
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Jul 10, 2018

Operator Representations of Frames: Boundedness, Duality, and Stability

Christensen, Ole; Hasannasabjaldehbakhani, Marzieh

Published in:
Integral Equations and Operator Theory

Link to article, DOI:
10.1007/s00020-017-2370-1

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Christensen, O., & Hasannasab, M. (2017). Operator Representations of Frames: Boundedness, Duality, and
Stability. Integral Equations and Operator Theory, 88(4), 483-499. DOI: 10.1007/s00020-017-2370-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84005472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s00020-017-2370-1
http://orbit.dtu.dk/en/publications/operator-representations-of-frames-boundedness-duality-and-stability(9ce2616f-a474-408d-b2ff-0e3c1292179b).html


ar
X

iv
:1

70
4.

08
91

8v
1 

 [
m

at
h.

FA
] 

 2
8 

A
pr

 2
01

7 Operator representations of frames:

boundedness, duality, and stability.

Ole Christensen, Marzieh Hasannasab

May 1, 2017

Abstract

The purpose of the paper is to analyze frames {fk}k∈Z having
the form {T kf0}k∈Z for some linear operator T : span{fk}k∈Z →
span{fk}k∈Z. A key result characterizes boundedness of the opera-
tor T in terms of shift-invariance of a certain sequence space. One of
the consequences is a characterization of the case where the represen-
tation {fk}k∈Z = {T kf0}k∈Z can be achieved for an operator T that
has an extension to a bounded bijective operator T̃ : H → H. In this
case we also characterize all the dual frames that are representable in
terms of iterations of an operator V ; in particular we prove that the
only possible operator is V = (T̃ ∗)−1. Finally, we consider stability
of the representation {T kf0}k∈Z; rather surprisingly, it turns out that
the possibility to represent a frame on this form is sensitive towards
some of the classical perturbation conditions in frame theory. Various
ways of avoiding this problem will be discussed. Throughout the paper
the results will be connected with the operators and function systems
appearing in applied harmonic analysis, as well as with general group
representations.

1 Introduction

In this paper we consider frames {fk}k∈Z in a Hilbert space H arising via
iterated action of a linear operator T : span{fk}k∈Z → span{fk}k∈Z, i.e., on
the form

{fk}k∈Z = {T kf0}k∈Z. (1.1)
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We say that the frame {fk}k∈Z is represented via the operator T. The moti-
vation to consider frames of this form comes from several directions:

• The (Fourier) orthonormal basis {e2πikx}k∈Z for L2(0, 1) has the form
(1.1), where (Tf)(x) = e2πixf(x) and f = χ[0,1].

• Single-generated shift-invariant systems (Example 1.1) and Gabor sys-
tems (Example 2.7) have the form (1.1).

• A group representation acting on a cyclic (sub)group indexed by Z

(Example 1.2) leads to a system of vectors on the from (1.1).

The idea of representing frames on the form (1.1) is also closely related
with dynamical sampling, see, e.g., [2]. However, the indexing of a frame in
the context of dynamical sampling is different from the one used in (1.1), and
we will show that a re-indexing might change the properties of the operator
T drastically.

In Section 2 we first classify the frames having the form {fk}k∈Z =
{T kf0}k∈Z, where T is a linear (not necessarily bounded) operator defined on
span{fk}k∈Z. One of the main results characterizes the frames that can be
represented in terms of a bounded operator T, in terms of shift-invariance of
a certain subspace of ℓ2(Z). Various consequences of this result are derived,
e.g., that if an overcomplete frame with finite excess has a representation of
the form (1.1), then T is necessarily unbounded.

Section 3 deals with the properties of the dual frames associated with
a frame on the form {fk}k∈Z = {T kf0}k∈Z. For the important case where
T is bounded and bijective, we characterize the dual frames that can be
represented in terms of a bounded operator V ; in particular, we show that the
only possibility of the representing operator for the dual frame is V = (T ∗)−1.

In Section 4 we consider stability of a representation (1.1) under various
perturbation conditions. Rather surprisingly, it turns out that a represen-
tation of such a type is unstable under the classical perturbation conditions
in frame theory, e.g., the Paley-Wiener type conditions [8, 7]. That is, a
perturbation of a frame {fk}k∈Z = {T kf0}k∈Z might not be representable in
terms of an operator; or, if the operator T is bounded, a perturbation might
turn the frame {fk}k∈Z into a frame that is only representable in terms of an
unbounded operator. We prove, however, that under certain restrictions on
the perturbation condition, stability and boundedness is preserved. Finally,
for frames {fk}k∈Z that are norm-bounded below we prove that the type of
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perturbation condition that is used most frequently in the literature leads to
frames {gk}k∈Z that can be represented via iterations of a finite collection of
bounded operators.

The paper closes with an appendix, containing some operator theoretic
considerations. We show, e.g., that the chosen indexing is important for the
properties of the operator representing a given frame.

In the rest of the introduction, we will collect some definitions and stan-
dard results from frame theory. A sequence {fk}∞k=1 in a Hilbert space H
is a frame for H if there exist constants A,B > 0 such that A ||f ||2 ≤∑∞

k=1 |〈f, fk〉|2 ≤ B ||f ||2, ∀f ∈ H. The sequence {fk}∞k=1 is a Bessel se-
quence if at least the upper frame condition holds. Also, {fk}∞k=1 is called
a Riesz sequence if there exist constants A,B > 0 such that A

∑
|ck|2 ≤

||
∑

ckfk||2 ≤ B
∑

|ck|2 for all finite scalar sequences c1, . . . , cN , N ∈ N.
If {fk}k∈Z is a Bessel sequence, the synthesis operator is defined by

U : ℓ2(Z) → H, U{ck}k∈Z :=
∑

k∈Z
ckfk; (1.2)

it is well known that U is well-defined and bounded. A central role will be
played by the kernel of the operator U, i.e., the subset of ℓ2(Z) given by

NU =

{
{ck}k∈Z ∈ ℓ2(Z)

∣∣∣∣
∑

k∈Z
ckfk = 0

}
. (1.3)

The excess of a frame is the number of elements that can be removed yet
leaving a frame. It is well-known that the excess equals dim(NU); see [4].

