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Abstract

A hydrodynamic journal bearing has been investigated using both the tradi-
tional two-dimensional (2D) Reynolds equation, and the full solution being
the three-dimensional (3D) Navier-Stokes equations.

The two approaches are compared by performing an investigation of two
inlet groove designs: the axial and the circumferential groove, respectively,
on a bearing with length-to-diameter ratio of 0.5 exposed to a sinusoidal
load pattern. Pressure distributions, journal orbits and frictional losses are
compared. The modelling of grooves by pressure boundary conditions ver-
sus geometric conditions is examined. It is investigated if the presence of a
groove increases frictional losses and the increase relates to groove dimen-
sions. Furthermore, the influence of the groove design on the flow field is
studied using the 3D solution.
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1. Introduction

Ever since Reynolds described the governing equation of hydrodynamic
lubrication in 1886 [1], computing the solution to what has become known as
the Reynolds equation, has occupied the scientific branch with roots in the
fields of engineering and mathematics. Being a partial differential equation,
most analytical solutions cannot be established. For his paper, Reynolds
applied assumptions on an infinitely long bearing and a series expansion to
perform the integration. This assumption only holds for low eccentricity ra-
tios (< 0.5). With the advent of a particular substitution in 1904 Sommerfeld
was able to obtain a closed form solution to the case Reynolds had tested
[2]. In 1952 Ocvirk used the opposite approach by assuming the bearing to
be infinitely narrow [3]. These two approaches have one major drawback,
despite softening the requirements to what is considered infinitely long and
short, that is most bearings fall between those definitions. For such bearings
only a numerical solution is possible.

With the appearance of computers occurring after World War II, the nu-
merical methods became more and more feasible, especially for solving 1- and
2D problems like Reynolds equation. Simultaneously, with the continuously
improving computational power being available, focus turned onto improved
modelling of the film rupture boundaries independently started by Swift and
Stieber in the 1930’s [4, 5]. As the extent of the film has proven important
in terms of the dynamic properties of the bearing, a significant attention
has been put into the development of theoretical models and their numerical
implementation [6, 7].

During the last decades the ever-increasing trend in computing power
have made 3D analysis possible. Obviously, analysis would include the pres-
sure distribution, and further, more advanced problems like thermal distri-
bution in lubricant [8] and modeling of Bingham lubricants [9] have been
investigated. Recently, Schmidt et al. have have used the open source CFD
code OpenFOAM for investigations on journal bearings [10, 11, 12].

In the present paper, a comparison between a simplified (2D), but fast,
finite element code solving Reynolds equation and a slower, but physically
more correct Navier-Stokes based finite volume code is performed. The lat-
ter is important when investigating more complex designs for bearing feed
grooves violating the typical assumptions leading to Reynolds equation. To
the author’s knowledge, the dynamic loading of a journal bearing is a special
case that has not received attention in terms of solution by a commercial
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CFD code based on the Navier-Stokes equations. Using a Reynolds equation
based code Cheng and Ji also impose a dynamic load, but do not have the
possibility of modelling deep grooves violating Reynolds equation [13]. Other
works employ sophisticated cavitation algorithms in commercial codes like
ANSYS CFX with Song and Gu solving a thermal problem [14], or Fluent
with Zhang et al. determining stiffness coefficients [15], and purpose built
codes with Besanjideh and Nassab analysing compressibility [16], but all
only for static load cases. Thus, this paper aims at applying a commercial
Navier-Stokes code to solve the dynamically loaded bearing with a simple
cavitation model (half-Sommerfeld).

2. Methodology

Being a problem of fluid dynamics, the Navier-Stokes and continuity equa-
tions are the governing relations for the case of hydrodynamic lubrication:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇T (1)

∂ρ

∂t
+∇ · (ρu) = 0 (2)

Here ρ is density, u is the velocity vector, ∇ is the vector differential operator
∇ = {∂/∂x, ∂/∂y, ∂/∂z}T , p is pressure, T is the deviatoric stress tensor
(T = µ(∇u + (∇u)T − 2/3(∇ · u)) with µ being the dynamic viscosity).
Assuming isothermal conditions, the equation of state applied is:

ρ(p) = ρ0 +
prel
v2s

(3)

The relative pressure is defined as the difference between absolute and atmo-
spheric pressure, prel = p − patm, and vs is the sonic speed of the lubricant.
The term prel/v

2
s originates from integration of the definition of the speed of

sound, v2s = ∂p/∂ρ. The fraction is hence prel/v
2
s is hence a compressibility

term added to the incompressible density ρ0. Equation (3) is suggested by
the developers of the finite volume code, CD-adapco [17].

