 1 1 1∗ 2
T 1 1∗ 2 2∗ 3 3 3

performs best for upsampling rates below 3/4 and the weighted interpolation
performs best for sampling rates above 4/5 and below 15/20. The linear method
performs best for upsampling rates above 20/22.

5 Discussion

Our experiments and the statistical evaluation of the three interpolations are in
alignment with the previously demonstrated properties of the methods. Prior to
experiments, we knew that the transfinite methods performs best close to the
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grid lines containing known information, while the linear method performs best
in areas further away from the grid lines. Therefore we expected the transfinite
method to achieve superior results for small upsampling rates where grid lines
cover a large fraction of the image. Our results confirm this hypothesis. Likewise,
we show that linear method is superior at high upsampling rates.

We designed the weighted method to combine the good properties of the
linear and transfinite method. Our results confirm that weighted method has
superior performance for a large interval of upsampling rates, and especially
where the transfinite and linear method perform equally badly. This happens
at upsampling rate of 6/8 and the interval where weighted method is superior
extends from 4/5 to 14/19. For our application of merging OCT images we are
aiming at upsampling ratio between 5 and 10 and these results indicate that
weighted interpolation should be used.

It is important to note that image quality measured as PSNR not directly
correspond to high quality of the interpolation. Further investigation that mea-
sures image quality in terms of sharpness should be performed for finding the
most suitable method. Likewise, if the images are to be used for visual inspection,
a perceived quality of the images should be measured.

The three interpolation methods presented here only use the known intensity
information along the grid lines. We would expect the performance to improve
significantly if a prior knowledge about the appearance of images is incorporated
in the method. A significant work in this line has been conducted for single-image
super resolution [3] or image inpainting [1], for example using image patches [15]
and sparse representation [13]. We believe that those methods might be adapted
to solve the problem of interpolation from the grid lines.

6 Conclusion

In conclusion, the contribution of our present work is twofold. First, we introduce
the problem of interpolation from grid lines and suggest three possible solutions:
a linear, a transfinite and a weighed interpolation. Secondly, we provide system-
atically test the three methods and conclude that transfinite method is superior
for very small upsampling rates, while weighted method should be considered
for a broad range of upsampling rates.
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