Given a Bessel sequence {fk}k∈Z, the frame operator S : H → H is
defined by S := UU∗. For a frame {fk}k∈Z, the frame operator is invertible
and f =

∑
k∈Z〈f, S−1fk〉fk, ∀f ∈ H. The sequence {S−1fk}k∈Z is also a

frame; it is called the canonical dual frame.
For a frame {fk}k∈Z that is not a Riesz basis, it is known that there exists

infinitely many dual frames, i.e., frames {gk}k∈Z such that

f =
∑

k∈Z
〈f, gk〉fk, ∀f ∈ H.

The class of dual frames have been characterized by Li [13].
Throughout the paper we will illustrate the results with applications to

frames appearing in applied harmonic analysis, e.g., shift-invariant systems
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and Gabor systems. First, for a ∈ R, define the translation operator Ta

acting on L2(R) by Taf(x) := f(x − a) and the modulation operator Ea by
Eaf(x) := e2πiaxf(x). Both operators are unitary. Furthermore, defining

the Fourier transform of f ∈ L1(R) by f̂(γ) = Ff(γ) =
∫∞
−∞ f(x)e−2πiγxdx

and extend it in the standard way to a unitary operator on L2(R), we have
FTa = E−aF . The following example will inspire us throughout the paper.

Example 1.1 Consider a function ϕ ∈ L2(R)\{0}. Then the shift-invariant
system {Tkϕ}k∈Z is linearly independent. Letting Φ(γ) :=

∑
k∈Z |ϕ̂(γ + k)|2,

it was proved in [6] (or see Theorem 9.2.5 in [9]) that {Tkϕ}k∈Z is a frame
sequence if and only if there exist A,B > 0 such that A ≤ Φ(γ) ≤ B, a.e.
γ ∈ [0, 1] \ N, where N =: {γ ∈ [0, 1]

∣∣ ∑
k∈Z |ϕ̂(γ + k)|2 = 0}. Further-

more, the special case where {Tkϕ}k∈Z is a Riesz sequence corresponds to
the case where the set N has measure zero. Note that regardless of the
frame properties of the shift-invariant system, we can write it on the form
{Tkϕ}k∈Z = {(T1)

kϕ}k∈Z, i.e., as the iterated system arising by letting the
powers of the bounded operator T1 act on the function ϕ. �

More generally, iterated systems {T kf0}k∈Z naturally shows up in the context
of group representations. This topic is well connected with frame theory; see,
e.g., the paper [5] and the references therein.

Example 1.2 Let G denote a locally compact group, and π a group repre-
sentation of G on a Hilbert space H; that is π is a mapping from G into the
space of bounded invertible operators onH, satisfying that π(xy) = π(x)π(y)
forall x, y ∈ G. Now, fix some x0 ∈ G. Considering the cyclic subgroup of
G generated by the element x0, i.e., the set {xk}k∈Z = {xk

0}k∈Z ⊂ G, the
group representation acting on a fixed f0 ∈ H generates the family of vectors
{π(xk

0)f0}k∈Z = {[π(x0)]
kf0}k∈Z. This system has the structure (1.1) with

T = π(x0). Note that Example 1.1 is a special case of this; indeed, the left-
regular representation of the group R with the composition ” + ” on L2(R)
is precisely (π(x)f)(t) = f(t − x), f ∈ L2(R), t, x ∈ R. The general setting
of group representations covers this example and its discrete variant in ℓ2(Z)
(whose frame properties are analyzed in [12]) in a unifying way.

Note that the structure of systems arising from a group representation is
very rigid: arbitrary small perturbations might destroy the special structure,
so it is important that such cases can still be handled within the frame work
of the more general systems (1.1). �
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2 The representation {fk}k∈Z = {T kf0}k∈Z
In this section we want to consider representation of a frame {fk}k∈Z on the
form {T kf0}k∈Z for some linear operator T defined on an appropriate sub-
space of H. The starting point must be a clarification of the exact meaning
of {T kf0}k∈Z. For k ≥ 0, this is clear. For k = −1 we will require that
T is invertible as a map from span{fk}k∈Z into itself. This guarantees that
T−1f0 is well-defined, and hence also T kf0 = (T−1)−kf0 is well-defined for
k = −2,−3, · · · . In the following result, we characterize the availability of
the representation {fk}k∈Z = {T kf0}k∈Z. The proof is a modification of the
corresponding result for sequences indexed by N, so we only sketch it.

Proposition 2.1 Consider a frame sequence {fk}k∈Z in a Hilbert space H
which spans an infinite dimensional subspace. The following are equivalent:

(i) {fk}k∈Z is linearly independent.

(ii) The map Tfk := fk+1 is well-defined, and extends to a linear and in-
vertible operator T : span{fk}k∈Z → span{fk}k∈Z.

In the affirmative case, {fk}k∈Z = {T kf0}k∈Z.
Proof. The proof that (i) ⇒ (ii) is exact the same as for sequences indexed
by N, see [10]. Now assume that (ii) holds. It is easy to see that fk 6= 0, for all
k ∈ Z. Now in order to reach a contradiction, assume that

∑N
k=M ckfk = 0.

For some coefficient ck, k = M, · · · , N not all of which are zero. We can
choose M,N ∈ Z such that cM 6= 0, cN 6= 0. Then, the same proof as in [10]
shows that the vector space V := span{fk}Nk=M is invariant under the action
of T . Now, a similar calculation shows that V is invariant under the action
of T−1. Thus span{fk}k∈Z = span{T kf0}k∈Z = span{fk}Nk=M = V , which is
a contradiction because span{fk}k∈Z is assumed to be infinite-dimensional.
Thus {fk}k∈Z is linearly independent, as desired. �

If{fk}k∈Z is a frame sequence and the operator T in Proposition 2.1 is

bounded, it has a unique extension to a bounded operator T̃ : span{fk}k∈Z →
span{fk}k∈Z, given by

T̃
∑

k∈Z
ckfk =

∑

k∈Z
ckfk+1, {ck}k∈Z ∈ ℓ2(Z).

We first state a necessary condition in order for a frame {fk}k∈Z to have a
representation on the form {T kf0}k∈Z for a given bounded operator T.
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Proposition 2.2 Consider a frame on the form {fk}k∈Z = {T kf0}k∈Z for
some bounded linear operator T : span{fk}k∈Z → span{fk}k∈Z. Then the
following hold:

(i) ‖T‖ ≥ 1.

(ii) If T−1 : span{fk}k∈Z → span{fk}k∈Z is bounded, then ‖T−1‖ ≥ 1.