The traditional approach for solving the hydrodynamic lubrication prob-
lem is a simplification to the Navier-Stokes equations. Applying the assump-
tions of a thin lubricant film and isothermal conditions to the Navier-Stokes
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Figure 1: Simple inlet groove. (a) Bearing geometry and imposed boundary conditions.
Axial coordinates z and ζ, with ζ from Equation (4), is pointing out of the plane. (b) Un-
folded bearing geometry.

equations, Reynolds equation is found [1]. Below, it is shown in its non-
dimensional form as applied to the numerical implementation:

∂

∂θ

(
h̄3
∂p̄

∂θ

)
+

∂

∂ζ

(
h̄3
∂p̄

∂ζ

)
=
∂h̄

∂θ
+

2ω∗

ω

d

dt̄
h̄ (4)

Here θ = x̂/R and ζ = z/R are circumferential and axial directions, respec-
tively, h̄ = h/C is the non-dimensional film thickness, p̄ = p/(6µω(R/C)2) is
the non-dimensional pressure, ω is angular (relative) velocity, ω∗ is a char-
acteristic angular velocity (in this work chosen as the angular velocity of
the journal) and t̄ = tω∗ is non-dimensional time. A typical application of
Reynolds equation is the journal bearing seen in Figure 1, where also the
linear length and width coordinates x̂ and z together with journal radius R
and radial bearing clearance C are shown, and t designates time.

Both approaches; the Navier-Stokes (NS) equations, Equations (1)-(2),
and the Reynolds equation (RE), Equation (4), predict an increase in pres-
sure, followed by a decrease to the same pressure magnitude, such that the
amplitude is anti-symmetric, due to the converging-diverging geometry. Be-
sides for submerged and/or very lightly loaded bearings, this anti-symmetry
is lost due to dissolution of gasses and cavitation effects. The cavitation
modelling in this paper, is basically what is known as the half-Sommerfeld
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solution [18], but instead of neglecting all negative pressures, only pressures
below the saturation pressure psat is modified to obtain an effective pressure,
peff , as explained in Equation (5). It is a very simplified consideration to
cavitation and does not preserve the continuity (mass flow) through the cavi-
tated zone [18]. The reason for using the half-Sommerfeld solution is the easy
implementation, particularly in the Navier-Stokes code with a pre-compiled
solver suite. Before resorting to the half-Sommerfeld solution both Rayleigh-
Plesset and degassing models have been tried out, but as Braun and Hannon
conclude in their review, those models are not yet readily available [19].

peff =

{
p if p > psat,

psat if p ≤ psat.
(5)

To solve the dynamic lubrication problem, the two approaches deviate as
described in the following sections.

2.1. Discretisation

2.1.1. Finite volume

The governing Navier-Stokes equations (Equations (1)-(2)) are discretised
by a finite volume scheme and then solved with the commercial code STAR-
CCM+ version 10.02. A full 3D solution is obtained. The dynamic squeeze
term dh/dt is modelled with a build-in 6-DOF solver applying Newton’s
second law to relate surface forces (lift) and external forces (imposed loads)
with a resulting translational and rotational motion [17].

2.1.2. Finite element

Equation (4) is solved with a purpose written, Matlab based finite el-
ement code using triangular first order elements. This solution is only 2D
(no variation in thickness direction). The dynamic squeeze term dh/dt is
modelled with Lund’s perturbation method [20] and the time integration is
a simple Euler method. Further details on the implementation and a verifi-
cation are given in [21].

3. Numerical setup

3.1. The journal bearing

The bearing chosen for the simulations is described by Table 1 and illus-
trated in Figures 2 and 3. Figure 3a shows the axial groove and Figure 3b
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Figure 2: Bearing geometry and imposed boundary conditions. Refer to Table 1 for values..

shows the circumferential groove. In either case, symmetry is exploited in
the axial direction and it is assumed that the bearing housing is infinitely
rigid. Lubricant is fed in at the inlet and exiting the bearing at the free
edge. The pressure conditions are listed in Table 1 as well as the angular
velocity of the journal. All walls are modelled with no-slip condition.