Proof. Let A,B denote some frame bounds and fix any n ∈ N. Using the
frame inequalities for any f 6= 0, we have

A‖f‖2 ≤
∑

k∈Z
|〈f, T kf0〉|2 =

∑

k∈Z
|〈(T n)∗f, T k−nf0〉|2

=
∑

k∈Z
|〈(T n)∗f, T kf0〉|2 ≤ B‖(T n)∗f‖2 ≤ B‖T‖2n‖f‖2. (2.1)

Therefore A ≤ B‖T‖2n for all n ∈ N, which implies that ‖T‖ ≥ 1. The result
in (ii) follows by replacing T by T−1 and noticing that these two operators
represent the same frame. �

Assuming that a frame {fk}k∈Z has a representation on the form {T kf0}k∈Z,
we will now characterize boundedness of the operator T in terms of the kernel
of the synthesis operator, see (1.3); in particular, this leads to a characteriza-
tion of the case where the operator T has an extension to a bounded bijective
operator on H.

For this purpose we need the analogue of the translation operator, acting
on the sequence space ℓ2(Z). Define the right-shift operator on ℓ2(Z) by

T : ℓ2(Z) → ℓ2(Z), T {ck}k∈Z = {ck−1}k∈Z. (2.2)

Clearly T is a unitary operator on ℓ2(Z). We say that a subspace V ⊆
ℓ2(Z) is invariant under right-shifts (respectively, left-shifts) if T (V ) ⊆ V
(respectively, if T −1(V ) ⊆ V ).

Theorem 2.3 Consider a frame having the form {fk}k∈Z = {T kf0}k∈Z for
some linear operator T : span{fk}k∈Z → span{fk}k∈Z, and let A,B > 0
denote some frame bounds. Then the following hold:

(i) The operator T is bounded if and only if the kernel NU of the synthesis
operator U is invariant under right-shifts; in the affirmative case,

1 ≤ ‖T‖ ≤
√
BA−1.
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(ii) The operator T−1 : span{fk}k∈Z → span{fk}k∈Z is bounded if and only
if NU is invariant under left-shifts; in the affirmative case,

1 ≤ ‖T−1‖ ≤
√
BA−1.

(iii) Assume that NU is invariant under right and left-shifts. Then the op-

erator T has an extension to a bounded bijective operator T̃ : H → H.

Proof. In order to prove (i), assume that {fk}k∈Z = {T kf0}k∈Z for a
bounded operator T : span{fk}k∈Z → span{fk}k∈Z. Then T can be extended

to a bounded operator T̃ : H → H. For any {ck}k∈Z ∈ NU , we have

UT {ck}k∈Z =
∞∑

k=−∞
ck−1fk =

∞∑

k=−∞
ckfk+1 = T̃

∞∑

k=−∞
ckfk = T0 = 0.

Therefore T (NU) ⊆ NU , as claimed.
Conversely, assume that NU is invariant under right-shifts. Assume that

f ∈ span{fk}k∈Z, i.e., f =
∑N

k=M ckfk for some M,N ∈ Z, ck ∈ C. One can
consider {ck}Nk=M as a sequence {ck}k∈Z in ℓ2(Z) where ck = 0 for k > N and
k < M . Thus we can write {ck}k∈Z = {dk}k∈Z + {rk}k∈Z, where {dk}k∈Z ∈
NU and {rk}k∈Z ∈ N⊥

U . Since NU is invariant under right-shifts, we have∑
k∈Z dkfk+1 = 0. Using the splitting of {ck}k∈Z and that {fk}k∈Z is a Bessel

sequence, we get that

‖Tf‖2 =
∥∥∥∥∥

N∑

k=M

ckfk+1

∥∥∥∥∥

2

=

∥∥∥∥∥

∞∑

k=−∞
(dk + rk)fk+1

∥∥∥∥∥

2

=

∥∥∥∥∥

∞∑

k=−∞
rkfk+1

∥∥∥∥∥

2

≤ B
∞∑

k=−∞
|rk|2.

Recall (see Lemma 5.5.5 in [9]) that since {fk}k∈Z is a frame with lower bound
A, we have A

∑
k∈Z |ck|2 ≤ ||U{ck}k∈Z||2, ∀{ck}k∈Z ∈ N⊥

U . It follows that

‖Tf‖2 ≤ B

A

∥∥∥∥∥
∑

k∈Z
rkfk

∥∥∥∥∥

2

=
B

A

∥∥∥∥∥
∑

k∈Z
ckfk

∥∥∥∥∥

2

=
B

A
‖f‖2 ,

i.e., T is bounded as desired. The above calculations also confirm the claimed
upper bound on the norm of T. The lower bound in the estimate in (i) was
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proved in Proposition 2.2; this completes the proof of (i). The result (ii)
is a consequence of (i). Indeed, since {fk}k∈Z = {T kf0}k∈Z, we can write
{f−k}k∈Z = {(T−1)kf0}k∈Z. Denoting the synthesis operator for {f−k}k∈Z
by V, Theorem 2.3 shows that T−1 is bounded if and only if the kernel NV

is right-shifts invariant. It is easy to see that {ck}k∈Z ∈ NU if and only if
{c−k}k∈Z ∈ NV . Hence the left-shifts invariance of NU is equivalent with the
right-shift invariance of NV .

For the proof of (iii), if NU is invariant under right and left-shifts, then
the operators T, T−1 : span{fk}k∈Z → span{fk}k∈Z are bounded. Hence they

can be extended to bounded operators T̃ , T̃−1 on H. Since

T−1Tf = TT−1f = f, f ∈ span{fk}k∈Z,

it follows that T̃ T̃−1 = T̃−1T̃ =I, i.e., T̃ is invertible on H. �

Throughout the paper it will be crucial to distinguish carefully between
a bounded operator T : span{fk}k∈Z → span{fk}k∈Z and its extension T̃ :
H → H. Indeed, our setup implies that T is invertible, but the extension to
an operator on H might no longer be injective (for the convenience of the
interested reader we include such an example in the Appendix).

Note that the biimplications in Theorem 2.3 uses the full strength of
the frame assumption. Indeed, one can construct examples of sequences
{fk}k∈Z = {T kf0}k∈Z satisfying only the upper frame condition (resp. the
lower frame condition), and such that T is unbounded while the kernel NU

is invariant under right-shifts.
Let us demonstrate the power of Theorem 2.3 by some consequences and

examples; another application will be given in Proposition 4.1. Let us first
consider the special case of a Riesz sequence.

Corollary 2.4 Any Riesz sequence {fk}k∈Z has a representation {T kf0}k∈Z
for a bounded and bijective operator T : span{fk}k∈Z → span{fk}k∈Z.

Corollary 2.4 follows immediately from Theorem 2.3 and the fact that the
synthesis operator for a Riesz sequence is injective. We therefore now turn
to the setting of an overcomplete frame.

Corollary 2.5 Consider an overcomplete frame on the form {fk}k∈Z = {T kf0}k∈Z.
If T ∈ B(H), then dim(NU) = ∞.
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Proof. If there is a nonzero element c = {ck}k∈Z in NU , then by Theorem
2.3, the boundedness of T implies that T jc ∈ NU for all j ∈ N. We will
now show that the sequence {T jc}∞j=1 is linearly independent; this implies
that NU is infinite-dimensional and concludes the proof. Now consider the
operator F : ℓ2(Z) 7→ L2[0, 1], Fc =

∑
k∈Z ckek, where ek(x) = e−2πikx. The

operator F is unitary, and FT c = e1Fc. Now assume that for some N ∈ N

and d1, d2, · · · , dN ∈ C, we have
∑N

j=1 djT jc = 0. Let ϕ = Fc. Then

0 = F(

N∑

j=1

djT jc) =

N∑

j=1

djejFc = (

N∑

j=1

djej)ϕ.

This means that (
∑N

j=1 djej(x))ϕ(x) = 0, for a.e. x ∈ [0, 1]. Since ϕ 6= 0, the

support of ϕ has positive measure. Thus we have
∑N

j=1 djej(x) = 0 for all
x ∈ supp ϕ which implies that dj = 0 for j = 1, 2, · · · , N . Thus the sequence
{T jc}∞j=1 is linearly independent, as desired. �

Corollary 2.5 leads to a general result about arbitrary group representa-
tions and the operators generated by cyclic subgroups indexed by Z:

Corollary 2.6 Let G denote a locally compact group, and π a group repre-
sentation of G on a Hilbert space H. Given any x0 ∈ G and any f0 ∈ H, and
assume that the family {π(xk

0)f0}k∈Z = {π(x0)
kf0}k∈Z is a frame sequence.

Then either the family is a Riesz sequence, or it has infinite excess.

The result in Corollary 2.6 is known in certain special cases, e.g., for the case
of a shift-invariant system considered in Example 1.1.

Note that the opposite implication in Corollary 2.5 does not hold; that
is, the operator T is not necessarily bounded even if {fk}k∈Z = {T kf0}k∈Z
is an overcomplete frame and dim(NU) = ∞. This is demonstrated by the
following example.

Example 2.7 A collection of functions in L2(R) of the form {EmbTnag}m,n∈Z
for some a, b > 0 and some g ∈ L2(R) is called a Gabor system. It is
known that if g 6= 0, then the Gabor system {EmbTnag}m,n∈Z is automat-
ically linearly independent, see [14, 11]; thus it can be represented on the
form {T kf0}k∈Z. Now, consider the Gabor frame {Em/3Tnχ[0,1]}m,n∈Z, which is
the union of the three orthonormal bases {Ek/3EmTnχ[0,1]}m,n∈Z, k = 0, 1, 2.
The Gabor frame {Em/3Tnχ[0,1]}m,n∈Z is linearly independent and has infi-
nite excess; in particular dim(NU) = ∞. Re-order the frame as {fk}k∈Z
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in such a way that the elements {f2k+1}k∈Z corresponds to the orthonor-
mal basis {EmTnχ[0,1]}m,n∈Z. By construction, the elements {f2k}k∈Z now
forms an overcomplete frame. By Proposition 2.1, there is an operator
T : span{fk}k∈Z → span{fk}k∈Z such that {fk}k∈Z = {T kf0}k∈Z. Since the
subsequence {f2k}k∈Z is an overcomplete frame, there is a non-zero sequence
{c2k}k∈Z ∈ ℓ2(Z) such that

∑
k∈Z c2kf2k = 0. Defining ck = 0 for k ∈ 2Z+ 1,

we have
∑

k∈Z ckfk =
∑

k∈Z c2kf2k = 0. On the other hand, since {f2k+1}k∈Z
is a Riesz basis and {ck}k∈Z is non-zero,

∑
k∈Z ckfk+1 =

∑
k∈Z c2kf2k+1 6= 0.

This shows that NU is not invariant under right-shifts; thus, T is unbounded
by Theorem 2.3. �

If {fk}k∈Z is a Riesz basis on the form = {T kf0}k∈Z, then the extension
of the bounded operator T : span{fk}k∈Z → span{fk}k∈Z to H is injective.
On the other hand, if a given frame has the form {fk}k∈Z = {T kf0}k∈Z for a
bounded and injective operator on H, we can not conclude that {fk}k∈Z is a
Riesz basis:

Example 2.8 Using the characterization in Example 1.1, it is easy to con-
struct an overcomplete frame sequence {Tkϕ}k∈Z = {(T1)

kϕ}k∈Z in L2(R); in
other words, letting H := span{Tkϕ}k∈Z the sequence {Tkϕ}k∈Z is an over-
complete frame for H. Clearly T1 is a bounded and injective operator on H,
but by construction {Tkϕ}k∈Z is not a Riesz basis for H. �

Corollary 2.9 Consider a tight frame having a representation {fk}k∈Z =
{T kf0}k∈Z for some invertible operator T ∈ B(H). Then T is an isometry.

Proof. Since the frame bounds are A = B, using Theorem 2.3, we have
‖T‖ = ‖T−1‖ = 1. Therefore ‖f‖ = ‖T−1Tf‖ ≤ ‖Tf‖ ≤ ‖f‖, which implies
that T is in isometry. �

3 Duality

In this section we will analyze certain aspects of the duality theory for a
frame having the form {fk}k∈Z = {T kf0}k∈Z for some bounded linear and
invertible operator T : span{fk}k∈Z → span{fk}k∈Z. In particular we will
identify a class of dual frames (including the canonical dual frame) that is

10



also given by iteration of a bounded operator. On the other hand, we also
give an example of a frame for which not all dual frames have this form.

In the entire section we denote the synthesis operator by U ; then the
frame operator is S = UU∗. We first prove that the synthesis operator U
is an intertwining operator for the right-shift operator T on ℓ2(Z) and the
operator T , as well as an immediate consequence for the frame operator. Let
c00 ⊂ ℓ2(Z) denote the subspace consisting of finite sequences.