As imposed load (Wx(t)) on the bearing, a cosine function is chosen,

Wx(t) =
1

2

[
1− cos

(
2π · t

Tp

)]
· A (6)

where Tp = 0.2 s is the duration of one revolution and A = 3× 103 N is the
amplitude. To simplify the computations, a shift to the cosine-based load
function is applied such that Wx(0) = 0 and Wx(t) ≥ 0. These choices have
two advantages; i) it eliminates the need for ramping up the load as this is
built into the function itself and ii) the positive load only forces the journal
downwards, simplifying the stability requirements to the computations as the
orbit will be restricted compared to a sign-alternating function. Item ii) also
simplifies the loading arrangement in case of an experimental setup, as only
tensional or compressional loading will be required.

The excitation frequency is chosen to be half the rotational frequency to
have a time-varying force not being too strong with regards to computational
stability, but still allow for some revolutions of the bearing within a manage-
able time frame. This concern on the stability relates to the Navier-Stokes
code, where a low variation in load versus time step was experienced as a
requirement to avoid large displacement increments yielding collapsed cells.
Total simulated time (tend) is chosen, by setting tend = 0.4 s, such that two
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Figure 3: Specification of grooves - dimensions in mm. (a) Axial groove. (b) Circumfer-
ential groove. The groove height is varied as h = {2.0; 0.5; 0.1}mm in the circumferential
case, hence the variable a for the chamfer (recall, bearing clearance is C = 0.11875 mm).

periods of the load function is imposed on the bearing during four revolu-
tions. In this way a periodic solution for the journal orbit should be obtained,
even from an arbitrary starting position.

The lubricant is considered to be Newtonian and with the properties given
in Table 2.

3.2. Finite volume

The two main advantages for the application of a commercial code like
STAR-CCM+ is the ability to choose between several approaches to a numer-
ical representation of the physical problem. Particularly, this relates to the
cavitation modelling where two methods have been investigated as mentioned
in Section 2. Also the mesh generation in the thin film is non-trivial.

For the simulations both first and second order upwind schemes have been
tested for the discretisation of the convection term. Likewise, the grid fluxes
have been integrated wrt. time using both first and second order methods.
From a stability point of view, the first order methods have been preferred,
as the small time steps encountered eliminate accuracy issues, particularly
in the time integration.
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Table 1: Dimensional and operational parameters for the journal bearing.

Parameter Symbol Value Unit

Length L 50 mm
Diameter D 100 mm
Clearance (radial) C 118.75 µm
Mass of journal m 1.53 kg
Rotational speed ω 600 RPM
Load (vertical) Wx Wx(t)

a N
Inlet pressure pin 2× 105 Pa
Outlet pressure pout 1× 105 Pa

a See Equation (6).

Table 2: Lubricant properties.

Parameter Symbol Value Unit

Dynamic viscosity µ 0.071 Pa s
Saturation pressure psat 90× 103 Pa
Density ρ0 885 kg/m3

Speed of sound vs 1300 m/s

3.2.1. Time stepping

Due to the constantly varying mesh, a varying time step is desirable to
ensure an efficient simulation. With numerical stability in mind the desired
Courant number Cr = U∆t/∆x is specified as Cr = 1. Further stability
is sought introduced by defining an interval for the admissible time step
∆t ∈ [1× 10−6 s, 5× 10−5 s] and averaging between the calculated (new) step
and the current one, tnew = αtold + (1− α)tnew. The time range is chosen as
to limit the Courant number to Crmax ≈ 1 for the expected grid sizes and
velocities during the simulation, and the averaging weight α = 0.5.

3.2.2. Motion

As explained in Section 2, the motion is computed in a dynamic fluid body
interaction (DFBI) fashion. With six degrees of freedom available (transla-
tion and rotation in all three directions), a set of limitations have to be
applied. Therefore, to mimic the bearing, only in-plane translation (x, y) is
allowed, cf. Figure 2. The rotation around z is specified as a velocity bound-
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ary condition on the journal wall. The journal mass, m, listed in Table 1,
is based on the half-length journal due to the symmetry boundary condition
applied. During post-processing, the assumption of m · ẍ << W is proved
valid as m · ẍmax ≈ 0.01 ·Wmax.