Lemma 3.1 Consider a Bessel sequence having the form {fk}k∈Z = {T kf0}k∈Z
for a linear operator T : span{fk}k∈Z → span{fk}k∈Z. Then TU = UT on

c00. Assuming that T has an extension to a bounded operator T̃ : H → H,
the following hold:

(i) T̃U = UT on ℓ2(Z).

(ii) If {T kf0}k∈Z is a frame and T̃ is invertible, then T̃ S = S(T̃ ∗)−1; in

particular, ST̃ = T̃ S if and only if T̃ is unitary.

Proof. For {ck}k∈Z ∈ c00, there is an N ∈ N such that ck = 0 for |k| ≥ N .
Therefore

TU{ck}k∈Z = T

N∑

k=−N

ckfk =

N∑

k=−N

ckfk+1 =

N+1∑

k=−N+1

ck−1fk

= U{ck−1}k∈Z = UT {ck}k∈Z. (3.1)

In the case that T̃ is bounded, the equality (3.1) holds on ℓ2(Z) because c00
is dense in ℓ2(Z); this proves (i). For the proof of (ii), using (3.1) and that
S = UU∗,

T̃ ST̃ ∗ = T̃UU∗T̃ ∗ = T̃U(T̃U)∗ = UT (UT )∗ = UT T ∗U∗ = UU∗ = S.

Therefore T̃ S = S(T̃ ∗)−1, as desired. �

For a frame {fk}k∈Z = {T kf0}k∈Z, the operator S−1TS is invertible con-
sidered from span{S−1fk}k∈Z into itself, and the canonical dual frame is
{S−1fk}k∈Z = {(S−1TS)kS−1f0}k∈Z. This was already observed in the finite-
dimensional setting in [1]. In the case where T has an extension to a bounded
and invertible operator onH (see the appropriate conditions in Theorem 2.3),
we will now derive an alternative description of the canonical dual frame, di-
rectly in terms of the operator T and its adjoint. Since the rest of the results

11



in the current section will use the same assumptions on the operator T, we
will drop the distinction between the operator T and T̃ , and simply denote
the operator by T.

Proposition 3.2 Consider a frame {fk}k∈Z = {T kf0}k∈Z, where T ∈ B(H)

is invertible. Let f̃0 = S−1f0. Then {S−1fk}k∈Z = {(T ∗)−kf̃0}k∈Z.
Proof. Lemma 3.1 (ii) implies that TS = S(T ∗)−1. Thus S−1T = (T ∗)−1S−1

and therefore S−1T k = (T ∗)−kS−1 for k ∈ N. We also have that S−1T−1 =
T ∗S−1 and thus S−1T−k = (T ∗)kS−1 for k ∈ N. It follows that

{S−1fk}k∈Z = {S−1T kf0}k∈Z = {(T ∗)−kS−1f0}k∈Z = {(T ∗)−kf̃0}k∈Z,
as desired. �

Since the translation operators on L2(R) are unitary, Proposition 3.2
generalizes the well-known result that the canonical dual of a shift-invariant
frame {Tkϕ}k∈Z in L2(R) has the form {Tkϕ̃}k∈Z for some ϕ̃ ∈ L2(R)

It is important to notice that Proposition 3.2 only shows that the canoni-
cal dual frame has the form of an iterated system. Indeed, the next example
exhibits a frame satisfying the conditions in Proposition 3.2 and having a
dual frame that is not representable by an operator:

Example 3.3 Let us return to Example 1.1 and consider an overcomplete
frame sequence {Tkϕ}k∈Z in L2(R). Then there exists an element Tk′ϕ, k

′ ∈ Z,
that can be removed from the frame sequence, leaving a frame sequence for
the same space; due to the special structure of the frame we can even take
k′ = 0. Letting {gk}−1

k=−∞ ∪ {gk}∞k=1 denote a dual frame for the resulting
frame sequence {Tkϕ}−1

k=−∞∪{Tkϕ}∞k=1 this implies that the frame {Tkϕ}k∈Z
has the non-canonical dual {gk}−1

k=−∞ ∪ {0} ∪ {gk}∞k=1; this family is clearly
linearly dependent. Hence, by Theorem 2.1 the system is not representable
by an operator. �

We will now show that despite the obstruction in Example 3.3 we can
actually characterize the class of dual frames that arise through iterated
actions of a bounded operator. We first show that the only candidate for
this operator indeed is the operator (T ∗)−1 arising in Proposition 3.2. In
particular, this shows that for a frame {fk}k∈Z = {T kf0}k∈Z given in terms
of a unitary operator T, the dual frames having the form of an iterated
operator system must be generated by the same operator.
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Lemma 3.4 Consider a frame {fk}k∈Z = {T kf0}k∈Z, where T ∈ B(H) is
invertible. Assume that {gk}k∈Z = {V kg0}k∈Z is a dual frame and that V is
bounded. Then V = (T ∗)−1.

Proof. For any f ∈ B(H), two applications of the frame decomposition
yield that

f =
∑

k∈Z
〈f, T kf0〉V kg0 = V

∑

k∈Z
〈f, T kf0〉V k−1g0

= V
∑

k∈Z
〈T ∗f, T k−1f0〉V k−1g0 = V

∑

k∈Z
〈T ∗f, T kf0〉V kg0 = V T ∗f.

Therefore V T ∗ = I. Since T is invertible it follows that V = (T ∗)−1. �

We will now give the full characterization of dual frames of {fk}k∈Z =
{T kf0}k∈Z that are given in terms of iterations of a bounded operator.

Theorem 3.5 Consider a frame {fk}k∈Z = {T kf0}k∈Z, where T ∈ B(H) is
invertible. Then the dual frames given as iterates of a bounded operator are
precisely the families of the form {(T ∗)−kg0}k∈Z for which

g0 = S−1f0 + h0 −
∑

j∈Z
〈S−1f0, T

jf0〉(T ∗)−jh0 (3.2)

for some h0 ∈ H such that {(T ∗)−kh0}k∈Z is a Bessel sequence. In par-
ticular, this condition is satisfied when h0 is taken from the dense subspace
span{(T ∗)−kf̃0}k∈Z.
Proof. First, note that by Lemma 3.4 we know that the only operator
that might be applicable in the desired representation of the dual frame is
(T ∗)−1. Now, assume that {(T ∗)−kϕ}k∈Z is a dual frame of {T kf0}k∈Z for
some ϕ ∈ H. Then {(T ∗)−kϕ}k∈Z is a Bessel sequence, and taking h0 :=
ϕ in (3.2) yields that g0 = ϕ. On the other hand, assume that h0 ∈ H
is chosen such that the sequence {(T ∗)−kh0}k∈Z is a Bessel sequence, and
choose g0 as in (3.2). Denote the synthesis operator of {(T ∗)−kh0}k∈Z by
W . Letting {δj}j∈Z denote the canonical orthonormal basis for ℓ2(Z) and
V := S−1U +W (I−U∗S−1U), it follows from [13] (alternatively, see Lemma
6.3.5 and Lemma 6.3.6 in [9]) that the sequence {V δj}j∈Z is a dual frame of
{T kf0}k∈Z. Furthermore, by direct calculation,

V δ0 =
(
S−1U +W (I − U∗S−1U)

)
δ0 = g0.
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We first show that this frame indeed has the form {(T ∗)−kg0}k∈Z.We will now
show that V is an intertwining operator between T and (T ∗)−1. Applying
Lemma 3.1 (i) on {(T ∗)−kh0}k∈Z, we know that WT = (T ∗)−1W and TU =
UT . Also since T is bounded and invertible, Lemma 3.1 (ii) shows that
S−1T = (T ∗)−1S−1. Hence we get

V T = (S−1U +W (I − U∗S−1U))T
= S−1UT +WT −WU∗S−1UT
= S−1TU + (T ∗)−1W −WU∗S−1TU

= (T ∗)−1S−1U + (T ∗)−1W −WU∗(T ∗)−1S−1U.

Similarly to the proof of Lemma 3.1, T−1U = UT −1. Therefore U∗(T ∗)−1 =
(T−1U)∗ = (UT −1)∗ = T U∗; thus,

V T = (T ∗)−1(S−1U +W −WU∗S−1U) = (T ∗)−1V.

This implies that V δj = V T jδ0 = (T ∗)−jV δ0 = (T ∗)−jg0, as desired.

Finally, we note that if h0 ∈ span{(T ∗)−kf̃0}k∈Z, the sequence {(T ∗)−kh0}k∈Z
is a finite sum of frame sequences and hence a Bessel sequence. �

In order to apply Proposition 3.2 and Theorem 3.5 we must calculate the
adjoint of the operator T arising in the representation {fk}k∈Z = {T kf0}k∈Z.
In general this can only be done with specific knowledge of the operator T at
hand. An additional condition on the frame {fk}k∈Z implies that the operator
T is unitary, and allows us to find it explicitly in terms of {fk}k∈Z; the result
generalizes the observations for shift-invariant systems in Example 1.1, and
also applies to some of the other systems obtained via group representations
in Example 1.2.

Proposition 3.6 Consider a frame having the form {fk}k∈Z = {T kf0}k∈Z
for some operator T ∈ B(H). Assume that for a function θ : Z 7→ R, we

have 〈fj , fk〉 = θ(j − k), j, k ∈ Z. Then T̃ ∗∑
k∈Z ckfk =

∑
k∈Z ckfk−1 for

all {ck}k∈Z ∈ ℓ2(Z). In particular, T̃ is unitary.

Proof. Consider arbitrary j, k ∈ Z. Then

〈T̃ fj , fk〉 = 〈fj+1, fk〉 = θ(j + 1− k) = 〈fj, fk−1〉 = 〈fj, T̃ ∗fk〉.
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It follows that T̃ ∗fk = fk−1. Therefore T̃ T̃ ∗ = T̃ ∗T̃ = I, i.e., T̃ is unitary
and

T̃ ∗
∑

k∈Z
ckfk =

∑

k∈Z
ckfk−1

for all {ck}k∈Z ∈ ℓ2(Z). �

4 Stability of the representation {fk}k∈Z = {T kf0}k∈Z
For applications of frames it is important that key properties are kept under
perturbations. We will now state a perturbation condition that preserves the
existence of a representation {fk}k∈Z = {T kf0}k∈Z. The condition was first
used in connection with frames in the paper [7].

Proposition 4.1 Assume that {fk}k∈Z = {T kf0}k∈Z is a frame for H and let
{gk}k∈Z be a sequence in H. Assume that there exist constants λ1, λ2 ∈ [0, 1[
such that

∣∣∣
∣∣∣
∑

ck(fk − gk)
∣∣∣
∣∣∣ ≤ λ1

∣∣∣
∣∣∣
∑

ckfk

∣∣∣
∣∣∣+ λ2

∣∣∣
∣∣∣
∑

ckgk

∣∣∣
∣∣∣ (4.1)

for all finite sequences {ck}. Then {gk}k∈Z is a frame for H; furthermore
{gk}k∈Z can be represented as {gk}k∈Z = {V kg0}k∈Z for a linear operator

V : span{gk}k∈Z → span{gk}k∈Z.

If T is bounded, then V is also bounded.

Proof. By Theorem 2 in [7] the perturbation condition implies that {gk}k∈Z
is a frame. Also, since max(λ1, λ2) < 1, it follows from (4.1) that

∑

k∈Z
ckfk = 0 ⇔

∑

k∈Z
ckgk = 0, ∀{ck}k∈Z ∈ ℓ2(Z). (4.2)

Since {fk}k∈Z is linearly independent, (4.2) implies that the sequence {gk}k∈Z
also is linear independent. Therefore by Proposition 2.1, there is a linear
operator V : span{gk}k∈Z → span{gk}k∈Z such that {gk}k∈Z = {V kg0}k∈Z.
Now assume that the operator T is bounded; We want to show that then V
is also bounded. Let W : ℓ2(Z) → H be the synthesis operator for {gk}k∈Z,
and consider some {ck}k∈Z ∈ NW . Then by (4.2), {ck}k∈Z ∈ NU , where U is
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the synthesis operator for {fk}k∈Z. Since T is bounded, Theorem 2.3 implies
that NU is invariant under right-shifts, i.e.,

∑
k∈Z ck−1fk = 0. Using again

(4.2), we conclude that
∑

k∈Z ck−1gk = 0, which shows that T {ck}k∈Z ∈ NW .
Applying Theorem 2.3 again shows that V is bounded. �

Note that (4.1) is a special case of the perturbation condition

∣∣∣
∣∣∣
∑

ck(fk − gk)
∣∣∣
∣∣∣ ≤ λ1

∣∣∣
∣∣∣
∑

ckfk

∣∣∣
∣∣∣+ λ2

∣∣∣
∣∣∣
∑

ckgk

∣∣∣
∣∣∣+ µ(

∑
|ck|2)1/2, (4.3)

appearing in [7]. If {fk}k∈Z is a frame for H with lower bound A, {gk}k∈Z ⊂
H, and (4.3) holds for all finite sequences {ck} and some parameters λ1, λ2, µ ≥
0 such that max