3.2.3. Mesh

Despite a relatively simple geometry, the mesh generation is non-trivial.
Constituted of a thin and a bulky part, in which, from theoretical expecta-
tions, various flow phenomena might occur, the bearing presents some diffi-
culties. Due to the non-linear problem, and hence iterative solution method,
together with integration in time making the problem very computational
demanding, much effort has been put into the optimisation of the mesh. For
better control of the meshing process, the bearing with the axial groove as
seen in Figure 3a, is split up into two groups; one for the film and one for
the inlet and groove (the circumferential groove model in Figure 3b is split
into three; inlet pipe, groove and film). This makes it possible to obtain a
suitable mesh taking advantage of the geometry.

Film. With the geometry being pre-dominantly thin, advantage of STAR-
CCM+’s build-in thin mesher can be taken. It is an unstructured mesher
that allows for a larger surface/thickness aspect ratio to minimise the cell
count in circumferential and axial directions, and just as important, is the
radial mesh being structured (layered). A total of 10 cells is used to resolve
the radial direction, cf. Figure 4b. The total cell count is approximately
596,000 cells. Based on the convergence of the orbit prediction, the medium
case of 10 radial layers is used for the circumferential groove with varying
groove height in the finite volume discretisation.

To reflect the calculated motions, the mesh is deforming while maintain-
ing its topology (also known as ‘morphing’). Specific cell quality parame-
ters are monitored and work as stopping criteria to the simulation, if the
mesh becomes too distorted. The applied mesh have proved quite robust
and able to maintain an acceptable quality even with eccentricity ratios of
ε ≡ e/C ≈ 0.7− 0.8.

Groove. The inlet groove and pipe is meshed with an unstructured polyhedral
due to the geometry, see Figure 4a. Whereas the inlet pipe is expected to be
dominated by a pipeflow, the groove is meshed to resolve a more complicated
flow. Two prism layers are used to improve the accuracy near walls. The
total cell count is approximately 55,000 cells.
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(a) (b)

Figure 4: Finite volume mesh. (a) Overview of inlet pipe and film regions. (b) Structured,
thin mesh in radial direction for the film region.

3.2.4. Compressibility

To avoid numerical instabilities in STAR-CCM+ in connection with the 6-
DOF solver, the lubricant is considered compressible. It appears that strong
fluctuations in the dependent terms pressure field and journal translation
velocity is smoothed out by allowing a weak compressibility of the lubri-
cant. From the general equation of state, the density is a function of (local)
relative pressure as given in Equation (3). Studying the fraction prel/v

2
s in

Equation (3) it is clear that for pressure values typical for journal bearings
(50 MPa is high in this context), the fraction is p/v2s ≈ 3 kg/m3, such that
the lubricant is only weakly compressible (ρ0 = 885 kg/m3).

3.2.5. Cavitation

The modified half-Sommerfeld treatment of Equation (5) is applied. Please,
note this is not a standard model in STAR-CCM+, but the pressure solver
allows a user specified value for the allowed minimum pressure. If the com-
puted pressure in any cell drops below this threshold during the simulation,
then the defined minimum values is assigned. The minimum value is set to
psat = 90× 103 Pa, see also Table 2.

3.3. Finite element

Contrary to the finite volume scheme solving the non-linear Navier-Stokes
equations (Equation (1)), the finite element code is a much simpler set-up
due to linearisation of the Reynolds equation (Equation (4)). The imposed
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Figure 5: Illustration of finite element mesh. The groove is modelled by imposing inlet
pressure on the nodes covering the groove, here represented by circles.

load of Equation (6) is discretised for every 1◦ of journal rotation (compared
to the 720◦ of journal rotation during the simulation) to ensure a stable
scheme due to the simple time integration. Thus, the time step is constant
at ∆t = 2.78× 10−4 s.

The effect from the inlet is modelled onto the 2D domain by imposing
inlet pressure on the affected nodes (±11.66◦ from horizontal center plane) cf.
Figure 5. This is done since the groove is much thicker than the surrounding
film and hence not influenced by the pressure build-up suggested by Reynolds
equation.

3.3.1. Motion

The motion of the journal is found from perturbations of a damper model
of the journal. The damping coefficients relates to the forces and velocities
in the manner:{

Wx − Fx(xi, yi, ẋn, ẏn)
Wy − Fy(xi, yi, ẋn, ẏn)

}
=

[
Dxx Dxy

Dyx Dyy

]{
∆ẋn
∆ẏn

}
, (7)

where Wx,Wy are the imposed load vector components, Fx, Fy are the hydro-
dynamic load vector components, Dij, i = {x, y}, j = {x, y} are the damping
coefficients and ∆ẋn, ∆ẏn are the incremental velocity components of the
journal. As F = {Fx, Fy}T is a function of the velocities ẋ, ẏ, this is done
iteratively; ẋn+1 = ẋn + ∆ẋn. For the next load step, a first-order Euler
method is applied: xi+1 = xi + ∆t · ẋi. Please, refer to [21, 20] for further
information. As F = F (xi, yi, ẋn, ẏn) one may argue, that the position x
could be taken as the unknown instead of ẋ, using the stiffness coefficients
and position increment in the manner F = Dxx · ∆x. This is not done, in
order to simplify computations by avoiding complications in obtaining two
initial conditions for establishing journal velocity ẋi ≈ (xi− xi−1)/∆t, as the
velocity is otherwise unknown.
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3.3.2. Mesh

The mesh used in the finite element code is θ × ζ of (30× 8), (60× 16),
and (90× 24), respectively, triangular and uniform elements.

Contrary to the finite volume discretisation, the modelling of groove ex-
tent is done by assuming a uniform, practically hydrostatic, pressure bound-
ary condition imposed on the affected nodes in the finite element discretisa-
tion, and hence the three values of groove height are not ‘seen’ by the finite
element discretisation leading to discrepancies.

3.3.3. Cavitation

The simple cavitation model described above is also implemented in the
finite element code.

4. Results

In all the portrayed cases, the journal is rotating with 600 RPM at the
initial position εx = εy = 0.1. The abbreviations RE and NS are used for
the Reynolds equation and Navier-Stokes equations, respectively, while AG
and CG designate the axial and circumferential grooves, respectively.

For the axial groove, a mesh refinement study is carried out, together
with general visualisation of the flow field in and around the groove. The
mesh refinement is performed by using the base element size of 1.5 mm and
varying the number of thin mesher layers as 6, 10 and 14, respectively, for the
film region. The influence from a circumferential groove is investigated by
varying the groove height as h = 2.0 mm, 0.5 mm and 0.1 mm, respectively,
corresponding to roughly 1, 5 and 20 times the bearing clearance and using
the medium mesh from the axial groove.

As only a single rotational speed of the journal is used, the Sommerfeld
number S given in Equation (8) is computed from Tables 1 and 2 to S = 0.21.
Being a non-dimensional bearing load, S indicates that an increase in rota-
tional speed will increase the load carrying capacity of the bearing (keeping
other parameters fixed).

S =
µNDL

W

(
R

C

)2

(8)

4.1. Pressure distributions

The pressure distribution of the four groove designs solved with Navier-
Stokes are shown in Figure 6 after 3/2 · Tp (t = 0.3 s). The differences in
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groove design is reflected in the pressure distributions. Considering the axial
groove (Figure 6a), as reference, it is clear to see that with decreasing groove
height, the three results converges towards the axial groove. This holds
both for the ‘tongue’ seen around the inlet and the magnitude of maximum
pressure. Figures 6b and 6c also demonstrates the very low pressure of the
groove, in terms leading to a confined region of very high pressure to obtain
the same overall load carrying capacity. Figure 7 reproduces the influence of
the circumferential groove reducing the bearing area. Comparing Figures 7a
and 7b to Figures 6a and 6b, respectively, shows good agreement, both in
terms of maximum pressure and the overall pressure contours.

4.2. Journal orbits

The journal orbits for the two groove layouts are shown in Figure 8. Over-
all, there is a good agreement both in terms of magnitude and orbit shape for
the two layouts. In terms of convergence studies, Figure 8a show fairly good
agreement between the implementation of the Navier-Stoke and Reynolds
equations regarding the axial groove. Contrary, especially the deep and shal-
low circumferential grooves of the Navier-Stokes solution is not well repre-
sented by the crude pressure approximation applied in the groove modelling
in the discretisation of Reynolds equation, cf. Figure 8b. The consequences of
the simplified approach taken to model the groove is clearly seen in Figure 8b.
The general shape of the orbit is the same, but the position and magnitude
of the orbit has moved relative to the initial position εx = εy = 0.1. As those
results are very different from the axial groove findings, an axial refinement
(θ× ζ of (60× 48)) has been introduced to the finite element model to make
sure only nodes being coincident with the groove position are included in the
pressure boundary. However, it is clear from Figure 8a that the effect of the
refinement is very limited.