(
λ2, λ1 +

µ√
A

)
< 1, then by [7] also {gk}k∈Z is a frame for

H. This perturbation condition has been used in many different contexts
in frame theory, typically for the case µ > 0. However, the case µ > 0
turns out to be problematic if we want the perturbation {gk}k∈Z of a frame
{fk}k∈Z = {T kf0}k∈Z to be represented on the form {gk}k∈Z = {W kg0}k∈Z.
The first obstacle is that if µ > 0, the perturbation condition (4.3) does not
preserve the property of being representable by an operator:

Example 4.2 Consider an orthonormal basis {ek}k∈Z for a Hilbert space H.
Then the family {fk}k∈I := {ek}k∈Z∪{α

∑∞
j=1

1
2j
ej} is a linearly independent

frame for any choice of α > 0, with lower frame bound A = 1. For α < 1, the
family {gk}k∈I := {ek}k∈Z ∪ {0} is a perturbation of {fk}k∈I in the sense of
(4.3), with λ1 = λ2 = 0 and µ = α. However, regardless how small we choose
α, the family {gk}k∈I is not linearly independent. Hence, by Proposition 2.1
the sequence {gk}k∈I can not be represented on the form {W kϕ}k∈Z. �

The following example shows that even if we assume that the perturbation
{gk}k∈Z of a frame {fk}k∈Z = {T kf0}k∈Z is linearly independent (and hence
representable on the form {gk}k∈Z = {V kg0}k∈Z), the condition (4.3) does
not imply that V is bounded if T is bounded.

Example 4.3 Let us first explain the idea of the construction in the set-
ting of a general Hilbert space H. Assume that {fk}k∈Z = {T kf0}k∈Z is an
overcomplete frame for H, with lower bound A, and that the operator T is
bounded. We further assume that

(a) The sequence {fk}k∈Z\{−1,0} is complete in H.
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We will then search for some g0 ∈ H such that the sequence

{gk}k∈Z := {fk}−1
k=−∞ ∪ {g0} ∪ {fk}∞k=1

satisfy the following requirements:

(b) The condition (4.3) is satisfied with max
(
λ2, λ1 +

µ√
A

)
< 1;

(c) {gk}k∈Z is linearly independent.

We will now explain how this setup leads to the desired conclusion; after that
we provide a concrete construction satisfying all the requirements.

First, the condition (b) implies that {gk}∞k=1 is a frame for H; by (c) it
has the form {gk}k∈Z = {W kg0}k∈Z for some operator

W : span{gk}k∈Z → span{gk}k∈Z.

By the definition of the sequence {gk}k∈Z it follows that





Wfk = fk+1, k = −2,−3, . . .
Wf−1 = g0,
Wg0 = f1,
Wfk = fk+1, k = 1, 2, . . .

(4.4)

We note that the operators T and W act in an identical way on the vectors
{fk}k∈Z\{−1,0}; thus, if W is bounded it follows by (a) that W = T. But then
(4.4) implies that g0 = Wf−1 = Tf−1 = f0, i.e., that {fk}k∈Z = {gk}k∈Z. In
other words: for a perturbation satisfying the stated conditions, the operator
W in the representation {gk}k∈Z = {W kg0}k∈Z will not be bounded when
g0 6= f0.

We now proceed to a concrete construction satisfying (a)–(c). In order
to do so, we return to the shift-invariant systems considered in Example
1.1. First, it is well-known that the function sinc(x) := sin(πx)

πx
generates an

orthonormal basis {Tksinc}k∈Z for the Paley-Wiener space

H := {f ∈ L2(R)
∣∣ supp f̂ ⊆ [−1/2, 1/2]}.

It follows that the oversampled family {fk}k∈Z := {Tk/3sinc}k∈Z = {T k
1/3sinc}k∈Z

can be considered as a union of three orthonormal bases, and hence form a
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tight frame for H; we note that by the carefully chosen oversampling, the
condition (a) is satisfied. The operator T := T1/3 is clearly bounded.

Now, consider a constant c ≥ 0 and let g0 := Tcf0; then g0 ∈ H, and for
any finite scalar sequence {ck} we have

∣∣∣
∣∣∣
∑

ck(fk − gk)
∣∣∣
∣∣∣ = ||c0(f0 − Tcf0)|| ≤ ||f0 − Tcf0|| (

∑
|ck|2)1/2.

By continuity of the translation operator there exists some δ > 0 such that
||f0 − Tcf0|| <

√
A whenever c ∈ [0, δ[; it now follows from the perturbation

condition that {gk}k∈Z is a frame for H for c belonging to this range, i.e.,
the condition (b) is satisfied. Furthermore, for c < 1/3 all the translation
parameters appearing in the sequence {gk}k∈Z are pairwise different; thus
{gk}k∈Z is linearly independent and condition (c) is fulfilled. �

Most of the concrete applications of perturbation results in frame theory
deals with the special case of the condition (4.3) corresponding to λ1 = λ2 =
0. Even in this case, Example 4.3 shows that the perturbation condition does
not preserve boundedness of the representing operator. In applications where
stability is an important issue, one can alternatively represent a frame using
iterated operator systems based on a finite collection of operators instead of
a singleton. Consider a frame {fk}k∈Z which is norm-bounded below. It is
proved in [10] that then there is a finite collection of vectors from {fk}k∈Z,
to be called ϕ1, . . . , ϕJ , and corresponding bounded operators Tj : H → H,
such that {T n

j ϕj}n∈Z is a Riesz sequence, and {fk}k∈Z = ∪J
j=1{T n

j ϕj}n∈Z.
The proof uses the Feichtinger theorem (which was a conjecture for several
years and finally got confirmed in [15]). We will now show that the stated
representation is stable with respect to the central perturbation condition
(4.3) with λ1 = λ2 = 0.