With the same overall settings to the mesh, the variable groove height
orbit is predicted in Figure 8b. Only for the shallow groove with groove
height of 0.1 mm, i.e. roughly the magnitude of the radial clearance, the orbit
is only very similar to the one from the mesh-wise corresponding axial groove
with 10 thin mesher layers in Figure 8a. Both this behaviour as well as the
general pressure distributions of Figure 6 indicates the well known perception
of grooves to violate the basic assumptions of Reynolds equation, to be true.
In other words, only the shallowest of grooves possess some load carrying
capacity. For both cases, the initial discrepancy described previously, results
in an upwards movement of the journal, until load equilibrium is met.
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Table 3: Frictional losses.

Groove type NS RE Unit

Axial groove (90× 24) −1.779 −1.862 N m
Circ. groove (20× C) −2.273 N m
Circ. groove (5× C) −2.110 −2.273 N m
Circ. groove (1× C) −1.804 N m

4.3. Friction losses

To quantify the suitability of the proposed bearing designs, friction loss is
an obvious parameter. For the overall friction loss per revolution, the aver-
age frictional moment is used. In this work it is integrated numerically using
the trapezoidal rule. With the somehow similar appearance of the various
pressure distributions and journal orbits, only small deviations in the fric-
tional moments are expected. Equation (9) relies on the film thichness h̄ and
pressure gradient ∂p̄/∂θ being summed up over the axial and circumferential
bearing dimensions. Due to the minor differences, only a characteristic set
of data are plotted in Figure 9.

M̄f (t) =
π

L/D

∫ L/D

0

∫ 2π

0

( 1

h̄(t)
+ 3h̄(t)

∂p̄(t)

∂θ

)
dθ dζ (9)

The trend of the four chosen cases are similar in pairs, i.e. the correspond-
ing solution of Navier-Stokes and Reynolds equation. However, it is clear the
deviation seen is caused in the first half of the intervals with increasing load
and reaching its maximum very close to the midpoint of the interval. With
the load curve being a sinusoidal function, this relates to areas with accel-
erating load increase (positive time derivative). Similarly, the second half
of the interval with a decelerating load increment minimises the discrepancy
and brings it to a low level for the entire interval of decreasing load. During
the next load increase, the pattern repeats. Please recall the initial position
of the journal (εx = εy = 0.1) does not coincide with the repeatable part
of the orbit. This discrepancy decays after approximately 0.05 s according to
Figure 9, after which the behaviour is periodic. The frictional losses over the
two load cycles are listed in Table 3.

Though similarities between the Reynolds and Navier-Stokes solutions
are to be expected from the orbits and pressure distributions, some con-
clusions can be drawn. Assuming the full 3D solution represented by the
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finite volume scheme to be the most correct approximation, the friction loss
is overestimated by 5% for the axial groove and 26% for the circumferen-
tial groove by the finite element discretisation. With reference to the above
results, the fine grid has resolved the problem sufficiently, such that the dif-
ference is more related to the choice and implementation of 2D (Reynolds
equation) versus 3D (Navier-Stokes equations). Within the circumferential
groove with the varying groove height, there is quite a difference (26%) of the
three heights. Overall, the larger groove (width and/or height) will result in
increased frictional losses due to reduction of the effective bearing area.

4.4. Flow fields

Figure 10 illustrates the velocity fields of the two cases (axial groove
and circumferential groove) in the symmetry plane. The importance of the
groove design is clear from a comparison of the axial groove with the three
different heights of the circumferential groove in Figure 10. Analysing the
axial groove in Figure 10a it is clearly seen that one major vortex is formed
at the top of the groove, just after the inlet pipe. Its clockwise rotation
helps the inlet flow mixing with that of the rotational flow attached to the
journal. This is also seen from the thin film section where the journal surface
velocity driving the system is extending into the groove. Especially the
deeper circumferential grooves of Figures 10b and 10c reveal how larger flow
velocities tangential to the journal exist in the groove. For the specific case
of Figure 10b, the counter clockwise rotating vortex will lead to a flow in
clockwise direction in the groove, something that will extend the mixing area
of the inlet from the inlet itself to a part of the groove as well. Primarily, the
grooves are containing regions of very slow moving lubricant, corresponding
to the grooves being deep enough to isolate the lubricant in the groove from
the pressure generating film region. The smallest considered groove height of
0.1 mm results in a flow virtually identical to the axial groove, cf. Figures 10a
and 10d, supporting the findings of the previous sections.

4.5. Computational time

Comparing the computational time for the simulation of the circumfer-
ential groove, Reynolds equation is solved in approx. 1 hour on a single
node (only pressure), whereas the Navier-Stokes solver uses 72 days on 32
nodes in a cluster (pressure + 3 velocity components). This big difference
of walltime is reduced when converted to CPU time per degree of freedom,
yielding tCPU ≈ 3 s/DOF (RE) and tCPU ≈ 60 s/DOF (NS), respectively.
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The main reason for this, is not the time required for solving the equations
(in fact they are believed to be roughly equal), but the Navier-Stokes employs
a much finer mesh. The finer mesh puts an upper bound on the time step to
satisfy the desired Courant number Cr = 1. Recall that ∆tmax = 5× 10−5 s
in Subsection 3.2.1, whereas Reynolds equation utilises ∆t = 2.78× 10−4 s
in Section 3.3. Related to the fine mesh is also the requirement for often
performing a re-mesh to maintain a high quality mesh.

5. Conclusion

Comparing the two ways of solving the bearing problem and two different
boundary conditions yields:

• A clear influence from inlet type on pressure distribution for the Navier-
Stokes model is seen. By varying the groove height as 1, 5 and 20 times
the radial clearance a study of the influence of the depth is carried out.
The more simple boundary conditions are not capable of rendering
the same influence for the Reynolds equation. With a reduced groove
height the Navier-Stokes solution approaches the Reynolds solution.

• Similar journal orbits are found for the four combinations of discreti-
sation and groove design, in pairs based on the groove design. The
shape of the orbit is maintained, but larger eccentricities are seen with
increased groove height. For the Navier-Stokes solution the difference
is as much as 0.2 times the radial clearance for groove heights of 1 times
and 20 times the radial clearance, respectively. The Reynolds solution
is close to the medium height of 5 times the radial clearance.

• A friction loss prediction being based on journal orbit is showing good
agreement for the Reynolds and Navier-Stokes solutions. The friction
loss is proportional to the groove height and also directly related to the
journal orbit through the film thickness.

• Various flow phenomena occur depending on groove height.
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(a) (b)

(c) (d)

Figure 6: Pressure distribution of the four different groove designs; (a) is axial groove; (b)
is circ. groove, h = 2 mm (20×C); (c) is circ. groove, h = 0.5 mm (5×C); and (d) is circ.
groove, h = 0.1 mm (1× C). Time t = 0.3 s (maximum value of imposed load).
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Figure 7: Pressure distributions using Reynolds equation and a mesh of θ× ζ of (90× 24),
(a) is axial groove, and (b) is circumferential groove. Time t = 0.3 s (maximum value of
imposed load).
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Figure 8: Journal orbits, (a) is axial groove (AG), and (b) is circumferential groove (CG).
For the Reynolds equation (RE) the number in parenthesis designates the finite element
mesh size (circ. times axial direction). For the Navier-Stokes (NS), TML is the number
of thin mesher layers used in radial direction, and in case of the circ. groove the paren-
thesis indicates the groove height. Recall, that C = 118.75 µm and cf. Figure 1a for the
eccentricity and its components (ex, ey).
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Figure 9: Frictional moment for the Reynolds and Navier-Stokes simulations. The course
of the load curve and its time derivative is plotted above, for comparison of deviations.
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(a)

(b)

Figure 10: Velocity field in the symmetry plane at t = 0.3 s for the two bearing geometries:
(a) Axial groove. (b) Circumferential groove with groove height 20 × C. Main journal
rotation is CCW. Colour represents velocity magnitude with blue = 0 m/s and khaki =
3.14 m/s.
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(c)

(d)

Figure 10: Velocity field in the symmetry plane at t = 0.3 s for the two bearing geometries:
(c) Circumferential groove with groove height 5 × C. (d) Circumferential groove with
groove height 1×C. Main journal rotation is CCW. Colour represents velocity magnitude
with blue = 0 m/s and khaki = 3.14 m/s.
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