Theorem 4.4 Assume that the frame {fk}k∈Z is norm-bounded below, and
consider a representation on the form ∪J

j=1{T n
j ϕj}n∈Z, where the operators

Tj are bounded and {T n
j ϕj}n∈Z is a Riesz sequence. Let A denote a com-

mon lower frame bound for the frame {fk}∞k=1 and all the Riesz sequences
{T n

j ϕj}n∈Z, j = 1, . . . , J. Let {gk}k∈Z be a sequence in H such that for some

µ <
√
A, ∣∣∣

∣∣∣
∑

ck(fk − gk)
∣∣∣
∣∣∣ ≤ µ(

∑
|ck|2)1/2, (4.5)
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for all finite scalar sequences {ck}. Then there is a finite collection of vectors
φ1, . . . , φJ from {gk}k∈Z and corresponding bounded operators Wj : H → H,
such that {W n

j φj}n∈Z is a Riesz sequence, and

{gk}k∈Z =
J⋃

j=1

{W n
j φj}n∈Z. (4.6)

Proof. The perturbation condition (4.5) is a special case of (4.3); thus
the family {gk}∞k=1 is a frame for H. Furthermore, partitioning {gk}k∈Z ac-
cording to the splitting {fk}k∈Z = ∪J

j=1{T n
j ϕj}n∈Z, i.e., writing {gk}k∈Z =⋃J

j=1{g
(n)
j }n∈Z, it follows from (4.5) that for any fixed j ∈ {1, . . . , J} and any

finite scalar sequence {cn}n∈Z,
∣∣∣
∣∣∣
∑

cn(T
n
j ϕj − g

(n)
j )

∣∣∣
∣∣∣ ≤ µ(

∑
|cn|2)1/2.

Therefore, for each fixed j ∈ {1, . . . , J} the sequence {g(n)j }n∈Z is a Riesz
sequence, and hence representable on the form {W n

j φj}n∈Z for some bounded
operator Wj and some φj ∈ H.

Note that an alternative way of proving the result would be to show
directly that (4.5) implies that {gk}k∈Z is norm-bounded below and then
refer to the stated result in [10]. However, this argument would not yield
that the splitting of the indexing of the frame {fk}k∈Z is preserved for the
perturbed family {gk}k∈Z, as in (4.6). �

Appendix: auxiliary examples

We will close the paper with a few operator-theoretical considerations, to
which we have referred throughout the paper.
1) Instead of representing a frame on the form {T kf0}k∈Z, one could also
consider representations on the form {T nf0}∞n=0; this indexing occur, e.g.,
in dynamical sampling [2, 3]. The chosen indexing actually has a serious
influence on the properties of the operator T. For example, there exist frames
{fk}k∈Z = {T kf0}k∈Z where T is a unitary operator (Example 1.1); but if we
reindex the frame as {fk}∞k=0 it can not be represented on the form {Unf0}∞n=0

for a unitary operator U, see [3].
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Let us demonstrate the sensibility to the indexing by one more case. First,
it is well-known that the function sinc(x) := sin(πx)

πx
generates an orthonormal

basis {Tksinc}k∈Z for the Paley-Wiener space

H := {f ∈ L2(R)
∣∣ supp f̂ ⊆ [−1/2, 1/2]}.

It follows that the oversampled family {Tk/2sinc}k∈Z = {T k
1/2sinc}k∈Z is a

tight frame for H; the representing operator T1/2 is clearly bounded.
On the other hand, the following lemma shows that considering {Tk/2sinc}k∈Z

as a union of the two orthonormal bases {Tksinc}k∈Z and {T1/2Tksinc}k∈Z,
re-indexing in a natural fashion as {T nf0}∞n=0 always leads to an unbounded
operator T.

Lemma 4.5 Consider two orthonormal bases {fk}∞k=1 and {ek}∞k=1 for a
Hilbert space H and assume that the set {fk}∞k=1 ∪ {ek}∞k=1 is linearly in-
dependent. Then a linear operator T : span ({fk}∞k=1 ∪ {ek}∞k=1) → H such
that

{ϕk}∞k=0 := {f1, e1, f2, e2, . . . } = {T kϕ0}∞k=0, (4.7)

is necessarily unbounded.

Proof. The ordering in (4.7) implies that Tfk = ek for all k ∈ N; thus,
if the operator T is bounded, it has a unique extension to a bounded linear
operator T̃ : H → H, given by T̃

∑∞
k=1 ckfk =

∑∞
k=1 ckek, {ck}∞k=1 ∈ ℓ2(N).

Clearly T̃ is a surjective mapping. On the other hand, (4.7) also implies that

T̃ ek = fk+1; since {ek}∞k=1 is an orthonormal basis for H this implies that the

range of T equals the space span{fk}∞k=2, which excludes that T̃ is surjective.
This contradiction shows that the operator T can not be bounded. �

2) Let V denote a dense subspace of a Hilbert space H, and consider a
bounded and bijective operator T : V → V. Then T has a unique extension
to a bounded operator T̃ : H → H. The following example demonstrates
that the extension T̃ might no longer be injective.

Example 4.6 Let {ek}∞k=1 denote an orthonormal basis for a separable Hilbert
space, and consider the sequence {fk}∞k=1 := {e1} ∪ {ek−1 +

1
k
ek}∞k=2. Then

{fk}∞k=1 is a frame (see [9]), and it is easy to see that the elements are
linearly independent. Let V := span{fk}∞k=1, and consider the operator
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T : V → V, Tf :=
∑∞

k=1〈f, ek〉fk. Then T is linear and bounded, its ex-
tension to a bounded operator on H is given by the same expression, i.e.,
T̃ : H → H, T̃ f =

∑∞
k=1〈f, ek〉fk. The operator T : V → V is bijective.

Injectivity follows from the fact that for f ∈ V, the sequence {〈f, ek〉}∞k=1

is finite; hence, due to the linear independence of {fk}∞k=1 we can only have
Tf = 0 if 〈f, ek〉 = 0 for all k ∈ N, which implies that f = 0. So show that
T is surjective, let g ∈ V. Then g =

∑N
k=1 ckfk for some N ∈ N and some

ck ∈ C. Then f :=
∑N

k=1 ckek ∈ V and Tf = g.

However, the bounded extension T̃ : H → H is not injective. Indeed, since
{fk}∞k=1 is an overcomplete frame, there exist coefficients {ck}∞k=1 ∈ ℓ2(N)\{0}
such that

∑∞
k=1 ckfk = 0; taking f :=

∑∞
k=1 ckek 6= 0 we have Tf = 0. �
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Birkhäuser Boston, 2006.

[12] Janssen, A.J.E.M.: The duality condition for Weyl-Heisenberg frames.
In “Gabor analysis: theory and application”, (eds. Feichtinger, H. G.
and Strohmer, T.). Birkhäuser, Boston, 1998.
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